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ABSTRACT

The Event Horizon Telescope image of the supermassive black hole in the galaxy M87 is dominated
by a bright, unresolved ring. General relativity predicts that embedded within this image lies a thin
“photon ring,” which is composed of an infinite sequence of self-similar subrings that are indexed by
the number of photon orbits around the black hole. The subrings approach the edge of the black hole
“shadow,” becoming exponentially narrower but weaker with increasing orbit number, with seemingly
negligible contributions from high order subrings. Here, we show that these subrings produce strong
and universal signatures on long interferometric baselines. These signatures offer the possibility of
precise measurements of black hole mass and spin, as well as tests of general relativity, using only a
sparse interferometric array.
Keywords: black hole physics — radio continuum: Galaxy: nucleus — techniques: interferometric

1. INTRODUCTION

The EHT Collaboration has recently published im-
ages of the supermassive black hole in M87 using Very
Long Baseline Interferometry (VLBI) at 1.3mm wave-
length (Event Horizon Telescope Collaboration et al.
2019a,b,c,d,e,f; hereafter Paper I-VI). These images re-
veal a bright ring of emission with a diameter of ap-
proximately 40µas. However, while the diameter of this
ring is resolved by the EHT, its thickness and detailed
substructure are not. In this Letter, we show that gen-
eral relativity predicts an intricate substructure within
this ring that presents distinctive signatures for interfer-
ometric measurements. These signatures offer a promis-
ing approach for precisely determining the masses and
spins of black holes and for testing general relativity us-
ing sparse interferometers, such as an extension of the
EHT to space.
Neglecting opacity, a telescope with perfect resolution

directed at a black hole observes an infinite number of
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nested images of the universe. These images arise from
photons that differ by the number n of half-orbits they
complete around the black hole on the way from their
source to the detector. Each such image is thus an in-
creasingly delayed and demagnified snapshot of the uni-
verse as seen from the black hole. In an astrophysical
setting, this self-similar sequence of relativistic images is
dominated by the luminous matter surrounding the black
hole and produces in its image a feature known as the
“photon ring” of the black hole (Bardeen 1973; Luminet
1979; Johannsen & Psaltis 2010; Gralla et al. 2019). The
leading (n = 1) subring appears as a sharp, bright fea-
ture in ray-traced images from many general-relativistic
magnetohydrodynamic (GRMHD) simulations (see Fig-
ure 1). Successive subrings have exponentially sharper
profiles and asymptotically approach the boundary of the
black hole “shadow”. For large n, these profiles mirror
the leading subring in a manner that depends univer-
sally on the spacetime geometry, with the ratio of succes-
sive subring flux densities determined by Lyapunov ex-
ponents that characterize the instability of bound photon
orbits. Hence, measuring the size, shape, and thickness
of the subrings would provide new and powerful probes
of a black hole spacetime.
Both GRMHD simulations and analytic estimates sug-

gest that the photon ring should provide only ∼10% of
the total image flux density. This dimness may appear
to preclude observations of the photon ring and its sub-
structure, which is dimmer still. However, interferomet-
ric measurements are sensitive to more than just over-
all flux: they also natively filter images by their spatial
wavenumbers, and therefore naturally isolate contribu-
tions from individual photon subrings. Sufficiently long
baselines also resolve out diffuse flux in an image, and are
thus dominated by power from the photon ring. Hence,
even though sharp elements of the photon ring produce
a negligible contribution to the total flux in an image,
they can still provide a pronounced, dominant signal on
long baselines.
In this Letter, we explore the photon ring’s theoret-
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These coordinates have the special property that all
bound orbits lie at some fixed value of r in the range

rγ− ≤ r ≤ rγ+, (2a)

rγ± = 2M

[

1 + cos

(

2

3
arccos

(

± a

M

)

)]

. (2b)

Every point in the equatorial annulus rγ− ≤ r ≤ rγ+,
θ = π/2 has a unique bound orbit passing through it. On
the boundaries r = rγ±, the orbits reside entirely in the
equatorial plane. At generic points, on the other hand,
they oscillate in the θ-direction between polar angles

θ± = arccos
(

∓√
u+

)

, (3)

where

u± =
r

a2(r −M)
2

[

− r3 + 3M2r − 2a2M (4)

± 2
√

M∆(2r3 − 3Mr2 + a2M)
]

.

