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Abst rac t  

In this paper, we s tudy  the application of universal hashing to the construction 
of unconditionally secure authentication codes without secrecy. This idea is most 
useful when the number of authenticators is exponentially small compared to the  
number of possible source states (plaintext messages). We formally define some new 
classes of hash functions and then prove some new bounds and give some general 
constructions for these classes of hash functions. Then we discuss the implications 
to authentication codes. 

1 Introduction 

In this paper ,  we s tudy the application of universal hashing to the  construction of un- 
conditionally secure authentication codes without secrecy. This  idea is due to Wegman 
and  Carter  [We], who gave a construction which is useful when the number of authenti- 
cators is exponentially small compared to the number of possible source s ta tes  (plaintext 
messages). We generalize the  Wegman and Carter construction by formally defining 
some new classes of hash functions. We prove some new bounds and  give some general 
constructions for these classes of hash functions. Then  we discuss the  implications to au- 
thentication codes. We are  able to decrease the key length by a factor of four compared 
to  the Wegman and Carter  construction, while maintaining the same security. 

T h e  paper is organized as follows In this introduction we give a n  informal discussion 
of the  motivation for this paper. Section 2 is a brief review of the  necessary background of 
authentication codes. Section 3 gives relevant definitions f rom universal hashing. Section 
4 presents proofs of new lower bounds on the  number of hash functions in  certain types of 
universal claasea and  gives the  basic construction for authentication codes from universal 
classes of hash functions. Section 5 gives a variety of new constructions for universal 
classes of hash functions. In Section 6 ,  we bring all the theory together and discuss 
its implications to the construction of authentication codes. Section 7 makes further 
comments  and  discusses open questions. 
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Here are couple of hypothetical examples to motivate the problems we study. Suppose 
we have an authentication code with k posslble source states and t possible authentica- 
tors. That is, we wish to authenticate a logk-bit message with a log!-bit authenticator. 
An opponent who plays either impersonation or substitution can deceive the transmitter 
with a probability of at  least l/! (in either case). 

One important point is that k and ! are independent parameters. k is the number of 
possible source states; t is a security parameter.’ For purposes of discussion, we identify 
two “reasonable” situations: 

case 1 k = 220,  e = 2” 

case 2 k = 22560,  ! = 2*O 

Researchers have generally concentrated on the construction of codes which ensure 
that the opponent’s,deception probabilities are limited to these lower bounds. The main 
tool for constructing such codes has been a structure from combinatorial design theory 
called an orthogonal array (or equivalent structures, such a4 mutually orthogonal Latin 
squares, transversal designs or nets). Codes constructed by this method contain the 
minimum possible number of encoding rules, which is an important consideration since 
the encoding rule is secret information that must be exchanged over a secure channel 
before the transmission of a message. 

In this paper, we shall use the language of orthogonal arrays. An O A ( n , k , A )  is a 
An2 x k array of n symbols, such that in any two columns of the array every one of 
the possible n2 pairs of symbols occurs in exactly A rows. It is shown in [Stl] that  an 
OA(n,  k, A )  gives rise to an authentication code for k source states, with n authenticators 
and An2 x k encoding rules (each row of the array gives rise in an obvious way to an 
encoding rule which assigns an authenticator to every possible source state, and the 
encoding rules are each used with equal probability). I t  has been known since 1945 (see 
[PI]) that if an OA(n, k, A )  exists, then 

k ( n  - 1) + 1 
n2 A2 

It follows that An2 2 n2 if k 5 n + 1 and An2 2 k(n  - 1) + 1 if k 2 n + 1 (An2 is the 
number of encoding rules in the resulting code). 

In case 1, we can obtain a code with 240 encoding rules; i.e. 40 bits of key are required. 
In case 2, the minimum number of encoding rules using this method is 22560(220 - 1) + 1, 
or about 2580 bits of key. 
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The observation of Wegman and Carter [We] is that by not requiring the deception 
1/t), one can sometimes reduce the probabilities to be the theoretical minimum (i.e. 

number of encoding rules significantly, at  least in the case where k >> t .  

