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Abstract—The Burrows Wheeler Transform (BWT) is a practical lossless data compression algorithms (e.g., [2]-[7]).
reversible sequence transformation used in a variety of practical To date, the majority of research devoted to BWT-based com-
lossless source-coding algorithms. In each, the BWT is followed by pression algorithms has focused on experimental comparisons

a lossless source code that attempts to exploit the natural ordering . . . )
of the BWT coefficients. BWT-based compression schemes areOf BWT-based algorithms with competing codes. Experimental

widely touted as low-complexity algorithms giving lossless coding results on algorithms using this transformation (e.g., [2], [3],
rates better than those of the Ziv—Lempel codes (commonly known [5]) indicate lossless coding rates better than those achieved
as LZ'77 and LZ'78) and almost as good as those achieved by py ziv—Lempel-style codes (LZ'77 [8], LZ'78 [9], and their
prediction by partial matching (PPM) algorithms. To date, the jagcendants) but typically not quite as good as those achieved

coding performance claims have been made primarily on the basis 2 . . .
of experimental results. This work gives a theoretical evaluation of by the prediction by partial mapping (PPM) schemes described

BWT-based coding. The main results of this theoretical evaluation 1N Works like [10], [11], [2]. BWT code implementation yields
include: 1) statistical characterizations of the BWT output on complexity comparable to that of the Ziv—Lempel codes, which
both finite strings and sequences of lengtih — oo, 2) a variety  are significantly faster than algorithms like PPM [1], [2].

of very simple new techniques for BWT-based lossless source Early theoretical investigations of BWT-based algorithms

coding, and 3) proofs of the universality and bounds on the rates . .
of convergence of both new and existing BWT-based codes for include the work of Sadakane, Ariumura and Yamamoto, and

finite-memory and stationary ergodic sources. The end result is Effros. In [12], [13], Sadakane considers the performance of
a theoretical justification and validation of the experimentally source codes based on a variant of the BWT described in [14]
derived conclusions: BWT-based lossless source codes achieve unignd states that codes based on block sorting are asymptotically
versal lossless coding performance that converges to the optimal i 5| for finite-order Markov sources if the permutation of all

coding performance more quickly than the rate of convergence . .
observed in Ziv—Lempel style codes and, for some BWT-based symbols sharing a common context is random. Sadakane notes,

codes, within a constant factor of the optimal rate of convergence however, that “the permutation in the BWT is not completely
for finite-memory sources. random” but conjectures that the proposed algorithms work for
Index Terms—Burrows Wheeler Transform (BWT), rate of con- BWT-transformed data sequences. In [15]-[17], Arimura and
vergence, redundancy, text compression, universal noiseless sourcéfamamoto present a sequence of information-theoretic results
coding. on BWT-based source coding, demonstrating the universality

of BWT-based codes for finite memory and stationary totally
ergodic sources. In [18], Effros gives an information-theoretic
analysis of both the traditional BWT-based codes considered
T HE Burrows Wheeler Transform (BWT) [1] is a slightlypy previous authors and a collection of new BWT-based
expansive reversible sequence transformation currenglydes introduced in that work. The analysis demonstrates the
receiving considerable attention from researchers interesteqjmversa"ty of each of the BWT-based codes considered and
gives the first rate of convergence bounds for BWT-based
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On sequences of lengthdrawn from a finite-memory source, Hy(X') be thenth-order entropy and entropy rate, respectively,

the performance of the best BWT-based codes convergesofaP;. Thus,

the optimal performance at a rate 6flogn/n), surpassing Hp(X™) = Z [ Py(«™) log Ps(z™)]

the O(loglogn/logn) convergence of LZ'77 [21] and the

O(1/logn) convergence of LZ'78 [22], [23] and the variationgpq

of LZ'77 given in [21]. ThisO(logn/n) convergence comes 1 N

within a constant factor of the optimal rate of convergence for Ho(X) = ,,,h_lfolo n Ho(X™)

finite-memory sources. Note that many of the codes considefgfl each# e A. Given any variable-rate lossless source

here use sequential codes on the BWT output but that t&@dmg strategy for codingu-sequences from¥, for each

overall data compression algorithms are nonsequential singe — (x1, ..., zn) € X", let £,(z™) be the description

the transform itself requires simultaneous access tonall length used in the lossless descriptionzéif with the chosen