We will refer to one such complete oscillation (e.g., from
θ− back to itself) as one orbit, since the photon typically
returns to a point near, but not identical to (since the
azimuthal angle φ also shifts), its initial position.
To summarize, the photon shell is the spacetime region

rγ− ≤ r ≤ rγ+, θ− ≤ θ ≤ θ+, 0 ≤ φ < 2π, (5)

(depicted in Figure 2) for all times −∞ ≤ t ≤ ∞.
The bound orbit at radius r has the energy-rescaled

angular momentum

ℓ =
M

(

r2 − a2
)

− r∆

a(r −M)
. (6)

The inner circular equatorial orbit at rγ− is prograde,
while the outer one at rγ+ is retrograde: ℓ(rγ∓) ≷ 0. The
overall direction of the orbits reverses at the intermedi-
ate value rγ0 for which ℓ vanishes. At that radius, [θ−, θ+]
equals [0, π] and the orbits can pass over the poles.
The bound geodesics are unstable in the sense that, if

perturbed slightly, they either fall into the black hole or
escape to infinity where they can reach a telescope. The
observed photon ring image arises from photons trav-
eling on such “nearly bound” geodesics. Consider two
geodesics, one of which is bound, with the other initially
differing only by an infinitesimal radial separation δr0.
The equation of geodesic deviation shows that, after n
half-orbits between θ±, their separation grows to

δrn = eγnδr0. (7)

Here, the so-called Lyapunov exponent γ is a function on
the space of bound orbits given by13 (see Appendix A.1)

γ =
4

a

√

r2 − Mr∆

(r −M)
2

ˆ 1

0

dt
√

(1− t2)(u+t2 − u−)
. (8)

Hence, the nearly-bound geodesic will typically cross the
equatorial plane a number of times of order

n ≈ 1

γ
ln

∣

∣

∣

∣

δrn
δr0

∣

∣

∣

∣

, (9)

13 A closely related formula appears in Yang et al. (2012).

until δrn ≫ δr0, when the geodesic is well-separated from
the bound orbit and it shoots off to infinity (or crosses
the event horizon if δr0 < 0). These Lyapunov expo-
nents are central and potentially observable quantities
that characterize the geometry of the Kerr photon shell.

2.2. Photon Ring and Subrings

The photon ring is the image on the observer screen
(as described by Bardeen 1973) produced by photons on
nearly bound geodesics. In the limit in which the photons
become fully bound, it may be shown that their images
approach a closed curve Cγ given by

ρ = D−1
√

a2(cos2 θobs − u+u−) + ℓ2, (10a)

ϕρ = arccos

(

− ℓ

ρD sin θobs

)

, (10b)

where (ρ, ϕρ) are dimensionless polar coordinates on the
observer screen, while (D, θobs) denote the observer’s dis-
tance and inclination from the Kerr spin axis. We can
view Cγ as parameterized by the shell radius rγ− ≤ r ≤ rγ+
from which the photon originated. For each value of r,
(10) has two solutions for ϕρ in the range 0 ≤ ϕρ ≤ 2π,
so each radius in the photon shell appears at two posi-
tions on Cγ . A striking consequence of (10) is that for
θobs 6= 0, both ℓ and ρ, and hence ϕρ, are functions only
of r, θobs, and D. Hence, a measurement at a specific
angle ϕρ along the ring probes a specific radius r of the
Kerr geometry and not, as might have been expected, a
specific angle around the black hole!
Astrophysically observed photon intensities Iring(ρ, ϕρ)

at the screen can be computed by backward ray-
tracing. One follows the null geodesics from the ob-
server screen back into the Kerr spacetime, integrating
the Doppler-shifted strength J of matter sources along
the geodesic, with attenuation factors accounting for the
optical depth (for the images in this paper, we used
ipole; Mościbrodzka & Gammie 2018).14 A light ray
aimed exactly at the curve Cγ is captured by the pho-
ton shell and (unstably) orbits the black hole forever.
Those aimed inside Cγ fall into the black hole, while
those aimed outside escape to infinity. Therefore, Cγ is
the edge of the black hole “shadow”.
If we shoot a light ray very near, a distance δρ from

the shadow edge at ρc, it will circle many times through
the emission region before falling into the black hole or
escaping to infinity. The affine length of the ray and its
number of half-orbits accordingly diverge as δρ → 0:

n ≈ − 1

γ
ln

∣

∣

∣

∣

δρ

ρc

∣

∣

∣

∣

. (11)

This follows from (9) together with a computed relation
between δρ and δr0. For optically thin matter distribu-
tions, (11) implies a mild divergence in the observed ring
intensity Iring ∼ n as the shadow edge is approached,
since a light ray that completes n half-orbits through
the emission region can collect ∼ n times more photons
along its path. The photon ring is then the bump in the
photon intensity containing this logarithmic divergence

14 Scattering effects are negligible because the expected plasma
frequency and electron gyroradius are in the MHz range, several
orders of magnitude below the observing frequencies we consider.
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(§3.2), non-zero thickness (§3.3), and non-circular struc-
ture (§3.4). We conclude this section by discussing spe-
cific features expected for the photon ring and its sub-
rings (§3.5). The prospects for experimental detection of
these features are addressed in §4.

