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INTRODUCTION
Influenza virus is one of the most important respiratory 

pathogens with significant medical and economic burdens [1-3]. 
It belongs to genera A, B and C of the family Orthomyxoviridae 
with type A viruses being the primary pathogens claimed for 
seasonal and pandemic influenza outbreaks [4]. Type A viruses 
can be further divided into different subtypes based on the 
serotypes of their main surface antigens hemagglutinin (HA) and 
neuraminidase (NA) [5]. So far, 17 HA and 9 NA subtypes have 
been identified. Phylogenetically, 16 HA subtypes are categorized 
into two groups (H1, H2, H5, H6, H8, H9, H11, H12, H13 as well 
as H16 in group 1, and H3, H4, H7, H10, H14 as well as H15 in 
group 2) [6]. Historically, H1 (H1N1), H2 (H2N2) and H3 (H3N2) 
have caused influenza pandemics in humans and resulted in 
millions of death [7]. At present, H1N1 and H3N2 viruses are 
causing epidemic infections in humans and constitute the main 
components of seasonal influenza vaccines. However, the efficacy 
of current influenza vaccine is limited due to the antigenic drift. 
Further, the occasional antigenic shift of HA and NA may cause the 
emergence of new influenza pandemics. In addition, non-human 
influenza viruses may acquire the capacity for transmission 
in humans as well [8]. With the frequent infection by highly 

pathogenic avian influenza A (HPAI) H5N1 in humans in recent 
years, and the most recent human infection by a novel avian 
influenza virus (H7N9) in China [9,10], this concern has become 
more urgent. Although current influenza vaccines are effective in 
battling closely matched viruses, the major hurdles are the need 
to produce new vaccines every season, the uncertainty in choice 
of the correct strains, and the inability to prevent a new influenza 
pandemic. Improved vaccines inducing broadly protective 
immune responses against multiple type A influenza viruses, 
namely universal influenza vaccines, are needed, not only for 
seasonal but also for pandemic influenza prevention. Conserved 
epitopes are potential immunogens for such vaccines [11,12]. 
Combined strategies including improved design of antigens, 
integrated molecular adjuvants, new antigen delivery techniques 
and vaccination regimens should be considered together to 
overcome current obstacles in the development of a universal 
influenza vaccine [6,13-17]. 

ENHANCEMENT OF TRADITIONAL INFLUENZA 
VACCINE APPROACHES FOR BROAD CROSS-
PROTECTION

Several approaches have been improved to induce broad 
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cross-protection based on current vaccine strategies. Co-
administration of adjuvants is a classic but effective approach. 
Typically influenza vaccines do not induce CD8+ cytotoxic T 
lymphocyte (CTL) responses which are required to control 
viral pathogens. By using adjuvants, co-administrated vaccines 
are able to induce CTL responses that target highly conserved 
epitopes among different viruses. Therefore, co-administrated 
adjuvant presents a potential approach for inducing broad cross-
protection. Several mechanisms may be involved in adjuvant-
induced T cell responses [18-20]. Some adjuvants, such as alum 
and emulsions, can trap antigens at the injection site and increase 
recruitment and activation of antigen presenting cells (APCs) [21]. 
The others are essential ligands for pattern recognition receptors 
(PRR) such as Toll-like receptors (TLRs), and are highly effective 
in inducing potent adaptive immune response [22]. For instance, 
the TLR-5 ligand flagellin has been modified into different forms 
to enhance influenza immunity for broad protection [17,23-26]. 
This protein can be expressed in a membrane-anchored form and 
be incorporated into influenza virus-like particles (VLPs) which 
have been reported to confer heterosubtypic protection [23,24]. 
In a fusion protein form with the conserved extracellular domain 
of the influenza matrix protein 2 (M2e), flagellin was shown to 
induce high levels of M2e-specific antibodies and confer complete 
protection against a heterologous viral challenge [17]. In addition 
to adjuvants, several newly developed vaccine delivery platforms 
have been employed to enhance the immune response and cross-
protection. Of them, VLPs are one of the most striking platforms 
[27-29]. By mimicking the organization and conformation of 
native viruses but lacking the replicative genomic information, 
VLPs can be produced in heterologous expression systems on 
large scales, thus can be safer and cheaper vaccine candidates 
[30,31]. Because of the self-assembly feature of VLPs, targeted 
viral antigens form multimeric complexes displaying a high 
density of epitopes. The size and conformation of these particles 
are similar to intact native virions [24,32-35] . Moreover, VLPs can 
enter both MHC class I and class II antigen processing pathways 
in APCs, eliciting both humoral and cellular immune responses 
[35-37].With the development of nanotechnology, microneedles 
and nanoparticles have been used as new platforms for influenza 
vaccine delivery for enhanced immune protection. Inactivated 
virus, VLPs and subunit vaccines were coated on microneedles 
and induced improved protective immunity by skin vaccination 
[38-40]. Co-immunization with A/Puerto Rico/8/1934 (A/
PR8, H1N1) HA DNA vaccines and inactivated virus by coating 
on a microneedle patch conferred immune protection against 
lethal A/PR8 and pandemic 2009 H1N1 challenge in mice [15]. 
Being assembled into nano size with controlled antigen release, 
nanoparticles exhibit adjuvant effects and stimulate APCs upon 
binding and/or internalization [41-43], and have been employed 
to deliver influenza vaccine for enhanced immune protection [44-
46]. However, in many cases the amount of antigen loaded into 
the nanoparticle is low due to the presence of polymer core, and 
the process by which the particle is made can damage or unfold 
the antigen [41]. Newly developed nanoparticles bring the hope 
to overcome these limitations. For instance, novel nanoclusters 
assembled directly from influenza HA and/or M2e with no 
need of encapsulating agent was shown to maximize antigenic 
protein load. The gentle fabrication conditions allow the antigen 
to maintain their native form. These nanoclusters were found 