symbols of a data string. coding strategy. For ea¢he A, 6,(6) describes the resulting
The paper is organized as follows. Section Il contains a vaxpected redundancy in coding samples from distribuffen

riety of background material, including an introduction to uniThat is,8,(6) is the difference between the expected rate per

versal source coding, a description of the class of stationaryg'ymbmEegn(Xn)/n using the given blocklength-code and

nite-memory sources, and a brief summary of previous univerggé optimal rate per symbdtly(X™)/n for coding n-vectors
coding results for these sources. Section Il contains a deschgm P, thus,

tion of the BWT and a discussion of its algorithmic complexity 1 . 1 .
and memory use. Section IV considers BWT-reordered data se- 6n(0) = — Boln(X") — — Hp(X").

quences for stationary finite-memory sources, focusing on thogesequence of coding strategies, here referred to by their re-
properties needed for efficient coding of the transform outpyyndancy function$s,,(-)}22 ,, is aweakly minimax universal
The description of the BWT output highlights a key charagpssiess source codm A if 6n(8) — 0 for eachd € A and
teristic of this transform: the BWT of a reversed data string strongly minimax universal lossless source code if that
groups together all symbols that follow the same context. Thignyergence is uniform ift [24]. This work focuses primarily
property leads both to the lossless coding strategies used ingheminimax universal lossless source coding. The redundancy
BWT-based codes discussed in Section V and to the asympteggy|ts derived in this work are, however, all achieved by first
analysis of the statistical properties of the BWT output given #hding deterministic bounds on the source coding rate. These
Section VI. Section V describes the family of BWT-based codegterministic bounds characterize the code performance on se-
and proves the universality and rate of convergence of each &QIenceX" in terms of the “empirical entropy” ak " relative to
both finite-memory sources and stationary ergodic sources. T\@istribution model approximating the true underlying source
rate of convergence results on finite-memory sources range frgfgtistics. The result is a stronger characterization of the code
O(y/logn/n) for the codes requiring the least memory anderformance than that given by the expected redundancy alone.
computation ta(log n/n) for a slightly more complex BWT- | [24], Davisson describes a minimax universal lossless code
based algorithm or a BWT-based code in which the encodsy the class of stationary, ergodic sources using a construc-
usesa priori information about the source memory. Thus, eveibn due to Fitingof. Davisson’s argument demonstrates the ex-
the simplest new BWT-based code gives a rate of convergeng@nce of minimax universal lossless source codes and estab-
faster than that of either of the Ziv—Lempel algorithms, whilgshes the rate of convergence&f(#) to zero as a second-order
the BWT code with the fastest rate of convergence achieves—i@asure of performance for minimax universal lossless source
within a constant factor—the optimal rate of convergence. Segdes. Rissanen and others extend Davisson’s results for finitely
tion VI treats the question of statistical characterization of ﬂlﬁarameterized sources and quantify the condition of second-
BWT output considered in [19], demonstrating the convergenggjer optimality in universal lossless source coding [25]-[29].
to zero of the normalized Kullback—Leibler distance betwegty, any class\ of sources smoothly parameterized Kyreal
the BWT output distribution and a piecewise independent aRgmpers, the optimal rate of convergence &f/2) log n/n is
identically distributed (p.i.i.d.) source distribution. A summaryoven achievable to withi®)(1/n) for almost allf € A [27],
of results and conclusions—including a comparison of the Pgps).
formance, complexity, and memory use of BWT-based algo-This work focuses first on the problem of minimax universal
rithms and Ziv—Lempel codes—follows in Section VII. lossless source coding for stationary finite-memory sources.
A review of the class of unifilar, ergodic, finite-state-machine
(FSM) sources is useful to the discussion that follows. An FSM
source is defined by a finite alphabat, a finite set of states
Il. BACKGROUND AND DEFINITIONS S, |S| conditional probability measuregp(-|s)}scs, and a
next-state functiorf: S x X — &§. Given an FSM data source
Auniversal lossless source code is a sequence of source Cafi&$ an initial statesy, the conditional probability of string

" E‘Yn

that asymptotically achieves the optimal performance for evegy — 4, ..., z, € A" givens, is defined as

source in some broad class of possible sources. Making this no- n

tion more precise requires some definitions. Pr(z"|s¢) = Hp(xi|si_1)
Consider any clasgPs: 8 € A} of stationary ergodic sources i=1

on finite source alphabet. For eactd € A, let Ho(X™) and wheres; = f(s;—1, z;) forall1 <i < n.



