
Tohoku Math. J.
55 (2003), 397–438

UNIVERSAL LOG STRUCTURES ON SEMI-STABLE VARIETIES
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Abstract. Given a morphism of schemes which is flat, proper, and “fiber-by-fiber semi-
stable”, we study the problem of extending the morphism to a morphism of fine log schemes,
which is log smooth, integral, and vertical. The problem is rephrased in terms of a functor on
the category of fine log schemes over the base, and the main result of the paper is that this
functor is representable by a fine log scheme whose underlying scheme maps naturally to the
base by a monomorphism of finite type. In the course of the proof, we also generalize results
of Kato on the existence of log structures of embedding and semi-stable type.

1. Introduction. In light of the powerful tools of logarithmic geometry developed in
recent years, an important question to ask, when given a singular morphism f : X → S

of schemes, is whether there exist fine log structures on X and S making f a log smooth
morphism. In addition, if such log structures exist one would like to know to what extent
they are unique. This paper is an attempt to understand the situation for morphisms which
are fiber-by-fiber semi-stable (see below for the precise definition). Our inspiration comes
from the well-understood case of semi-stable curves, and the main result of this paper can be
viewed as a generalization of the statement that the Deligne-Mumford compactification of the
moduli space of curves of genus g > 1 is a moduli stack for certain log curves ([10]). This
work was heavily influenced by the papers of Kato ([9], [10]).

Let f : X → S be a flat and proper morphism of schemes of finite type over an excellent
Dedekind ring, and suppose that for every geometric point s̄ → S the fiber Xs̄ is a semi-stable
variety in the sense of the following definition:

DEFINITION 1.1. A scheme Y/k over a separably closed field k is a semi-stable variety

if for each closed point y ∈ Y there exists an étale neighborhood (U, y ′) of y, integers r ≥ l,

and an étale morphism

U → k[X1, . . . , Xr ]/(X1 · · · Xl) ,

sending y ′ to the point X1 = · · · = Xr = 0 (we make the convention that if l = 0, then
(X1 · · · Xl) = (0)).
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Let FLog denote the category of fine log schemes over S, and define the functor of integral

and vertical log structures

IVLS : FLog → Set

as follows: for any fine log scheme T over S, IVLS(T ) is the set of isomorphism classes of
pairs (MXT , f b

T ), where MXT is a fine log structure on XT := X ×S T and f b
T : pr∗2MT →

MXT is a morphism of log structures making

(pr2, f
b
T ) : (XT ,MXT ) → T

a log smooth, vertical, and integral morphism (recall that a morphism is vertical if MXT /T :=

Coker(pr∗2MT → MXT ) is a sheaf of groups). The main result of this paper is the following
theorem:

THEOREM 1.2. The functor IVLS is representable by a log scheme, and the map on

underlying schemes IVLS → S is a monomorphism of finite type.

The paper is organized as follows.
Section 2 is devoted to showing that if f : X → S is a proper, log smooth, integral, and

vertical morphism all of whose geometric fibers are semi-stable varieties, then there exists a
canonical cartesian diagram

X
ψ

−→ X♯�f

�f ♯

S
φ

−→ S♯,

where f ♯ : X♯ → S♯ has a special form and the underlying maps of schemes of φ and ψ

are isomorphisms. This result will be used to show that the functor IVLS is equivalent to the
functor defined by a pair (F,MF ), where F is a functor on the category of S-schemes and
MF is a “log structure” on F .

More precisely, let LogS denote the fibered category over the category of S-schemes
whose fiber over an S-scheme T is the groupoid of fine log structures MT on T . It is shown
in ([17], 1.1) that LogS is an algebraic stack. By definition, a log structure on a fibered
category S is a morphism of fibered categories S → LogS . Viewing functors on the category
of S-schemes as fibered categories, we get a notion of a log structure on a functor.

Now, suppose (F,MF ) is a functor with a log structure. Then for any element t ∈ F(T )

over some S-scheme T , we get a log structure t∗MF on T by viewing t as a morphism of
functors T → F and defining t∗MF to be the log structure obtained from the composite
MF ◦ t : T → LogS . This enables us to define a functor F log on FLog as follows: for any
T = (T ,MT ), F log(T ) is the set of pairs (t, tb), where t ∈ F(T ) and tb : t∗MF → MT is
a morphism of log structures. To say that IVLS is equivalent to the functor defined by a pair
(F,MF ) means that there exists an isomorphism of functors IVLS ≃ F log. The importance
of this is that the proof of Theorem 1.2 is reduced to showing that the (ordinary) functor F is
representable by a scheme, and that F → S is a monomorphism of finite type.
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In Section 3 we generalize results of Kato ([9]) on the existence of log structures of
semi-stable and embedding type (see the section for definitions) to an arbitrary base scheme.
Our generalization of Kato’s work includes cohomological obstructions for the existence of
log structures of semi-stable and embedding type and so might also be of some interest for
schemes over fields. This section can be read independently from the rest of the paper.

In Section 4 we use the results of Sections 2 and 3 to prove a theorem about effectivity
of certain formal log schemes. This theorem will be used in Section 5.

Finally, in Section 5 we bring it all together to prove Theorem 1.2. The proof is based on
Artin’s method ([5], 5.4) and the results of ([17], [18]).

1.1. CONVENTIONS. Throughout this paper we denote schemes by underlined letters
(e.g., X) and log schemes by unadorned letters (e.g., X). For a log scheme X, we denote the
underlying scheme by X. The reader is assumed to be familiar with logarithmic geometry
at the level of ([11], [16]) and with the stack-theoretic approach introduced in ([17]). Our
conventions about algebraic stacks are those of ([12]), except we only assume that our stacks
are locally quasi-separated and not necessarily quasi-separated (LogS is not quasi-separated).

2. Special elements of IVLS. Let f : X → S be a smooth, proper, integral, and
vertical morphism of noetherian log schemes, and suppose that for every geometric point
s̄ → S, the underlying scheme of Xs̄ is a semi-stable variety (in the sense of Definition 1.1).
The purpose of this section is to show that under these assumptions the log structure MX on
X is induced by base change from a smooth morphism

f ♯ : X♯ → S♯

of a special form whose underlying morphism of schemes is that of the original f .

DEFINITION 2.1. A log smooth morphism f : X → S is essentially semi-stable if for
each geometric point x̄ → X the monoids (f −1MS)x̄ and MX,x̄ are free monoids, and if for
suitable isomorphisms (f −1MS)x̄ ≃ N

r and MX,x̄ ≃ N
r+s the map

(f −1
MS)x̄ → MX,x̄

is of the form

ei �→

{
ei if i 	= r ,

er + er+1 + · · · + er+s if i = r ,
(2.1)

where ei denotes the i-th standard generator of N
r .

LEMMA 2.2. If f : X → S is essentially semi-stable, then étale locally on X and S

there exist charts N
r → MS, N

r+s → MX such that the map N
r → N

r+s given by formula

2.1 is a chart for f, and such that the map

OS ⊗Z[N r ] Z[N r+s] → OX

is smooth.
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PROOF. Observe that if s ∈ S is a point, then the stalk MS,s̄ is a free monoid and hence
in some étale neighborhood of s there exists a chart N

r → MS such that the induced map
N

r → MS,s̄ is bijective. If x ∈ X is a point lying over s, then by ([15], 2.25) there exists in
some étale neighborhood of x a chart

P −→ MX�
�

N
r −→ MS

such that the induced map

OS ⊗Z[N r ] Z[P ] → OX

is smooth and such that the map P → MX,x̄ is bijective. From the bijectivity of P → MX,x̄

we conclude that P is a free monoid, and that the map N
r → P has the desired form (after

perhaps applying an automorphism of N
r ). ✷

REMARK 2.3. The above lemma shows that the notion of an essentially semi-stable
morphism is a natural generalization of the notion of a normal crossing log variety introduced
in ([14], §2).

LEMMA 2.4. An essentially semi-stable morphism f : X → S is integral and vertical.

PROOF. To see the integrality we have to check that the map N
r → N

r+s described in
formula 2.1 is integral. For this observe that if ∆ : N → N

s+1 is the diagonal map, then there
exists a natural cocartesian diagram

N
e �→er
−→ N

r�∆

�
N

s+1 ei �→ei+r−s
−→ N

r+s,

and since the map ∆ is integral, so is the map N
r → N

r+s ([11], 4.1 (i)). To see that it
is vertical, let Q be the cokernel of N

r → N
r+s . By definition of cokernel, to give a map

Q → M to an integral monoid M is equivalent to giving a map N
r+s → M such that the

composite N
r → N

r+s → M is zero. A map N
r+s → M is equivalent to giving elements

m1, . . . ,mr+s ∈ M ,

and the condition that the map N
r → M be zero means that

m1 = m2 = · · · = mr−1 = mr + · · · + mr+s = 0 .

Thus giving an arrow Q → M is equivalent to giving elements mr , . . . ,mr+s in M∗ such that
mr + · · · + mr+s = 0. This in turn is equivalent to giving elements mr , . . . ,mr+s−1 ∈ M∗.
But the functor on the category of integral monoids

M �→ {r + s − 1-tuples of elements m ∈ M∗}

is represented by Z
r+s−1, and hence Q ≃ Z

r+s−1. ✷
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Recall that if P is a sharp monoid (this means that P ∗ = {0}), then an element p ∈

P − {0} is irreducible if for any equality p1 + p2 = p in P we have p1 = 0 or p2 = 0. The
basic results about irreducible elements is the following proposition whose proof we omit (see
[16], I.2.1.2):

PROPOSITION 2.5. If P is a fine sharp monoid, then the set Irr(P ) of irreducible ele-

ments in P is a finite set which generates P .

Suppose S = Spec(k), where k is a separably closed field, and that f : X → S is
essentially semi-stable. Let x ∈ X be a singular point. Then by Lemma 2.2 there exists a
chart

N
r+s −→ MX −→ OX�

�
�

N
r −→ MS

α
−→ k

in an étale neighborhood of x such that

k ⊗Z[N r ] Z[N r+s ] ≃ k[xr , . . . , xr+s]/(xr · · · xr+s − α(er )) → OX

is smooth. Since x is a singular point, it follows that α(er ) = 0 and hence the map

MS → MX,x̄

is of the form N
r ′

→ N
r ′+s as in Definition 2.1 for some r ′ ≤ r . It follows that if Irr(MS)

denotes the set of irreducible elements in MS , then there is a unique element in Irr(MS)

whose image in MX,x̄ is not irreducible. This defines a canonical map

sX : {singular points of X} → Irr(MS) .

DEFINITION 2.6. An essentially semi-stable morphism of log schemes f : X → S is
special at a geometric point s̄ if the map

sXs̄ : {singular points of Xs̄} → Irr(MS,s̄)

induces a bijection between the set of connected components of the singular locus of Xs̄ and
Irr(MS,s̄). If f is special at every geometric point s̄ → S, then we call f a special morphism.

THEOREM 2.7. Let f : X → S be a smooth, proper, integral, and vertical morphism

of noetherian log schemes, and suppose that for every geometric point s̄ → S the underlying

scheme of Xs̄ is a semi-stable variety. Then there exist a pair of log structures (M
♯
S,M

♯
X) on

S and X, respectively, and a morphism

f ♯ : X♯ = (X,M
♯
X) → S♯ = (S,M

♯
S) ,

which is special, together with morphisms of log structures

φ : M
♯
S → MS , ψ : M

♯
X → MX ,
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which make the diagram

X −→ X♯�f

�f ♯

S −→ S♯

cartesian. Moreover, the datum (M
♯
S,M

♯
X, φ,ψ) is unique up to a unique isomorphism.

The proof occupies the remainder of this section.
Let us begin by considering the case when S is the spectrum of a strictly henselian local

ring O, and MS admits a chart Q → MS such that Q → MS,s0 is bijective (here s0 denotes
the closed point). Denote by T the set of connected components of the singular locus of the
closed fiber.

