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Abstract—The Burrows Wheeler Transform (BWT) is a
reversible sequence transformation used in a variety of practical
lossless source-coding algorithms. In each, the BWT is followed by
a lossless source code that attempts to exploit the natural ordering
of the BWT coefficients. BWT-based compression schemes are
widely touted as low-complexity algorithms giving lossless coding
rates better than those of the Ziv–Lempel codes (commonly known
as LZ’77 and LZ’78) and almost as good as those achieved by
prediction by partial matching (PPM) algorithms. To date, the
coding performance claims have been made primarily on the basis
of experimental results. This work gives a theoretical evaluation of
BWT-based coding. The main results of this theoretical evaluation
include: 1) statistical characterizations of the BWT output on
both finite strings and sequences of length , 2) a variety
of very simple new techniques for BWT-based lossless source
coding, and 3) proofs of the universality and bounds on the rates
of convergence of both new and existing BWT-based codes for
finite-memory and stationary ergodic sources. The end result is
a theoretical justification and validation of the experimentally
derived conclusions: BWT-based lossless source codes achieve uni-
versal lossless coding performance that converges to the optimal
coding performance more quickly than the rate of convergence
observed in Ziv–Lempel style codes and, for some BWT-based
codes, within a constant factor of the optimal rate of convergence
for finite-memory sources.

Index Terms—Burrows Wheeler Transform (BWT), rate of con-
vergence, redundancy, text compression, universal noiseless source
coding.

I. INTRODUCTION

T HE Burrows Wheeler Transform (BWT) [1] is a slightly
expansive reversible sequence transformation currently

receiving considerable attention from researchers interested in
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practical lossless data compression algorithms (e.g., [2]–[7]).
To date, the majority of research devoted to BWT-based com-
pression algorithms has focused on experimental comparisons
of BWT-based algorithms with competing codes. Experimental
results on algorithms using this transformation (e.g., [2], [3],
[5]) indicate lossless coding rates better than those achieved
by Ziv–Lempel-style codes (LZ’77 [8], LZ’78 [9], and their
descendants) but typically not quite as good as those achieved
by the prediction by partial mapping (PPM) schemes described
in works like [10], [11], [2]. BWT code implementation yields
complexity comparable to that of the Ziv–Lempel codes, which
are significantly faster than algorithms like PPM [1], [2].

Early theoretical investigations of BWT-based algorithms
include the work of Sadakane, Ariumura and Yamamoto, and
Effros. In [12], [13], Sadakane considers the performance of
source codes based on a variant of the BWT described in [14]
and states that codes based on block sorting are asymptotically
optimal for finite-order Markov sources if the permutation of all
symbols sharing a common context is random. Sadakane notes,
however, that “the permutation in the BWT is not completely
random” but conjectures that the proposed algorithms work for
BWT-transformed data sequences. In [15]–[17], Arimura and
Yamamoto present a sequence of information-theoretic results
on BWT-based source coding, demonstrating the universality
of BWT-based codes for finite memory and stationary totally
ergodic sources. In [18], Effros gives an information-theoretic
analysis of both the traditional BWT-based codes considered
by previous authors and a collection of new BWT-based
codes introduced in that work. The analysis demonstrates the
universality of each of the BWT-based codes considered and
gives the first rate of convergence bounds for BWT-based
universal codes.

This paper combines the aforementioned results by Effros
with the asymptotic analyses of convergence rate and output
statistics derived by Visweswariah, Kulkarni, and Verdú [19],
[20] and a nonasymptotic analysis of the BWT output statistics
by Effros. The key results are: statistical characterizations of
the BWT output for both finite strings and sequences of length

, a proof of the universality and bound on the rate
of convergence of a minor variation on existing BWT-based
codes for finite-memory sources, proofs of the universality of
the family of algorithms introduced in [18] on both stationary
finite-memory sources and more general stationary ergodic
sources, rate of convergence bounds for the same codes and
sources, and a comparison of BWT-based codes to each other
and to other universal coding algorithms. The comparison
confirms and quantifies the experimentally observed results.

0018-9448/02$17.00 © 2002 IEEE
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On sequences of lengthdrawn from a finite-memory source,
the performance of the best BWT-based codes converges to
the optimal performance at a rate of , surpassing
the convergence of LZ’77 [21] and the

convergence of LZ’78 [22], [23] and the variation
of LZ’77 given in [21]. This convergence comes
within a constant factor of the optimal rate of convergence for
finite-memory sources. Note that many of the codes considered
here use sequential codes on the BWT output but that the
overall data compression algorithms are nonsequential since
the transform itself requires simultaneous access to all
symbols of a data string.

The paper is organized as follows. Section II contains a va-
riety of background material, including an introduction to uni-
versal source coding, a description of the class of stationary fi-
nite-memory sources, and a brief summary of previous universal
coding results for these sources. Section III contains a descrip-
tion of the BWT and a discussion of its algorithmic complexity
and memory use. Section IV considers BWT-reordered data se-
quences for stationary finite-memory sources, focusing on those
properties needed for efficient coding of the transform output.
The description of the BWT output highlights a key charac-
teristic of this transform: the BWT of a reversed data string
groups together all symbols that follow the same context. This
property leads both to the lossless coding strategies used in the
BWT-based codes discussed in Section V and to the asymptotic
analysis of the statistical properties of the BWT output given in
Section VI. Section V describes the family of BWT-based codes
and proves the universality and rate of convergence of each for
both finite-memory sources and stationary ergodic sources. The
rate of convergence results on finite-memory sources range from

for the codes requiring the least memory and
computation to for a slightly more complex BWT-
based algorithm or a BWT-based code in which the encoder
usesa priori information about the source memory. Thus, even
the simplest new BWT-based code gives a rate of convergence
faster than that of either of the Ziv–Lempel algorithms, while
the BWT code with the fastest rate of convergence achieves—to
within a constant factor—the optimal rate of convergence. Sec-
tion VI treats the question of statistical characterization of the
BWT output considered in [19], demonstrating the convergence
to zero of the normalized Kullback–Leibler distance between
the BWT output distribution and a piecewise independent and
identically distributed (p.i.i.d.) source distribution. A summary
of results and conclusions—including a comparison of the per-
formance, complexity, and memory use of BWT-based algo-
rithms and Ziv–Lempel codes—follows in Section VII.

II. BACKGROUND AND DEFINITIONS

A universal lossless source code is a sequence of source codes
that asymptotically achieves the optimal performance for every
source in some broad class of possible sources. Making this no-
tion more precise requires some definitions.

Consider any class of stationary ergodic sources
on finite source alphabet . For each , let and

be the th-order entropy and entropy rate, respectively,
of . Thus,

and

for each . Given any variable-rate lossless source
coding strategy for coding -sequences from , for each

, let be the description
length used in the lossless description of with the chosen
coding strategy. For each , describes the resulting
expected redundancy in coding samples from distribution.
That is, is the difference between the expected rate per
symbol using the given blocklength-code and
the optimal rate per symbol for coding -vectors
from ; thus,

A sequence of coding strategies, here referred to by their re-
dundancy functions , is aweakly minimax universal
lossless source codeon if for each and
a strongly minimax universal lossless source codeon if that
convergence is uniform in [24]. This work focuses primarily
on minimax universal lossless source coding. The redundancy
results derived in this work are, however, all achieved by first
finding deterministic bounds on the source coding rate. These
deterministic bounds characterize the code performance on se-
quence in terms of the “empirical entropy” of relative to
a distribution model approximating the true underlying source
statistics. The result is a stronger characterization of the code
performance than that given by the expected redundancy alone.