EFFROSet al: UNIVERSAL LOSSLESS SOURCE CODING WITH THE BURROWS WHEELER TRANSFORM 1063

The class of FSMX sources [30], also called finite-order FSMsed in the conditional distributions. This increaséSh may
sources, is the subset of the class of FSM sources for which theagise significant performance degradation, since the rate of
exists an integef/ such that for every > M, the M most convergence results described in Section V grow \#th
recent symbols;;MJr]L uniquely determine the state at time In[28], Rissanen considers universal source coding for binary
i. For FSMX sources, the sétis defined by a minimum suffix FSM sources when the numbél of states is unknown. In that
set of strings fromt™ with the property that for every € & work, he demonstrates the existence of universal source codes
and every: € X such thap(x|s) # 0, the stringsz has exactly for which 6, (¢) approaches zero &k5|/2)log n/n + O(1/n)
one suffix inS. Thus, for any FSMX source, for almost all# and demonstrates the optimality (to within
0O(1/n)) of the achieved rate of convergence when the given

F(simy, #i) = suf (si2),  forall model is the most efficient model for the chosen source. In
wheresuf (sz) denotes the suffix of the string achieved by corthis casef = (p(1]s): s € &) describes the distribution
catenating symbat to the end of string. Py, and thus,K = [S] andA C R¥, giving the familiar

FSMX sources inherit from FSM sources the condition th&#(/2)logn/n + O(1/n). For more general finite alphabets,
the current state is a function only of the current source symbf§l = |S|(|X'| — 1) gives the number of parameters needed to
and the previous state;(= f(s;_1, x;) for all i). This condi- describe the conditional probabilitiegz|s) for all but one
tion is both restrictive [31] and unnecessary for this work. As\@lue ofz € & and all values of € S. The optimal algorithm
result, the restriction is dropped, yielding a class of generaliz&#@verses the entire data sequence to determine the optimal
FSMX sources, here called finite-memory sources after [38stimate ofS and then describes the data sequence using the
For any finite-memory source, there exists a minimum suffigosen estimate. In the same work, Rissanen conjectures the

setS of strings fromA’™* and an integei/ such that optimality of a related sequential algorithm for estimatifig
" during the encoding procedure rather than in a separate pass
Pr (arnlx(i(,w_l)) - Hp($i|37‘,—1) through the entire data sequence prior to coding. A flaw in that
i} algorithm is pointed out in [31] by Weinberger, Lempel, and

Ziv, who also present an alternative to Rissanen’s algorithm for
universal source coding of FSMX sources wkttownmemory

si—1 =suf (mi_pr, Tim(vu—1), -5 Tic1), for all <. constraintM. The algorithm computes and sequentially up-

) i _ . dates an on-line estimate 8fduring the coding process. The

The state variable§s; } are variable-length strings descr'b'ngresulting code asymptotically achieves Rissanen’s optimal
the finite “context” of previous symbols on which the curren K/2)logn/n rate of convergence for FSM sources using a
symbol’s distribution depends. For stationarity, the symbo, quential coding strategy. When'is known, this strategy
Xpm+1, Xopry2, .., Xo should be drawn from the sta-oq,ces the maximal coding delay from in Rissanen’s
tionary d's”'b““_o_” on A" induced by the finite-memory code toO(logn). The number of arithmetic operations used
source model, giving grows linearly with bothA/ andn». The same results apply to
finite-memory sources.

and

Pr(z") = p(=™) ] pwilsic)
=Ml . THE BWT
wherep(z"") is the stationary distribution oA’ induced by

the given finite-memory source. operates on a sequencesofdata symbols to produce a per-