Recall ([16], I.1.1) that if P is a monoid, then a congruence relation on P is a subset
E ⊂ P ⊕ P which is both a submonoid and a set-theoretic equivalence relation. A subset
S ⊂ E generates the congruence relation E if E is the smallest congruence relation on P

containing S. For any equivalence relation E on P , the surjection P → P/E induces a
structure of a monoid on P/E if and only if E is a congruence relation. Therefore, there is
a natural bijection between isomorphism classes of surjective maps of monoids P → P ′ and
the set of congruence relations on P .

LEMMA 2.8. Let P be a fine sharp monoid, Q →֒ P an integral morphism (such a

morphism is automatically injective by [11], paragraph preceding 4.7), and let π : P →

P/Q be the projection map.

1. For each i ∈ P/Q, there exists a unique element pi ∈ P such that

π−1(i) = {pi + q|q ∈ Q} .

2. If p ∈ P is an irreducible element not in Q and if i = π(p), then p = pi (notation

is in the part 1).
3. If {pi1, . . . , pin} denotes the set of irreducible elements of P which are not in Q (we

index these irreducible elements by their images in P/Q), then the congruence relation on

Q ⊕ N
n defined by the surjection

Q ⊕ N
n → P , (q, (n)) �→ q +

n∑

j=1

njpij

is generated by equalities

n∑

j=1

mjpij = q +

n∑

j=1

njpij

in P, where for each j either mj or nj is equal to 0.

PROOF. 1. Since P is fine and sharp, there exists a partial ordering on P+ defined by
p1 ≤ p2 if there exists p3 ∈ P such that p1 + p3 = p2. By ([16], I.2.1.5.3) the set π−1(i)

contains a unique finite set of minimal elements with respect to this partial ordering.
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Suppose p1, p2 ∈ π−1(i) and suppose p1 is a minimal element. By construction of the
quotient, there exists q1, q2 ∈ Q such that p1 + q1 = p2 + q2. Since the map is integral, there
exists q3, q4 ∈ Q and p ∈ P such that

p1 = q3 + p , p2 = q4 + p , q1 + q3 = q2 + q4 .

By definition of quotient, p ∈ π−1(i) and p ≤ p1. Since p1 was minimal, it follows that
p1 = p and that p2 = p1 + q4.

2. By definition of pi , there exists q ∈ Q such that p = pi + q . Since p is irreducible
and has non-zero image in P/Q this means that q = 0.

3. Since Irr(P ) generates P , the congruence relation is generated by equalities

q +
∑

j

nij pij = q ′ +
∑

j

mij pij

in P . By the integrality of Q → P , for any such equality there exist p ∈ P and q3, q4 ∈ Q

such that
∑

j

nij pij = p + q3 ,
∑

j

mij pij = p + q4, q + q3 = q + q4 .

In addition, writing p =
∑

bij pij + q5, we see that the congruence relation on Q ⊕ N
n

defined by the surjection

Q ⊕ N
n → P

is generated by equalities in P of the form
∑

j

nij pij =
∑

j

bij pij + q .

Moreover, since P is cancellative, we can assume that for each j either nij = 0 or bij = 0.
✷

COROLLARY 2.9. Let t be a singular point of X, and let n ∈ MX/S,t̄ . Then there

exists a unique element pn ∈ MX,t̄ such that

π−1(n) = {pn + q | q ∈ MS,s0} .

PROOF. The map MS,s0 → MX,t̄ is integral by assumption. ✷

As above let s0 denote the closed point of S, and let Xs0 denote the fiber. By ([15], 2.25),
for every singular closed point t of Xs0 there exists a chart

P
β

−→ MX�
�

Q
α

−→ MS

(2.2)

in some étale neighborhood of t such that
(1) P → MX,t̄ is bijective,
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(2) the map

O ⊗Z[Q] Z[P ] → OX

is smooth.
Let {pi1, . . . , pin} be the set of irreducible elements in P which are not in Q (as in

Lemma 2.8 we index these irreducible elements by their images in P/Q). If i ∈ P/Q is any
element and pi is as in 2.8, then pi can be written as

pi =
∑

mjpij .

Indeed, writing pi as a sum of irreducible elements, we have

pi =
∑

mjpij + q , q ∈ Q,

and by definition of pi we must have q = 0. Hence the map

γ : O[Yi1 , . . . , Yin ] → O ⊗Z[Q] Z[P ] , Yij �→ 1 ⊗ e(pij )

is surjective. Let J be the kernel of γ .

PROPOSITION 2.10. (1) There exists an element q0 ∈ Q such that

n∑

j=1

pij = q0 .

(2) J is generated by the element

n∏

j=1

Yij − α(q0) .

(3) Let Q ⊕N N
n be the pushout of the diagram

N
∆

−→ N
n�1 �→q0

Q.

Then the natural map

Q ⊕N N
n → P , (q, (nij

)) �→ q +
∑

nij pij

is an isomorphism.

PROOF. We first reduce to the case when O = k(s0). The reduction step is trivial for
(1) and (3). Let us show that (2) holds if the proposition is true on the closed fiber. Since

n∑

j=1

pij = q0 , q0 ∈ Q,

there is an inclusion of ideals (∏
Yij − α(q0)

)
⊂ J ,
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which defines a closed immersion

Spec(O[Yi1 , . . . , Yin ]/J ) →֒ Spec(O[Yi1 , . . . , Yin ]/
(∏

Yij − α(q0)
)

.

Since both of these schemes are flat over O and the reduction is an isomorphism, the closed
immersion is an isomorphism also by ([1], VII.1.9). Therefore (2) holds and hence it suffices
to consider the case when O = k for some separably closed field k.

LEMMA 2.11. The ideal J = Ker(γ ) is generated by elements of the form
∏

j

Y
nij

ij
− α(q)

∏

j

Y
mij

ij
,

where in P
∑

j

nij pij =
∑

j

mij pij + q , q ∈ Q,

and for each j either nij or mij is equal to 0.

PROOF. This is a restatement of 2.8.3. Indeed, it suffices to show that the kernel of the
map

Z[Q ⊕ N
n] → Z[P ]

induced by the surjection

Q ⊕ N
n → P , (q, (nj )) �→ q +

∑

j

njpij

is the ideal defined by any set of generators for the congruence relation on Q ⊕ N
n. This

follows from the universal property of monoid algebras; for any algebra R, there is a natural
bijection

HomAlg(Z[P ], R) → HomMon(P,R) ,

where R is viewed as a multiplicative monoid. ✷

LEMMA 2.12. (1) The completion ÔX,t is isomorphic to

k[[T1, . . . , Ts , Yi1 , . . . , Yin ]]/(Yi1 · · ·Yin ) ,

where {T1, . . . , Ts} are independent variables.

(2) Let L ⊂ P be the submonoid generated by the set {pi | i ∈ P/Q}. Then L is

isomorphic to N
n.

PROOF. Let Y ′ be the log scheme with underlying scheme Spec(k ⊗Z[Q] Z[P ]) and log
structure induced by P → Z[P ]. Then there exists a diagram of log schemes

X
h

−→ Y ′ −→ S ,

where h is log smooth and strict. Since h is strict, the map

Ω1
X/S → Ω1

X/Y ′
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is surjective, so in some neighborhood of t there exist elements f1, . . . , fs in the maximal
ideal of t such that df1, . . . , dfs map to a basis for Ω1

X/Y ′ ⊗ k(t). This defines a map

h′ : X → Y ′ ×S A
s
S

of log schemes which is strict, and for which the map

h′∗Ω1
Y ′⊗SA

s
S/Y ′ ⊗ k(t) → Ω1

X/Y ′ ⊗ k(t)

is an isomorphism. It follows that in some neighborhood of t the map h′ is étale ([15], 2.20).
Thus we can extend the map γ to an étale map

X → Spec(k[T1, . . . , Ts] ⊗k (k[Yi1, . . . , Yin ]/J ))

sending t to the point T1 = · · · = Ts = Yi1 = · · · = Yin = 0.
First, we claim that the resulting map

k[[T1, . . . , Ts , Yi1 , . . . , Yin ]] → ÔX,t

induces an isomorphism

k[[T1, . . . , Ts , Yi1 , . . . , Yin ]]/(T1, . . . , Ts , Yi1 , . . . , Yin )
2 ≃ ÔX,t/m

2 .

To see this it suffices to show that a set of defining equations for J are contained in the ideal
(Yi1 , . . . , Yin )

2. But J is generated by equations arising from non-trivial equalities
∑

nij pij = q +
∑

mjpij

in P . If
∑

nij = 1, then the equality is

pij0
= q +

∑
mjpij

for some j0. By the irreducibility of pij , this implies that the equation comes from an equality

pij = q or pij = pij ′ .

Since pij /∈ Q, we must have pij = pij ′ and hence the equation is trivial.
Fix an isomorphism

ÔX,t ≃ k[[X1, . . . , Xl]]/(X1 · · ·Xh)

for some l and h (this is possible by assumption), and let m denote the maximal ideal of ÔX,t .
It follows from the above that

l = dim(m/m2) = n + s .

For each k ≥ 1, the dimension of mk/mk+1 is equal to the number of monomials of degree
k in X1, . . . , Xl which do not contain the string X1 · · · Xh. In particular, the dimension of
mh/mh+1 is equal to one less than the number of monomials of degree h in l = n + s

variables. This implies that we have at least one equation involving monomials in the Yij of
degree h. Fix one such equation f (Y ) = 0. By Lemma 2.11, we can choose our equation so
that it is either of the form

f (Y) = Yi1 · · · Yih − Yi′1
· · · Yi′m



UNIVERSAL LOG STRUCTURES ON SEMI-STABLE VARIETIES 407

or of the form

f (Y ) = Yi1 · · · Yih .

Let R be the ring

k[[T1, . . . , Ts , Yi1 , . . . , Yin ]]/(f ) ,

and let ψ : R → ÔX,t be the natural map.

SUB-LEMMA 2.13. Let ψ : A → B be a surjective local homomorphism between

complete noetherian local rings. If the induced map

gr∗(ψ) : gr∗
�A

(A) → gr∗
�B

(B)

is an isomorphism, then ψ is an isomorphism.

PROOF. Because A and B are complete with respect to mA, it suffices to show that
A/mn

A → B/mn
B is an isomorphism for all n. We may therefore assume that A and B are

artinian.
Since the map ψ is an isomorphism modulo mA, it is enough to show that B is flat over

A (by Nakayama’s lemma). The result therefore follows from the local criterion for flatness
([1], page 91). ✷

To prove that ψ is an isomorphism, it therefore suffices to show that for every integer k

the dimensions of mk
R/mk+1

R and mk/mk+1 are equal. But we can compute these dimensions
as follows: If we define N(k, l) to be the number of monomials of degree k in l variables,
then the dimensions of mk

R/mk+1
R and mk/mk+1 are both equal to

N(k, l) − N(k − h, l) = N(k, n + s) − N(k − h, n + s) .

Hence ψ is an isomorphism.
Next, we claim that f cannot be of the form

f (Y ) = Yi1 · · · Yih − Yi′1
· · · Yi′m

.

Since P/Q is a group, for every pij ∈ P there exists an element p−ij such that

π(pij ) + π(p−ij ) = 0

in P/Q. Writing p−ij =
∑

napia , we conclude that there exist natural numbers na such that

pij +

n∑

a=1

napia ∈ π−1(0) .

By Lemma 2.8, π−1(0) = Q and hence there exists an element q ∈ Q such that

pij +

n∑

a=1

napia = q .

Since pij is not a unit, q is non-zero, and hence there exist natural numbers na such that
Yij

∏n
a=1 Y

na

ia
= 0.
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Since ÔX,t is reduced, if
∏

j Y
mj

ij
= 0 with the mj ≥ 1, then

∏
j Yij = 0. It follows that∏

j Yij = 0. This is impossible if

f (Y ) = Yi1 · · ·Yih − Yi′1
· · · Yi′m

.

Therefore we have an isomorphism

k[[T1, . . . , Ts , Yi1 , . . . , Yin ]]/(Yi1 · · · Yih) ≃ ÔX,t

for some h.
We claim that h = n. To see this note that

h∑

j=1

pij = p + q

for some p ∈ P and a nonzero q ∈ Q. If pia is another irreducible element with a > h, then
since P/Q is a group, there exists an element p−ia as in 2.8 such that pia +p−ia maps to zero
in P/Q. Write

p−ia =

n∑

j=1

bij pij .