2 Authentication codes 

The general theory of of unconditional authentication has  been developed by Simmons 
(see e.g. [Sill and [SiZ]), and has  been extensively studied in recent years. In this section, 
we will give a brief review of some relevant known results concerning authentication 
without secrecy. 

In the usual model for authentication, there are three participants: a transmitter,  a 
receiver, and an opponent. The transmitter wants to communicate some information to 
the receiver using a public communications channel. The source state (or plaintext) is 
encrypted to obtain the message (ciphertext), which is sent through the channel. An 
encoding rule (or key) e defines the message e(s) to be sent to communicate any source 
state S. Each encoding rule will be a one-to-one function from the source space to the 
message space. We assume the transmitter has a key source from which he obtains a key. 
Prior to any messages being sent, this key is communicated to the receiver by means of 
a secure channel. 

We will use the following notation. Let S be a set of k source states; let M be a set of 
v messages; and let E be a set of encoding rules. Since each encoding rule is a one-tc-one 
function from S to M ,  we can represent a code by an [E l  x k matrix, where the rows are 
indexed by encoding rules, the columns are indexed by source states, and the entry in 
row e and column s is e(s). We call this matrix the encoding matnz.  For any encoding 
rule e E E ,  define M ( e )  = { e ( s )  : s E S}, i.e. the set of valid messages under encoding 
rule e .  For an encoding rule e ,  and a message rn E M(e),  define e- l ( rn)  = s if e ( s )  = 771. 

In this paper, we are studying authentication codes without secrecy. This means 
that e(s) = e’(s’) only if s = s’; i.e. the message uniquely determines the source state, 
lrrespective of the encoding rule being used. Hence, we can partition the set of messages 
M into k subsets M , ,  s E S, such that M ,  = {e(s)  : e E f}. 

Suppose the opponent has the ability to introduce messages into the channel and/or 
to modify existing messages. When the opponent places a (new) message m’ into the 
channel, this is called impersonation. When the opponent sees a message m and changes 
it to a message m’ # m, this is called substttution. In either case, his goal is to have 
m’ accepted as authentic by the receiver. That is, if e is the encoding rule being used 
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(which is not known to the opponent), then the opponent is hoping that m' = e ( s )  for 
some source state s. 

We assume that there is some probability distribution on the source states, which is 
known to all the participants. Given the probability distributions on the source states, 
the receiver and transmitter will choose a probability distribution for E ,  called an en- 
coding strategy. Once the transmitter/receiver have chosen the encoding strategy, it is 
possible to determine, for i = 0 , l  a probability denoted Pd,, which is the probability 
that the opponent can deceive the transmitterlreceiver by impersonation and substitu- 
tion, respectively. 

I t  is not difficult to show that Pdo 2 k/v and that Pd, = k/v only if lMdl = v / k  
for every source state s [Sill. In this paper, we will confine our attention to codes in 
which Pdo = k / v .  In this situation, we can define a set A o f t  = v / k  authenticators and 
a mapping 4 : M -+ A such that,  for every s E S, {+(rn) : m E M , }  = A. We can then 
obtain an isomorphic code by defining for every encoding rule e an authentication rule 
e@ defined by e#'(s) = $(e(s)) for every source state s. In this new code, every message 
consists of a source state concatenated with an authenticator from A; i.e. m = (s, e@(s ) ) .  

In terms of l' = Idl, we have Pdo 2 l / t .  It then follows that Pd, 2 l / t ,  as well [St2]. 

Codes with Pdo = Pdl = I/! are in fact equivalent to orthogonal arrays, as follows. 

Theorem 2.1 [Std] Suppose we have an authentication code wtthout secrecy t n  which 
Pdo = Pdl = k / v  = I/! Then b 2 k(C - 1) + 1, and equality occurs I f  and only t f  the 
authentication matrix is an orthogonal a r r a y  CIA(!, k ,  A) where X = ( k ( e -  1) + 1)/12 and 
the authentication rules are used with equal probabilzty. 