Th_e _class of f|n|te-mempry sources dlscusse_d here IS MYfBited data sequence of the same symbols and a single integer
restrictive than the class introduced in [32]. Like the flnltel-n (1

memory sources described here, the finite-memory sources
of [32] describe the probability of the next symbol using a BWT,: X" — X" x {1, ..., n}
conditional distribution that depends on no more than some . . .
maximal number of previously coded symbols. Unlike th enote thex-dimensional BWT function and

finite-memory sources described here, the finite-memory BWTCD: A x {1,..., n} — &7

sources of [32] do not require all contexts of lendgthto ' '

comprise exactly the previodssymbols in the data string. Thedenote the inverse of BW.I Since the sequence lengthis
variable and noncontiguous contexts of [32] create considé&ident from the source argument, the functional transcript is
able difficulties for BWT-based algorithms, and are therefof¥pically dropped, giving

excluded. Thus, the class of finite-memory sources described , » _ n —1/.n _.n

here is a subset of the earlier defined class. Notice, though, that (v, u) =BWT (=) and BWITD(y", u) ="

any source meeting the broader definition for finite-memorjhe notations BWE and BWTy denote the character and in-
sources but not requiring context variation across symbols migger portions of the BWT, respectively.

also be modeled within the definition of finite-memory sources The forward BWT proceeds by forming allcyclic shifts of
considered here, with the caveat that the resulting contigudhe original data string and sorting those cyclic shifts lexico-
model might require more states than its predecessor. Tgigphically. The BWT output has two parts. The first part is a
increase inS| results from the fact that prior symbols cannolength+ string giving the last character of each of the (lexico-
be rearranged anib| is affected by the length of the historygraphically ordered) cyclic shifts. The second part is an integer

The BWT [1] is a reversible block-sorting transform that
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Step 1: Find each cyclic shift of the Table construction: For ¢ =1,...,n — 1,
given data sequence. Step (3¢ — 2): Place column n in front of columns
Step 2:  Order the cyclic shifts (rows) 1,...,6—1.
lexicographically. Step (3¢ — 1): Order the resulting length-i strings
Step 3: Output the last column of the lexicographically.
given array and the row index Step 3i: Place the ordered list in the first ¢
of the original data sequence. columns of the table.
i =1) (i=2)
Step 1 (
1 Sl 23 [A[5] 3
l1||bfala --- bfbalanl| an b
2ls b a n a n a
2| nfalla n| na| an || an n
3)]la s b a n a n
2T a2 s b a n a 3|lni|ala n (| na |l as || as n
4| s | bl b s || sb || ba || ba s
5/a n a s b a n
5/afn|n a | an || na || na a
6|ln a n a s b a
T2 5 a 5o a s b 6llaln|n a | an || na || na a
71 al s| s a| as || sb || sb a
Ll Step 2 | Step 3 | =3 T=3)
ljja n a n a s bj b 7 8 ] 9 0 11 ] 12
2|a n a s b a n n
1 || ban || ana || ana---b || bana || anan || anan.--b
3la s b a n a n n
2 nan ana ana- - -n nana anas anas- - -n
4|/lb a n a n a s S
3 || nas || asb || asb---n || nasb || asba | asba---n
5|n a n a s b a a
4 || sba || ban || ban.--s || sban || bana || bana---s
6 |ln a s b a n a a
5 ana nan nan- - -a anan nana nana- - -a
7s b a n a n a a
6 || ana || nas || nas---a || anas || nasb || nasb---a
Fig. 1. The BWT of the sequence “bananas.” The original data sequence 7 || asb || sba || sba---a || asba || sban || sban---a
bold) appears in row 4 of the ordered table (Step 2); the final column of that tat
contains the sequence “bnnsaaa.” HeBd& T'(bananas= (bnnsaaa4). (i =5) (i =16)

I3 [ 14 [ 15 16 [ 17
describing the location of the original data sequence inthe ¢ [T [l banan || anana || anana--b | banana || ananas
dered list. An example giving the BWT of the word “bananas [2 | nanas || anasb || anasb-n || nanasb || anasba
appears in Fig. 1. HerBWT'(bananas= (bnnsaaa4).1 3 | nasba || asban || asban--n || nasban || asbana

For the BWT to be aeversiblesequence transformgtion, it 2 | sbana || banan || banan--s || sbanan || banana
must be possible to reconstruct the full table of lexicograpl "5 "anana || nanas || nanas—a || ananas || nanasb
ically ordered cyclic shifts using on_Iy the last cqlumn of th¢ "6 T anasb || nasba || nasba-a || anasba || nasban
table (the BWT output). Intuitively, this reconstructlo_n procee_d 7| asban || sbana || sbana-a || asbana || sbanan
column by column as follows. By the table construction, the fir:
column of the table is an ordered copy of the last column of t -

