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Abstract. Random binary search trees, b-ary search trees, median-of-(2k+1) trees, quadtrees,
simplex trees, tries, and digital search trees are special cases of random split trees. For these trees,
we offer a universal law of large numbers and a limit law for the depth of the last inserted point, as
well as a law of large numbers for the height.
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Random split trees. We introduce a model for a random tree that is sufficiently
general that it encompasses many important families of random trees, such as random
binary search trees, random m-ary search trees, random fringe-balanced trees, random
median-of-(2k + 1) trees, random quadtrees, and random simplex trees. A skeleton
tree Tb of branch factor b is an infinite rooted position tree, in which each node has
b children, numbered 1 through b. A split tree (with branch factor b > 0, vertex
capacity s > 0, and of cardinality n ≥ 0) is a skeleton tree of branch factor b in which
n balls are assigned to a collection of vertices, where each vertex may hold up to s
balls. Nodes or vertices are denoted by u. N(u) denotes the number of balls in the
subtree rooted at u. C(u) denotes the number of balls associated with vertex u. A
vertex u is a leaf if C(u) = N(u) > 0, or equivalently, if C(u) > 0 and N(v) = 0 for
all b children v of u. A node u is useless if N(u) = 0. Two split trees with the same
parameters b, s, n are equivalent if for all their vertices, the N(u)’s are identical. The
trimmed split tree is the (finite) split tree from which all useless nodes are deleted.

We now introduce a random split tree with parameters b, s, s0, s1, V, and n. The
branch factor b, vertex capacity s, and number of balls n are as for split trees. The
additional integers s0 and s1 are needed to describe the ball distribution process and
satisfy the inequalities

0 < s, 0 ≤ s0 ≤ s, 0 ≤ bs1 ≤ s+ 1− s0.

Finally, V is a prototype random vector (V1, . . . , Vb) of probabilities:
∑
i Vi = 1;Vi ≥

0. A random split tree is a skeleton tree Tb in which each vertex u is given an
independent copy of V, and in which n balls are distributed in the manner described
below over the vertices, where each vertex may hold up to s balls. The distribution
is done in an incremental fashion, as described below. Initially, there are no balls, so
every node has a ball count C(u) = 0. Adding a ball to a tree rooted at u proceeds
as follows. Let (V1, . . . , Vb) be the probability vector associated with u.

A. If u is not a leaf (so that C(u) = s0), choose child i with probability Vi,
increment N(u) by 1, and recursively add the ball to the subtree rooted at
child i.
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All internal nodes have s0=2 balls

All leaf nodes have between 1 and s=4 balls
Note that s1=0

All internal nodes have s0=0 balls

All leaf nodes have between 1
   and s=4 balls
Note that s1=1

Fig. 1. A random trimmed split tree with parameters b, s, s0, s1, V, and n is a random split
tree with parameters b, s, s0, s1, V, and n from which we eliminate all useless nodes. Note that
there is in general no simple relationship between the number of vertices and the number of balls
(or points). The ball distribution method described above has several advantages, first and foremost
among them the direct relationship with several species of trees that occur as natural data structures.
The parameters s, s0, s1 add sufficient flexibility. We will see that all trees with fixed finite values of
these parameters have the same asymptotic behavior for various shape parameters. When we refer
to a random split tree, it is understood that we mean a random trimmed split tree.

B. If u is a leaf but C(u) = N(u) < s (where s is the capacity of a vertex
introduced in the previous paragraph), then add the ball to u and stop. C(u)
and N(u) are both incremented by 1.

C. If u is a leaf but C(u) = N(u) = s, there is no room for the ball at u. In that
case, we set N(u) = s+ 1 and C(u) = s0. We place s0 ≤ s randomly selected
balls at u, and send s+ 1− s0 balls down to the children of u. This is done
as follows. We first give s1 randomly selected balls to each child and adjust
the ball counts for the children. The remaining s + 1 − s0 − bs1 balls are
sent down by choosing a child for each ball independently, according to the
probability vector (V1, . . . , Vb), and applying the procedure “add a ball” to
the tree rooted at the selected child. Note that this may have to be repeated
several times if s0 = 0, but only once if s0 > 0 (because no child will reach
the capacity s).

Note that every nonleaf node has C(u) = s0 and every leaf has 0 < C(u) ≤ s. Two
split trees, one with (s, s0, s1) = (4, 2, 0) and the other with (s, s0, s1) = (4, 0, 1), are
shown below.

The depth of a vertex is its distance from the root. The height of a tree is the
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maximal depth of any of the leaves. When the (n + 1)st ball is added to a random
split tree of cardinality n (that is, a tree holding n balls), the depth of the vertex
reached by the ball is denoted by Dn+1. If the leaf is split, the ball ends up, if s0 > 0,
at depth Dn+1 or Dn+1 + 1, depending upon which ball we choose to follow in the
splitting process. It is therefore convenient to study Dn.

Interestingly, the following property is valid for a tree with n balls rooted at u:
if n ≤ s, all balls are in the root node, which is a leaf; if n > s, there are s0 balls
in the root node, and the cardinalities (N1, . . . , Nb) of the b subtrees of the root are
distributed as (s1, . . . , s1) plus a multinomial (n−s0− bs1, V1, . . . , Vb) random vector,
where (V1, . . . , Vb) is associated with u. This property is repeated recursively at every
node. Roughly speaking, the subtrees rooted at the children have cardinalities close
to nV1, . . . nVb.

The behavior of several other parameters is easily deduced from that of Dn. For
example, let D′n be the average depth, i.e., the sum of the depths of the n balls divided
by n. The incremental growing process described above shows that, if s0 > 0,

n− an
n

E{Dan} ≤ E{D′n} ≤ E{Dn}+ 1

for any a > 0 such that an is integer. This implies that if E{Dn} ∼ c log n for some
constant c, then E{D′n} ∼ c log n. For this reason, we will not investigate D′n at
length.

The purpose of this paper is to point out that within this general setting, the
asymptotics—a law of large numbers and a limiting distribution—of Dn are easy to
determine. Interestingly, one proof is offered that works for all trees mentioned above.

Throughout this paper, we assume that the components of (V1, . . . , Vb) are iden-
tically distributed. Note that if they are not, a random permutation (σ1, . . . , σb) of
(1, 2, . . . , b) shows that we achieve this goal by taking (Vσ1

, . . . , Vσb). This random
permutation of the children does not affect the depth and height. If Vi has a distribu-
tion described by the probability measure µi, then the Vσi ’s are identically distributed
with common probability measure (1/b)

∑
j µj . The latter is called the splitting dis-

tribution. A random variable V with the splitting distribution is called a splitter.
Define W = VS where, given (V1, . . . , Vb), S = i with probability Vi. Observe that
EV = EW = 1/b in all cases. The law of large numbers and the limit law for Dn

depend upon just two parameters,

µ = E{log(1/W )} = bE{V log(1/V )}

and

σ2 = Var{logW} = bE
{
V log2 V

}− µ2.