Then at least one of the bij with 1 ≤ j ≤ h must be zero, since otherwise we can write

p−ia =

h∑

j=1

pij +

h∑

j=1

(bij − 1)pij +
∑

j>h

bij pij = p + q +
∑

j>h

bij pij +

h∑

j=1

(bij − 1)pij

contradicting the minimality of p−ia . It follows that
∏

j Y
bij

ij
/∈ J . On the other hand, pia +

p−ia ∈ π−1(0) = Q and since pia is not a unit, pia + p−ia is a non-zero element in Q.

Therefore Yia

∏
j Y

bij

ij
∈ J, and hence Yia is a zero divisor in the ring

k[[T1, . . . , Ts , Yi1 , . . . , Yin ]]/(Yi1 · · · Yih) .

This is a contradiction so we must have h = n. This completes the proof of the part 1 of the
lemma.

To see the second part, suppose we have an equality
∑

mjpij =
∑

m′
jpij

in P . Since P is cancellative, we can assume that at least one mj = 0 and hence we get

∏
Y

mj

ij
=

∏
Y

m′
j

ij
	= 0

in the ring

k(s0)[[T1, . . . , Ts, Yi1 , . . . , Yin ]]/
(∏

Yij

)
.

It follows that mj = m′
j for all j . This completes the proof of Lemma 2.12. ✷
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From Lemmas 2.8.3 and 2.12 it follows that the congruence relation on Q ⊕ N
n defined

by the map to P is generated by equalities
∑

j

nij pij = q ,

where all the nij are greater than 0. In addition, from 2.12 we see that we must have an
equality

n∑

j=1

pij = q0

for some q0 ∈ Q. This proves (1) of the proposition. Now suppose that we had an equality in
P

∑

j

nij pij = q ′

for some q ′ ∈ Q and all nij ≥ 1. Then, after reordering the pij when necessary, we can
assume that ni1 is the smallest of the nij . This gives

q ′ =
∑

j

nij pij = ni1q0 +
∑

j

(nij − ni1)pij .

The integrality of Q → P now implies that
∑

j (nij − ni1)pij is in Q, which from above is
only possible if nij = ni1 for all j . This implies (2).

To see (3), note that the map

Q ⊕N N
n → P

is surjective by the definition of the pij . To see that it is injective, suppose that (q, (nj ))

and (q ′, (mj )) map to the same element. Without loss of generality, we may assume that at
least one nj = 0 and at least one mj ′ = 0 (since there exists q0 ∈ Q such that (q0, 0) =

(0, (1, . . . , 1)) in Q ⊕N N
n). Then we get an equality

q +
∑

njpij = q ′ +
∑

mjpij

in P, and by the integrality we get that there exists p ∈ P and q3, q4 ∈ Q such that
∑

njpij = p + q3 ,
∑

mjpij = p + q4 , q3 + q = q4 + q ′ .

Since
∑

pij ∈ Q, we may assume that p =
∑

j bij pij with at least one bij = 0. If q3 is

non-zero, we obtain that
∏

Y
nj

ij
= 0 in k[Yi1, . . . , Yin ]/J, which from above is impossible,

since at least one nj is zero. Thus q3 = 0 and hence
∑

mjpij =
∑

njpij + q4 .

By the same reasoning using the fact that at least one mj ′ = 0, we conclude that q4 = 0 and
hence q = q ′ and (nj ) = (mj ). This completes the proof of Proposition 2.10. ✷
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Let L ⊂ P be the submonoid of 2.12.2, and define K ⊂ Q to be the submonoid gener-
ated by the element

∑
j pij . Equivalently,

K = L ∩ Q ⊂ P .

If t ′ ∈ X is another singular point lying over some ζ ∈ Spec(O), then the above dis-
cussion shows that the submonoid Lt ′ ⊂ MX,t̄ ′ generated by the irreducible elements of
MX,t̄ ′ not in the image of MS,ζ̄ is isomorphic to N

r for some r , and that the intersection

Kt ′ = Lt ′ ∩ MS,ζ̄ is a free monoid of rank 1. To check this one may change base to an

algebraic closure k̄ of k(ζ ) and hence can assume that there exists a chart Q → MS such
that Q → MS is bijective. If t ′ is a closed point, the result now follows from the above
discussion. If t ′ is not a closed point, then choose a specialization t ′′ of t ′ and note that the
stalk at t ′ is obtained by the cospecialization map from t ′′ ([16], II.2.3).

LEMMA 2.14. Suppose a chart as in 2.2 has been chosen over some étale neighbor-

hood of t, which we also denote by X. Let Lt and Kt be the submonoids of P and Q,

respectively, given by the above construction. Then for any other singular point t ′ of X lying

over some ζ ∈ Spec(O), the submonoids Lt̄ ′ ⊂ MX,t̄ ′ and Kt̄ ⊂ MS,ζ̄ are equal to the

images of Lt and Kt .

PROOF. By Proposition 2.10, there is an isomorphism

Q ⊕Kt Lt ≃ P ,

and hence an isomorphism

MX,t̄ ′ ≃ MS,ζ̄ ⊕Kt (Lt/(pij = 0 if pij maps to a unit in OX,t̄ ′)) .

This implies the lemma. ✷

Let D be a connected component of the singular locus of the closed fiber. For any point
t ∈ D we get from the above construction a free monoid Kt ⊂ MS,s0 of rank 1. Proposition
2.14 implies that this monoid is independent of the choice of t . To see this suppose that t ′ ∈ D

is a second singular point. Choose étale covers {Ui} of D and singular points ti in the image
of Ui such that over each Ui there exists a chart as in 2.14 using ti . We can also assume that
t1 = t and tr = t ′ for some r . Since D is connected, there exists a sequence U1, . . . , Ur such
that for each i there exists a singular point xi of Ui ×X Ui+1 mapping to D. It follows from
2.14 that the submonoid Kti ⊂ MS defined by ti is equal to the submonoid defined by xi and
xi−1. We conclude that Kt = Kt ′ .

LEMMA 2.15. There exists a unique fine sub-log structure K̃D ⊂ MS whose image in

MS,s0 is equal to Kt for some t ∈ D (and hence for all). Also, there exists a unique fine sub-

log structure L̃D ⊂ MX whose image in MX,t ′ (t ′ any point of X) is equal to the image of

K̃D if t ′ is not singular or if t ′ does not specialize to a point of D and is equal to Lt ′ (notation

as in 2.14) otherwise.

PROOF. K̃D and L̃D are uniquely determined if they exist, since we have specified their
values on stalks, and K̃D exists, since S is the spectrum of a strictly henselian local ring.
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To show that L̃D exists, we first claim that the set of singular points of X which specialize
to D is a connected component of the singular locus of X. To see this, let Xsing be the
closed subset of singular points of X with the reduced subscheme structure. Then Xsing is
a proper scheme over Spec(O), and hence by ([2], 3.1) there is an equivalence of categories
between the category of finite étale schemes over Xsing and the category of finite étale schemes
over X

sing
0 (the reduction of Xsing). In a neighborhood of any point of the closed fiber, X is

isomorphic to

Spec(O[X1, . . . , Xd ]/(X1 · · · Xr − t))

for some d, r ∈ Z and t ∈ O, and hence X
sing
0 is equal to the singular locus of the closed

fiber X0 with the reduced structure. Now by the above equivalence, the connected component

D ⊂ X
sing
0 lifts to a finite étale scheme D̃ → Xsing. Since the reduction of this map is

of degree 1, this is in fact a closed immersion, and since it is also étale, the scheme D̃ is a
connected component of Xsing (D̃ is connected by [2], 3.3). Moreover, the points of D̃ are
precisely the singular points which specialize to points of D.

It follows that if we choose a chart as in 2.2 in some étale neighborhood of a point t of D,
then the log structure defined by Lt (see 2.14) has the properties required of L̃D . Moreover,
these locally constructed log structures will glue, since they are sub-log structures of MX.

✷

Define M
♯
S to be the amalgemation over all D

⊕O∗
S
K̃D ,

and similarly define M♯
X to be

⊕O∗
X
L̃D .

Then the natural diagram

M
♯
X

ψ
−→ MX�

�
f ∗M

♯
S

φ
−→ f ∗MS

is co-cartesian. By construction, f ♯ is smooth, essentially semi-stable, and the pullback to the
closed fiber is special .

LEMMA 2.16. Suppose (M′
S,M′

X, φ′, ψ ′) is a second collection of data for which

f ′ : (X,M′
X) → (S,M′

S)

is essentially semi-stable and special at s0, and for which the diagram

M′
X

ψ
−→ MX�

�
f ∗M′

S

φ
−→ f ∗MS
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is co-cartesian. Then there exists a unique pair of isomorphisms ε : M
♯
S ≃ M′

S and η :

M
♯
X ≃ M′

X such that the diagram

(X,M′
X)

(S,M′
S)

X

S

(X,M
♯
X)

(S,M
♯
S)✲

✑
✑

✑
✑

✑
✑✑✸

✑
✑

✑
✑

✑
✑✑✸

◗
◗

◗
◗

◗◗�

◗
◗

◗
◗

◗◗�

❄ ❄

❄

✲

φ

ψ

φ′ ε

ηψ ′

commutes.

PROOF. If we apply the above construction to (X,M′
X)/(S,M′

S), then it follows from
chasing through the construction that we recover the data (M′

S,M′
X, φ′, ψ ′). Hence M′

S and
M′

X have canonical decompositions

M
′
S = ⊕O∗

S
K̃ ′

D , M
′
X = ⊕O∗

S
L̃′

D .

In addition, the images of L̃′
D and K̃ ′

D in MX and MS are the sub-log structures obtained by
applying the construction to X/S. From this the existence of (ε, η) follows. The uniqueness
follows from the fact that any pair of isomorphisms (ε, η) as in the lemma must preserve the
decompositions together with the fact that the K̃D and L̃D are sub-log structures of MS and
MX, respectively. ✷

To complete the proof of Proposition 2.17 in the case when S is the spectrum of a strictly
henselian local ring O, and MS admits a chart Q → MS such that Q → MS,s0 is bijective,
it suffices to show that the morphism

(X♯,M
♯
X) → (S♯,M

♯
S)

constructed above is special at all points of S and not just at s0. For later use, we prove a
slightly stronger statement:

PROPOSITION 2.17. Let f : X → S be as in 2.7 (we no longer assume that S is

the spectrum of a strictly henselian local ring), and suppose in addition that f is essentially

semi-stable. Then the set

V := {s ∈ S | f is special at s̄}
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is open.

PROOF. By ([1], V.4.4) it suffices to show that V is a constructible set and that if s ∈ V,

then every generization of s is also in V .

LEMMA 2.18. V is constructible.

PROOF. The condition is local on S, so we may assume that S = Spec(A) for some
ring A and that MS is induced from some map

N
r → A .

Let t1, . . . , tr ∈ A be the images of the standard generators. For each integer n and for each
choice of n distinct elements i1, . . . , in ∈ {1, . . . , r}, let An,i be the ring

Ati1 ...tin
/(tj )j /∈{i1,...,in} .

Let Sn,i = Spec(An,i). Then each Sn,i is a constructible subscheme of S, and the union of the
Sn,i is all of S.

To prove the lemma it therefore suffices to consider the case of the Sn,i . This reduces us
to the case when the log structure on S is given by a map

N
r → A

sending all elements to zero. In addition, by base changing to the irreducible components
with the reduced structure, we may assume that A is an integral domain. In this case, X is
étale locally isomorphic to

A[X1, . . . , Xl ]/X1 · · ·Xs

for some l and s. Let Xsing be the singular locus of X with the reduced induced structure.
From the local description of X we see that the geometric fibers of Xsing are all reduced and
that Xsing is flat over A. It follows that the function

s �→ number of connected components of X
sing
s̄

can be identified with the function

s �→ h0(Xsing ×S Spec(k(s)),OXsing×SSpec(k(s))) .