to induce broadly cross-protection (Wang et. al, unpublished 
data). Recently, self-assembling influenza nanoparticle vaccines 
have also been established by fusing viral HA to ferritin, a 
protein that naturally forms nanoparticles composed of 24 
identical polypeptides [47,48]. This self-assembling nanoparticle 
vaccine elicited neutralizing antibodies to two highly conserved 
vulnerable HA structures that are targets of universal vaccines: 
the stem and the receptor binding site on the head [49,50]. 
Resulting antibodies neutralized H1N1 viruses from 1934 to 
2007 and protected ferrets from an unmatched 2007 H1N1 virus 
challenge. Self-assembling nanoparticles improve the potency 
and breadth of influenza immunity and indicate a potential 
platform for development of universal influenza vaccines. 

M2E, A FAVORABLE EPITOPE FOR A UNIVERSAL 
INFLUENZA VACCINE

The influenza genome is composed of eight segments 
which encode 11 viral proteins including the major surface 
glycoproteins HA and NA [51,52]. These viral proteins endow 
targets for influenza vaccines that induce protection against 
similar viruses [53]. Influenza matrix protein 2 (M2) is an integral 
transmembrane protein. Although only a few copies are expressed 
on the surface of influenza A virions, relatively dense presentation 
of this protein was found on the surfaces of infected host cells 
[54]. This protein consists of 97 amino acids, including 24 amino 
acid residues at the N-terminus which form the ectodomain of 
M2 (M2e) [55]. M2 exists as a homotetramer formed by two 
disulfide-linked dimers which assemble into an ion channel, 
and plays an important role in uncoating the virus during viral 
entry [56-58]. Since M2e is highly conserved among influenza A 
viruses, it has been considered as a promising target for inducing 
cross protection against different influenza A viruse subtypes 
[59,60]. Studies have shown that M2e-specific antibodies can 
reduce the plaque size [61,62]. Passive immunization with these 
antibodies reduced virus titers in the lungs of mice infected with 
influenza A viruses [63,64]. However, M2e specific antibodies 
can rarely be induced by a natural influenza infection or seasonal 
vaccination [65,66]. Several groups attempted to overcome the 
low immunogenicity of M2e using various platforms such as 
fusing M2e protein with carrier molecules including keyhole 
limpet hemocyanin (KLH), hepatitis B virus core (HBc), multiple 
antigenic peptides (MAP) or fusing four repeats of M2e to a 
membrane anchor from influenza virus HA [17,67-69]. In all these 
studies, M2e-specific immune responses were induced but the 
protective effect to different virus was weak. Partial protection 
or severe sickness was observed in virus challenge experiments 
with immunized laboratory animals. One possible reason is 
that minor variation of M2e sequences from different viruses 
still exists although this protein is considered to be relative 
conserved, which may contribute to the different protective 
efficacy of M2e vaccines against various viral challenge [70]. One 
approach to overcome this limitation is to integrate multiple 
M2e repeats from different viruses into one vaccine platform. 
A membrane-anchored form of M2e fusion protein containing 
multiple M2e sequences has been incorporated into VLPs and 
induced M2e-specific antibodies reactive to different influenza 
viruses, conferring improved cross-protection against various 
subtypes of influenza virus including A/California/2009 (H1N1) 
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or A/Philippines/82 (H3N2) [16]. Another reason for the weak 
protection of M2e vaccine candidates investigated in the past is 
that most of these M2e were presented in a non tetrameric form 
[71-73], or without an appropriate vaccine delivery platform even 
though a tetrameric M2e was employed [74]. In a recent study, 
structure-stabilized M2e tetramers were expressed and purified 
from a baculovirus-derived insect cell protein expression system, 
and were assembled into highly immunogenic nanoclusters. The 
resultant nanoclusters induced high level of M2e-specific humoral 
and cellular immune response, conferring complete protection 
against lethal challenges with either A/California/2009 (H1N1) 
or A/Philippines/82 (H3N2) virus (Wang et. al, unpublished 
data). The progress in coming up with enhanced antigen 
design, integrated adjuvants, novel delivery and controlled 
release strategies (such as VLPs, microneedles or nanoclusters) 
suggest that M2e has great potential for development of broadly 
protective influenza A virus vaccines. 