We first state our main results without proof. Then we give a brief discussion of the
random trees to which the results apply. The proofs are at the end of the paper.

The main result. For all trees that follow the given model, if Hn denotes the
height, that is, the maximal distance between the root and any leaf, we have Hn =
O(log n) in probability. The behavior of Hn is related to that of the moment function

m(t) = E{V t}, t ≥ 0.

For later reference, we provide the key properties of this function.
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Lemma 1.
A. The function m decreases monotonically from m(0) = 1 to P{V = 1} as

t→∞.
B. m is differentiable for all t > 0.
C. logm is convex. In particular, m′/m is increasing on (0,∞).
D. m(t)1/t ≤ m(s)1/s for t < s. Thus, log(m(t))/t is nondecreasing.
E. For t > 0, m′(t) = E{V t log(V )} and m′′(t) = E{V t log2(V )}.
F. m′/m takes every value between E{log(V )} (as t ↓ 0) and log v∞, where v∞

is the rightmost point in the support of V .
G. The solution of the equation m′(t)/m(t) = −1/c is called t∗ = t∗(c). Then t∗

is a monotonically increasing function of c, and a solution exists when

− 1

E{log(V )} < c < − 1

log v∞
.

H. t∗/c+ logm(t∗) decreases in c (or t∗). The value of t∗/c+ logm(t∗) changes
from 0 (at t∗ = 0) to R (possibly −∞) as t∗ →∞, where R = limt→∞(logm(t)−
tm′(t)/m(t)).

Theorem 1. Let V be a splitter for a random split tree. Assume that P{V =
1} = 0. Then there exists a finite constant c such that

lim
n→∞P{Hn > c log n} = 0.

If, additionally, R < − log b, where

R = lim
t→∞(logm(t)− tm′(t)/m(t)),

then the same is true for all c > γ and γ ∈ (0,∞) is a parameter only depending upon
b and the distribution of V , and is defined by

γ = inf{c : et
∗
(bm(t∗))c < 1} = inf{c : t∗/c+ log(m(t∗)) < − log b},

where t∗ is the unique solution of m′(t)/m(t) = −1/c. (See Lemma 1 below.)
We note that under the conditions of Theorem 1, Hn/ log n → γ in probability.

The lower bound that goes with the upper bound of Theorem 1 can be obtained
by various methods, and its straightforward proof is not included here (as we focus
mainly on depths in this paper). Galton–Watson processes (see Athreya and Ney,
1972) may be used directly (Devroye, 1987). One may also use extrema in branching
random walks as exhibited in Devroye (1986b) (see Biggins (1976, 1977), Hammersley
(1974), and Kingman (1973) for branching random walks, and see Mahmoud (1992)
for further applications). Pittel (1994) points out how one may use the Crump–Mode
process in this respect.

Theorem 2. Let Dn be the depth of the last node in a random split tree with n
nodes and splitter V . If µ 6= 0 and P{V = 1} = 0, then

Dn

log n
→ 1

µ

and E{Dn}/ log n tends to the same limit. Furthermore, if σ > 0, then

Dn − (log n)/µ√
σ2(log n)/µ3

L→ N (0, 1),
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where N (0, 1) denotes the normal distribution and
L→ denotes convergence in distri-

bution.
The law of large numbers for Dn does not apply when E{V log V } = 0, i.e., when

P{V ∈ {0, 1}} = 1. This degenerate case is excluded from further consideration. It
suffices that V has a density (as in many examples that follow below). For the limit
law, we need in addition Var{logW} > 0. This is equivalent to asking that V not be
monoatomic. Of all the examples below, only special cases of tries—the symmetric
tries and symmetric digital search trees—have a monoatomic splitter V (V ≡ 1/b).
All other examples satisfy the latter condition.

Some properties of the beta distribution. The beta distribution plays an
important role in many important random split trees. We summarize some key prop-
erties. Define the beta (a, b) density

f(x) =
xa−1(1− x)b−1

B(a, b)
, 0 < x < 1,

where a, b > 0 are parameters and B(a, b) = Γ(a)Γ(b)/Γ(a+ b).
Lemma 2. If X is a beta (a, b) random variable, then

E{log(1/X)} = ψ(a+ b)− ψ(a),

where ψ(u) = Γ′(u)/Γ(u) is the derivative of log Γ at u (also called the digamma
function). Furthermore,

E{X log(1/X)} =
a

a+ b
(ψ(a+ 1 + b)− ψ(a+ 1)).

Let ψ′—the trigamma function—be the derivative of ψ. Then

E{log2(X)} = (ψ(a+ b)− ψ(a))
2

+ ψ′(a)− ψ′(a+ b).

Finally,

E{X log2(X)} =
a

a+ b
(ψ(a+ 1 + b)− ψ(a+ 1))

2
+

a

a+ b
(ψ′(a+ 1)− ψ′(a+ 1 + b)) .

For integrals such as those dealt with in Lemma 2, we refer to Sibuya (1979) or
Gradshteyn and Ryzhik (1980, pp. 538, 541). We recall that the digamma function
basically behaves like the harmonic numbers (Abramowitz and Stegun, 1970, pp. 258–
259): if γ is Euler’s constant,

ψ(n) = −γ +

n−1∑
k=1

1

k
(n ≥ 2), ψ(1) = −γ;

ψ(z + 1) = ψ(z) +
1

z
= −γ +

∞∑
n=1

z

n(n+ z)
, z > −1.

For the trigamma function, we have

ψ′(z) =
∞∑
n=0

1

(z + n)2
.

Also, ψ′(z) = ψ′(z − 1)− 1/(z − 1)2, and ψ′(1) = π2/6.
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Table 1

Tree V
L
= s s0 s1 b

Random binary search tree U , uniform [0, 1] 1 1 0 2
beta (1,1)

Random b-ary search tree
U(b−1)=min(U1,...,Ub−1)

beta(1,b−1)
b− 1 b− 1 0 b

Random quadtree
∏d

i=1
Ui 1 1 0 2d

Random median-of-(2k+1) median (U1, . . . , U2k+1) 2k 1 k 2
binary search tree beta (k + 1, k + 1)

Random simplex tree
min1≤i≤d Ui
beta(1,d)

1 1 0 d+ 1

AB tree symmetric beta (a, a) 1 0(1) 0 2

Extended AB tree uniform {beta (a, b), beta (b, a)} 1 0(1) 0 2

Trie uniform {p1, . . . , pb} 1 0 0 b

Digital search tree uniform {p1, . . . , pb} 1 1 0 b

Random m-grid tree

∏d

i=1
U′i

U′
1
,...,U′

d
i.i.d. beta(1,m)

m m 0 (m+ 1)d

Examples: An overview. In Table 1, we list a number of important special
cases of random split trees. In this table, U,U1, U2, . . . are independently and identi-
cally distributed (i.i.d.) uniform [0, 1] random variables. Recall that s is the capacity
of a node before it is split, s0 is the number of balls left in a node after a split, s1 is
the minimum number of balls sent to any subtree, and b is the branch factor.