In [24], Davisson describes a minimax universal lossless code
on the class of stationary, ergodic sources using a construc-
tion due to Fitingof. Davisson’s argument demonstrates the ex-
istence of minimax universal lossless source codes and estab-
lishes the rate of convergence of to zero as a second-order
measure of performance for minimax universal lossless source
codes. Rissanen and others extend Davisson’s results for finitely
parameterized sources and quantify the condition of second-
order optimality in universal lossless source coding [25]–[29].
For any class of sources smoothly parameterized byreal
numbers, the optimal rate of convergence of is
proven achievable to within for almost all [27],
[28].

This work focuses first on the problem of minimax universal
lossless source coding for stationary finite-memory sources.
A review of the class of unifilar, ergodic, finite-state-machine
(FSM) sources is useful to the discussion that follows. An FSM
source is defined by a finite alphabet, a finite set of states

, conditional probability measures , and a
next-state function . Given an FSM data source
and an initial state , the conditional probability of string

given is defined as

where for all .
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The class of FSMX sources [30], also called finite-order FSM
sources, is the subset of the class of FSM sources for which there
exists an integer such that for every , the most
recent symbols uniquely determine the stateat time
. For FSMX sources, the setis defined by a minimum suffix

set of strings from with the property that for every
and every such that , the string has exactly
one suffix in . Thus, for any FSMX source,

for all

where denotes the suffix of the string achieved by con-
catenating symbol to the end of string .

FSMX sources inherit from FSM sources the condition that
the current state is a function only of the current source symbol
and the previous state ( for all ). This condi-
tion is both restrictive [31] and unnecessary for this work. As a
result, the restriction is dropped, yielding a class of generalized
FSMX sources, here called finite-memory sources after [32].
For any finite-memory source, there exists a minimum suffix
set of strings from and an integer such that

and

for all

The state variables are variable-length strings describing
the finite “context” of previous symbols on which the current
symbol’s distribution depends. For stationarity, the symbols

should be drawn from the sta-
tionary distribution on induced by the finite-memory
source model, giving

where is the stationary distribution on induced by
the given finite-memory source.

The class of finite-memory sources discussed here is more
restrictive than the class introduced in [32]. Like the finite-
memory sources described here, the finite-memory sources
of [32] describe the probability of the next symbol using a
conditional distribution that depends on no more than some
maximal number of previously coded symbols. Unlike the
finite-memory sources described here, the finite-memory
sources of [32] do not require all contexts of lengthto
comprise exactly the previoussymbols in the data string. The
variable and noncontiguous contexts of [32] create consider-
able difficulties for BWT-based algorithms, and are therefore
excluded. Thus, the class of finite-memory sources described
here is a subset of the earlier defined class. Notice, though, that
any source meeting the broader definition for finite-memory
sources but not requiring context variation across symbols may
also be modeled within the definition of finite-memory sources
considered here, with the caveat that the resulting contiguous
model might require more states than its predecessor. This
increase in results from the fact that prior symbols cannot
be rearranged and is affected by the length of the history

used in the conditional distributions. This increase inmay
cause significant performance degradation, since the rate of
convergence results described in Section V grow with.

In [28], Rissanen considers universal source coding for binary
FSM sources when the number of states is unknown. In that
work, he demonstrates the existence of universal source codes
for which approaches zero as
for almost all and demonstrates the optimality (to within

) of the achieved rate of convergence when the given
model is the most efficient model for the chosen source. In
this case, describes the distribution

, and thus, and , giving the familiar
. For more general finite alphabets,

gives the number of parameters needed to
describe the conditional probabilities for all but one
value of and all values of . The optimal algorithm
traverses the entire data sequence to determine the optimal
estimate of and then describes the data sequence using the
chosen estimate. In the same work, Rissanen conjectures the
optimality of a related sequential algorithm for estimating
during the encoding procedure rather than in a separate pass
through the entire data sequence prior to coding. A flaw in that
algorithm is pointed out in [31] by Weinberger, Lempel, and
Ziv, who also present an alternative to Rissanen’s algorithm for
universal source coding of FSMX sources withknownmemory
constraint . The algorithm computes and sequentially up-
dates an on-line estimate of during the coding process. The
resulting code asymptotically achieves Rissanen’s optimal

rate of convergence for FSM sources using a
sequential coding strategy. When is known, this strategy
reduces the maximal coding delay from in Rissanen’s
code to . The number of arithmetic operations used
grows linearly with both and . The same results apply to
finite-memory sources.

III. T HE BWT

The BWT [1] is a reversible block-sorting transform that
operates on a sequence ofdata symbols to produce a per-
muted data sequence of the same symbols and a single integer
in . Let

BWT

denote the -dimensional BWT function and

BWT

denote the inverse of BWT. Since the sequence lengthis
evident from the source argument, the functional transcript is
typically dropped, giving

BWT and BWT

The notations BWT and BWT denote the character and in-
teger portions of the BWT, respectively.

The forward BWT proceeds by forming allcyclic shifts of
the original data string and sorting those cyclic shifts lexico-
graphically. The BWT output has two parts. The first part is a
length- string giving the last character of each of the (lexico-
graphically ordered) cyclic shifts. The second part is an integer
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Fig. 1. The BWT of the sequence “bananas.” The original data sequence (in
bold) appears in row 4 of the ordered table (Step 2); the final column of that table
contains the sequence “bnnsaaa.” HenceBWT (bananas) = (bnnsaaa; 4).

describing the location of the original data sequence in the or-
dered list. An example giving the BWT of the word “bananas”
appears in Fig. 1. Here bananas bnnsaaa .1

For the BWT to be areversiblesequence transformation, it
must be possible to reconstruct the full table of lexicograph-
ically ordered cyclic shifts using only the last column of the
table (the BWT output). Intuitively, this reconstruction proceeds
column by column as follows. By the table construction, the first
column of the table is an ordered copy of the last column of the
table. Thus, thefirst column reconstruction requires only an al-
phabetization of the list found in the last column. To reconstruct
the second column, notice that each row is a cyclic shift of every
other row, and hence that the last and first columns together pro-
vide a list of all consecutive pairs of symbols. Ordering this list
of pairs yields the (first and)secondcolumn(s) of the table. Re-
peating this process on triples, quadruples, etc., sequentially re-
produces all columns of the original table. The transform index
indicates the desired row of the completed table. An example of
the inverse BWT of the pair (bnnsaaa, 4) from the example in
Fig. 1 appears in Fig. 2. Here bnnsaaa bananas.

While the above description of the BWT elucidates the al-
gorithm, implementation of the forward and inverse transfor-
mation in the above manner would be impractical for long se-
quence lengths. Practical implementations of the BWT require

1A variation of the BWT appends a unique “end-of-file” symbol to the end
of the data sequencex . The algorithms used for coding employ the end-of-file
symbol, as discussed in Section IV. The computational complexity results for the
BWT assume a suffix-tree implementation, which uses an end-of-file symbol.