By the semi-continuity theorem ([8], III.12.8), we conclude that the function

s �→ number of connected components of X
sing
s̄

is upper semi-continous. It follows that the set of points s where this number is equal to r

is constructible. On the other hand, the set of points s where the map in Definition 2.6 is
surjective is open by the description of the charts in Lemma 2.2. Therefore the set of points
where the map in 2.6 is bijective is constructible. ✷

LEMMA 2.19. V is stable under generization.
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PROOF. We can assume that S = Spec(A), where A is a local ring and that we want to
prove that if the closed fiber is special then the fiber over some prime p ⊂ A is also. Replacing
A by A/p we may assume that A is a local integral domain and that we wish to prove that the
generic fiber is special if the closed fiber is special. In addition, by replacing A by an étale
cover, we may assume that we have a global chart

N
T → MS,

where T is the set of connected components of the singular locus of Xs̄0
. Let nt ∈ N

T be
an irreducible element such that α(nt ) = 0, and let Z denote the set of singular points of
X which map to nt under the map in definition 2.6. Z is a closed set, and we view Z as a
subscheme with the reduced structure. What has to be shown is that the generic fiber of Z is
non-empty and geometrically connected.

Let t0 be a point of the closed fiber whose corresponding element of N
T is nt . In an étale

neighborhood of t0 there exists an étale morphism

U → Spec(A[X1, . . . , Xn]/X1 · · · Xs)

for some n and s. From this it follows that the generic fiber of Z is not empty. From this local
description it also follows that for each point s ∈ S the fiber Zs is reduced and that Z is flat
over A. Therefore, the generic fiber of Z is geometrically connected if and only if

h0(Z ⊗A Frac(A),OZ⊗AFrac(A)) = 1 ,

where Frac(A) denotes the field of fractions of A. This number is at least 1 since Z⊗AFrac(A)

is not empty. On the other hand, the semi-continuity theorem ([8], III.12.8) combined with
the fact that the closed fiber of Z is geometrically connected implies that the generic fiber of
Z is geometrically connected. This implies the lemma. ✷

Proposition 2.17 now follows from the two lemmas. ✷

We can now complete the proof of Theorem 2.7. By the uniqueness we may assume that
S is affine. Note first that if s is a point and Ss = Spec(OS,s̄), then by ([12], 4.18) there is an
equivalence of categories

lim
−→

U→S

(fine log structures on X ×S U) → (fine log structures on X ×S Ss) ,(2.3)

where the limit is taken over étale neighborhoods U → S of s̄.
It follows that if we have two collections of data

(M
♯
S,1,M

♯
X,1, φ1, ψ1) , (M

♯
S,2,M

♯
X,2, φ2, ψ2) ,

then there exists exactly one isomorphism between them. Indeed, if s ∈ S is a point, then after
replacing S by an fppf-cover we can assume that we have a chart Q → MS such that the map
Q → MS,s̄ is bijective. Over the strict henselization of the local ring of s there is a unique
isomorphism, which can by the equivalence 2.3 be extended to some étale neighborhood of
s. It follows that fppf-locally there exists a unique isomorphism, and since a faithfully flat
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morphism of finite presentation is a morphism of effective descent for fine log structures
([17], A.2), there exists a global isomorphism.

To prove existence, it suffices by ([17], A.2) to prove existence in some fppf-neighbor-
hood of a point s ∈ S. Thus we may assume that there exists a chart Q → MS such that
Q → MS,s̄ is bijective. We have shown that there exist data (M

♯
S,M

♯
X, φ,ψ) over the strict

henselization of the local ring at s. From the equivalence 2.3 it follows that we can extend the
data (M

♯
S,M

♯
X, φ,ψ) over the henselization to some étale neighborhood of s. After perhaps

shrinking S, we can assume that the resulting morphism is still log smooth. We claim that
after perhaps shrinking S some more, the morphism f ♯ will be essentially semi-stable. For
this we may assume that there exists a chart N

T → M
♯
S, where T denotes the set of connected

component of the singular locus of Xs̄ . Consider the set V of points t ∈ X for which the map

(f −1
M

♯

S)t̄ → M
♯

X,t̄

is as in the definition of essentially semi-stable. By Lemma 2.2, the set V is open and by
construction V contains every point of the fiber over s. Since f is proper, the image of V c in
S is a closed set not containing s. Therefore by replacing S by the complement of f (V c), we
may assume that f ♯ is essentially semi-stable everywhere.

It was also shown above that the set of points where the morphism f ♯ is special is
open on the base, and hence after shrinking S some more, we have constructed datum
(M

♯
S,M

♯
X, φ,ψ) satisfying the conditions of 2.7 in an fppf-neighborhood of s. This con-

cludes the proof of Theorem 2.7.

3. Semi-stable log structures and log structures of embedding type. Fix a scheme
S and a global section t ∈ Ŵ(S,OS). Let MS denote the log structure on S associated to the
map N → OS sending 1 to t , and let S be the log scheme (S,MS).

DEFINITION 3.1. A log smooth morphism f : X → S is semi-stable if for every
geometric point x̄ → X the stalk MX,x̄ is a free monoid and the map

N → MS,f (x̄) → MX,x̄

is the diagonal map. If the morphism f : X → S is fixed, then we will also refer to a
pair (MX, f b), consisting of a fine log structure MX on X together with a morphism of log
structures f b : f ∗MS → MX making (X,MX) → S semi-stable, as a semi-stable log

structure on X relative to S (or just a semi-stable log structure if the reference to S is clear).

REMARK 3.2. For any integer r > 0, the diagonal map N → N
r is invariant under all

automorphisms of N
r , and hence for any free monoid M there is a canonical diagonal map

N → M . This is the map referred to in the definition.

REMARK 3.3. The above definition of a semi-stable log structure is closely related to
the notion of a log structure of semi-stable type introduced in ([9], 11.6). The two notions
are, however, different. If S = Spec(k) is the spectrum of an algebraically closed field, then
a log structure of semi-stable type on X in the sense of (loc. cit.) is a log structure MX on
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X for which there exists a morphism f b : f ∗MS → MX making (MX, f b) a semi-stable
log structure in the sense of Definition 3.1. However, a log structure MX of semi-stable
type does not come equipped with a specified such morphism. This distinction becomes
especially important when we speak of isomorphisms of semi-stable log structures. For us, an
isomorphism (MX, f b) → (M′

X, f ′b) between two semi-stable log structures on X relative
to S is an isomorphism of log structures ι : MX → M′

X such that f ′b = ι ◦ f b.

We will also study a generalization of Kato’s notion of a log structure of embedding type:

DEFINITION 3.4. Let f : X → S be a morphism of schemes. A log structure MX on
X is of embedding type relative to S (or just of embedding type if the reference to S is clear)
if the morphism (X,MX) → (S,O∗

S) factors étale locally through a semi-stable morphism
(X,MX) → S. If f : X → (S,O∗

S) is a morphism of log schemes, then we also say that f

is of embedding type relative to S if MX is a log structure of embedding type relative to S on
X.

REMARK 3.5. By an isomorphism MX → M′
X of log structures of embedding type

relative to S, we simply mean an isomorphism of log structures on X.

It follows from ([15], 2.25) that if f : X → S is semi-stable (resp. f : X → (S,O∗
S)

is of embedding type relative to S), then in an étale neighborhood of any closed point the log
structure MX admits a chart of the following form:

DEFINITION 3.6. Suppose MX is a semi-stable log structure relative to S (resp. a log
structure of embedding type relative to S) on X. A standard chart for MX at a closed point
x ∈ X is a strict, étale morphism of log schemes over S (resp. over (S,O∗

S))

(X,MX) −→ (Spec(OS[X1, . . . , Xl]/(X1 · · ·Xr − t)), standard log str.)

for some l and r, which sends x to the point X1 = · · · = Xl = 0 if r > 1, and sends x to the
point X1 = t, X2 = · · · = Xl = 0 if r = 1.

REMARK 3.7. The standard log structure referred to in the definition is that induced
by the map

N
r −→ OS[X1, . . . , Xl]/(X1 · · · Xr − t) , (nj )

r
j=1 �→

r∏

j=1

X
nj

j .

The diagonal map N → N
r naturally gives

(Spec(OS[X1, . . . , Xl]/(X1 · · ·Xr − t)), standard log str.) ,

the structure of a log scheme over S.

For the remainder of this section we will fix a morphism of schemes f : X → S such
that étale locally on X there exists a log structure MX of embedding type relative to S.
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PROPOSITION 3.8. Any two log structures on X of embedding type relative to S are

locally isomorphic. Moreover, if φ : MX → MX is an automorphism of a log structure of

embedding type relative to S, then the induced map φ̄ : MX → MX is the identity.

PROOF. Let M1 and M2 be two log structures of embedding type relative to S, and let
x ∈ X be a closed point. We construct an isomorphism M1 ≃ M2 in some étale neighbor-
hood of x.

To do this, we may assume that we have standard charts

π1 : X → Spec(OS[X1, . . . , Xd ]/(X1 · · ·Xr − t)),

π2 : X → Spec(OS[Y1, . . . , Yd ′]/(Y1 · · ·Yr ′ − t))

sending x to the points X1 = · · · = Xd = 0 and Y1 = · · · = Yd ′ = 0. To prove the first
part of the proposition, it suffices to show that d = d ′, r = r ′, and that there exists a unique
automorphism σ of the set {1, . . . , r} such that in some étale neighborhood of x there exist
solutions to the equations

π∗
1 (Xi) = Uiπ

∗
2 Yσ(i) , UiVi = 1 , i = 1, . . . , r .(3.1)

By the Artin approximation theorem ([2], 1.10), it suffices to show that there exist solutions
in the completion ÔX,x . Let m denote the maximal ideal of ÔX,x , m

ÔS,f (x)
the ideal in ÔX,x

generated by the maximal ideal of ÔS,f (x), and let

φ : ÔS,f (x)[[X1, . . . , Xd ]]/(X1 · · · Xr − t) ≃ ÔS,f (x)[[Y1, . . . , Yd ′ ]]/(Y1 · · · Yr ′ − t)

be the isomorphism induced by π1 and π2. By looking at the dimension of

ÔX,x/(mÔS,f (x)
,m2) ,

we see that d = d ′.
Consider first the case when t = 0. In this case, the ring

ÔS,f (x)[[Y1, . . . , Yd ′ ]]/(Y1 · · · Yr ′)

is naturally graded by degree in the Yi . For i = 1, . . . , r write

φ(Xi) = Li(Y ) + Hi(Y ) ,

where Li(Y ) consists of linear terms and Hi(Y ) consists of terms of degree 2 or greater.

LEMMA 3.9. 1. For any ring Λ and any i ∈ {1, . . . , r}, the kernel of multiplication

by Y1 · · · Ŷi · · · Yr on

Λ[Y1, . . . , Yd ]/(Y1 · · · Yr ) (resp. Λ[[Y1, . . . , Yd ]]/(Y1 · · · Yr))

is equal to the ideal generated by Yi .

2. There exists a unique permutation σ of {1, . . . , r} such that for each i ∈ {1, . . . , r}

there exists a unit ui ∈ Ô∗
S,f (x) such that Li(Y ) = uiYσ(i).
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PROOF. 1. As a module over Λ, the ring Λ[Y1, . . . , Yd ]/(Y1 · · · Yr ) is isomorphic to
the direct sum

⊕

l∈I

ΛY l ,

where I ⊂ N
d is the subset of d-tuples (l1, . . . , ld ) with at least one li = 0 for 1 ≤ i ≤ r . Part

1 follows from the fact that multiplication by Y1 · · · Ŷi · · · Yr preserves this decomposition.
Moreover, the case of Λ[[Y1, . . . , Yd ]]/(Y1 · · · Yr ) also follows, since this ring is flat over
Λ[Y1, . . . , Yd ]/(Y1 · · · Yr ).