CONSERVED EPITOPES DERIVED FROM HA
The HA protein plays pivotal roles in influenza virology 

and is highly immuogesnic [75,76]. This envelop glycoprotein 
is anchored to the virus membrane as spikes consisting of two 
subunits, HA1 and HA2, up on the cleavage of the immature 
protein HA0 [77-79]. The architecture of HA can be dissected into 
the membrane-distal head (contains the most majority of HA1) 
and membrane-proximal stalk (comprises the N- and C-terminal 
portion of HA1 and the complete HA2) [80,81]. The HA1 head 
mediates binding of virion to host cell receptor and is essential 
for attachment of virus to target cells while HA2 promotes the 
fusion between viral and host endosomal membrane and virus 
entry [76]. HA2 contains a 23 amino acid long fusion peptide in 
its N-terminus followed by two α helices, A-helix and CD-helix 
[49,82,83]. At neutral pH, the fusion peptide is buried inside 
of the molecule. After the virus is taken up into endosome 
where HA is exposed to low pH, these motifs undergo dramatic 
conformational rearrangements which trigger the extrusion of 
the fusion peptide from interior of the molecule to the near end 
of the endosomal membrane [84,85]. Conventional neutralizing 
antibodies against HA are known to bind to host receptor binding 
domain within HA1 that are subjected to antigenic drift and are 
highly variable among different subtypes, which helps to explain 
the restricted protection of these antibodies against specific 
virus subtypes [86,87]. In comparison, the sequence of HA stalk 
is highly conserved across all influenza subtypes, which provides 
this domain the potential as a conserved epitope candidate for 
universal influenza vaccine design [12,88]. This rationale is 
further supported by the recent achievement in discovering 
several broadly neutralizing antibodies specifically against the 
HA stalk domain [49,50,89-91]. The identification of CR6261, a 
broadly neutralizing antibody against most group 1 influenza 
virus (including H1, H5, H9 and some H2 subtypes), has revealed 
the presence of a conserved epitope located in the A-helix of 
HA2 [49]. Meanwhile, a newly discovered monoclonal antibody 
CR8020 with broad neutralizing activity exclusively against 
group 2 HAs has been shown to protect mice against the lethal 
dose challenge of H3N2 as well as H7N7 [91]. The epitope against 
CR8020 consists of the C-terminal portion of the fusion peptide 
and surrounding residues. By screening large number of human 
peripheral blood plasma cells, Davide Corti and colleagues 

isolated monoclonal antibodies that recognized the HA of all 16 
subtypes and neutralized both group 1 and group 2 influenza A 
viruses [89]. It is suggested that these antibodies recognize the 
fusion peptide as well as A-helix of HA stalk domain which are 
the regions bound by CR8020 and CR6261, respectively [90,91]. 
Taken together, these studies provide valuable information 
for potential cross-protective epitopes that researchers can 
consider to work with. To fulfill the ultimate goal of obtaining a 
universal influenza vaccine that can elicit broad-cross immunity, 
efforts have been made to optimize the way that epitopes are 
presented to the host immune system. Various approaches have 
been employed including the generation of virus like particles 
(VLPs), nano-grade particles, and recombinant carrier proteins. 
In an attempt to produce a HA-stalk-oriented immunogen for 
broad cross immunity, a truncated HA that lacks the global head 
(residues 52-277 of HA1) from A/Puerto Rico/8/1934 (PR8, 
H1N1 subtype) was created and could be stably incorporated 
into VLPs when co-transfected with HIV Gag-based construct in 
mammalian cells. The resultant VLP vaccine elicited antibodies 
that were cross-reactive among group 1 HA subtypes and provided 
protection against lethal homologous challenge although some 
weight loss was observed in mice [6]. It was proposed that this 
headless HA is in its neutral-pH conformation which resembles 
what it looks like in the native form of full length HA such that 
the elicited antibodies may exert their neutralizing function 
by inhibiting the transition of HA2 from neutral pH to low pH 
conformation and further inhibiting the fusion process. There 
are other studies suggesting the soluble HA2 in the absence of 
HA1 actually exists in the low-pH conformation, which may not 
be favorable for eliciting antibodies that are neutralizing [92]. 
In order to obtain soluble stalk domain that is in native state 
(neutral-pH conformation), Gayathri Bommakanti and other 
researchers designed a novel stalk construct (in the context of 
A/Hong Kong/1968, HK68, H3N2) containing 1-172 aa of HA2 
connected to the portions of HA1 (both its N– and C-terminal 
regions) that constitute part of the stalk domain [93]. By using 
protein design and minimization methods, the parts of HA1 
that interact with HA2 were included in the designed molecule 
and two hydrophobic residues in HA2 were mutated to charged 
residues in order to destabilize the low-pH conformation. This 
stalk construct was expressed in Escherichia. coli (E. coli) system 
and refolded from inclusion body to its neutral-pH conformation. 
This highly immunogenic construct exhibited binding ability to a 
previously identified broad neutralizing antibody 12D1