Table 1 shows that a large variety of trees may be dealt with in one sweep. The
fixed parameters s, s0, and s1 are irrelevant for first term asymptotics and the law of
large numbers for depths and heights. Only the distribution of the splitter V matters.

Nonetheless, many trees cannot be molded into our framework, such as all trees
whose depth does not grow logarithmically with n. For example, it is well known
that the uniform random binary tree has average depth and height of the order of

√
n

(Flajolet and Odlyzko, 1982; Vitter and Flajolet, 1990). Interestingly, Aldous (1993)
has introduced a model that includes many (but not all) of the trees in Table 1 and
the uniform random trees, as well as a continuum of trees that link them. Our work
was inspired for a great deal by Aldous’s paper.

The parameters µ and σ2 are computed for the trees mentioned above. Most
of the limit laws and laws of large numbers are known, but the unified approach of
this paper explains things in a stronger way. More details are provided in the nine
subsequent subsections, in which each tree is briefly discussed separately. The symbols
H and H2 are properly defined in the section on tries.

Example 1: The random binary search tree. In a random binary search tree with
n nodes, the following operation is applied independently and recursively: a random
node is chosen from the n nodes at hand, and it is made the root. The nodes with a
smaller label travel to the left subtree of the root, and the others, to the right subtree.
The size of the left subtree is distributed as bnUc, where U is uniform [0, 1]. The size
of the right subtree has a similar distribution. Equivalently, attach to each of the balls
an independent copy of a uniform [0, 1] random variable, to get U1, U2, . . . , Un. Put
U1 in the root and partition the others into left and right subsets by comparison with
U1. Repeating the splitting process at each node creates a random split tree. In a
third equivalent representation, that of the random split tree, we may associate with
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random binary search tree

random b-ary search tree

random median-of-(2k+1) binary
search tree

extended AB tree

random simplex tree

random quadtree

random grid tree

U

U U U

U

U

U

U

U

U U U U U

B: beta mixture

0

0

0

0

0

0

0

0

1

1

1

1

1
1

1
1

1

3

2

(5)(4)(3)(2)(1)

(3)(2)(1)

Fig. 2. Various ways of splitting spaces are shown. All splits are applied recursively. U refers
to the uniform distribution, and B, to a mixture of beta distributions.

Table 2

Tree σ2 1/µ (limit of Dn/ logn)

Random binary search tree 1/4 2

Random b-ary search tree
∑b

i=2
1
i2

1∑b

i=2

1
i

Random quadtree d2/4 2/d

Random median-of-(2k+1)
binary search tree

∑2k+2

j=k+2
1
j2

1∑2k+2

i=k+2

1
i

Random simplex tree
∑d+1

i=2
1
i2

1∑d+1

i=2

1
i

AB tree (ψ(2a+1)−ψ(a+1))2

+(ψ′(a+1)−ψ′(2a+1))

1
ψ(2a+1)−ψ(a+1)

= 1∑∞
n=1

a
(n+a+1)(n+2a+1)

Extended AB tree

a
a+b

(ψ(a+ 1 + b)− ψ(a+ 1))2

+ a
a+b

(ψ′(a+ 1)− ψ′(a+ 1 + b))

+ b
a+b

(ψ(a+ 1 + b)− ψ(b+ 1))2

+ b
a+b

(ψ′(b+ 1)− ψ′(a+ 1 + b))

a+b
a(ψ(a+1+b)−ψ(a+1))
+b(ψ(a+1+b)−ψ(b+1))

b-ary trie H2 −H2 1/H
b-ary digital search tree H2 −H2 1/H

Random m-grid tree d
∑m+1

j=2
1
j2

+ d(d− 1)

(∑m+1

j=2
1
j

)2
1

d
∑m+1

i=2

1
i
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each node an independent random split vector (V1, V2) distributed as (U1, 1− U1).

It is known thatDn/ log n→ 2 in probability (Lynch, 1965; Knuth, 1973; Devroye,

1988). The limit law for Dn was derived by Devroye (1988): (Dn−2 log n)/
√

2 log n
L→

N (0, 1). Robson (1979), Pittel (1984), and Devroye (1986b, 1987) showed that
Hn/ log n → 4.31107 . . . in probability. All of these results are contained in Theo-
rems 1 and 2 as m(t) = 1/(t+ 1), µ = 1/2, and σ2 = 1/4.

An important variant of the binary search tree related to the standard occurs
when no balls are stored in internal nodes; so, s0 = 0. This leads to a binary search
tree in which all balls are at leaves. This too is a random split tree, and it follows the
same limit laws as the ordinary random binary search tree.

Example 2: The random b-ary search tree. Let n balls be given and associate with
each ball an independent uniform [0, 1] random variable. In a random b-ary search
tree with n nodes, the following operation is applied independently and recursively:
b − 1 random balls are chosen from the n balls at hand and are associated with the
root. The other balls, if there are any, are partitioned into b sets by membership in
the intervals induced by the b − 1 balls. If (N1, . . . , Nb) are the number of balls in
the intervals (with

∑
iNi = n − b + 1, of course), then this vector is multinomial

(n− b+ 1, V1, . . . , Vb), where the Vi’s are the lengths of the intervals (or spacings; see
Pyke (1965)). The split vector of Vi’s is thus distributed as the collection of b spacings
induced by b− 1 i.i.d. uniform [0, 1] random variables on [0, 1]. In particular, V = V1

is distributed as a beta (1, b− 1) random variable.

We easily compute µ =
∑b
i=2 1/i and σ2 =

∑b
i=2 1/i2. This yields

Dn

log n
→ 1∑b

i=2
1
i

in probability

(a result of Mahmoud and Pittel (1984)) and

Dn − (1/µ) log n√
(σ2/µ3) log n

L→ N (0, 1).

As an example, if b = 3, µ = 5/6, σ2 = 78/125, and

Dn − (6/5) log n√
(78/125) log n

L→ N (0, 1).