2. Let n be the maximal ideal of ÔS,f (x). We first reduce to the case when n = 0.
Evidently, it suffices to prove the uniqueness of σ in this special case. Now suppose that we
have found units ui ∈ (OS,f (x)/n

n)∗ such that

Li(Y ) ≡ uiYσ(i) mod nn .

We construct units u′
i ∈ (OS,f (x)/n

n+1)∗ such that

Li(Y ) ≡ u′
iYσ(i) mod nn+1

and such that there exists an integer n0 independent of n, for which

ui ≡ u′
i mod nn−n0 .

To do this, choose a lifting ũi of ui to Ô∗
S,f (x), and let Di(Y ) = Li(Y ) − ũiYσ(i). Then we

get

0 ≡

r∑

i=1

ũ1 · · · ̂̃ui · · · ũrDi(Y )Y1 · · · Ŷσ(i) · · · Yr mod (nn+1, (Y1 · · · Yr )
r+1) .

Since the Di(Y ) are linear, this implies that

Di(Y ) ≡ Yσ(i)Fi mod nn+1

for some Fi ∈ OS,f (x). By the Artin-Rees lemma, there exists an integer n0 independent of
n, such that

(Yσ(i)) ∩ nn · ÔX,x ⊂ nn−n0 · (Yσ(i)) ,

and hence we may choose Fi to be in nn−n0 . We define u′
i to be ũi + Fi . This proves that it

suffices to consider the case when n = 0.
Assuming now that n = 0, observe that the Xi map to non-zero elements in m/m2, and

hence the terms Li(Y ) are non-zero. Since t = 0, we find that

0 =

r∏

i=1

φ(Xi) =

r∏

i=1

Li(Y ) + terms of degree ≥ r + 1 .

From this we conclude that r ≥ r ′ and hence by symmetry r = r ′. Moreover, by looking at
degrees in the Yi , one finds that Li(Y ) = uiYσ(i) for a unique permutation σ of {1, . . . , r} and
some unit ui ∈ Ô∗

S,f (x). ✷
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REMARK 3.10. Part 1 of the lemma implies that the kernel of multiplication by
Y1 · · · Ŷi · · · Yr on OS[Y1, . . . , Yd ]/(Y1 · · ·Yr − t) is equal to the ideal Kt · (Yi), where Kt

is the kernel of multiplication by t on OS . Indeed, the case t = 0 implies that any element
killed by Y1 · · · Ŷi · · · Yr can be written as

f1Yi + f2t = (f1 + f2Y1 · · · Ŷi · · ·Yr )Yi ,

where t (f1 + f2Y1 · · · Ŷi · · · Yr ) = 0. Since OS[Y1, . . . , Yd ]/(Y1 · · · Yr − t) is flat over OS ,
this implies that (f1 + f2Y1 · · · Ŷi · · · Yr ) is in Kt · OX.

Next, we show that every term in Hi(Y ) can be written as a multiple of Yσ(i). We proceed
by induction on the degree of monomials. Suppose true for monomials of degree smaller than
n in Hi(Y ). Then we can find a unit ui which is a polynomial of degree less than or equal to
n − 2 such that

φ(Xi) ≡ uiYσ(i) mod (Y1, . . . , Yd ′)n .

By looking at monomial terms of degree r−1+n in
∏r

i=1 φ(Xi) we find that Y1 · · · Ŷσ(i) · · · Yr

kills the degree n part of Hi(Y ). From this it follows that the degree n part of Hi(Y ) can be
written as a multiple of Yσ(i). This completes the induction step and the proof of the case
when t = 0.

Now, suppose t 	= 0. By the Artin-Rees lemma there exists an integer m0 such that for
all n

(Yσ(i)) ∩ mn

ÔS,f (x)
⊂ m

n−m0

ÔS,f (x)
· (Yσ(i)) .

Given an integer n and units ui such that

φ(Xi) ≡ uiYσ(i) mod mn

ÔS,f (x)
,

we construct units u′
i such that

φ(Xi) ≡ u′
iYσ(i) mod mn+1

ÔS,f (x)

and such that

u′
i ≡ ui mod m

n−m0

ÔS,f (x)
.

Let Hi(Y ) = φ(Xi) − uiYσ(i). Then

t ≡

r∏

i=1

uiYσ(i) +

r∑

i=1

u1 · · · ûi · · ·urY1 · · · Ŷσ(i) · · · YrHi(Y ) mod mn+1
ÔS,f (x)

,

and hence

Y1 · · · Ŷσ(i) · · · YrHi(Y ) ≡ 0 mod (t,mn+1
ÔS,f (x)

) .

Since t ∈ (Yσ(i)), it follows that

Hi(Y ) ≡ 0 mod ((Yσ(i)) ∩ mn

ÔS,f (x)
,mn+1

ÔS,f (x)
) .
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Hence by definition of m0, there exists Fi ∈ m
n−m0

ÔS,f (x)
such that

Hi(Y ) ≡ Yσ(i)Fi mod mn+1
ÔS,f (x)

.

This completes the proof of the existence of solutions to the equations 3.1 in the completion
ÔX,x and hence the proof of existence of an isomorphism between M1 and M2 in an étale
neighborhood of x. The second statement in the proposition follows from the uniqueness of
σ . ✷

The proposition and its proof imply that there are various canonically defined sheaves on
X:

CONSTRUCTION 3.11. The uniqueness of σ̄ in the proposition implies that for any log
structure MX of embedding type relative to S, the sheaf MX is invariant under all automor-
phisms. Hence there is a canonically defined sheaf M on all of X, since there exists a log
structure of embedding type on X étale locally.

CONSTRUCTION 3.12. If

π : X → Spec(OS[X1, . . . , Xd ]/(X1 · · · Xr − t))(3.2)

is a standard chart for a log structure of embedding type relative to S on X, then the ideal

J := (. . . , X1 · · · X̂i · · · Xr , . . . )
r
i=1

is independent of the choice of chart, and hence there exists a globally defined ideal sheaf
J ⊂ OX . We let D ⊂ X be the resulting closed subscheme.

CONSTRUCTION 3.13. If φ is a chart as in 3.6, let G ⊂ O∗
X be the subsheaf of units u

which locally can be written as

u = 1 +

r∑

i=1

aiX1 · · · X̂i · · ·Xr ,

where tai = 0. Then G is independent of the choices and has a natural structure of a group; if
we define Z ⊂ X to be the closed subscheme defined by J times the kernel of multiplication
by t on OX, then G is the kernel of the map O∗

X → O∗
Z.

The following is the main result in this section about log structures of embedding type
relative to S:

THEOREM 3.14. 1. There is a canonical class o ∈ H 2(Xet ,G) whose vanishing is

necessary and sufficient for there to exist a log structure of embedding type relative to S.

2. If o = 0, then the set of isomorphism classes of log structures of embedding type is

naturally a torsor under H 1(Xet ,G).

3. If MX is a log structure of embedding type, then there is a natural isomorphism of

sheaves

Aut(MX) ≃ G ,
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where Aut(MX) denotes the sheaf on Xet of automorphisms of MX.

PROOF. It suffices to prove the third statement, since we have already seen that any two
log structure of embedding type are locally isomorphic. For then the stack over the étale site
of X whose objects are log structures of embedding type relative to S is a gerbe ([13], IV.2)
bound by G. Statements 1 and 2 therefore follows from 3 and ([7], IV.3.4).

LEMMA 3.15. Fix a standard chart for MX as in 3.6, and let Kt = Ker(×t : OS →

OS).

1. Ker(×Xi : OX → OX) = Kt · (X1 · · · X̂i · · ·Xr ).

2. The natural map

r⊕

i=1

Kt · (X1 · · · X̂i · · · Xr) →

r∑

i=1

Kt · (X1 · · · X̂i · · · Xr )

is an isomorphism.

PROOF. All sheaves involved are quasi-coherent sheaves so that it suffices to consider
the ring OS[X1, . . . , Xd ]/(X1 · · · Xr − t). As a module over OS , this ring is isomorphic to

⊕

l∈I

OSXl ,(3.3)

where I ⊂ N
d is the subset of d-tuples (l1, . . . , ld ) with li = 0 for some i ∈ [1, r]. For

each i ∈ [1, r], let Ii ⊂ I denote the subset of d-tuples l for which li = 0 and li′ 	= 0 for all
i ′ ∈ [1, r] − {i}. Then

Kt · (X1 · · · X̂i · · · Xr ) ≃
⊕

l∈Ii

KtX
l .

From this the statement 2 follows.
To see the statement 1, observe that multiplication by Xi preserves the decomposition in

3.3 if t = 0, and hence the result is clear in this special case. For the general case, note that
the case t = 0 implies that if f ∈ Ker(×Xi), then there exists f1 and f2 such that

f = f1X1 · · · X̂i · · · Xr + f2t = (f1 + f2Xi)X1 · · · X̂i · · · Xr .

Since X is flat over S and f is killed by Xi , the element f1 + f2Xi is in Kt · OX. ✷

Let ∆ : N → MX be the diagonal map and let φ : MX → MX be an automorphism.
Then for any lifting ∆̃(1) of ∆(1) to MX

φ(∆̃(1)) = λ(u) + ∆̃(1) ,

where u is a unit independent of the choice of ∆̃(1) and λ : O∗
X → MX denotes the natural

inclusion. This defines an element u ∈ O∗
X. Now, if we choose a chart as in 3.6, then locally

the automorphism φ is induced from solutions {ui} to the equations

UiXi = Xi , UiVi = 1 , i = 1 , . . . , r .
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Hence ui − 1 ∈ Ker(×Xi : OX → OX). From the lemma we conclude that

ui = 1 + aiX1 · · · X̂i · · ·Xr ,

where tai = 0, and hence

u =

r∏

i=1

(1 + aiX1 · · · X̂i · · ·Xr ) = 1 +

r∑

i=1

aiX1 · · · X̂i · · · Xr ∈ G .

Conversely, given an element

1 +

r∑

i=1

aiX1 · · · X̂i · · · Xr

with tai = 0, we can define an automorphism of MX by sending an element m ∈ MX with
α(m) = Xi to λ(1 + aiX1 · · · X̂i · · · Xr ) + m. This proves the theorem. ✷

Let H be the kernel of O∗
X → O∗

D . There is a natural inclusion G →֒ H, which is an
isomorphism if t = 0. The following proposition explains the relationship between Theorem
3.14 and the results of Kato ([9], theorem 11.7):

PROPOSITION 3.16. 1. The sheaf Ext1
OX

(Ω1
X/S,OX) is an invertible OD-module.

2. Let o ∈ H 2(Xet ,G) be the class constructed in Theorem 3.14, and let o′ ∈ H 1(Xet ,

O∗
D) be the class of the invertible OD-module

HomOD
(Ext1

OX
(Ω1

X/S,OX),OD) .

Then the image of o in H 2(Xet ,H) is equal to δ(o′), where

δ : H 1(Xet ,O
∗
D) → H 2(Xet ,H)

is the map obtained from the exact sequence

0 → H → O∗
X → O∗

D → 0 .

In particular, if t = 0 so that G = H , then o = 0 if and only if there exists a line bundle L

on X such that

L ⊗ OD ≃ Ext1(Ω1
X/S,OX) .

PROOF. 1. The question is local and so we may assume that we have a standard chart

X → Spec(OS[X1, . . . , Xd ]/(X1 · · · Xr − t))

for MX. Let R = OS[X1, . . . , Xd ] and let I be the kernel of R → OX. Then the conormal
sequence gives an exact sequence

I/I 2 → Ω1
R/OS

⊗ OX → Ω1
X/S → 0 .(3.4)

LEMMA 3.17. The conormal sequence 3.4 is exact on the left.



UNIVERSAL LOG STRUCTURES ON SEMI-STABLE VARIETIES 423

PROOF. The module Ω1
R/OS

⊗OX is a free OX-module with basis {dXi}
d
i=1, and I/I 2

is a free OX-module with basis X1 · · · Xr − t . The map I/I 2 → Ω1
R/OS

⊗ OX is the map
induced by

X1 · · ·Xr − t �→

r∑

j=1

X1 · · · X̂j · · · XrdXj ,

and therefore the kernel can be identified with

{f ∈ OX|f X1 · · · X̂j · · · Xr = 0 for all 1 ≤ j ≤ r} .