and protected mice from lethal homologous challenge. 
This research provides us an example for delicate antigen 
design based on careful structural and biophysical analyses. As 
described above, the emerging nanoparticle approach opens 
another promising avenue for production of multivalent antigen 
to boost the host immune response. Potential self-assembled 
nanoparticles as highly effective platform for vaccine design can 
be a powerful candidate for universal influenza vaccine when 
combined with the possible cross protective nature of HA stalk 
domains. Linear epitopes in the form of relatively short peptides 
in HA can be genetically coupled to certain protein carrier that 
may function as adjuvant for better vaccine efficacy. One recent 
example of such approach showed its competence in conferring 
broad protection against influenza subtypes from both group 1 
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and group 2 [94]. In this study, the epitope consisting of amino 
acid 76-130 of HA2 from H3 subtype (HK68), the binding target 
for neutralizing antibody 12D1, was coupled to the keyhole 
limpet hemocyanin (KLH) for enhanced antigenicity. This 
conjugate vaccine elicited antisera reactive to a board range of 
HAs from H1, H2, H3, H5 and H7 subtypes. It also protected mice 
from lethal challenge of not only H3, but also H5 and H1 subtypes. 
It is intriguing to find that the full length HA2, as compared to 
this conjugate containing only a small fraction of HA2, exhibited 
actually weaker antigenicity as it induced antisera reactive only 
to subtypes limited to group 2 influenza viruses. This may imply 
that inclusion of only the linear epitope by itself may help to elicit 
a more focused anti-stalk domain response, which is in line with 
the high protein sequence conservation of this region among 
both group 1 and group 2 influenza viruses. Another promising 
carrier protein is bacterial flagellin protein. In the context of 
fusion protein design, the central variable region of flagellin 
could be substituted by desired antigen, such as the global 
head of HA, without affecting its TLR-5 binding activity [95]. 
This recombinant fusion protein strategy has also proven to be 
successful in inducing anti-influenza immunity [96,97]. However, 
so far not much work has been reported for flagellin being used in 
stalk domain-based vaccine design which might be an attractive 
approach for universal influenza vaccine production. 

T-CELL BASED EPITOPES
B-cell mediated humoral antibody immunity against influenza 

essentially protects the host from virus infection. As mentioned 
above, the conserved M2e and HA epitopes are in hope to elicit 
broad neutralization and protection. As another equally critical 
immune response against influenza virus, the cytotoxic T 
lymphocytes (CTLs) mediate cellular immunity by recognizing 
viral peptides presented on virus-infected epithelial cells 
[98,99]. These immune-responses are essential for inhibiting 
virus spread and clearance of infected cells. Epitopes that are 
recognized by CTLs reside on various influenza proteins including 
viral nucleoprotein (NP), matrix protein M1, RNA polymerase 
subunits PB1 and PB2 [100]. The value of combined B and T 
cell conserved epitopes as enhanced vaccine candidate has been 
recognized for years [101,102]. Recently, a first-in-human trial of 
a novel vaccine containing conserved linear epitopes from HA, NP 
and M1 proteins of both influenza type A and B strains has been 
carried out [103]. It was found that this vaccine was capable to 
induce both humoral and cellular immunity and was potentially 
cross-strain immunogenic. However, due to the small scale 
of experiment population and moderate elevation of immune 
responses in vaccinated group, further studies and evaluation 
need to be performed. 

CONCLUSIONS
Universal influenza vaccines, as a concept, have been raised 

for a long time. There is an urgent need to provide broader, 
universal protection against a broad spectrum of influenza 
viruses. A lot of attempts have been made in these years; 
however, not so much progress has been gained. Recently, with 
the combination of conserved region of influenza virus such as 
M2e or HA stalk domains with efficient delivery strategies such 
as VLPs, microneedles or nanoparticles, the light of a universal 
vaccine finally shows up at the end of a long dark tunnel. 
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