We also know that Hn/ log n→ c in probability for a function c of b given in Devroye
(1990) and indicated in Theorem 1.

Example 3: The random quadtree. The point quadtree in Rd (Finkel and Bentley,
1974; see Samet (1990b) for a survey) generalizes the binary search tree. One ball is
put in each node of a tree with branch factor 2d; each ball has associated with it a
d-vector for the point it represents; each subtree of a node corresponds to one of the
quadrants formed by considering the ball’s d-vector as the new origin. Insertion into
point quadtrees is as for binary search trees.

We assume that a random quadtree is constructed on the basis of an i.i.d. se-
quence drawn from the uniform distribution on [0, 1]d. In that case, it is conve-
nient to index the split vector by a bit sequence of length d: (b1 . . . bd). The vector
(V00...00, . . . , V11...11) has components that may be written as



UNIVERSAL LIMIT LAWS FOR DEPTHS IN RANDOM TREES 417

Fig. 3. At the left, a partition of the plane by a random quadtree is shown. The circled point
is the root. It partitions the space into four quadrants, and the splitting rule is recursively applied
to each quadrant. At the right, the same points are shown together with the edges in the quadtree.

V(b1...bd) =
d∏
j=1

U
bj
j (1− Uj)1−bj ,

where (U1, . . . , Ud) is the point in the node where the split takes place.

The height Hn of a random quadtree is in probability asymptotic to (c/d) log n,
where c = 4.31107 . . . is the constant in the height of the random binary search tree
(Devroye, 1987). This also follows from Theorem 1 as m(t) = E{V t} = 1/(t + 1)d.

Write V = V11...11 =
∏d
j=1 Uj . Then it takes just a moment to verify that

(1−U
1
)(1−U

2
)U

1
(1−U

2
)

(1−U
1
)U

2
U

1
U

2

Fig. 4. The split induced by the root of the quadtree is shown. The random variables U1, U2

are i.i.d. uniform [0, 1]. The areas of the four rectangles are all distributed like products of two
independent uniform [0, 1] random variables.
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µ = E{logW} = 2dE{V log(1/V )}

= 2d
d∑
j=1

E

{
d∏
k=1

Uk log(1/Uj)

}

= 2ddE

{
d∏
k=2

Uk

}
E {U1 log(1/U1)}

= 2dE {U1 log(1/U1)}
=
d

2
.

From this, we see that

Dn

log n
→ 2

d
in probability,

a result first noted by Devroye and Laforest (1990). See also Flajolet et al. (1991).
The computations of the variance are a bit more tedious. We have

σ2 + µ2 = 2dE{V log2(1/V )}

= 2dE


d∏
k=1

Uk

 d∑
j=1

log(1/Uj)

2


= 2ddE

{
d∏
k=2

Uk

}
E
{
U1 log2(1/U1)

}
+ 2d d(d− 1)E

{
d∏
k=3

Uk

}
E2 {U1 log(1/U1)}

= 2dE
{
U1 log2(1/U1)

}
+ 4d(d− 1)E2 {U1 log(1/U1)}

=
d2

4
+
d

4
.

Hence, σ2 = d/4. This yields the limit law

Dn − (2/d) log n√
(2/d2) log n

L→ N (0, 1),

valid for any d ≥ 1. This result was obtained via complex analysis by Flajolet and
Lafforgue (1994).

Example 4: The random median-of-(2k + 1) binary search tree. Bell (1965) and
Walker and Wood (1976) introduced the following method for constructing a binary
search tree. Take 2k + 1 points at random from the set of n points on which a total
order is defined, where k is integer. The median of these points serves as the root of
a binary tree. The remaining points are thrown back into the collection of points and
are sent to the subtrees. Following Poblete and Munro (1985), we may look at this
tree by considering internal nodes and external nodes, where internal nodes hold one
data point and external nodes are bags of capacity 2k. Insertion proceeds as usual.
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As soon as an external node overflows (i.e., when it would grow to size 2k+1), its bag
is split about the median, leaving two new external nodes (bags) of size k each and an
internal node holding the median. After the insertion process is completed, we may
wish to expand the bags into balanced trees. Using the branching process method of
proof (Devroye, 1986b, 1987, 1990; see also Mahmoud, 1992) the almost sure limit
of Hn/ log n for all k may be obtained (Devroye, 1993). For another possible proof
method, see Pittel (1992). The depth Dn of the last node when the fringe heuristic
is used has been studied by the theory of Markov processes or urn models in a series
of papers, notably by Poblete and Munro (1985) and Aldous, Flannery, and Palacios
(1988). See also Gonnet and Baeza-Yates (1991, p. 109). Poblete and Munro (1985)
showed that

Dn

log n
→ 1∑2k+2

i=k+2
1
i

in probability. It should be clear by now that this tree is a random split tree with
s = 2k, s0 = 1, s1 = k, b = 2 and split vector (V1, V2) distributed as (B, 1 − B),
where B is beta (k+ 1, k+ 1). That is, B is distributed as the median of 2k+ 1 i.i.d.
uniform [0, 1] random variables. This representation is obtained by associating with
each point in the data an independent uniform [0, 1] random variable. Clearly,

µ =

2k+2∑
i=k+2

1

i
.

Also, if X is beta (a, a) and a is integer-valued, Lemma 2 and the properties of the
digamma and trigamma functions imply

E{X log2(X)} =
1

2
(ψ(2a+ 1)− ψ(a+ 1))

2
+

1

2
(ψ′(a+ 1)− ψ′(2a+ 1))

=
1

2


 2a∑
j=a+1

1

j

2

+

2a∑
j=a+1

1

j2

 .

Thus,

σ2 =
2k+2∑
j=k+2

1

j2
.

Therefore, we obtain a limit law for all k. As an example, for k = 1, we obtain
µ = 1/3 + 1/4 = 7/12, σ2 = 1/9 + 1/16 = 25/144, and thus

Dn − (12/7) log n√
(300/343) log n

L→ N (0, 1).

We rediscover results for the number of comparisons Cn for median-of-(2k + 1)
quicksort. As ECn = E{nDn}, where Dn is the depth of the nth point when inserted
in a median-of-(2k + 1) binary search tree holding n − 1 points. From the above
results,

lim
n→∞

ECn
n log n

=
1

1
k+2 + 1

k+3 + · · ·+ 1
2k+2

.
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Fig. 5. A triangle is triangulated by a cloud of random points. The corresponding ternary tree
is shown on the right.

Thus, for median-of-5 quicksort, as 60/47n log n, the expected number of comparisons
grows. By generating function methodology (Vitter and Flajolet, 1990; Kemp, 1984;
Sedgewick, 1983) or via urn models (Aldous, Flannery, and Palacios, 1988), results of
this nature are harder to obtain. However, our method does not allow one to compute
anything but the main asymptotic term in ECn.