Fig. 2. The inverse BWT for (bnnsaaa, 4). The table is initialized with
bnnsaaa in columnn. Row 4 of the final table is the inverse BWT:
BWT (bnnsaaa; 4) = bananas.

algorithms that are efficient in both time and space. As a re-
sult, a number of variations on the BWT appear in the literature.
For example, the data may be passed through a run-length pre-
processor to replace long strings of the same character (which,
in addition to their obvious redundancy, cause longer sort times)
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with run-length descriptions. Further, maximal sort lengths are
sometimes imposed, with ties broken based on position in the
original string. Descriptions of some of these variations and
their performances appear in works like [1], [33]–[35], [7], [4].
While the choice of sorting technique used in any practical im-
plementation should depend on the system priorities for that ap-
plication, for the sake of simplicity, complexity and memory re-
quirements given here refer to the first (of several) implemen-
tations of the BWT described by Burrows and Wheeler in [1].
The chosen implementation uses the suffix tree algorithm de-
scribed in [36], which achieves worst case complexity and
memory results.

The BWT achieves dataexpansionrather than data com-
pression. How then do algorithms working in the BWT domain
yield such good performance–complexity tradeoffs? Roughly
speaking, the BWT shifts the source redundancy caused by
memory to a redundancy caused by a nonequiprobable and
nonstationary first-order distribution.

Early BWT-based codes (e.g., [1], [37], [33], [34]) capitalize
on the observation that the BWT tends to group together long
strings of like characters (see, for example, Fig. 1), thereby pro-
ducing a string that is more easily compressed than the original
data sequence. Since the table’s last column had the least im-
pact on the ordering of the table’s rows and is thus—in some
sense—theleastordered of all columns, it is tempting to con-
sider using some other column of the code table as the BWT
output. Unfortunately, for general strings and sequence lengths,
the last column is the only column that yields a reversible trans-
formation. These observations together motivate a variety of
alternatives to the BWT, such as the algorithms described in
[3], [6], where modifications in the table generation techniques
allow for use of earlier table columns.

While the argument that the last column of the BWT table
has the least impact on the ordering of the table rows is indis-
putable, the supposition that the last column should therefore be
the “least ordered” of all columns in the BWT table seems to fail
when the data sequence derives from a finite-memory source.
For example, according to this perspective, the columns of the
BWT encoding table—taken from left to right—should appear
progressively less ordered. Yet text files and other data types
well-modeled as finite-memory sources fail to demonstrate this
property. In particular, the last column almost always appears
more ordered—with long sequences of like characters—than
the columns that closely precede it (see Fig. 1). Understanding
this paradox requires a better understanding of the BWT output
when is drawn according to a finite-memory distribution.

IV. THE BWT ON FINITE-MEMORY SOURCES

Lexicographical ordering of the rows of the BWT table
groups together all cyclic shifts of that begin with the
same string. As a result, the BWT output, which describes the
character that precedes the given string in each row, groups
together symbols that precede like strings in . Performing
the BWT on a reversed data string groups together characters
that follow like strings—i.e., characters with a common con-
text. In finite-memory sources, this process groups together

Fig. 3. The BWT of(sananabx) = (R(bananas)x). The end-of-file symbol
x 62 X is ordered last lexicographically. HereZ = nnsaaaxb, U = 7,
Z = x, andW = nnsaaab.

symbols from the same conditional distribution, creating a
transformed data stream on which codes designed for p.i.i.d.
source statistics yield excellent performance.2 (A string is
called -p.i.i.d. if it is formed by concatenating together
independent and identically distributed (i.i.d.) data streams.)
The BWT’s sorting properties are described precisely below.
Coding results inspired by these properties are introduced
in Section V. A more complete statistical characterization of
the BWT output and its relationship to p.i.i.d. data streams is
considered in Section VI.

Consider a stationary finite-memory source with alphabet,
state space , and next-state function . Given

drawn according to this distribution, let
and

BWT BWT

where denotes an “end-of-file” symbol not found in
the original source alphabet and is the time-
reversal operator. Thus, ,
and and are the BWT-reordered data sequence and row
index, respectively, of the reversed data string modified by an
end-of-file symbol.

The end-of-file symbol alleviates “edge effects,” separating
the beginning and end of the data stream in each cyclic shift and
thereby avoiding problems where the contexts of the first
symbols appear to contain characters from the end of the data
stream. The use of the end-of-file symbol results in no expansion
in either the sequence length or the alphabet size of and
makes the sequence unique. More specifically, since all
data strings must now end with the end-of-file symbol, if

, then the must equal . Further, can appear
nowhere else in . Thus, the data string is uniquely
characterized by either or , where

An example for bananas appears in Fig. 3, giving
nnsaaab. In this example, symbolappears to come from a con-
text ending with the end-of-file symbolrather than the char-
acter found at the end of the data stream.

2The same property is shared by the output of the BWT without time reversal,
as discussed later in this section.
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Recall that is the state space for source , and
is the corresponding next-state function. Defineto be the
modified suffix set given by

where is the memory bound, and let be the suffix
operator for . Let

and

and use and to indicate the prefix operators for
and , respectively. Assume that the prefixes of are given
by , where are ordered lex-
icographically and .

The symbols of arrange into contiguous substrings in
so that the th substring contains all characters with context

. Since appears only once in the data string, each prefix
begins in the leftmost column of the BWT table

exactly once. As a result, the substring associated with any such
contains exactly one element. For each ,

define as

The substring contains all characters
that precede in , or, equivalently, all characters that
occur in context in the original data stream . As noted
earlier, for all such that , and,
thus, .

Since the mappings between and and and
are all one-to-one

(1)

where and for
any and any .

While (1) resembles the distribution of a p.i.i.d. data stream,
the statement that is -p.i.i.d. [18, Lemma 1] is not accu-

rate. First, (1) implies that for all
for which

Second, (1) describes the probability of ; the proba-
bility of , given by

is greater than or equal to . Nonetheless, the deci-
sion in [18] to code using codes designed for-p.i.i.d. data
strings is well motivated, and none of the results of [18] require
that the source is actually-p.i.i.d. Section V gives the deriva-
tions for all of these results. The analysis from [19] of the distri-
bution on the BWT output demonstrates, for a variety of input
distributions, that the normalized divergence between the output
distribution of the BWT and a p.i.i.d. distribution is asymptot-
ically vanishing; we consider this issue in Section VI. A few
remarks are useful before proceeding with those results.

Remark 1: While the idea of reversing the data string
prior to transformation is conceptually useful, string reversal is
not necessary to obtain an equation of the form given in (1). This
assertion follows from [38], which proves that the time reversal
of any finite-memory source yields another finite-memory
source. As a result, for any data sequence drawn
from a stationary finite-memory distribution for which the
reversed data string has minimum suffix setand memory
constraint , if BWT and

then there exists , , and

such that and

Note, however, that is not necessarily equal to [38].
Since rate of convergence results—including the optimal rate
of convergence results described in Section II—typically de-
pend on the number of states in the model, the optimal rate of
convergence for the forward finite-memory source model may
differ from the optimal rate of convergence for the reverse fi-
nite-memory source model. This observation reminds us that
while the bounds from below the rate
of convergence achievable using a finite-memory source model
with states, proving this rate of convergence optimal for the
underlying random process requires proof that there does not
exist an equivalent model with fewer than states. This work
follows the approach found throughout the universal coding lit-
erature and bounds the performance achieved subject to a par-
ticular source model. Thus, the data string may be thought
of as either the original data sequence or its reversal. Since the
“finite-memory source model” refers to the model for , the
time-reversal step is left in the algorithmic description. Equiv-
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alent results for the time-reversed source apply immediately
when running the algorithms without time reversal.