Now the kernel of multiplication by X1 · · · X̂j · · ·Xr is equal to KX
t ·(Xi), where KX

t denotes
the kernel of multiplication by t on OX, and therefore the kernel of I/I 2 → Ω1

R/OS
⊗ OX is

isomorphic to
r⋂

j=1

KX
t · (Xi) .

Using the notation of the proof of Lemma 3.15, the ideal KX
t · (Xi) coincides with the ideal

⊕

l∈Li

KtX
l ,

where Li denotes the subset of I consisting of elements l with li 	= 0. The lemma therefore
follows from the statement that

r⋂

i=1

Li = ∅ .

✷

It follows that there is a natural map

Hom(I/I 2,OX) → Ext1
OX

(Ω1
X/S,OX) ,(3.5)

which sits in an exact sequence

0 → Der(X/S) → Der(R/OS) ⊗ OX → Hom(I/I 2,OX) → Ext1
OX

(Ω1
X/S,OX) → 0 .

As mentioned above, the sheaf I/I 2 is an invertible sheaf with basis the image of

X1 · · · Xr − t,

and the map

Der(R/OS) ⊗ OX → Hom(I/I 2,OX)

is the map which sends ∂/∂Xi to the map

I/I 2 → OX , X1 · · ·Xr − t �→ X1 · · · X̂i · · · Xr .

From this it follows that the map in the equation 3.5 becomes an isomorphism when tensored
with OD .
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2. If we view H 2(Xet ,H) as the group of equivalence classes of gerbes bound by H on
Xet ([7], IV.3.1.1), then δ(o′) can be described as the class of the gerbe on Xet whose objects
are pairs (L, ε), where L is an invertible OX-module and

ε : HomOX
(L,OX) ⊗ OD ≃ Ext1

OX
(Ω1

X/S,OX)

is an isomorphism of OD-modules ([7], IV.3.4). Thus to prove the proposition it suffices to
exhibit a functor

(stack of log structures of embedding type relative to S)�F

(stack of pairs (L, ε))

such that for any two log structures M1 and M2 of embedding type relative to S, the natural
map

Isom(M1,M2) → Isom(F (M1), F (M2))

induces an isomorphism

Isom(M1,M2) ×G H → Isom(F (M1), F (M2)) ,

where Isom(·, ·) denotes the sheaf of isomorphisms.
To define F , suppose MX is a log structure of embedding type relative to S. We define

L to be the invertible sheaf associated to the torsor of liftings of ∆(1) ∈ MX to MX.
To define ε consider first the case when a standard chart is chosen and define R and I

as in the proof of the part 1 of the proposition. The choice of chart defines trivializations of
I/I 2 and L and hence an isomorphism I/I 2 ≃ L. From the map 3.5, we therefore get an
isomorphism

Hom(L,OX) ⊗ OD ≃ Ext1
OX

(Ω1
X/S,OX) .

By a local calculation (which we leave to the reader), this isomorphism is independent of the
choices, and hence we get a global isomorphism ε. ✷

Define a second sheaf

G2 := {u ∈ O
∗
X | ut = t} .

Any log structure of embedding type MX defines a G2-torsor

PMX
:= {m ∈ MX | m maps to ∆(1) in MX and α(m) = t} .

By definition, a map f ∗MS → MX, giving MX the structure of a semi-stable log structure
relative to S, is equivalent to a trivialization of PMX

.
From the proof of 3.14.3 it follows that the action of G on PMX

induced by the isomor-
phism G ≃ Aut(MX) is simply the action obtained from the inclusion G →֒ G2. It follows
that a semi-stable log structure relative to S admits no automorphisms, and hence the presheaf
on Xet

SSt : U �→ {isomorphism classes of semi-stable log structures on U}
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is a sheaf. The sheaf G2 is naturally identified with the sheaf of automorphisms of f ∗MS ,
and hence G2 acts naturally on SSt by

(f ∗MS −→ MX)σ := (f ∗MS
σ

−→ f ∗MS −→ MX) .

Again, because any two log structures of embedding type are locally isomorphic, this action
of G2 is transitive. Moreover, from above we see that this makes SSt a torsor under the sheaf
G2/G. Thus we obtain:

THEOREM 3.18. There is a canonical obstruction o ∈ H 1(X,G2/G) whose vanishing

is necessary and sufficient for there to exist a semi-stable log structure on X relative to S. If

o = 0, then the set of isomorphism classes of semi-stable log structures is canonically a torsor

under H 0(X,G2/G).

It will be useful to have a better description of the sheaf G2/G:

PROPOSITION 3.19. Let Kt ⊂ OS (resp. KX
t ⊂ OX) be the kernel of multiplication

by t on OS (resp. OX), and let (t) ⊂ OX be the ideal generated by t . Then there is a natural

exact sequence

0 → (KX
t ∩ (t)) ⊗ OD → G2/G → O∗

D → (OD/KX
t · OD)∗ → 0 .(3.6)

Moreover, the image of o under the natural map

H 1(Xet ,G2/G) → H 1(Xet ,O
∗
D)

is equal to the class of

HomOD
(Ext1

OX
(Ω1

X/S,OX),OD) .

PROOF. To see the exactness of 3.6 we may work locally and hence can assume that a
standard chart as in 3.6 has been chosen. Moreover, the exactness of

G2/G → O∗
D → (OD/KX

t · OD)∗ → 0

is by definition of G2.

LEMMA 3.20. 1. KX
t ∩ J = Ker(×t : (t) → (t)) +

∑r
i=1 KX

t · (X1 · · · X̂i · · · Xr ).

2. (t) ∩
∑r

i=1 KX
t · (X1 · · · X̂i · · · Xr ) =

∑r
i=1(K

X
t ∩ (t)) · (X1 · · · X̂i · · · Xr).

PROOF. Note first of all that since X/S is flat, KX
t = OX ⊗OS

Kt .
Since all sheaves involved are quasi-coherent, it suffices to consider the ring

OS[X1, . . . , Xd ]/(X1 · · ·Xr − t) .

In terms of the decomposition given in equation 3.3, KX
t is equal to the ideal

⊕

l∈I

KtX
l ,

and J has a decomposition
⊕

l∈I

OS tδ(l)Xl ,
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where

δ(l) =

{
0 if l ∈ Ii for some i ∈ [1, r],

1 otherwise

}
.

From this 1 follows.
To see 2, note that multiplication by Xi on KX

t (X1 · · · X̂i · · ·Xr ) is the zero map. Hence
r∑

i=1

KX
t (X1 · · · X̂i · · ·Xr ) =

⊕

l∈I ′

KtX
l ,

where I ′ ⊂ I is the subset of elements l for which there exists exactly one i ∈ [1, r] such that
li = 0. ✷

It follows from the first part of the lemma that the kernel of G2 → O∗
D can be described

as units u which can be written as

1 + f t +

r∑

i=1

aiX1 · · · X̂i · · ·Xr ,(3.7)

where t2f = tai = 0. Define a map KX
t ∩ (t) → G2 by

f t �→ 1 + f t .

Then by the second part of the lemma the map induces an injection (KX
t ∩(t)⊗OD) → G2/G,

and since any element as in 3.7 can be written as

(1 + f t)

(
1 +

r∑

i=1

aiX1 · · · X̂i · · · Xr

)
,

we get the exactness of the rest of the sequence 3.6.
To get the second statement, recall (proof of Proposition 3.16) that to any log structure

MX of embedding type relative to S we associated a pair (L, ε), where L is an invertible
sheaf and ε is an isomorphism

ε : HomOX
(L,OX) ⊗ OD ≃ Ext1

OX
(Ω1

X/S,OX) .

Now, from the proof of proposition 3.16, a map f ∗MS → MX making MX semi-stable
relative to S defines a trivialization of L. Hence we get a map

SSt → Isom(OD,HomOD
(Ext1

OX
(Ω1

X/S,OX),OD))

compatible with the actions of G2/G and O∗
D . ✷

4. A theorem about effectivity of formal log structures.

THEOREM 4.1. Suppose A is the completion at a point of a scheme of finite type over

an excellent Dedeking ring, and let f : X → Spec(A) be a proper morphism of schemes

such that all the fibers of X are semi-stable varieties in the sense of Definition 1.1. For

each n ≥ 0, let An = A/mn+1
A and Xn := X ×Spec(A) Spec(An) be the reductions and let

fn : Xn → Spec(An) be the natural map. Fix a log structure MA on Spec(A) and let MAn
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be the pullback of MA to Spec(An). Then any compatible family of pairs (Mn, f
b
n ), where

Mn is a log structure on Xn and f b
n : f ∗

n MAn → Mn is a morphism of log structures

making the map

(fn, f
b
n ) : (Xn,Mn) → (Spec(An),MAn)

log smooth, vertical, and integral, is induced by a unique pair (M, f b), where M is a log

structure on X and f ∗MA → M is a morphism of log structures making

(f, f b) : (X,M) → (Spec(A),MA)

log smooth, vertical, and integral.

PROOF. By Theorem 2.7, it suffices to consider the case when all the morphisms
(fn, f

b
n ) are special in the sense of Definition 2.6. Moreover, by descent theory we may

assume that the residue field A/mA is separably closed.
Let Ŵ denote the set of connected components of the singular locus of the closed fiber

X0. Then by the definition of a special morphism (2.6) there is a canonical isomorphism
N

Ŵ ≃ MA0 , and we fix a chart β0 : N
Ŵ → MA0 inducing this isomorphism. Since A is

strictly henselian and local, there is an isomorphism

H 0(Spec(A),MA) ≃ MA0 .

Moreover, H 1(Spec(A),O∗
A) = 0, and hence from the exact sequence

0 → O∗
A → M

gp

A → M
gp

A → 0

we see that the map

H 0(Spec(A),MA) → H 0(Spec(A),MA)

is surjective. Therefore, there exists a chart β : N
Ŵ → MA inducing β0. By the construction

in the proof of Theorem 2.7, there is a canonical decomposition for all n

Mn ≃ ⊕γ∈Ŵ,O∗
Xn
M

γ
n .

Let tγ be the image of the standard generator of N
γ →֒ N

Ŵ under the map N
Ŵ → MA → A,

and let Mγ
A (resp. Mγ

An
) denote the log structure defined by the map N → A (resp. N → An)

sending 1 to tγ . Then each M
γ
n is a semi-stable log structure relative to (Spec(An),M

γ
An

) on
any open set of Xn not intersecting the components Ŵ − {γ }.

Next, we claim that for any closed point x0 ∈ X in the closed fiber, there exists an étale
neighborhood U of x0 and an étale morphism

U → Spec(A[X1, . . . , Xd ]/(X1 · · ·Xr − tγ ))(4.1)

for some d, r and γ . To see this, choose an affine étale neighborhood U0 of x0 and a standard
chart (see 3.6)

U0 → Spec(A0[X1, . . . , Xd ]/(X1 · · ·Xr ))

for Mγ
X0

. For each integer n, there is a unique étale Xn-scheme Un reducing to U0. We
inductively lift the standard chart over U0 to a compatible family of standard charts over Un.
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For each n, view Spec(An[X1, . . . , Xd ]/(X1 · · · Xr − tγ )) as a smooth log scheme over
(Spec(An),M

γ
An

), and note that giving a lifting to Un of a standard chart over Un−1 is equiv-
alent to finding a dotted arrow filling in the diagram of log schemes

(Un−1,M
γ
Xn−1

) (Spec(An[X1, . . . , Xd ]/(X1 · · ·Xr − tγ )), standard log str.)

(Un,M
γ
Xn

) (Spec(An),M
γ
An

).

✲

✲
❄ ❄

✒

a

..
..
..
..
..
..
..
..

This is because a map between flat schemes over An is étale if and only if its reduction to A0

is étale. Since the map labelled a in the diagram is log smooth, such a dotted arrow exists. It
follows from the Artin approximation theorem ([2], 2.5) that there exists an étale neighbor-
hood U of x0 and a map as in 4.1 approximating our formal solution in ÔX,x0 obtained from
the charts over the Un. Since the resulting map is formally étale (and hence étale) at x0, we
obtain the claim.