3.1. Visibilities for a Thin, Uniform, Circular Ring

Each baseline joining two elements of an interferome-
ter samples a complex visibility V (u), which corresponds
to a single Fourier component of the sky image I(x)
(Thompson et al. 2017):

V (u) =

ˆ

I(x)e−2πiu·x d2x. (15)

Here, u is the dimensionless vector baseline projected
orthogonal to the line of sight and measured in units of
the observation wavelength λ, while x is a dimensionless
image coordinate measured in radians.
In terms of polar coordinates (ρ, ϕρ) on the observer

screen (10), the image and corresponding visibility func-
tion of an infinitesimally thin, uniform, circular ring are

I(ρ, ϕρ) =
1

πd
δ

(

ρ− d

2

)

, (16a)

V (u, ϕu) = J0(πdu), (16b)

where d is the ring diameter in radians and the image is
normalized to have a total flux density of unity, V (0) = 1.
Jm denotes the mth Bessel function of the first kind,
which admits the asymptotic expansion

Jm(πdu) ≈ 1

π

√

2

du
cos

[

π

(

du− 2m+ 1

4

)]

, (17)

valid for πdu ≫ m2. Hence, V (u) is a weakly damped
pure frequency with period ∆u = 2/d inside an envelope
that falls as 1/

√
u.

3.2. Visibilities for a Non-Uniform Ring

The image of a thin ring with non-uniform brightness
in ϕρ decomposes into a sum over angular Fourier modes,

I(ρ, ϕρ) =
1

πd
δ

(

ρ− d

2

) ∞
∑

m=−∞

βmeimϕρ , (18)

where β−m = β∗
m since the image is real. The total image

flux density is given by β0 > 0.
The corresponding visibility function is

V (u, ϕu) =
∞
∑

m=−∞

βmJm(πdu)eim(ϕu−π/2). (19)

Using (17), for long baselines we may approximate

V (u, ϕu) ≈
α+(ϕu) cos(πdu) + α−(ϕu) sin(πdu)√

du
,

α±(ϕu) ≡
1

π

∞
∑

m=−∞

βmeim[ϕu+
π

2
(m−1±1)]. (20)

Thus, for sufficiently long baselines, the radial visibil-
ity function of a non-uniform thin ring is determined
by a single pair of weakly damped, orthogonal modes

α±(ϕu). Their envelope still falls as |V (u)| ∼ 1/
√
u, and

the modes have a common period of ∆u = 2/d in com-
plex visibilities (or ∆u = 1/d in visibility amplitudes).
The angular spectrum of the image {βm} is easily re-
trieved from the angular spectrum of the visibilities (see
Appendix B.2).

3.3. Visibilities for a Thick Ring

Baselines of length u >∼ 1/L are required in order to
resolve image features of size <∼ L. Hence, the visibility
function of any ring with diameter d and thickness w ≪ d
has two asymptotic regimes:

(I):
1

d
≪ u ≪ 1

w
, (II):

1

d
≪ 1

w
≪ u. (21)

Baselines in regime (I) resolve the diameter of the ring
but not its thickness, while longer baselines in regime (II)
resolve both. As such, the visibility function in regime
(I) behaves like that of a thin ring (a damped periodicity
with envelope |V (u)| ∼ 1/

√
u), while the envelope of the

visibility function in regime (II) is sensitive to the radial
profile of the ring. In general, the visibility of any smooth
ring decays exponentially in regime (II).16

The validity of the approximation (17) in regime (I)
depends on the amount of power at high values of m.
Specifically, it requires mmax <∼

√

πd/w. Under this con-
dition, |V (u)| has ∼d/w periods in regime (I).

3.4. Visibilities for a Non-Circular Ring

Although the photon ring is nearly circular for all black
hole spins and inclinations, the primary interferomet-
ric signatures discussed thus far do not require an im-
age with perfectly circular structure. For instance, if
an image is stretched, I(x, y) → I ′(x, y) = I(ax, by),
then its visibility function is correspondingly compressed,
V (u, v) → V ′(u, v) = |ab|−1

V (u/a, v/b). Thus, the visi-
bility profiles of a stretched ring share the properties and
asymptotic expansions derived for a circular ring [e.g.,
(20)], except that the radial periodicities become a func-
tion of position angle. To leading order in the asymmetry
1− a/b, the diameter corresponding to a damped radial
periodicity in the visibility domain matches that of the
stretched ring along the baseline’s position angle. For
the black hole in M87, the asymmetry is expected to be
a few percent at most, even for a maximally rotating
black hole (see Figure 7).

3.5. Visibilities of the Photon Subrings

As discussed in §2.2, the photon ring decomposes into
subrings labelled by the photon half-orbit number n.
This section describes the distinctive and universal in-
terferometric signatures of these subrings.
According to (14), the width of the radial intensity pro-

file produced by the nth subring is wn ∼ w0e
−γn while

the brightness remains approximately constant with n
(until some nmax determined by the optical depth). Each
subring thus contributes a periodically modulated visibil-
ity, Vn(u) ∼ wn/

√
u, which falls more steeply for base-

lines u > 1/wn (see §3.3). Hence, the nth subring domi-

16 Images with discontinuous derivatives, such as a uniform disk
or annulus, can have slower, power-law falloffs.
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