3 Universal hashing 

Universal classes of hash functions were introduced by Carter and Wegman [Ca], and 
were studied further by Sarwate [Sa], LVegman and Carter [We] and Stinson [St3]. In 
this paper, we are interested in the application of universal hashing to authentication 
codes. First, let us review the relevant definitions. 

Let -4 and B be finite sets, and denote a = IAl and b = J B J ,  where a 2 b.  A function 
h : A -+ B will be termed a hash function. For a hash function h ,  and for I, y E A ,  z # y, 
define b h ( 2 .  y) = 1 if h ( z )  = h(y) ,  and 6 h ( z ,  y) = 0 otherwise. That is, 6 h ( z ,  y) = 1 if 
and only if the hashed values of x and y collide. For a finite set H of hash functions, 
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define ~ H ( E ,  y) = xhEH 6h(z ,  y). Hence, 6 ~ ( z ,  y) counts the number of hash functions 
in H under which 2 and y collide. 

The idea of a universal class of hash functions is to define a collection H of hash 
functions in such a way that a random choice of a function h E H yields a low probability 
that any two distinct inputs z and y will collide when their hashed values are computed 
using the function h. Note that this probability can be computed to be ~ H ( z ,  y)/lHI. 
By choosing H suitably, it is possible to make this probability small for all choices of z 
and y. 

However, for the purpose of practical applications, it is important not only to have 
~ H ( E ,  y ) / l H I  small for every E and y, but /HI  should be small as well. 

First, let’s consider SH(Z,  y). We state without proof a bound that was noted in [Sa, 
p. 421. 

Theorem 3.1 For any class H of hash functions from A to B ,  there exist distinct ele- 
ments  2, y E A such that ~ H ( z ,  y) 2 IHl(a - b) / (b(a - l)), where a = IAl and b = IBI. 

Here now are two definitions of classes of hash functions. 

1. Let c be a positive real number. H is c-almost untuersalz (or E - A U ~ )  if 6 ~ ( z , y )  5 
EIHI for all I ,  y E A ,  I # y. 

2. Let E be a positive real number. H is c-almost strongly-universal2 (or E - ASuz)  
if the following two conditions are satisfied: 

(a) for every zl E A and for every yl E B ,  I{h E H : h(z1) = yl}l = 1Hl/181 
(b) for every 1 1 , 2 2  E A (21 # z2) and for every y1, y2 E B ,  

The first definition is saying that the probability of collision is at most E for any 
two inpzts z and y. The second definition says that any input z1 is mapped to any 
hashed value y1 with probability l / b ;  and given that zl is mapped to y1, the conditional 
probability that E Z  is mapped to y2 is at  most 6 ,  for any 1 2 ,  yz, 2 2  # 21. 

Special cases of these definitions have been previously studied in the literature. For 
example, (a - b) / (ab - b )  - AUZ has been called optimally universal [Sa], ( l / b )  - A& 
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has been called universal [Ca], and  ( l / b )  - ASU2 has been called strongly unrversal [We]. 
Xote that in an E - ASUz class, it  must be the case that t 3 l / b .  

6 - AS& classes of hash functions can be used for authentication. If we have such 
a class H of hash functions from A to B ,  then we can think of the elements of A as 
source states and the eIements of B as authenticators. Each hash function gives rise to 
an encoding rule, and the  encoding rules are used with equal probability. The following 
result is immediate. 

Theorem 3.2 If there ezists an 6 - ASU2 class H of hash functions from A t o  B, then 
there ezists an authentication code for  \A1 source states, having IBI authenticators and 
IHI encoding rules, such thut Pd, = l/lB] and I'dl _< c .  