To prove the theorem, we construct log structures on X inducing the M
γ
n . The fact that

X/A admits étale locally a log structure of embedding type implies that the singular locus
of X has a natural scheme structure: define Xsing to be the closed subscheme defined by the
annihilator of the sheaf

Ext1(Ω1
X/A,OX) .

If we choose a map as in 4.1, then Xsing is by Proposition 3.16 the closed subscheme defined
by the ideal

(. . . , X1 · · · X̂i · · · Xr , . . . )
r
i=1 .

From this local description it also follows that the reduction of Xsing to Xn is equal to the
disjoint union of the Dn

γ , where Dn
γ is the closed subscheme defined in 3.2 applied to any open

set of Xn not containing the other components Ŵ − {γ }. Now, by the Grothendieck existence
theorem ([6], III.5), the functor which sends a closed subscheme of X to its reductions induces
a bijection

(closed subschemes of X)�
(compatible families of closed subschemes of the Xn) .

Therefore, Xsing has a canonical decomposition

Xsing =
∐

γ∈Ŵ

Dγ ,

where Dγ reduces to Dn
γ over Xn. Then to construct a log structure Mγ inducing the M

γ
n ,

we may as well replace X by V := X −
⋃

γ ′ 	=γ Dγ ′ . We apply the results of Section 3 to V .
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Let G, G2 and D (resp. Gn, Gn
2 and Dn) be as in Section 3 applied to V relative to

(Spec(A),M
γ

A) (resp. V n relative to (Spec(An),M
γ

An
)). Note that D is proper over Spec(A),

flat over Spec(A/tγ ), and that there is a natural isomorphism

Dn ≃ D ×Spec(A) Spec(An) .

By Theorem 3.18, it suffices to show that the map

H 1(V ,G2/G) → lim
←−

H 1(V n,G
n
2/Gn)(4.2)

is injective, and that the map

H 0(V ,G2/G) → lim
←−

H 0(V n,G
n
2/Gn)(4.3)

is bijective.

LEMMA 4.2. For any A/(tγ )-module M of finite type, the natural map

M → H 0(V ,M ⊗ OD)

is an isomorphism.

PROOF. Since D is proper over A, the natural map

H 0(V ,M ⊗ OD) → lim
←−
n

H 0(V ,M ⊗ ODn) ≃ lim
←−
n

H 0(V ,M ⊗ An ⊗An ODn)

is an isomorphism by ([6], III.5.1.2). Therefore, it suffices to consider the case when A is an
Artin local ring. Since A is noetherian and artinian, there exists a filtration of M by A/tγ -
modules

0 = Mr ⊂ · · · ⊂ M2 ⊂ M1 = M

such that for each i, Mi/Mi+1 ≃ A/mA. Now, if the results holds for M = A/mA and Mi ,
then the snake lemma applied to the commutative diagram

0 → Mi → Mi+1 → A/mA → 0
↓ ↓ ↓

0 → H 0(V ,Mi ⊗ OD) → H 0(V ,Mi+1 ⊗ OD) → H 0(V ,OD0)

obtained from the exact sequence (D is flat over A/tγ )

0 → Mi ⊗ OD → Mi+1 ⊗ OD → OD0 → 0

yields the results for Mi+1. Therefore, it suffices to consider the case when M = A/mA.
In this case we may even base change to an algebraic closure of A/mA, and hence we may
assume that A/mA is algebraically closed. But then D0 is a reduced proper scheme over an
algebraically closed field, and hence H 0(D0,OD0) = A/mA. ✷

Let Ktγ (resp. Kn
tγ

) be the kernel of multiplication by tγ on A (resp. on An), and let F
(resp. Fn) be the image of the map G2 → O∗

D (resp. Gn
2 → O∗

Dn). Note that since V is flat
over A, we have in the notation of Proposition 3.19

(Ktγ ∩ tγ A) ⊗A OD ≃ (KV
tγ

∩ tγOV ) ⊗OV
OD
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and

(Kn
tγ

∩ tγ An) ⊗An ODn ≃ (K
Vn
tγ

∩ tγOV n
) ⊗OV n

ODn .

COROLLARY 4.3.

H 0(V ,F) = {u ∈ A∗ | utγ = tγ }/{u ∈ A∗ | 1 − u ∈ Ktγ ∩ tγ A}

and

H 0(V n,F
n) = {u ∈ A∗

n | utγ = tγ }/{u ∈ A∗
n | 1 − u ∈ Kn

tγ
∩ tγ An} .

PROOF. Since X is flat over A, there are natural isomorphisms

OD/KX
t OD ≃ OD ⊗A/tγ ((A/tγ )/Ktγ · (A/tγ )) ,

and

ODn/K
Xn
t ODn ≃ ODn ⊗An/tγ ((An/tγ )/Kn

tγ
· (An/tγ )) .

Hence Lemma 4.2 and the exact sequences

0 → F → O
∗
D → (OD/KX

t OD)∗ → 0 ,(4.4)

0 → F
n → O

∗
Dn → (ODn/K

Xn
t ODn)∗ → 0 ,(4.5)

give exact sequences

0 → H 0(V ,F) → (A/tγ )∗ → ((A/tγ )/Ktγ · (A/tγ ))∗ ,

0 → H 0(V n,F
n) → (An/tγ )∗ → ((An/tγ )/Kn

tγ
· (An/tγ ))∗ .

From this the corollary follows. ✷

The corollary implies that H 0(V ,G2/G) → H 0(V ,F) is surjective, and hence there is
a commutative diagram

0 → Ktγ ∩ tγ A → H 0(V ,G2/G) → H 0(V ,F) → 0
↓ ↓ ↓

0 → lim
←−

Kn
tγ

∩ tγ An → lim
←−

H 0(V n,G
n
2/Gn) → lim

←−
H 0(V n,F

n)

(4.6)

with exact rows. The following lemma implies that the map 4.3 is bijective.

LEMMA 4.4. Let Ln
tγ

:= Im(Ktγ ∩ tγ A → Kn
tγ

∩ tγ An). Then there exists integers n0

and n′
0 such that:

1. For each n, the map

(Ktγ ∩ tγ A) ⊗ An+n0 → (Ktγ ∩ tγ A) ⊗ An

factors through L
n+n0
tγ

.

2. For every n, the map

K
n+n′

0
tγ

∩ tγ An+n′
0

→ Kn
tγ

factors through L
n+n′

0
tγ

.
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3. The natural map

H 0(V ,F) → lim
←−

H 0(V n,F
n)

is an isomorphism.

PROOF. By the Artin-Rees lemma there exists an integer n0 such that

Ktγ ∩ tγ A ∩ m
n+n0
A ⊂ mn

A(Ktγ ∩ tγ A)

for every n. From this 1 follows.
Similarly, the Artin-Rees lemma implies that there exists an integer n′

0 such that

(tγ )2 ∩ m
n+n′

0
A ⊂ mn

A(tγ )2 .

Suppose tγ f ∈ K
n+n′

0
tγ

∩ tγ An+n′
0

and let f̃ ∈ A be a lifting of f to A. Then t2
γ f̃ ∈ m

n+n0+1
A ,

and hence t2
γ f̃ ∈ mn+1

A (ts)
2. Let g ∈ mn+1

A be an element such that t2
γ f̃ = t2

γ g . Then
tγ (g − f ) ∈ Ktγ ∩ (tγ ), and hence the image of

K
n+n′

0
tγ

∩ tγ An+n′
0

→ Kn
tγ

is contained in L
n+n0
tγ

. This implies 2.
To prove the part 3, let Λn be the group

{u ∈ A∗
n | 1 − u ∈ Kn

tγ
∩ tγ An} .

Then by Corollary 4.3 there are exact sequences

0 → Λn → {u ∈ A∗
n | utγ = tγ } → H 0(V n,F

n) → 0 ,

and by the part 2 the Λn satisfy the Mittag-Leffler condition. Hence if Λ denotes the group

{u ∈ A∗ | 1 − u ∈ Ktγ ∩ tγ A} ,

there is a morphism of exact sequences

0 → Λ → {u ∈ A∗ | utγ = tγ } → H 0(V ,F) → 0�
�≃

�
0 → lim

←−
Λn → lim

←−
{u ∈ A∗

n | utγ = tγ } → lim
←−

H 0(V n,F
n) → 0 .

Part 3 of the lemma now follows because the part 1 implies that the left vertical arrow is an
isomorphism. ✷

The preceding lemma also implies that the natural map

H 1(V , (Ktγ ∩ tγ A) ⊗ OD) → lim
←−

H 1(V n, (K
n
tγ

∩ tγ An) ⊗ ODn)

is an isomorphism. By Corollary 4.3, the maps

H 1(V , (Ktγ ∩ tγ A) ⊗ OD) → H 1(G2/G) ,

H 1(V n, (K
n
tγ

∩ tγ An) ⊗ ODn) → H 1(Gn
2/Gn)
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are injective. From this and the diagram

0 0�
�

H 1(V , (Ktγ ∩ tγ A) ⊗ OD) −→ lim
←−

H 1(V n, (K
n
tγ

∩ tγ An) ⊗ ODn)�
�

H 1(V ,G2/G) −→ lim
←−

H 1(V n,G
n
2/Gn)�

�
H 1(V ,F)

ε
−→ lim

←−
H 1(V n,F

n) ,

we see that to verify that 4.2 is injective it suffices to show that the map labeled ε in the
diagram above is injective.

The exact sequences 4.4 and 4.5 together with Lemma 4.2 imply that there is a commu-
tative diagram

H 1(V ,F) −→ H 1(V ,O∗
D)�

�
lim
←−

H 1(V n,F
n) −→ lim

←−
H 1(V n,O

∗
Dn) ,

where the horizontal arrows are injections. Therefore, to verify that ε is injective it is enough
to verify that the map

H 1(V ,O∗
D) → lim

←−
H 1(V n,O

∗
Dn)

is injective. This follows from ([6], III.5.1.6), and hence the proof of Theorem 4.1 is complete.
✷

5. Proof of Theorem 1.2. We now prove Theorem 1.2. Let IVLS be the fibered
category over the category of S-schemes which to any T → S associates the category of
triples (MT ,MXT , f b

T ), where MT is a log structure on T , MXT is a log structure on X ×S

T , and f b
T : pr∗2MT → MXT is a morphism of log structures making

(f, f b) : (XT ,MXT ) → (T ,MT )

a special morphism in the sense of Definition 2.6. There is a natural log structure on the
fibered category IVLS (see the introduction for the definition of a log structure on a fibered
category)

M : IVLS → Log(S,O∗
S), (MT ,MXT , f b

T ) �→ MT .

Since IVLS classifies sheaves for the étale topology, IVLS is a stack over S, and by ([12],
4.18) IVLS is limit preserving. By Theorem 2.7, if (T ,M′

T ) is a log scheme, then to give an
element of IVLS over (T ,M′

T ) is equivalent to giving an object (MT ,MXT , f b
T ) of IVLS

over T together with a morphism of log structures MT → M′
T . Hence, to prove Theorem

1.2, it suffices to show that IVLS is representable by a scheme, and that the map IVLS → S

is a monomorphism of finite type.
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Now, any algebraic space which admits a quasi-finite map to a scheme is also a scheme
([4], 3.3), and hence it suffices to show that IVLS is an algebraic space. We proceed in two
steps (Theorems 5.1 and 5.4).

THEOREM 5.1. IVLS is relatively representable and IVLS is equivalent to the stack

defined by a sub-functor of S.

PROOF. Suppose (MT ,MXT , f b
T ) and (M′

T ,M′
XT

, f b′
T ) are two objects of IVLS over

some scheme T . What has to be shown is that there exists unique isomorphisms σ : MT ≃

MT ′ and φ : MXT ≃ M′
XT

such that the diagram

f ∗MT
f b

−→ MXT�σ

�φ

f ∗M′
T

f b′

−→ M′
XT

commutes. Let us begin by showing the uniqueness of the pair (σ, φ). For this it suffices to
consider the case when T = Spec(A) is a complete local ring.