Example 5: Random simplex trees. Triangulating polygons and objects in the
plane is an important problem in computational geometry. An O(n log n) algorithm
for triangulating n points was found by Avis and El Gindy (1987). Arkin et al.
(1994) obtained a simple fast O(n log n) expected time algorithm for triangulating
any collection of n planar points in general position. We look more specifically at
their triangulation and its d-dimensional extension to simplices, and ask what the
tree generated by this partitioning looks like if the points are uniformly distributed
in the unit simplex. Given are n vectors X1, . . . , Xn taking values in a fixed simplex
S of IRd. It is assumed that this is an i.i.d. sequence with a uniform distribution on
S for the purposes of analysis. X1 is associated with the root of a d + 1-ary tree.
It splits S into d + 1 new simplices by connecting X1 with the d + 1 vertices of S.
Associate with each of these simplices the subset of X2, . . . , Xn consisting of those
points that fall in the simplex. Each nonempty subset is sent to a child of the root,
and the splitting is applied recursively to each child. As every split takes linear time
in the number of points processed, it is clear that the expected time is proportional to
nEDn, where Dn is the expected depth of a random node in the tree. The partition
consists of dn+ 1 simplices, each associated with an external node of the tree. There
are precisely n nodes in the tree and each node contains one point.

If |S| denotes the size of a simplex S, then the following crucial property is valid.

Lemma 3. If simplex S is split into d + 1 simplices S1, . . . , Sd+1 by a point X
distributed uniformly in S, then (|S1|, . . . , |Sd+1|) is jointly distributed as (|S|V1, . . . ,
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|S|Vd+1), where V1, . . . , Vd+1 are the spacings of [0, 1] induced by d i.i.d. uniform [0, 1]
random variables.

Proof. It is known that X is distributed as
∑d+1
i=1 Viti, where t1, . . . , td+1 are the

vertices of S (see Rubinstein (1982), Smith (1984), or Devroye (1986a)). But for a
simplex S, we know that

|S| = 1

d!
det

(
t1 t2 t3 · · · td+1

1 1 1 · · · 1

)
.

Apply this formula to S1 by replacing t1 by X:

|S1| = 1

d!
det

(
X t2 t3 · · · td+1

1 1 1 · · · 1

)
=

1

d!
det

(∑
i Viti t2 t3 · · · td+1∑
i Vi 1 1 · · · 1

)
=
V1

d!
det

(
t1 t2 t3 · · · td+1

1 1 1 · · · 1

)
= V1|S|.

The statement then follows trivially.
It is immediate that the random simplex tree is a random split tree with split

vector distributed as the spacings defined by d i.i.d. uniform [0, 1] random variables
on [0, 1], s0 = 1, s = 1, s1 = 0, and b = d+ 1. Therefore, by Theorem 2, Dn behaves

precisely as for the random d+1-ary tree discussed earlier. Thus, µ =
∑d+1
i=2 1/i and

σ2 =
∑d+1
i=2 1/i2. This yields

Dn

log n
→ 1∑d+1

i=2
1
i

in probability

and

Dn − (1/µ) log n√
(σ2/µ3) log n

L→ N (0, 1).

As an example, if d = 2, then µ = 5/6, σ2 = 78/125, and

Dn − (6/5) log n√
(78/125) log n

L→ N (0, 1).

For d = 3, µ = 1/2 + 1/3 + 1/4 = 13/12. Thus, Dn/ log n → 12/13 in probability.
We also know that Hn/ log n → c in probability for a function c of d that may be
computed via the recipe described in Theorem 1.

Example 6: Extended AB trees and simulation. When generating random trees
that resemble botanical trees, a number of mathematical models have been proposed.
We refer to Viennot’s survey (1990) or the book by Prusinkiewicz and Lindenmayer
(1990) for further references. Stripped from geometrical considerations, most trees
are binary. The main parameter one needs to control is the height of the tree as a
function of the number of nodes. Alternately, one may wish to control the average
distance from a node to the root. For this, it is necessary to have a family of random
trees in which these parameters can take any large value. In the context of this paper,
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if we had a family of splitting trees—a continuum of trees, really—with parameter α
and for which Dn/ log n → c(α) in probability, we would be saved if the domain of
values of c(α) would be (log 2,∞) as α varies over a given range.

In 1993, Aldous introduced a family of random split trees with s = 1, s1 = 0, and
s0 = 0. With this set-up, all balls are put in leaves, and internal nodes have no balls.
Aldous splits with the aid of (V, 1 − V ), where V is beta (a, a) for some parameter
a > 0. By varying a and even extending it beyond its natural range, Aldous creates a
one-parameter family that may be used to model certain splitting processes in biology.
He also studies the depths of nodes in these trees and obtains laws of large numbers
for their heights. We define an AB tree (for Aldous beta) in a similar fashion but
take s0 = s = 1 and s1 = 0. This change is only cosmetic, as it will not affect any
asymptotic result. For a = 1, we obtain the random binary search tree. As a ↓ 0,
the tree becomes more elongated, and the amount of stretching may be controlled by
a. As a→∞, every split is nearly 50-50, and the height of the tree is in probability
asymptotic to log2 n. The laws of large numbers for depths and heights are essentially
those obtained by Aldous for his model.

We feel that a lot is gained by considering two-parameter families for modeling
biological phenomena and simulating botanical trees. This may be achieved by ex-
tending the AB trees and taking B as an equal mixture of a beta (a, b) and a beta
(b, a) density. The splitter V remains symmetric, but as a and b diverge so that
a/(a+ b)→ p ∈ (0, 1), we see that in the limit V is p or 1− p with equal probability.
This creates trees of height about log1/min(p,1−p) n. The AB trees are obtained at
b = a. We call this versatile family of trees extended AB trees. We will report on the
drawing of realistic-looking trees via extended AB trees elsewhere.

From Lemma 2, the parameters are easily obtained:

µ =
a(ψ(a+ 1 + b)− ψ(a+ 1)) + b(ψ(a+ 1 + b)− ψ(b+ 1))

a+ b
,

and

σ2 =
a

a+ b
(ψ(a+ 1 + b)− ψ(a+ 1))

2
+

a

a+ b
(ψ′(a+ 1)− ψ′(a+ 1 + b))

+
b

a+ b
(ψ(a+ 1 + b)− ψ(b+ 1))

2
+

b

a+ b
(ψ′(b+ 1)− ψ′(a+ 1 + b)) .

If we set b = 1 and a is integer, the limit for EDn/ log n is

a+ 1∑a
i=1

1
i

.