Remark 2: As shown in (1), the BWT of the data string (or
its time-reversed equivalent) is similar in distribution to a sorted
list of i.i.d. samples with a number of parameter changes com-
parable to the number of states in the finite-memory source. The
BWT achieves this property onanyfinite-memory source inde-
pendent of the suffix set and without any requireda priori
knowledge of the state space in operation. In particular, the re-
sults described in the section that follows hold for thebestfi-
nite-memory source model for the source in operation, and the
bounds of this best model dominate.

Remark 3: In addition to its direct source coding ramifi-
cations, (1) also lends insight into the characteristics of good
source models for common data types such as text. Applying
the BWT to text data sets tends to yield long strings of like
characters. Combining the statistical property described by (1)
with this experimental observation suggests that the conditional
distributions found in the finite-memory source model for text
tend to have very narrow supports. While some short contexts
achieve narrow supports (e.g., the letter “q” is almost always
followed by the letter “u” in English text), most short contexts
may be followed by many different characters. Thus, the preva-
lence of narrow supports suggests that long context lengths
are in effect in data types such as text. As a result, algorithms
that achieve good performance on sources with long contexts
and conditional distributions with narrow supports should take
precedence over algorithms lacking these properties.

V. UNIVERSAL LOSSLESSSOURCECODES

The BWT, as a reversible transformation, cannot affect the
shortest description length achievable in lossless compression
of samples from a particular source model. It can, however,
make achieving that performance less computationally taxing.
This goal motivates the following discussion, containing
introductions to and analyses of a variety of BWT-based source
coding strategies for achieving universal source coding perfor-
mance on stationary finite-memory sources. All but one of the
strategies and all of the rate of convergence results considered
here were originally described in [18]. The remaining strategy,
treated first, is a variation on the BWT-based lossless source
code in common use for practical coding. Information-theoretic
analyses, including proofs of universality and bounds on
the associated rates of convergence, play central roles here.
Discussions of the complexity and memory requirements are
also included.

Recall from (1) that BWT for
some drawn according to an -state finite-memory source
and implies that

and

with and no more than subsequences of more
than one character each. The algorithms considered here use in-

dependent codes for describingand . Assuming that the
decoder knows the sequence length, the natural

-bit binary expansion suffices for describing. (When
the decoder does not know the sequence length, a descrip-
tion of length bits suffices for describing
both and .) While the BWT is extremely computationally
efficient and most of the algorithms considered use very simple
sequential codes to describe the BWT output, none is a sequen-
tial code.

A. Finite-Memory Sources

First, consider the question of universality on the class of fi-
nite-memory sources. Most of the algorithms considered here
achieve universality on this class of sources withouta priori
knowledge of the memory constraint (as in algorithms such
as [31]) or state space.

The rate of convergence results for finite-memory sources use
the redundancy expression

rather than the expression

used in Section II. (Here denotes the entropy rate of
source .) Note that

and recall that the optimal rate of convergence of on the
class of stationary finite-memory sources is .
Thus, since is for stationary
finite-memory sources (see Lemma 4 in the Appendix), the
optimal rates of convergence for and are identical
to first order.

Given a stationary finite-memory source with state space
and conditional distributions , the entropy rate of the
given source is

where, for each , is the probability of state and

is the conditional entropy of given . For any data string
, let denote the empirical distribution over

the states for sequence . Similarly, for each , let
denote the conditional entropy associated with the

empirical distribution on given . Then the “empirical en-
tropy” of relative to state space is defined as

B. A Move-to-Front Code: The Baseline BWT Algorithm

The BWT-based codes described in works like [1]–[3]
present a logical starting point in the analysis of BWT-based
codes. Since all of these algorithms use variations on
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move-to-front coding in describing the BWT output, a descrip-
tion of move-to-front coding follows.

The idea behind move-to-front coding appears in a variety
of works under a variety of names, including the “book stack”
codes of [39], the “move-to-front” codes of [40], [41], and the
“interval” and “recency ranking” codes of [42]. In each case,
the description length of a particular symbol or word depends
on the recency of its last appearance. Symbols used more re-
cently get shorter descriptions than symbols used less recently.
The algorithms differ somewhat in their definitions of recency,
describing either the interval since that symbol’s last appearance
[42] or that symbol’s rank in a list of symbols ordered by their
recency [39]–[42]. More precisely, in describing , at
time , the interval coding encoder describes

while the recency ranking encoder describes

where for any set , denotes the number ofdis-
tinct elements in , and thus . Assuming that the
system memory is initialized with an ordered list of all ele-
ments from alphabet , then the data sequence
may be uniquely derived from either or

. Thus, any lossless code on either the inter-
vals or the recency ranks uniquely describes any .

Given a collection of symbols drawn i.i.d. from some fixed
distribution on source alphabet , the known performance
bounds for codes based on interval and recency ranking strate-
gies are the same [39]–[42]. Nonetheless, for any data sequence

, for all , and, thus, for any code
in which the description length for integeris nondecreasing in
, the description length using a code based on interval coding

cannot be better than the description length using a code based
on recency ranking. Further, themaximalvalue of equals
, which may grow arbitrarily large, while the maximal value of

equals the alphabet size , which is finite and fixed,
a fact that simplifies later arguments. Thus, the discussion that
follows uses recency ranking rather than interval coding.

The move-to-front algorithm considered here uses an integer
code to describe the recency rank of each symbol,

. The chosen integer code is a logical extension of
Elias’ codes [42]. In place of Elias’ codes of lengths

and

this code describes any with bits,
where

The function approximates to
sufficient accuracy for this work. (Here

, ending the sum with its last positive term,
and is chosen to satisfy Kraft’s inequality on the alphabet of
interest.)

The use of an integer code after the BWT and the move-to-
front algorithm differs significantly from the approaches used
in algorithms like [1]–[3], which follow the BWT and move-to-
front algorithm with a first-order entropy code. Since this work
contains no direct analysis of this (extremely popular) entropy
coding approach, a brief digression to compare these alterna-
tives follows. In any move-to-front code—based either on in-
terval coding or on recency ranking—at time, after coding sub-
sequence , there are exactly possible integers that the
encoder might need to describe. These integers (which, in
the case of interval coding, vary as a function of ) describe
the intervals or recency ranks at timeof all characters
and are known to both the encoder and the decoder. If the data
sequence to be compressed happens to be i.i.d., then at timethe
true conditional probability—conditioned on the full history of
the data sequence—of the interval for characterequals .
Thus, for a memoryless source, the best entropy code on the
move-to-front symbols requires memory and achieves perfor-
mance no better than that of the best first-order entropy code
on the original data sequence. In fact, given an i.i.d. source
and a first-order entropy code, move-to-front coding may ac-
tually hurt performance, since the first-order statistics of the
move-to-front symbols may not match the source’s first-order
statistics.