4 Lower bounds on the size of classes of hash func- 
tions 

In view of the fact t ha t  classes of hash functions give rise to authentication codes. it  is of 
interest to compute lower bounds on the number of hash functions required. We present 
two lower bounds in this section, which generalize some previously known bounds. The 
proofs use a nice variance technique, but are omitted from this extended abstract due to  
space limitations. 

Theorem 4.1 If there ezists an E - AU2 class H of hash functions from A t o  B ,  where 
a = (A1 and b = IBI, then 

a(b - 1) 
'> a ( d  - 1) + b 2 ( 1  - c ) .  

By substituting e = l / b  and  e = (a - b ) / ( a b  - 6 )  into the above bound, respectively, 
we obtain the following corollary. 

Corollary 4.1 [St31 Suppose H i s  a class of hash functions from A t o  B ,  where a = [A1 
and b = IBI. I f H  is U2, then IHI 2 a/b. I f H  is OU,, then JH]  2 ( a  - l ) / ( b  - 1). 

We next present a lower bound on the number of hash functions in a E - ASUz class. 
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Theorem 4.2 If there ezists an 6 -  ASU2 class H of hash funcitons from A to B ,  where 
a = \A(  and b = JBJ, f h e n  

a(b - 1)' 
I f f '  ' + bc(a - 1) + b - a '  

In the  case 6 = l / b ,  we get the following corollary. 

Corollary 4.2 [SttS] If there exists an SU2 class H o f  hash functions from A to B ,  where 
a = IAl and b = IBI, then ]HI 2 1 + a(b  - 1). Further, IHI = 1 + o(b - 1) zf a n d  only if 
there is  an OA(b, a, A), where X = ( a ( b  - 1) + l)/a2. 

5 Construct ions 

In this section, we give some direct and recursive constructions for universal classes 
of hash functions. First ,  we recall some direct constructions that are special cases of 

constructions from [St31 and  [Ca]. 

Theorem 5.1 Let q be a prtme power. Then there exists a C; class H of hash functions 
from A t o  B ,  where IAl = q 2 ,  IBI = q and Iff1 = q (hence 6 = l/q,J. 

Proof: Let A = GF(q)  x GF(q) ,  let B = GF(q)  and let H = {h ,  : z E G F ( q ) } ,  where 
hz(a ,  b)  = b - az. 0 

Theorem 5.2 Let q be a prime power. Then there exists an SU2 class H of hash func- 
tions from A t o  B ,  where IAl = q 2 ,  IBI = q and /HI = q3 (hence c = l /q).  

Proof: Let A = G F ( q )  x GF(q) ,  let B = G F ( q )  and let H = {hzyz : z,y,z E G F ( q ) } ,  
where hryz(a, a) = 2 + ay + bz. 0 

Theorem 5.3 Let q be a p r i m e  power. Then there exists an SU2 class H of hash func- 
tions f rom A t o  B ,  where IAI = q, IBI = q and IHI = q2 (hence E = l /q) .  
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proof: Let A = B = GF(q)  and let H = {hzy : r .  y E G F ( g ) } ,  where hzy(a) = 2 + ay. 

Now we present some methods of combining classes of hash functions which generalize 
similar constructions from [We] and [Sa]. 

Theorem 5.4 (Cartesian Product) If there ezzsts an  c - AU2 class H of hash func- 
ttons from A t o  B,  then, f o r  a n y  integer z >_ 1, there exists an 6 - Aliz class H' of hash 
functtons from A' to B' wtth \HI = IH'J. 

Proof: For every h E H ,  define a hash function h' . A' + B' by the rule h ' ( a 1 ~  . . . , a,) = 
(~(uI), . . . , h ( a , ) ) .  Define H' = {h' . h E H}. 0 

Theorem 5.5 ( C o m p o s i t i o n  1) For i = 1 .2 ,  suppose there exists an cs - AU2 class 
Hi of hash functions from A, to  B,, where A2 = B1. Then there exists an E - Ali2 class 
H of hash funcizons from i l l  t o  Bz, where E = €1 + €2  and JH1 = IH1J x lH21. 