This grows unbounded like a/ log a as a→∞. As a ↓ 0, the limit is (a+ 1)/(a/(a+
1) + ψ(a + 2) − 1) ∼ 1/a. This grows unbounded as well. In the AB trees, we have
a = b, and thus,

Dn

log n
→ 1

ψ(2a+ 1)− ψ(a+ 1)
=

1∑∞
n=1

a
(n+a+1)(n+2a+1)

.

This result matches that of Aldous (1993), where the limit is written as an integral. It
is easy to verify that as a ↓ 0, the limit is asymptotic to 1/(a(π2/6−1)). At a = 1, we
have a limit of 2 as in the random binary search tree. As a→∞, the limit approaches
1/ log 2, and the splits because nearly all perfectly balanced. The variance is given by

σ2 = (ψ(2a+ 1)− ψ(a+ 1))
2

+ (ψ′(a+ 1)− ψ′(2a+ 1)) .
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Finally, consider extended AB trees in which as a, b→∞, a = p(a+ b) with p ∈ (0, 1)
fixed. The limit then behaves as

1

−p log p− (1− p) log(1− p) =
1

H(p)
,

where H(p) is the entropy of a Bernoulli (p) random variable. Here we rediscover
a known property of the entropy H = −∑i pi log(pi) of a discrete distribution
(p1, p2, . . .): split a set of size n into subsets of sizes close to np1, np2, np3, . . .. As-
sociate each subset with a child of the root and repeat this process until no further
splitting is possible (note that there is no randomness involved in this splitting). If
one grabs a random node in the resulting tree, its depth is in probability equal to
(1/H) log n. This is exactly like the behavior of random nodes in tries (Fredkin, 1960)
in which the symbols have probabilities p1, p2, p3, . . .; see Pittel (1985, 1986) and
Szpankowski (1988) and the next section.

Example 7: Tries and digital search trees. Tries are b-ary trees for storing infi-
nite strings. Assume that the data consists of n infinite strings of {1, . . . , b}-valued
symbols, called X1, . . . , Xn. Each string carves out an infinite path in the infinite
complete b-ary tree. For a node u, let N(u) denote the number of strings that pass
through node u. Now, eliminate all nodes with N(u) = 0 and eliminate all those
with N(u) = 1 whose parent also has N(u) = 1. The resulting tree has n leaves
with N(u) = 1, and every nonleaf v has N(v) > 1. Invented in 1960 by Fredkin, this
structure is called a trie. Assume that all the symbols are drawn independently, and
that each symbol takes the value i with probability pi. Define the entropy H by

H = −
b∑
i=1

pi log pi,

and the second-order entropy by

H2 =

b∑
i=1

pi log2 pi.

The trie may be viewed as a random split tree with s = 1, s0 = s1 = 0, in which a
node u at which N(u) = n is not split if n = 1, and in which a split occurs when
n > 1; in the latter case, the sizes of the subtrees are distributed jointly as a multi-
nomial (n, p1, . . . , pb) random variable. If V is pS , where S is uniformly distributed
on {1, 2, . . . , b}, then

bE{V log(1/V )} = H.
Therefore, from Theorem 2,

Dn

log n
→ 1

H .

Also,

Dn − log n/H√
(H2 −H2) log n/H3

L→ N (0, 1).

The law of large numbers is due to Pittel (1985). The limit law was discovered
independently by Jacquet and Régnier (1986) and Pittel (1986). See Szpankowski
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(1988) for additional results and references. Our result unifies the analysis of tries
and binary search trees. The normal limit law as stated above is not valid if H2 = H2.
This occurs if and only if p1 = p2 = · · · = pb = 1/b. In the random split tree, this
situation corresponds to a monoatomic distribution for the splitter (V ≡ 1/b), which
has zero variance.

The digital search tree of Coffman and Eve (1970) is like a trie. It is best described
by its incremental construction. It has n nodes, one per string. Nodes are added one
by one, starting with X1 and ending with Xn. The node associated with Xn is the
first node u in the infinite path of string Xn that has N(u) = 0 before Xn is inserted.
This is a random split tree in which a node with N(u) = n spawns subtrees when
n > 1 of sizes that are jointly distributed as a multinomial (n− 1, p1, . . . , pb) random
variable. The limit laws given above for tries remain valid here, without change.
These were known; see Pittel (1985) for the law of large numbers and Pittel (1986)
and Louchard (1987) for the normal limit law. Again, when all pi’s are equal, the
normal limit law as stated above is not valid. Another proof method is needed to deal
with that situation. Also, Theorem 1 only states that for nondegenerate tries and
digital search trees, Hn = O(log n) in probability. Theorem 1 cannot be used to get
a finer result. However, the behavior of the height is well known (Pittel, 1985).

Example 8: The random grid tree. The quadtree is easily generalized as follows:
consider a collection of m IRd-valued points drawn from the data, and partition the
space into (m + 1)d hyperrectangles by the d perpendicular hyperplanes centered
at each of the m points. In a quadtree, m = 1. This generates a tree, the m-
grid tree, with fan-out (m + 1)d, and with up to m points per node. If the data
consist of n independent random vectors uniformly distributed over IRd, the tree thus
constructed becomes a random split tree with split vector (V1, . . . , Vb) in which each

Vi is distributed as V =
∏d
j=1Bj , and B1, . . . Bd are independent beta (1,m) random

variables. While not exactly the same, the random grid tree borrows ideas from
the celebrated grid file data structure (Nievergelt, Hinterberger, and Sevcik, 1984;
Nievergelt and Hinrichs, 1993). We note the following:

µ = E{logW} = (m+ 1)dE{V log(1/V )}

= (m+ 1)d
d∑
j=1

E

{
d∏
k=1

Bk log(1/Bj)

}

= (m+ 1)ddE

{
d∏
k=2

Bk

}
E {B1 log(1/B1)}

= (m+ 1)dE {B1 log(1/B1)}

= d

m+1∑
j=2

1

j
.

From this, we see that

Dn

log n
→ 1

d
∑m+1
j=2

1
j

in probability.
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Also,

σ2 + µ2 = (m+ 1)dE{V log2(1/V )}

= (m+ 1)dE


d∏
k=1

Bk

 d∑
j=1

log(1/Bj)

2


= (m+ 1)ddE

{
d∏
k=2

Bk

}
E
{
B1 log2(1/B1)

}
+ (m+ 1)d 2d(d− 1)E

{
d∏
k=3

Bk

}
E2 {B1 log(1/B1)}

= (m+ 1)dE
{
B1 log2(1/B1)

}
+ 2(m+ 1)2d(d− 1)E2 {B1 log(1/B1)}

= d
m+1∑
j=2

1

j2
+ d

m+1∑
j=2

1

j

2

+ 2d(d− 1)

m+1∑
j=2

1

j

2

.