The analysis is more complicated for data sequences with
piecewise-constant distributions. Intuitively, by typically map-
ping more probable characters to low indexes and less prob-
able characters to high indexes, move-to-front coding may ef-
fectively make the distributions of neighboring subsequences
look more similar to each other. The result, then, would be to
decrease the penalty associated with treating neighboring sub-
sequences as if they come from the same distribution. Notice,
however, that this argument only applies when symbols from
different distributions are treated as if they came from the same
distribution. Since any code that takes such an approach on more
than an asymptotically insignificant portion of the data sequence
cannot help but fail the test for universality, this argument sug-
gests that the move-to-front algorithm should, at best, have an
asymptotically negligible benefit for the performance ofuni-
versal codes that employ both the BWT and entropy coding.
Since the combination of the move-to-front algorithm and en-
tropy coding complicates the analysis considerably, this work
contains an analysis of the move-to-front algorithm with in-
teger coding and several analyses of entropy coding without the
move-to-front algorithm but does not treat the move-to-front al-
gorithm with entropy coding.

Combining the BWT with the move-to-front algorithm and
integer coding results in a very simple source coding algorithm.
The BWT gives

BWT

Replacing with the
associated recency ranks yields sequence
from alphabet . Finally, bits
and bits, respectively, suffice for describing
first and then . The decoder reverses
the above procedure. While this algorithm is not universal
when performed on alphabet, it can be made universal by
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applying the algorithm on extensions of with ,
as discussed in [15]–[17]. The proof used here takes a different
approach from the typicality arguments of the earlier works.
The new approach results in a rate of convergence result in
addition to a proof of universality. The following analysis of
the properties of a data sequence created by blocking together
symbols from a finite-memory source plays an important role
in that analysis.

Consider a data sequence drawn from a
finite-memory source with alphabet , state space , and
memory constraint . Blocking the data sequence into-vec-
tors yields a new data sequence
on alphabet . The resulting -vector source is also a fi-
nite-memory source, since the distribution on the next-vector
relies on a maximum of previous -vectors. Next,
consider the number of distinct conditional distributions
for the -vector source. This calculation is less straightforward
since that size relies on the states in the state spacerather
than merely the size of that state space. The number of
distinct conditional distributions in the -vector source is as
small as for some sources but exceeds for others. In
particular, for all , and for all

. Further, .

Theorem 1: The BWT-based source code that combines re-
cency-ranking with an integer code describing integer
with description length and

achieves per-symbol description length

bits per symbol for each . Given a finite-memory source
with unknown state spaceand memory constraint , the
resulting redundancy is

bits per symbol. Given any , applying the above code to
alphabet , where grows with as

yields a weakly minimax universal code with redundancy
bounded as

bits per symbol for all in the class of finite-memory sources.
When is unknown and the growth rate of cannot depend
on , setting

yields .
Proof: For any fixed sequence and any , use

to describe all positions in which symbol

appears in sequence. Following the argument of [42],
the description length of the given recency rank code on se-
quence is bounded as

where is the first-order entropy of the empirical dis-
tribution of . The first inequality results from two applica-
tions of Jensen’s inequality; the second inequality follows from

, since and are in-
creasing; gives the final inequality.

Now recall from (1) that the distribution of contains
subsequences with . Fix an arbitrary ,

and let be the corresponding BWT description. Since
the above analysis uses an arbitrary memory initialization, that
analysis applies to each of the subsequences. In particular,
if describes the transitions between thesubsequences,
then summing up the description lengths for thesubsequences
of and the description length forgives

Taking an expectation with respect to the distribution on
gives
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by Jensen’s inequality. The redundancy of the resulting code is

which approaches a constant greater than zero asgrows
without bound.

Now consider applying the above algorithm to the-vector
data source. To be more exact, first reverse the data sequence

, and then break thereverseddata sequence into -vectors.
(For simplicity, assume that divides evenly.) Notice that
since the distribution of any symbol from the original data se-
quence depends on at most previous symbols, the distribu-
tion on any -vector in the blocked data sequence depends on at
most previous -vectors. Now append an-vector of
end of file symbols and run the BWT on the -vector alphabet.
In this case, the integer portion of the BWT falls betweenand

and the transformed data sequence hassubsequences
with . Using the move-to-front algorithm
(for alphabet ) and an integer code on the data sequence of

-vectors and applying the natural fixed-length binary descrip-
tion to the BWT row index gives a description length satisfying

where is the entropy rate of the vector source cre-
ated by breaking the data sequence into -vectors.
When as and grow without bound, the redun-
dancy (relative to the original source alphabet) of the resulting
code satisfies

for large enough and , where and are nonnegative con-
stants.

If

then satisfies the constraint that
as and grow without bound, and for any

and large enough

while

and, thus, the dominant terms balance. When is unknown,
similar results may be achieved by simply removing the depen-
dence of on . In particular, setting

yields convergence.

While the baseline code is not universal, the code is very
simple, and for practical -values the constant to which the re-
dundancy converges may be benign. The algorithm uses a fixed
integer code with only symbols, and implementation of
the move-to-front transformation, like the BWT, requires only
linear complexity, making the algorithm in space and time
complexity. (Throughout this work, space and time complexity
appear as a single result since most algorithms allow easy trade-
offs between the two.)

In contrast with the baseline algorithm, the extension code
is universal, but the resulting code appears to be more expen-
sive in space and time complexity. In particular, allowing
to grow with as in Theorem 1 gives alphabet size

, a value similar in size to the sequence
length itself.

Applying McCreight’s suffix tree algorithm [36] on the new
larger alphabet results in worst case

space and time complexity. The expected space and time com-
plexity may be considerably lower than these worst case results
for distributions encountered in data sources such as text. In par-
ticular, the expected space and time complexity are proportional
to the number of distinct characters from that appear in
that data stringrather than the number of characters in the al-
phabet itself. Since many combinations of characters never ap-
pear in English text, this number of distinct characters used may
be significantly smaller than .

A second approach for implementing the BWT on alphabet
, proposed by McCreight [36] for use on large alphabets,

involves an alternative hash table implementation of the same
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Fig. 4. The BWT encoding table on alphabetsX andX . The BWT encoding
table on alphabetX may be derived from the BWT encoding table on alphabet
X by deleting those elements that sat in rows 2, 4, and 6 in Step 1.

suffix tree algorithm. The resulting implementation reduces the
memory to , but yields memory even on
small alphabets.

The last approach considered here for implementing the BWT
on alphabet derives from the relationship between the BWT
on alphabet and the BWT on alphabet . Assume that
divides evenly. For any fixed data string , the BWT output
achieved by treating as symbols from may be strik-
ingly different from the BWT output achieved by treating as

symbols from . Yet as Fig. 4 demonstrates, the BWT en-
coding tables are closely related. While the BWT table for
has fewer rows, each row in the BWT table for has a cor-
responding row in the BWT table for . Further, the ordering
of those rows is the same in both tables. As a result, the BWT
for alphabet may be achieved by building a BWT encoding
table on alphabet and then removing all values corresponding
to rows not used for alphabet . This approach yields
space and time complexity. Thus, alphabet extension does not
increase the order of the memory or complexity required.