. . ; ( = 6, cont.)

table. Thus, thdirst column reconstruction requires only an al- 15
phabetization of the list found in the last column. To reconstru

the second column, notice that each row is a cyclic shift of eve 1 ananasb
other row, and hence that the last and first columns together p 2 anasban
vide a list of all consecutive pairs of symbols. Ordering this lis 3 asbanan
of pairs yields the (first andjeconctolumn(s) of the table. Re- 4 | bananas
peating this process on triples, quadruples, etc., sequentially 5 nanasba
produces all columns of the original table. The transform inde 6 nasbana
indicates the desired row of the completed table. An example 7 sbanana

the inverse BWT of the pair (bnnsaaa, 4) from the example in
Fig 1 appears in Fig 2 HerBWT—l(bnnsaaazl) — bananas. Fig- 2. The inverse BWT for (bnnsaaa, 4). The table is initialized with
'h'l he ab d o f1h lucid h " bnnsaaa in columm. Row 4 of the final table is the inverse BWT:

W ile t e above e_scrlptlon of the BWT eluci ates the agyy7-1(bnnsaaad) = bananas.

gorithm, implementation of the forward and inverse transfor-

mation in the above manner would be impractical for long se- o .

quence lengths. Practicalimplementations of the BWT requiré2lgorithms that are efficient in both time and space. As a re-

sult, a number of variations on the BWT appear in the literature.

1A variation of the BWT appends a unique “end-of-file” symbol to the enttor example, the data may be passed through a run-length pre-

of the data sequenag*. The algorithms used for coding employ the end-of-file | | . fth h hich
symbol, as discussed in Section IV. The computational complexity results for EOCESSOr to replace long strings of the same character (which,

BWT assume a suffix-tree implementation, which uses an end-of-file symboin addition to their obvious redundancy, cause longer sort times)
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with run-length descriptions. Further, maximal sort lengths are | Step 1 Step 2 | Step 3 |
sometimes imposed, with ties broken based on positioninthe | 1 [[sananab§|[ab§sanan n
original string. Descriptions of some of these variations and [ 2 [[§sananab | anabg§san n
their performances appear in works like [1], [33]-[35], [7], [4]- 3 b§sananal ananab§s s
While the choice of sorting technique used in any practical im- 4] ab§sanan|b§sanana a
plementation should depend on the system priorities for thatap- [ 5 [ n a b §sana||nab§sana a
plication, for the sake of simplicity, complexity and memory re- 6 |anab§san|nanab§sa a
quirements given here refer to the first (of several) implemen- 7 3 hab§sa | sananab§ §
tations of the BWT described by Burrows and Wheeler in [1]. 8 ananab§s| §sananab b