Proof: For every h; E H , ,  i = 1 . 2 ,  we define a hash function h : A1 Bz by the rule 
h(a) = hz(hi(a)). Let H be the set of all such hash functions. For any two inputs, the 
probability of collision is at most €1 + (1 - c1)c2 < c1  + c 2 .  0 

Theorem 5.6 (Composition 2) Suppose H I  as an c1  - AU2 class of hash functions 
from A1 to B1, and suppose Hz i s  a n  €2 - ASU2 class of hash functions from B1 t o  B2. 
Then there exists an c-ASU2 class H of hash functions from A1 t o  B2, where c = €1 + 6 2  

and \HI = IH11 x IHZI. 

Proof: For every hi E Hi,  i = 1 ,2 ,  define a hash function h : A1 4 8 2  by the  rule 
h(a) = h2(hl(u)). Let H be the set of all such hash functions. Let z1! z? E -41 (21 # 22) 
and let y1, y? E B2. How many functions in H m a p  z1 t o  y1 and x2 t o  yz? Suppose first 
that y1 = yz, Let p denote tha t  probability tha t  z1 and x 2  collide under a hash function 
from HI. Then the maximum number is a t  most 

If Yi # yz then the number is less. Since p 5 c l ,  it follows t h a t  we have a n  c - ASU2 
Class with c = €1 -+ e 2 .  0 
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6 The application of universal hashing to authenti- 
cat ion 

We now combine the constructions of the previous section to obtain authentication codes. 

Theorem 6.1 Let q be a prime power and let i 2 1 be an  integer. Then there exists an  
( i / q )  - AU2 class of qi hash functions from A t o  B,  where JAJ  = q2' and \I31 = q. 

Proof: Apply Theorems 5.1 ,  5.4 and 5 . 5 .  0 

Theorem 6.2 Le t  q be a prime power and let i 2 1 be an integer. Then there exists 
an ((i + l ) / q )  - ASU2 class of q'+2 hash functions from d to  B ,  where IAl = 4'' and 

PI = 4. 

Proof: Apply Theorems 6.1, 5.3 and 5.6. 0 

Theorem 6.3 Let q be a prime power and let i 2 1 be an  integer. Then there exists 
an ( i /q2  + l /q)  - ASUz class of q2'+3 hash functions from A t o  B ,  where IA[ = q 2 *  and 
P I  = q. 

Proof: Apply Theorems 6.1 (replacing q by q') ,  5.2 and 5.6. 0 

Let's look at the codes we can obtain via Theorem 3.2 for case 2 of the Introduction 
using the above results. If we apply Theorem 6.2  with q = 2'' and i = 7, we get an 
authentication code with 2"' encoding rules in which P& = 2-20 and Pdl = 
On the other hand, if we apply Theorem 6.3, we get an authentication code with 2340 
encoding rules in which Pa,, = 2-20 and P d l  < Yi9. On the other hand, if we require 
Pd., = pa, = 2-" then Theorem 2.1 tells us that the number of encoding rules is at least 
22560(220 - 1) + 1 22s80. Hence, we obtain an enormous reduction in the size of the 
key spa@ by increasing Pdl only slightly. 

Taking logarithms, we can rephrase the above discussion by saying that authentication 
of a 2560-bit source with a 20-bit authenticator requires 180, 340 and 2580 bits of key, 
respectively. 

The following bound, obtained from Theorem 6.2, is similar to that given in [We]. 
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Theorem 6.4 There  e z i s t s  an  authentication code f o r  a n  a‘-bit source w i t h  a b‘-bit au- 
thenticator,  obtaining deception probabili t ies Pa, = 2-b‘ and Pal = (10gu’-logb’+1)2-~‘, 
with a k e y  of length (log a’ - log b’ + 2)b’. 