Nonetheless, several drawbacks of the alphabet extension
procedure persist. In particular, the BWT implementation must
vary as a function of and application of entropy coding (as
in [1] and most of its followers) rather than integer coding
(used here) after the move-to-front algorithm becomes com-
putationally prohibitive for large alphabet sizes. Further, [43,
Theorem 1] shows that applying the move-to-front algorithm
on the th-order extensions yields universal coding perfor-
mance; thus, the BWT is unnecessary for universality given
the th-order extensions. The universal algorithms described
in the remainder of this work use no alphabet extensions and
extremely simple and memory-efficient source codes.

C. Known State Spaceor Memory Constraint

As discussed in Section IV, the BWT sorts the data sequence
of a finite memory source so that all symbols drawn according
to the same conditional distribution are grouped in a single

contiguous subsequence of the transform output. When the
boundaries between those subsequences are known, universal
coding performance on the finite-memory source may be
achieved using a separate universal source code on each
subsequence.

In order to employ a strategy based on the above observation,
it is necessary for the state space to be knowna priori. For this
work, reference to a “known state space” implies that theen-
coderknows the state space in operation; the decoder’s knowl-
edge (or lack thereof) does not affect the algorithm. Note that
the known state-space condition is not as restrictive as it seems
initially. The algorithm considered here achieves performance
approaching the best possible performance achievable using the
model assumed at the encoder. If the encoder estimatesas

, then the resulting algorithm guarantees performance ap-
proaching the best possible performance for a Markov-model
of the given source. (Allowing to grow eventually yields a
code with greater than or equal to the true source memory
constraint .) Further, the encoder has access to the full data
sequence , and thus the encoder canalwaysknow the state
space to arbitrary accuracy given sufficient computational
and memory resources. Thus, the assumption of a known state
space may be matched by practical algorithms that use ei-
ther guesses or estimates of the state space in their encoders. In
this subsection, the space and time complexity of the estima-
tion procedure are not included in the analysis, and statements
of universality apply only when the estimate ofor is ac-
curate. The known state-space assumption applies only to this
algorithm.

Let be drawn from a finite-memory source with
knownstate space . If BWT and

, then com-
prises the subsequences of (1). Givenand the BWT en-
coding table illustrated in Fig. 3, for each the
encoder can immediately determine the boundary between
distribution and distribution in this model. The algo-
rithm achieves universal coding performance by explicitly de-
scribing the boundaries to the decoder and then independently
encoding the subsequences. A variety of codes may be used in
coding the individual subsequence of . The algorithm used
here is an arithmetic code [44] with a Krichevsky–Trofimov
(KT) [25] probability model. The elegance, simplicity, and con-
vergence properties of this sequential code motivate the choice.

Given a probability model for symbols ,
the arithmetic code [44] guarantees a description length
such that

for all possible . The KT estimate uses counters
. Let denote the value of counter after

seeing theth symbol in . Set for each .
Then at each time , increment the counter corresponding
to symbol , leaving the remaining counters unchanged. Thus
for any
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where is the indicator function. The KT probability estimate
equals

This probability is calculated sequentially and used in a sequen-
tial arithmetic code. The sequential probability updates are cal-
culated as

where (the probability of the length zero data sequence)
equals by definition.

By [25], the resulting description length is bounded as

(2)

where is the first-order entropy of the empirical dis-
tribution of . For any drawn from i.i.d. distribution

, taking an expectation gives

by Jensen’s inequality, and thus the redundancy of the KT code
on i.i.d. symbols from distribution is bounded as

Theorem 2: The arithmetic code that uses an independent KT
distribution on each subsequence of the BWT of the reversed
data sequence yields description length

The resulting code is weakly minimax universal over the class of
finite-memory sources and strongly minimax universal over the
class of finite-memory sources with state space size
for some constant . Given a finite-memory source with
alphabet and known state space, the redundancy associated
with this code is bounded as

bits per symbol.
When is unknown but a bound on the source’s

memory constraint is known, then the application of the same
algorithm with state-space estimate gives

bits per symbol for all in the class of finite-memory sources.
Proof: Given , let

BWT

and Denote the
boundary points from (1) by . Since

these boundary points correspond to regions of fixed state or
context in the BWT encoding table and the encoder knows the
contexts, the encoder also knows .

The encoder begins by describing the index valueand the
lengths of the subsequences.3 Rather than describing index

by its natural binary description, the encoder includes the de-
scription of with the description of the subsequence lengths
using the following two-stage code. In the first stage, the en-
coder passes through in order, sending a for each sub-
sequence of that has length one, a for each subsequence of

that has length greater than one, and afor the (length-one)
subsequence of . These descriptions are followed
by , indicating that no more subsequences need be described.
(This inclusion is necessary since the decoder does not generally
know the value of .) Next, the encoder describes the lengths of
all but the last subsequence receiving adescription; for sim-
plicity, each of these descriptions uses the natural
bit expansion of the desired subsequence length. (The last subse-
quence length need not be described since the sum of all subse-
quence lengths must equal the sequence length.) By (1), the re-
sulting description requires no more than

bits to describe both the transition points between
the subsequences and the row index BWT .4

The encoder follows its description of the subsequence di-
vision points with an independent description of each subse-
quence. Let denote the th
subsequence. Then by (2), the per-symbol code length may be
bounded as

since for at most values of . The resulting redun-
dancy is

by Jensen’s inequality and the concavity of .

The rate of convergence described in Theorem 2 differs from
Rissanen’s optimal rate of convergence by a constant factor of

. (The bound given inside the proof is slightly
tighter.) For very small (e.g., a binary source), this factor
grows as large as For text compression using the ASCII al-
phabet, , giving a factor bounded by

3In practice, the encoder would likely intersperse the descriptions of
the lengths of the subsequence with the descriptions of the subsequences
themselves. This modification affects the ordering of the bit stream but not its
content or length.

4More sophisticated (and more complex) boundary point encoders would ex-
ploit the relationships between these boundary points, which are not indepen-
dent. The discussion used here sticks to the simplest approach.
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and nearly optimal performance. The factor shrinks tofor large
alphabets.

The suboptimal constant in the rate of convergence results
from the algorithm’s inefficiencies. Using a code matched to
the statistics of rather than a code matched to the statistics
of or taking advantage of that fact that there exist data
sequences for which the inverse BWT is undefined,
should give better performance.

To its credit, this algorithm achieves very good performance
while remaining both conceptually and computationally simple.
Further, the algorithmic complexity does not grow with or

. In particular, while the above code tracks as many as
distributions, only one distribution is tracked at a time, and thus
the memory and computation requirements for the codes are
independent of and . Since the space and time complexity
of arithmetic coding and the sequential calculation of the KT
estimate are linear in the sequence length, the resulting code
is in memory and computation.

D. A Finite Memory Code

Explicit knowledge or calculation of need not be part of
BWT-based universal codes. The algorithms that follow code

by employing strategies that can deal with the piece-
wise-constant nature of its statistics. While many such algo-
rithms exist, this work treats only three examples, chosen for
their simplicity and their relationship with earlier codes.