Let SS((T ,MT )) be the set of isomorphism classes of pairs (MX, f b), where MX is a
log structure on X and f b : f ∗MT → MX is a morphism of log structures making

(X,MX) → (T ,MT )

a special morphism (in the sense of Definition 2.6).
Let

ρ : Aut(MT ) → End(SS((T ,MT )))

be the action given by

(f ∗MT −→ MX)ρ(σ ) := (f ∗MT
σ

−→ f ∗MT −→ MX) .

The following proposition implies the uniqueness of (σ, φ).

PROPOSITION 5.2. 1. For a pair (MX, f b) as above, there are no automorphisms

of MX compatible with the map f b.

2. The action ρ on SS((T ,MT )) is simply transitive.

PROOF. 1. It suffices by descent theory to consider the case when A has separably
closed residue field. In this case, any object (MX, f b) ∈ SS(Spec(A)) has a canonical
decomposition

MX ≃ ⊕γ∈Ŵ,O∗
X
M

γ

X ,(5.1)

where Ŵ denotes the set of connected components of the singular locus of the closed fiber.
Moreover, (MX, f b) induces a decomposition

MT ≃ ⊕γ∈Ŵ,O∗
T
M

γ

T .(5.2)

This implies 1, for any automorphism of MX must preserve the above decompositions and
hence induces automorphisms of the log structures M

γ
X over Mγ

T . But by the discussion
preceding Theorem 3.18, there are no such automorphisms other than the identity.
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2. We first reduce to the case when A is an artin local ring with separably closed residue
field. Let MTn be the reduction of MT to An := A/mn+1

A . By Theorem 4.1 and the fact that
the functor Aut(MT ) is representable, the natural maps

Aut(MT ) → lim
←−

Aut(MTn), SS(Spec(A)) → lim
←−

SS(Spec(An))

are bijective, and hence it suffices to consider the case when A is an artin local ring. Moreover
by 1, both Aut(MT ) and SS(Spec(A)) are sheaves on the étale site, so we can by descent
theory assume that A has separably closed residue field.

In this case, any object (MX, f b) ∈ SS(Spec(A)) has a canonical decomposition as in
5.1 and induces a decomposition of MT as in 5.2.

Suppose given two objects

(MX, f b), (M′
X, f b′) ∈ SS(Spec(A))

inducing two decompositions

MT ≃ ⊕γ∈Ŵ,O∗
T
M

γ

T ≃ ⊕γ∈Ŵ,O∗
T
M

γ ′
T .

The following lemma, applied to the completion of OX at a point in γ , shows that Mγ

T and
M

γ ′
T are isomorphic as log structures (not as sub-log structures of MT ):

LEMMA 5.3. Suppose t, t ′ ∈ A are two elements such that there exists d, d ′, r, r ′ ∈ Z

and an isomorphism

φ : A[[X1, . . . , Xd ]]/(X1 · · ·Xr − t) ≃ A[[Y1, . . . , Yd ′ ]]/(Y1 · · · Yr ′ − t ′) .

Then there exists a unit u ∈ A∗ such that ut = t ′.

PROOF. If the result holds with A replaced by A/(t ′), then t ∈ (t ′) and by symmetry
(t) = (t ′). Therefore it suffices to consider the case when t ′ = 0. Moreover, in this case it
suffices to consider the reduction modulo t2. Write

φ(Xi) = ci + f (Y ) , i = 1, . . . , r ,

where ci ∈ A and f (Y ) consists of terms of degree > 0 (as in the proof of Proposition 3.8,
A[[Y1, . . . , Yd ′ ]]/(Y1 · · ·Yr ′) is graded since t ′ = 0). By Proposition 3.8, ci ∈ (t), and hence
since we are assuming that t2 = 0 we have

∏r
i=1 ci = 0. Thus

t =

r∏

i=1

φ(Xi) =
∏

ci + g = g ,

where g ∈ (Y1, . . . , Yd ′). If t 	= 0, this is a contradiction, since

A ∩ (Y1, . . . , Yd ′) = {0} .

✷

Thus there exists an automorphism σ of MT such that the decompositions of MT ob-
tained from

f ∗
MT → MX
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and

f ∗MT
σ

−→ f ∗MT −→ M′
X

are the same. Decompose

MX ≃ ⊕γ∈Ŵ,O∗
X
M

γ
X, M

′
X ≃ ⊕γ∈Ŵ,O∗

X
M

γ ′
X .

Then to prove the theorem it suffices to show that there exists a unique automorphism σ :

M
γ
T → M

γ
T and an isomorphism ψ : M

γ
X ≃ M

γ ′
X such that the diagram

f ∗M
γ
T −→ M

γ
X�σ

�ψ

f ∗M
γ

T −→ M
γ ′

X

commutes. For this we may, as in the proof of Theorem 4.1, replace X by an open set V ,

which contains the component γ but does not intersect any of the components Ŵ − {γ }, and
we can also choose a chart

N → M
γ
T .

Let tγ ∈ A be the image of 1. Then using the notation of the proof of Theorem 4.1, we want
to show that the natural map

{u ∈ A∗ | utγ = tγ } → H 0(V ,G2/G)

is bijective. This follows from the exactness of the first line in the equation 4.6 and Corollary
4.3. ✷

In light of the uniqueness of (σ, φ), to prove Theorem 5.1 it suffices to prove the existence
of (σ, φ) étale locally. If T is the spectrum of an artinian local ring, then it follows from
Lemma 5.3 that MT and M′

T are étale locally isomorphic, and hence by Proposition 5.2 a
pair (σ, φ) exists in this case. By passage to the limit using Theorem 4.1 a pair (σ, φ) also
exists in the case when T is the spectrum of a complete noetherian local ring.

For general T , let t ∈ T be a point. Then from above there exists a pair (σ, φ) over
the completion ÔT ,t . By the Artin approximation theorem ([3], 1.6), there exists a pointed
T -scheme v ∈ V together with an isomorphism ÔV ,v ≃ ÔT ,t and a pair (σV , φV ) over
V inducing the pair (σ, φ) over ÔT ,t . By construction V /T is étale at v, and hence after
shrinking V we can assume that V is an étale T -scheme.

This concludes the proof of Theorem 5.1. ✷

THEOREM 5.4. IVLS admits a smooth cover.

PROOF. It suffices to show that for any map

T → Log(S,O∗
S)(5.3)

the product

T ×Log(S,O∗
S

)
IVLS
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is representable by an algebraic space. If MT is the log structure corresponding to the map
5.3, then the product is the functor

SS : (T − schemes) → Set ,

which to any h : T ′ → T associates the set of special elements in

IVLS((T ′, h∗
MT )).

We prove that SS is representable by verifying the conditions of ([5], 5.4). For a T -scheme
h : T ′ → T denote by MT |T ′ the pullback h∗MT and let XT ′ denote the product T ′ ×T X.

By Proposition 5.2, SS is a sheaf for the étale topology, and SS is limit preserving by
([12], 4.18).

LEMMA 5.5. Suppose A′ → A is a surjective morphism of rings with square-zero

kernel, and suppose MXA ∈ SS(Spec(A)). Then to give a lifting of MXA to SS(Spec(A′)) is

equivalent to giving a 1-morphism

MXA′ : XA′ → Log(Spec(A′), MT |A′ )

filling in the diagram

XA XA′

Spec(A)

Log(Spec(A), MT |A) Log(Spec(A′), MT |A′ )

Spec(A′)

✲i

✲

❄

MXA

❏
❏

❏
❏
❏

❏
❏
❏

❏
❏
❏❫

✲
❄

❏
❏

❏
❏

❏
❏
❏

❏
❏
❏

❏❏❫

❩
❩

❩
❩

❩
❩

❩❩⑦

. . . . . . . . . . . . . . . . .❥

(that is, a 1-morphism MXA′ together with an isomorphism i∗MXA′ ≃ MXA) .

PROOF. To give a 1-morphism as in the lemma is equivalent to giving a lifting of MXA

to XA′ and a morphism of log schemes (XA′ ,MXA′ ) → (Spec(A′),MT |A′) lifting the map
from (XA,MA). Thus the lemma is equivalent to the statement that any such lifting is a
special morphism. Now by ([11] 4.1 and [17] Theorem 3.13)), any such lifting MA′ fac-
tors through the maximal open substack U ⊂ Log(Spec(A′), MT |A′ ) flat over Spec(A′). Since
XA′/A′ is flat, this implies that MXA′ is smooth, since its reduction to A is smooth. The
other conditions in the definition of a special morphism evidently only depend on the reduced
structure of the base. Hence the lemma follows. ✷
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It follows from the lemma and ([18]) that Schlessinger’s condition (S1′) holds, and that
for any A-module I , the module SSMXA

(A[I ]) is isomorphic to

Ext0
OX

(M∗
XA0

L>−2
Log(Spec(A0), MT |A0

)/A0
, f ∗

T I) ,

where L>−2
Log(Spec(A0), MT |A0

)/A0
denotes the truncated cotangent complex of the algebraic stack

Log(Spec(A0), MT |A0 ) (see [18] or [12]). Moreover, ([18]) shows that the modules

Ext1
OX

(M∗
XA0

L>−2
Log(Spec(A0), MT |A0

)/A0
, f ∗

T I)

define an obstruction theory for SS. To see that the conditions on D and O of ([5], (S2) and
4.1) are satisfied, use ([6], III.3.1.2 and III.4.5) and ([3], Lemmas 6.8 and 6.9).

Next, we claim that if A0 is a reduced ring, and if MXA0
and M′

XA0
are two elements

of SS(Spec(A0)) which are equal at a dense set of points of finite type, then they are equal
on a dense open set. To see this observe that by theorem 5.1 there exists a unique pair of
isomorphisms σ : MT |A0 → MT |A0 and φ : MXA0

→ M′
XA0

such that the diagram

f ∗MT |A0 −→ MXA0�f ∗(σ )

�φ

f ∗MT |A0 −→ M′
XA0

commutes. The condition that MXA0
and M′

XA0
define the same element of SS is therefore

the same as the condition that σ = id. Now, since Log(T ,O∗
T ) is algebraic, if σ = id for a

dense set of points of Spec(A0) of finite type, then σ equals the identity on some dense open
set by ([5], page 182).

Finally, observe that if Â is a complete local ring with residue field of finite type over T ,
then the map

SS(Â) → lim
←−

SS(Â/mn

Â
)

is bijective by Theorem 4.1. It therefore follows from ([5], 5.4) that SS is representable by an
algebraic space over T . This completes the proof of Theorem 5.4. ✷

To complete the proof of Theorem 1.2, it remains only to see that IVLS is of finite type
over S. For this it suffices by the argument given in ([3], page 59) to show the following:
Given an integral domain A0, and a dense set of points S ⊂ Spec(A0) of finite type such that
IVLS(Spec(k(p)) is non-empty for all p ∈ S, there exists a dense open set U ⊂ Spec(A0)

for which IVLS(U) is non-empty. Let K0 = Frac(A0). Then by assumption, XK0 is étale
locally isomorphic to

K0[X1, . . . , Xd ]/(X1 · · · Xr ) ,

and so we can replace A0 by an affine open set so that XA0 is étale locally isomorphic to

A0[X1, . . . , Xd ]/(X1 · · · Xr).
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Let MA0 be the log structure on Spec(A0) associated to the map N → A0, 1 �→ 0. By Theo-
rem 2.7, to prove the IVLS is non-empty over some dense open set of Spec(A0), it suffices to
prove that there exists a semi-stable log structure on XA0

relative to (Spec(A0),MA0).
By Theorem 3.6 there exists such a log structure if and only if the invertible OD-module

Ext1(Ω1
XA0

/A0
,OX)

is trivial (where D is defined as in Section 3). By ([3], page 70) this holds over some dense
open set in Spec(A0), and hence there exists a dense open set U ⊂ Spec(A0) for which
IVLS(U) is non-empty. This completes the proof of Theorem 1.2.
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