The chosen implementation uses the suffix tree algorithm de-
scribed in [36], which achieves(n) worst case complexity and rig. 3. The BWT of(sanana$) = (R(bananas). The end-of-file symbol
memory results. § & X ‘is ordeted last lexicographically. Hetg"t! = nnsaagb, U = 7,
The BWT achieves dataxpansionrather than data com- 2 = § andi" = nnsaaab.
pression. How then do algorithms working in the BWT domain
yield such good performance—complexity tradeoffs? Roughdymbols from the same conditional distribution, creating a
speaking, the BWT shifts the source redundancy caused tignsformed data stream on which codes designed for p.i.i.d.
memory to a redundancy caused by a nonequiprobable adirce statistics yield excellent performaAcéA string is
nonstationary first-order distribution. called C-p.i.i.d. if it is formed by concatenating togethér
Early BWT-based codes (e.g., [1], [37], [33], [34]) capitalizéndependent and identically distributed (i.i.d.) data streams.)
on the observation that the BWT tends to group together loiipe BWT's sorting properties are described precisely below.
strings of like characters (see, for example, Fig. 1), thereby p©eding results inspired by these properties are introduced
ducing a string that is more easily compressed than the origifalSection V. A more complete statistical characterization of
data sequence. Since the table’s last column had the least ihe BWT output and its relationship to p.i.i.d. data streams is
pact on the ordering of the table’s rows and is thus—in songensidered in Section VI.
sense—théeastordered of all columns, it is tempting to con- Consider a stationary finite-memory source with alphabet
sider using some other column of the code table as the BVgate spaces, and next-state functiopuf (-). Given X™ =
output. Unfortunately, for general strings and sequence lengtis,, X, ..., X, drawn according to this distribution, [Et* =
the last column is the only column that yields a reversible tran®{X ™) and
formation. These observations together motivate a variety of
alternatives to the BWT, such as the algorithms described in
[3], [6], where modifications in the table generation techniques
allow for use of earlier table columns. where§ ¢ X denotes an “end-of-file” symbol not found in
While the argument that the last column of the BWT tablthe original source alphabet arigl,: X — X™ is the time-
has the least impact on the ordering of the table rows is indigversal operator. Thu§;” = (17,...,Y,) = (X, ..., X1),
putable, the supposition that the last column should thereforedoed Z™*+* andU are the BWT-reordered data sequence and row
the “least ordered” of all columns in the BWT table seems to faidex, respectively, of the reversed data string modified by an
when the data sequence derives from a finite-memory souread-of-file symbol.
For example, according to this perspective, the columns of theThe end-of-file symbol alleviates “edge effects,” separating
BWT encoding table—taken from left to right—should appeghe beginning and end of the data stream in each cyclic shift and
progressively less ordered. Yet text files and other data typbereby avoiding problems where the contexts of the fifst
well-modeled as finite-memory sources fail to demonstrate trigmbols appear to contain characters from the end of the data
property. In particular, the last column almost always appeaseam. The use of the end-of-file symbol results in no expansion
more ordered—with long sequences of like characters—thiareither the sequence length or the alphabet siZ8l6tI’y and
the columns that closely precede it (see Fig. 1). Understandimgkes the sequenc& ! unique. More specifically, since alll
this paradox requires a better understanding of the BWT outglsta strings must now end with the end-of-file symbol/it=
whenX™ is drawn according to a finite-memory distribution. BWTx,(Y™§), then theZ;; must equal. Further can appear
nowhere else inZ"t!. Thus, the data string™ is uniquely
characterized by eithez™** or (W™, U), where

(Z"H, U) = BWT (Y"§) = BWT (R(X™)8§)

IV. THE BWT ON FINITE-MEMORY SOURCES
wn" = (Zl, ey Lu—a, ZU+1, . Zn+1) e A",

Lexicographical ordering of the rows of the BWT table
groups together all cyclic shifts ak™ that begin with the Anexample fotX™ = bananas appears in Fig. 3, givilg" =
same string. As a result, the BWT output, which describes thesaaab. In this example, symbappears to come from a con-
character that precedes the given string in each row, groupst ending with the end-of-file symbd@lrather than the char-
together symbols that precede like stringsiift. Performing acters found at the end of the data stream.
the BWT on a reversed data string groups together characters
that follow like strings—i.e., characters with a common con- 2The same property is shared by the output of the BWT without time reversal,

text. In finite-memory sources, this process groups togetherdiscussed later in this section.
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Recall thatS is the state space for sourdé®, andsuf (-)

is the corresponding next-state function. Defiffeto be the

modified suffix set given by

S/:SU{(§7 le"'in):

i<M/\[(Xj,...

where M is the memory bound, and letf’ () be the suffix

operator forS’. Let

X)) gSV1I<j<i]}

Q={R(s):s€8} and Q ={R(s):se 8}

and usepre (-) andpre’ (-) to indicate the prefix operators fa

and ', respectively. Assume that the prefixes@f are given
by @ ={q, &5, - .., g}, whereg{, ...

icographically and” = |Q'| = |S'| < |S| + M. _ _ :
The symbols ofX™ arrange intaC’ contiguous substrings in bynqn on the BWT output d_emongtrates, for a variety of input

W™ so that theith substring contains all characters with contex§istributions, that the normalized divergence between the output

’R(q]’»). Since§ appears only once in the data string, each pref.ggstrlbutlo.n qf the BWT arjd a p.!.|.q. dlst_r|but|on_ is asymptot-

¢ € Q' N Q° begins in the leftmost column of the BWT taplgcally vanishing; we consider this issue in Section VI. A few

exactly once. As a result, the substring associated with any stigfnarks are useful before proceeding with those results.