Proof: Write b = 2” = q and a = 2“‘ = b2’ .  Then i = loga’ - logb’. Apply Theorem 
6.2. 0 

In Section 3 of [We] , a similar construction for a 2 / b  - ASU2 class of hash functions is 
presented, in which log [HI is 4(b’ + loglog a’) loga’. However, it  appears to me that the 
analysis of 6 too low by a factor of loga’, and that the class is in fact an  t - ASUZ class 
where c = (2 log u’)2-”.  With respect to our example of case 2, the key length would be 
about 1056. In general, our bound on the key length (Theorem 6.4)  is lower by a factor 
of four. 

7 Further comments and open questions 

We have been emphasizing the application of hash functions to the construction of au- 
thentication codes with k >> C. This is because previously known techniques are already 
quite good when k and C are even polynomially related. For, suppose we have an c-ASU2 
class H of hash functions from A to B where IAl = a(= k) and jBI = b(= t ) .  Consider 
the effect of increasing E from l / b  to 2 / b  in the hound of Theorem 4.2.  The ratio of the 
two bounds is about ( a  + b ) / b .  Hence, the potential for decreasing IHi significantly is 
much greater when Q >> b. 

The constructions for E - ASU2 classes of hash functions given in Theorems 6.1 and 
6.2  have IHI considerably larger than the lower bound given in Theorem 4.2. There 
are relatively few situations where the bound of Theorem 4.2 is known to  be met with 
equality. The only cases known to us are as follows. First, if c = l / b ,  then the class is an 
SU2 class and is equlvalent to an orthogonal array OA(b, a,  A) ,  where A = (a(b-l)+l)/a2.  
(Corollary 4.2). Some infinite classes of these are known to exist; see [St3]. 

The only examples with F > l / b  known to us are given below as Theorem 7.1. The 
construction uses a balanced incomple te  block design, or BIBD. A (v, k ,  A)-BIBD is a pair 
(X,d) ,  where (XI = v is a set of elements called points  and d is a family of k-subsets 
of X (called blocks) such that every pair of points occurs in exactly A blocks. It is not 
difficult to see that every point occurs in precisely r = X(v - l ) / ( k  - 1) blocks and that 
the total riurnber of blocks is b = Av(v - l ) / ( k ( k  - 1)). A (ZI, k, A)-BIBD is resolvabie if 
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the blocks can be partitioned into r parallel classes-, each of which consists of v / k  blocks 
that partition the set of points. 

Theorem 7.1 Suppose there ex is ts  a resolvable ( v ,  k ,  I)-BZBD. Then there exists an 
E - A S U ~  class H of hash functions from A l o  B,  where IAl = (v - l ) / ( k  - l), IBI = v / k ,  
E = l / k  and IHI = V .  

Remark: In terms of a = IAI and b = 1B1, /HI = b(a - l ) / ( a  - b) .  

Proof: Let (X, A)  be the hypothesized ( v ,  k, 1)-BIBD, and let P I , .  . . , P, be the T 

parallel classes. Name the blocks in each Pi as Pij, 1 5 j 5 v/k. Let A = (1,. . . , T }  

and B = { 1,. . . , v / k } .  For each point x E X, we define a hash function h, by the rule 
h,( i) = j if and only if I E Pij . 0 

The following example illustrates the construction of Theorem 7.1 with v = 8, k = 2. 

Example 7.1 A 1/2-+4SUz cZass of 8 hash functions from { 1 , 2 , 3 , 4 , 5 , 6 , 7 }  to {1,2,3,4}:  

f 4 4  

4 3  
4 4  T 2 4  

j 
4 3  

- 
7 
1 
3 
4 
4 
2 
3 
2 
1 

- 

- 

For applications to authentication codes, the construction of Theorem 7.1 is not of 
much use, since a M b and many other constuctions are known in this case. 

A very interesting open problem would be to find examples of E - ASU2 classes of 
hash functions H with E > l / b  and a > b,  such that !HI meets the lower bound of 
Theorem 4.2 with equality. 
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