The first algorithm results from a very simple observation
about . The bound on the number of dis-
tinct distributions in (1) does not grow with the sequence length

. Further, for large , the length of the subsequence for prefix
should approximate by the law of large numbers. Given

“window” length , suppose that the encoder breaks the
data sequence into consecutive subsequences of length
and uses an independent KT code on each.5 The window length

must grow with so that the per-symbol redundancy on
each length- sequence goes to zero. The growth should be
slow, however, so that the fraction of windows containing two
or more distributions is small. The following theorem bounds
the redundancy achieved using the optimal . This is
instructive for designing “forgetting” mechanisms in practical
codes.

Theorem 3: The arithmetic code that codes the BWT of the
reversed data string using the KT distribution with a fixed-length
finite memory yields per-symbol description length

bits per symbol for each . The resulting code is
strongly minimax universal on the class of finite-memory
sources with and weakly minimax universal on the
class of finite-memory sources. Given a finite-memory source

5An alternative to the above finite-memory approach would be a sliding-
window approach.

with unknown state space and unknown memory constraint
, the redundancy is bounded as

bits per symbol for all in the given class if the choice of the
memory length is allowed to depend on. When the memory
length cannot depend on , the redundancy equation varies by
a constant factor, again giving .

Proof: Given a finite-memory source model, fix
and again let

BWT

and . The encoder
breaks the data sequence into subsequences

, where

.

The encoder uses an independent KT probability model for each
subsequence. Thus, after each samples, the counts
for all reset to and the coding algorithm begins
again. Recall from (1) that the data sequencebreaks into

component subsequences with and at most
subsequences of length greater than one. Thus, for any window
length , at most code sequences contain
samples from more than one distribution. For any such, the
description length for the entire window of symbols is

The total per-symbol description length is bounded as

by (2) and Jensen’s inequality if decays more slowly
than . Choosing

(3)
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gives

Thus,

for all in the given class. While the optimal window length (3)
depends on , setting maintains

.

The above analysis gives worst case results. For many sources
such as text, neighboring distributions in the BWT output often
have similar contexts and thus similar statistics, yielding good
performance even in coding regions overlapping more than one
distribution.

Since this algorithm, like its predecessor, relies only on the
BWT and arithmetic coding, the complexity and memory re-
quirements of the code are again .

E. Coding for Piecewise-Constant Parameters

Next, consider coding the BWT’s output using a code de-
signed for data sequences with piecewise-constant parameters.

In [45], Merhav considers the problem of universal lossless
coding for sources with piecewise-constant parameters, consid-
ering both upper and lower bounds on coding performance. The
achievability argument given in [45] gives a sequential code
yielding

bits per symbol for any and suggests that the result
generalizes from two subsequences tosubsequences to give

Unfortunately, the algorithmic complexity grows exponentially
with for unknown [46].

In [46], Willems suggests two alternative sequential algo-
rithms. The algorithms differ in their performances and their
complexities, giving

where the minima are both taken with respect to the choice of
and with . The space

complexities of the two algorithms grow more slowly than the
time complexities, which are and , respectively.

In [47], Shamir and Merhav describe an algorithm giving

The space and time complexity of their algorithm is .
Even though the results in Merhav [45], Willems [46], and

Shamir and Merhav [47] are for p.i.i.d. sources, it is easy to
check that if (1) holds, then all of their results go through. This
yields Theorem 4. In each case, the redundancy of the earlier
algorithms is increased by due to the need to describe
BWT .

Theorem 4: Coding the BWT of the reversed data string
using

• an algorithm achieving Merhav’s bound yields the rate

and, on a finite-memory source with unknown state space
and unknown memory constraint , redundancy

• Willems’ algorithm yields the rate

and, on a finite-memory source with unknown state space
and unknown memory constraint , redundancy

• Willems’ algorithm yields the rate
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and, on a finite-memory source with unknown state space
and unknown memory constraint , redundancy

• Shamir and Merhav’s algorithm yields the rate

and, on a finite-memory source with unknown state space
and unknown memory constraint , redundancy

These algorithms are strongly minimax universal on the class
of finite-memory sources with and weakly minimax
universal on the class of finite-memory sources.

F. Stationary Ergodic Sources

The approach taken in the following discussion is to model an
arbitrary stationary ergodic source using a Markov model with
memory . As grows without bound, the accuracy of
the model in approximating the true source statistics becomes
arbitrarily tight. As a result, the performance of the BWT-based
source code that uses a finite-memory model designed for state
space converges to the optimal coding performance
for the source in operation. The following discussion treats ex-
pected performance results only since the individual sequence
results given previously require no source model assumption.

Recall that while the definition for universality relies on the
redundancy , discussions in previous sections bound the
rate of convergence of . This choice made the analysis
simpler and caused no harm since
for finite memory sources by Lemma 4. Unfortunately, the same
does not hold for the more general class of stationary ergodic
sources. As a result, the focus in this subsection turns to a third
measure of redundancy, here denoted by and defined as

The stationarity of the source and the fact that conditioning re-
duces entropy give

Thus,

for all in the given class of stationary ergodic sources. Now
for any integer , let

This th-order redundancy bounds the difference between
the per-symbol expected description length for sequence length

and a lower bound on the optimal per-symbol description
length for sequence length on the same distribution.
The difference between and equals

which does not vary with the algorithm in operation.
In [48], Shields proves that for any function such that

, there exists a sourcein the class of sta-
tionary ergodic sources such that

Thus, there do not exist general bounds on (or, con-
sequently, ) for the class of stationary ergodic sources.
Nonetheless, theredo exist bounds on , and the
derivation of such a bound for the BWT-based source
codes discussed in this work appears in Theorem 5. Several
corollaries following the theorem discuss the consequences
of this rate of convergence result for different subsets of
the class of stationary ergodic sources. These subsets are
characterized by bounds on the rate of convergence of

when or the rate of
convergence of for all in the given
class. Any of the algorithms described previously may be used
to effectively code sources from stationary ergodic sources.
The simplest choice is the known state-space algorithm from
Theorem 2.

Theorem 5: Given a stationary ergodic source, applying the
known state-space algorithm of Theorem 2 with state-space
model achieves an th-order redundancy

bounded as

bits per symbol for all in the class of stationary ergodic
sources. Letting and grow without bound yields perfor-
mance approaching the source’s entropy rate provided that
grows more slowly than . Under these
conditions, the BWT-based source code is weakly minimax
universal on the class of stationary ergodic sources.
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Proof: Consider a data sequence drawn from an arbi-
trary stationary ergodic source . Again let

BWT

and , . While (1)
does not apply when the source violates the finite-memory
condition, a similar property applies. In particular, for theth
context of length , the BWT aligns all symbols following
that context into a contiguous subsequence of . Since
the encoder has access to all of the information in the BWT
encoding table, the encoder can determine the start and stop
positions for each of these contexts and can describe them
to the decoder. Applying the argument of Theorem 2 with

gives

yielding th-order redundancy

Obtaining a bound on the rate of convergence of the universal
lossless code requires knowledge of either the rate of conver-
gence of to or the rate of con-
vergence of to as a function of . The
optimal growth rate for as a function of depends on these
rates of convergence, as the following examples illustrate.