¢ contains exactly one element. Foregaoh {1, ..., C + 1},

define’; as

n j—1

T =1+ Y 1(suf’(

i=1 k=1

j—1

§X7) = R(dh))

=14 1(pre' (¥7"8) = q3)-

=1 k=1

, ¢ are ordered lex-

The substringWr,, ..., Wz, 1 contains all characters;

that precede; in Y, or, equivalently, all character¥; that
occur in contexR(¢;) in the original data streati ™. As noted
earlier,T; 4+, — T; = 1 for all j such thay; € @ N Q°, and,

thus, |{j: Ty — 75 > 1}] < |5].

Since the mappings betweeti” and Y™ and Z"™t! and

(W™, U) are all one-to-one

Pr(W™, U) = Pr(Z") = Pr(Y") = Pr(X")

=p(X{") [ p(Xilsuf(X{™))
1=M+1

n

= [ p(ibsut X))

i=1

= Hp(YHR(pre/(Y;ll §))

=1

C Tjp1—1

=11 II »W:ilR(g))

j=1 i=T;

C Tjpi—1

=11 II »wo)

j=1 i=T;

wherep; (z) = p(z|R(q})) andp(z|s’) = p(z|s2, ...
anyz € X and anys’ = (§, so, ...

L, s,) €S 'NSC.

)

, sy for
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rate. First, (1) implies tha&c((W", /) = (w™, u)) = 0 for all
(w", u) for which

(wiyeo oWy, 8, Wy ooy wy), W) E{BWT(y"8):y" € X"}

Second, (1) describes the probability (%™, I/); the proba-
bility of W™, given by
n—+1
Pr(W™) =" Pr(W", U = u)
u=1

is greater than or equal tec(W™, U/). Nonetheless, the deci-
sionin [18] to codéV ™ using codes designed for-p.i.i.d. data
strings is well motivated, and none of the results of [18] require
that the source is actualty-p.i.i.d. Section V gives the deriva-
tions for all of these results. The analysis from [19] of the distri-

Remark 1: While the idea of reversing the data string®
prior to transformation is conceptually useful, string reversal is
not necessary to obtain an equation of the form given in (1). This
assertion follows from [38], which proves that the time reversal
of any finite-memory source yields another finite-memory
source. As a result, for any data sequeiige Xo, ... drawn
from a stationary finite-memory distribution for which the
reversed data string has minimum suffix setand memory
constraintd/, if (2™, ) = BWT (X"§) and

Wn = (Z, ..., Zir_1s Dirins - Dng1)
then there existé’ < || + M, {5,}_,, and

1=T1 < <Tp =n+1
such that{j: 7;1, — T; > 1}| < |§| and

. . & it .
e, U) = [ T #:W)-

i=l i,

Note, however, thatS| is not necessarily equal ti@| [38].
Since rate of convergence results—including the optimal rate
of convergence results described in Section ll—typically de-
pend on the number of states in the model, the optimal rate of
convergence for the forward finite-memory source model may
differ from the optimal rate of convergence for the reverse fi-
nite-memory source model. This observation reminds us that
while the(|S|(|X| — 1)/2) logn/n bounds from below the rate

of convergence achievable using a finite-memory source model
with |S| states, proving this rate of convergence optimal for the
underlying random process requires proof that there does not
exist an equivalent model with fewer tha$| states. This work
follows the approach found throughout the universal coding lit-
erature and bounds the performance achieved subject to a par-
ticular source model. Thus, the data striki§g may be thought

of as either the original data sequence or its reversal. Since the

While (1) resembles the distribution of a p.i.i.d. data strearffinite-memory source model” refers to the model &, the
the statement tha?’™ is C-p.i.i.d. [18, Lemma 1] is not accu- time-reversal step is left in the algorithmic description. Equiv-
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alent results for the time-reversed source apply immediatalgpendent codes for describifigand W™. Assuming that the
when running the algorithms without time reversal. decoder knows the sequence lengththe natural(|log(n +

Remark 2: As shown in (1), the BWT of the data string (orl)J + 1)-bit binary expansion suffices for describibg (When

N : A tge decoder does not know the sequence length descrip-
its time-reversed equivalent) is similar in distribution to asortetlon of length2 log n -+ O(log log n) bits suffices for describin
list of i.i.d. samples with a number of parameter changes c gih=log n 087087 g

om- . . !
parable to the number of states in the finite-memory source. 'I%??th. [ andn.) While the BWT 'S extrem_ely computatlona_llly