Hence,

σ2 = d
m+1∑
j=2

1

j2
+ d(d− 1)

m+1∑
j=2

1

j

2

.

This yields the limit law obtained earlier for the quadtree when m = 1. For m = 2,
we have

Dn − (6/5d) log n√(
180d−102

125d2

)
log n

L→ N (0, 1)

for any d ≥ 1. For d = 1, this coincides with the result obtained earlier for the random
3-ary search tree.

Proof of Theorem 1: The height. We show that P{Hn ≥ (c + 3ε) log n} → 0 for
all ε > 0 and c > γ. Define δ = s1, k′ = bε log nc, and l = k′(δ + 1). If n is the
number of balls stored in a random split tree, then the cardinalities of the subtrees
at distance k from the root are bounded from above by quantities of the form

Zk
def
= binomial

(
n,

k∏
i=1

V (i)

)
+ binomial

(
δ,

k∏
i=2

V (i)

)

+ binomial

(
δ,

k∏
i=3

V (i)

)
+ · · ·+ binomial

(
δ, V (k)

)
+ δ

≤ binomial

(
n,

k∏
i=1

V (i)

)
+ binomial

(
δ(k − k′ + 1),

k∏
i=k−k′+1

V (i)

)
+ k′δ,

where V (1), . . . , V (k) is a sequence of i.i.d. random variables distributed as V , and the
inequality is in a stochastic sense only. For each of the bk paths down to a node at
distance k, a different sequence is obtained. Thus, by Boole’s inequality and the fact
that all splitters are identically distributed, we have for integer k, l > 0,

P{Hn ≥ k + 3l} ≤ bkP{Zk ≥ 3l}.
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We further argue as follows:

P{Zk ≥ 3l} ≤ P

{
binomial

(
n,

k∏
i=1

V (i)

)
≥ l
}

+ P

{
binomial

(
δ(k − k′ + 1),

k∏
i=k−k′+1

V (i)

)
≥ l
}

+ P {k′δ ≥ l} .

The last term is zero by the choice of l. Conditioned on the V (i)’s, the first term is
easily bounded using Markov’s inequality and Chernoff’s bounding method. Let t > 0
be picked later. Then, if Z =

∏k
i=1 V

(i),

P{binomial(n,Z) ≥ l|Z} ≤ E
{

(1− Z + Zet)n|Z} e−tl
≤ E

{
e(et−1)nZ |Z

}
e−tl

≤ E
{
el−nZ+l log(nZ)|Z

}
(take et = l/(nZ)).

Take the expectation with respect to Z. The inequality is then further developed by
noting the following: for z ∈ (0, 1) and t > 0,

P{binomial(n,Z) ≥ l} ≤ el−z+l log(z) + P{nZ > z}
≤ (ez)l + (n/z)tE{Zt}.

Similarly, for z′ ∈ (0, 1), t′ > 0, and Z ′ =
∏k
i=k−k′+1 V

(i),

P{binomial(δ(k − k′ + 1), Z ′) ≥ l} ≤ el−z′+l log(z′) + P{δ(k − k′ + 1)Z ′ > z′}
≤ (ez′)l + (δ(k − k′ + 1)/z′)t

′
E{Z ′t′}.

Take z = z′ = b−2k/l/e and note that ze ∼ b−2c/ε(δ+1). Then, combining the previous
bounds,

bkP{Zk ≥ 3l} ≤ 2b−k + bk(ne)tb2kt/lm(t)k + bk(δ(k − k′ + 1)e)t
′
b2kt

′/lm(t′)k
′

def
= I + II + III,

where m(t) is the tth moment of V . Clearly, I = o(1). Choose t′ large enough so that
bm(t′)ε/c < 1. This is possible, as P{V = 1} = 0 and thus m(t′) → 0 as t′ → ∞
(Lemma 1). With this choice of t′, III = o(1). To treat II, fix t and observe that
II = o(1) if

bkntm(t)k → 0,

which occurs if

(bm(t))cet < 1 or, equivalently, c log(bm(t)) + t < 0.

Here we distinguish between the two statements in the theorem. For the first state-
ment, take t so large that bm(t) < 1. Then take c large enough to ensure that
(bm(t))cet < 1. For the second statement, we must be a bit more careful. The
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minimal value of c log(bm) + t is obtained at the solution t∗ = t∗(c) of the equation
m′(t)/m(t) = −1/c. From Lemma 1, a solution exists when

− 1

E{log(V )} < c < − 1

log v∞
.

Replace t by t∗ (as we are allowed to choose any positive t) and let c > γ. As
R < − log b, c log(bm(t∗)) + t∗ < 0, and thus II = o(1). This concludes the proof of
Theorem 1.

Proof of Theorem 2: The depth. The following lemma will be useful for bounding
tail probabilities.

Lemma 4. If X is binomial (n,Z) (written Bn,Z) where Z ∈ [0, 1] is a random
variable, then for 0 < a < n,

P{X ≥ a} ≤ P{Z > a/(2n)}+
(e

4

)a/2
.

Similarly,

P{X ≤ a} ≤ P{Z < 2a/n}+

(
2

e

)a
.

Proof. If X is binomial (n, p), then, for 1 > u ≥ p by Chernoff’s bound (Chernoff,
1952; Okamoto, 1958),

P{X ≥ nu} ≤
(( p

u

)u( 1− p
1− u

)1−u)n
.

Interestingly, the same bound applies for P{X ≤ nu} if 0 < u ≤ p. In particular,

P{X ≥ 2np} ≤
((

1

2

)2p(
1− p
1− 2p

)1−2p
)n
≤
((

1

2

)2p

ep

)n
=
(e

4

)np
.

Also,

P{X ≤ np/2} ≤
(

(2)
p/2

(
1− p/2

1− p/2
)1−p/2)n

≤
(

(2)
p/2

e−p/2
)n

=

(√
2

e

)np
.

Applying this, we have

P{X > a} ≤ P{Z > a/(2n)}+ P{Bn,a/(2n) > a}

≤ P{Z > a/(2n)}+
(e

4

)a/2
.

Similarly, assuming without loss of generality that n ≥ 2,

P{X ≤ a} ≤ P{Z < 2a/n}+ P{Bn,2a/n ≤ a}

≤ P{Z < 2a/n}+

(
2

e

)a
.