Corollary 1: Consider the class of stationary ergodic sources
for which there exists an such that

for all

Using in the algorithm described in Theorem 5,
then for all sufficiently large, , and
thus

This is the case for finite-memory sources.

Corollary 2: Consider the class of stationary ergodic sources
for which for constant
and sufficiently large. Given any , allowing to grow
as

gives a rate of convergence

Corollary 3: Consider the class of stationary ergodic sources
with for constant
and sufficiently large. Given any , allowing to grow
as

gives a rate of convergence

VI. BWT OUTPUT STATISTICS: ASYMPTOTICPROPERTIES

Section V discussed the effect of the BWT on finite-memory
sources, drawing a connection between the distribution of the
BWT output and the family of p.i.i.d. distributions. While this
connection is sufficient for all of the coding results described
in Section V, it does not fully characterize the statistics of the
BWT output. Such a characterization is the topic of this section.
The approach taken here deviates from that of previous sections
by discontinuing the use of the end-of-file symbol.

Consider an arbitrary data sequence . Let
and

BWT BWT

Notice that while BWT is a one-to-
one mapping, BWT is a many-to-one mapping.
More precisely,

BWT BWT

if and only if is a cyclic shift of . To avoid complications
in the notation, fix the value of and—for notational purposes
only—treat the data sequence as if it were periodic with period

, using and as alternative names for for each
. Using this notation, the cyclic shifts of

are , .
For any distribution on alphabet , let be

defined as

Thus, gives all distinct cyclic shifts
of with . For example, if is the uniform
distribution on , then

and

for any nonperiodic .
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Let

BWT

For any random sequence drawn according to distribution
, let

BWT BWT

Then, for any , BWT implies
that the probability that equals is

(4)

For any , .
If describes an i.i.d. source, then

for all . In this case and
BWT together imply

by (4). Since

and

Thus, the distribution of the BWT output is asymptotically close
to an i.i.d. distribution when the input is i.i.d. The bound on

is tight to within an additive constant. For ex-
ample, if is uniformly distributed on , then

giving for some constant.
While the above analysis does not apply directly to sources

with memory, a similar argument applies. If describes a
stationary finite-memory source with memory, state space

, and next-state function , then

where is the stationary distribution on induced by
the given finite-memory source. In this case, (4) implies that for
any and BWT

If the state space is ordered so that for
all , comes before lexico-
graphically, then BWT places all rows beginning with

before all rows beginning with in the BWT en-
coding table. Thus,

where, for each

and .
While it seems appropriate to compare the distribution on

the BWT output to a -p.i.i.d. distribution with the same
random boundary points , defining such a distribution is
difficult. As a result, the analysis that follows treats the distance
between the distribution of the BWT output and an-p.i.i.d.
distribution with deterministic boundary points. The bounds
on the divergence of the output distribution of the BWT and
an -p.i.i.d. distribution with deterministic boundary points

are dominated by a term stemming from the difference
between and .

Consider an -p.i.i.d. data sequence with distribution

where is defined as above, , and

for all

Lemma 1 bounds the normalized Kullback–Leibler distance be-
tween and under the assumption that for all

and all . This assumption is removed
in Lemma 2.
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Lemma 1: Given a stationary finite-memory source for
which for all and , BWT
implies that there exists some constant for which

Proof: Using BWT for

where the first inequality follows from (4) and the log-sum in-
equality and the last inequality follows from Jensen’s inequality.
Note that

since is positive for all and by assumption. For each
, let

Then

by Lemma 5 in the Appendix.

The above argument fails when there exists some and
such that , since in this case there

exists a for which while ,
giving . This problem may be avoided by
comparing to some distribution approximating for
which for all . Specifically, define as

where, for each and

and is defined as described previously.

Lemma 2: Let be drawn from a stationary finite-
memory source. Then BWT implies that there
exists some constant for which

Proof: Using an argument similar to the one previously
given

where . The first logarithm breaks
into a sum of terms, corresponding to thesymbols . Most
of these terms take the form

for some , which is bounded as

The remainder of the terms take the form

where and are distinct probability values with and
. This term is bounded as

Terms of this type can occur in the first symbols of or
in the remaining symbols, where the probability
models rely on different histories. There can be at mostterms
of the first type and at most terms of the
second type. Thus, for all
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since and for all .
Finally, gives

For general stationary ergodic distributions, the distribution
of the BWT output can be compared to the p.i.i.d. distribution
corresponding to the BWT output of anth-order Markov dis-
tribution. Toward this end, let ,
where and are ordered lexicograph-
ically. Define

and

where

for all

Define and as

where

gives the conditional distribution of given the preceding
-tuple and

The proof of the following lemma closely follows the earlier
arguments.

Lemma 3: Let be drawn from a stationary er-
godic source with distribution and entropy rate . Let

. For any such that for all
and all

Further, there exists some sequence such that

Proof: First, consider the case where for all
and for some fixed . Let

. Then

for some constant. Thus,

Dropping the assumption and replacing with
gives

Using gives

Careful choice of gives the desired result.
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TABLE I
RATE OF CONVERGENCE(DOMINANT TERM ONLY) AND COMPLEXITY RESULTS FORBWT-BASED CODES ONFINITE-MEMORY SOURCES. THE THEORETICAL

LIMITS AND CORRESPONDINGRESULTS FORZIV–LEMPEL CODESARE INCLUDED FORCOMPARISON

VII. SUMMARY AND CONCLUSION

The preceding sections describe a variety of universal
lossless source codes employing the BWT. One of these codes
is a minor variation on an existing BWT-based code, while the
other strategies are new. Analyses of the expected description
lengths achieved by these algorithms on both finite-memory
sources and more general stationary ergodic sources yield both
proofs of minimax universality and bounds on the resulting
rates of convergence. Table I summarizes the rates of con-
vergence and complexities of the BWT-based source codes
on finite-memory sources, comparing those results both to
the corresponding bounds for LZ’77, LZ’78, and CTW [49]
and to the optimal rate of convergence. While CTW, like the
algorithms described in Theorems 1–3, requires complexity
that grows only linearly with , that complexity has a hidden
dependence on the memory constraintthat makes the algo-
rithm computationally expensive when is large or unknown.
(In the interest of space, the rate of convergence results give
only thedominant termsin those convergences.) For stationary
ergodic sources, discussed at the end of Section V, BWT-based
codes achieve th-order redundancy

As indicated by these results, the BWT is an extremely useful
tool for data compression, leading to algorithms that yield near-
optimal rates of convergence on finite-memory sources with
very low complexity.

While many of the algorithms considered here use sequential
codes on the BWT output, the overall data compression algo-
rithms are nonsequential since the transform itself requires si-
multaneous access to allsymbols of a data string. (Note that

need not be the length of the entire data sequence, as the algo-
rithm may be applied independently on-blocks from the orig-
inal file.)

APPENDIX

Lemma 4: For any stationary finite-memory source,

Proof: Given a stationary finite-memory source, there ex-
ists some integer such that

Lemma 5: Let be a first-order Markov chain (in
steady state). Let and . Let
the steady-state probabilities be and let be the
number of ’s in . Then there exist constantsand such
that

Proof: The steady-state probabilities are given by
and . Let denote the probability

given . It can be verified that

Since
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where . Finally, implies ,
giving the desired result.
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