The convergence of E{Dn} follows from the weak convergence,

E{Dn} =

∫ 1

0

P{Dn > t} dt,
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and the tail probabilities for P{Dn > t} developed below. The details are omitted.
For the proof of Theorem 2, we consider an infinite random path in the tree,

u0, u1, u2, . . ., where u0 is the root, and given ui and the split vector (V1, . . . , Vb) for
ui, ui+1 is the j-child of ui with probability Vj . Put n balls in the tree as in the
construction of a random split tree, and let u∗ be the unique leaf on the infinite path.
Then Dn is less than or equal to the distance between u∗ and the root.

We first show that for all c > 1/µ, P{Dn > c log n} → 0. Take k = bc log nc. Let
u0 be the root, and let u0, u1, . . . be the path of nodes followed by the inserted point
from the root down. We have, if β = (s0 + 1)k,

[Dn > k + l] ⊆ [N(uk) > β] ∪ [Hβ > l],

where Hβ is the height of a random split tree with β balls. But

P{N(uk) > β} ≤ P

{
ks0 + binomial

(
n,

k−1∏
i=0

Wi

)
> β

}
,

where W0,W1, . . . are i.i.d. random variables distributed as W = VS , and S = i with
probability Vi. Here we made use of the fact that a binomial (N, p) in which N is
binomial (n, q) is distributed as a binomial (n, pq). By Lemma 4, we see that

P

{
binomial

(
n,

k−1∏
i=0

Wi

)
> β − ks0

}
≤ P

{
k−1∏
i=0

Wi >
β − ks0

2n

}
+
(e

4

) β−ks0
2

= P

{
k−1∑
i=0

logWi > log

(
β − ks0

2n

)}
+
(e

4

) k
2

= I + II.

Clearly, II = o(1). Also, I = o(1) by the law of large numbers, as∑k−1
i=0 logWi

kE{logW} → 1

almost surely. Recall that µ = E{log(1/W )}. Also, we used the fact that

lim inf
n→∞

log
(
β−ks0

2n

)
+ kµ

k
= −1

c
+ µ > 0

since c > 1/µ. To wrap up the proof of the first part, we must show that P{Hβ >
l} → 0, where l is our choice. Let us pick l = b2γ log βc = b2γ log((s0 + 1)k)c, where
γ > 0 is as in Theorem 1. Then P{Hβ > l} → 0, because

lim
n→∞P{Hβ > 2γ log β} = 0.

As l ∼ log log n, the first part of the law of large numbers is proved.
Next, we show that for all c < 1/µ, P{Dn < c log n} → 0. Take k = bc log nc.

Then, if N(.) refers to the tree with n− 1 balls,

[Dn < k] ⊆ [N(uk) = 0].
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But

P{N(uk) = 0} ≤ P

{
−ks+ binomial

(
n− 1,

k−1∏
i=0

Wi

)
≤ 0

}
,

where W0,W1, . . . are as in the earlier part of this proof. By Lemma 4, we see that

P

{
binomial

(
n− 1,

k−1∏
i=0

Wi

)
≤ ks

}
≤ P

{
k−1∏
i=0

Wi ≤ 2ks

n− 1

}
+

(
2

e

)ks

= P

{
k−1∑
i=0

logWi ≤ log

(
2ks

n− 1

)}
+

(
2

e

)ks
= I + II.

Obviously, II = o(1). I = o(1) by the law of large numbers, as∑k−1
i=0 logWi

kE{logW} → 1

almost surely and

lim sup
n→∞

log
(

2ks
n

)− kE{logW}
k

= −1

c
−E{logW} = −1

c
+ µ < 0.

This concludes the proof of the lower bound for the law of large numbers.
The limit law is obtained by using the same upper and lower bounds introduced

in the proof of the law of large numbers. Additionally, we will use the fact that∑k−1
i=0 logWi + kµ√

kσ2

L→ N (0, 1).

Consider first the probability P{Dn > k}, where k = b(1/µ) log n + u
√

log nc and
u ∈ IR. We have, if β = (s0 + 1)k,

[Dn > k + l] ⊆ [N(uk) > β] ∪ [Hβ > l],

where Hβ is the height of a random split tree with β balls. Arguing as in the first
part of this proof,

P{N(uk) > β} ≤ P

{
binomial

(
n,
k−1∏
i=0

Wi

)
> β − ks0

}

= P

{
k−1∑
i=0

logWi > log

(
β − ks0

2n

)}
+
(e

4

) k
2

= P


∑k−1
i=0 logWi + kµ√

kσ2
>

log
(
β−ks0

2n

)
+ kµ

√
kσ2

+ o(1)

= P

N (0, 1) >
log
(
β−ks0

2n

)
+ kµ

√
kσ2

+ o(1)

= P

{
N (0, 1) >

uµ3/2

σ

}
+ o(1).
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Recall that for l = b2γ log βc = b2γ log((s0 + 1)k)c, we obtain P{Hβ > l} → 0. As
l ∼ log log n, the first part of the limit law is proved:

P{Dn > k} ≤ P{N > uµ3/2/σ}+ o(1).

Using the arguments for the lower bound, we may prove in a similar fashion that

P{Dn < k} ≤ P{N < uµ3/2/σ}+ o(1).

Taken together, this proves that

lim
n→∞P{Dn < k} = P{N < uµ3/2/σ},

which was to be shown.

Other possible universal models for random split trees. We could have
developed this theory based on other models. In a random split tree, the subtree sizes
are multinomial (n, V1, . . . , Vb), where (V1, . . . , Vb) in turn is a random split vector.
This introduces two levels of randomization. A more rigid and perhaps less universal
model would fix an integer δ and require that the subtree sizes N(u1), . . . , N(ub) for
the children u1, . . . , ub of a node u satisfy:

max
1≤i≤b

|N(ui)− nVi| ≤ δ.

Some of the trees discussed earlier fall into this framework. For example, in a random
binary search tree, it is well known that the left and right subtrees of the root have
cardinalities (N1, N2) that are jointly distributed as (bnUc, bn(1 − U)c), where U is
uniform [0, 1] and n is the cardinality of the tree. Setting (V1, V2) = (U, 1 − U), we
thus have maxi |Ni − nVi| ≤ 1. Theorems 1 and 2 have straightforward equivalent
versions (with the same dependence upon µ, σ2 and m(t)). We should note that for
generating extended AB trees for the purpose of simulation, the model of this section
is more convenient. Here the split vectors V1 and V2 = 1 − V1 are mixtures of beta
random variables, but no multinomial sampling is necessary, as we use (N1, N2) =
(bnV1c, bnV2c) to determine subtree sizes at the root of a subtree of cardinality n.
This way, each node will receive one ball.

Acknowledgment. I thank Paul Kruszewski and two anonymous referees for
great feedback on the manuscript.
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