. : - . efficient and most of the algorithms considered use very simple
BWT achieves this property anyfinite-memory source inde-

pendent of the suffix sef and without any required priori sequential codes to describe the BWT output, none is a sequen-

knowledge of the state space in operation. In particular, the Pea—l code.

sults described in the section that follows hold for Hestfi- 5 Finite-Memory Sources

nite-memory source model for the source in operation, and the_ . . . . ’
bounds of this best model dominate. First, consider the question of universality on the class of fi-

nite-memory sources. Most of the algorithms considered here
Remark 3:1n addition to its direct source coding ramifi-achieve universality on this class of sources withauriori

cations, (1) also lends insight into the characteristics of gogflowledge of the memory constraihf (as in algorithms such
source models for common data types such as text. Applyigg [31]) or state spacs.
the BWT to text data sets tends to yield long strings of like The rate of convergence results for finite-memory sources use
characters. Combining the statistical property described by ¢hg redundancy expression
with this experimental observation suggests that the conditional 1
distributions found in the finite-memory source model for text Ap(0) = — Egb(X™) — Ho(X)
tend to have very narrow supports. While some short contexts "
achieve narrow supports (e.g., the letter “q” is almost alwayather than the expression
followed by the letter “u” m_Enghsh text), most short contexts 82(8) = Epl(X™)/n — Ho(X™)/n
may be followed by many different characters. Thus, the preva-
lence of narrow supports suggests that long context lengtiged in Section Il. (Heréd,(X') denotes the entropy rate of
are in effect in data types such as text. As a result, algorithisgurceFs.) Note that
that achieve good performance on sources with long contexts . ,
and condition%l distpributions with narrow supports sh?)uld take An(t) = 6n(6) + (Ho(X")/n — Hy(X))
precedence over algorithms lacking these properties. and recall that the optimal rate of convergenceé,af¥) on the
class A of stationary finite-memory sources &(logn/n).
Thus, sinceHy(X™)/n — Hg(X) is O(1/n) for stationary
finite-memory sources (see Lemma 4 in the Appendix), the
The BWT, as a reversible transformation, cannot affect tl@%ﬂmm rates of convergence 6;(6) andA.,(6) are identical

shortest description length achievable in lossless compressighirst order.
of samples from a particular source model. It can, however,Gjven a stationary finite-memory source with state spSice

make achieving that performance less computationally taxinghd conditional distributiongp(x|s)}, the entropy rate of the
This goal motivates the following discussion, containingjen source is

introductions to and analyses of a variety of BWT-based source

coding strategies for achieving universal source coding perfor- Hy(X) = Z s H (ps)

mance on stationary finite-memory sources. All but one of the s€S

strategies and all of the rate of convergence results considejgskre, for each € S, , is the probability of state and

here were originally described in [18]. The remaining strategy,

treated first, is a variation on the BWT-based lossless source H(p,) = — Z p(z|s)log p(z|s)

code in common use for practical coding. Information-theoretic vEX

analyses, including proofs of universality and bounds Qg the conditional entropy of given s. For any data string

the associated rates of convergence, play central roles hgre.c x», |et {#.(z™)} denote the empirical distribution over

Discussions of the complexity and memory requirements aff states € S for sequence™. Similarly, for eachs € S, let

also included. H(p,(z™)) denote the conditional entropy associated with the
Recall from (1) that(Z"+!, U) = BWTy(R(X™)8) for empirical distribution ont’ given s. Then the “empirical en-

someX™ drawn according to ajf|-state finite-memory source tropy” of ™ relative to state spac® is defined as

V. UNIVERSAL LOSSLESSSOURCE CODES

andW" = (Zl, cees Zu_1, ZU+1, caey Zn+1) lmplles that
Ue{l,...,n+1}and Hy 5(X) =Y #(@™) H(ps(z"))-
s€S
C Tipa1—1
Pr(W", U) = H H pj(Wi) B. A Move-to-Front Code: The Baseline BWT Algorithm
j=1 =T

The BWT-based codes described in works like [1]-[3]
with C < |S§|+ M and no more thafS| subsequences of morepresent a logical starting point in the analysis of BWT-based
than one character each. The algorithms considered here useades. Since all of these algorithms use variations on
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move-to-front coding in describing the BWT output, a descrip- The use of an integer code after the BWT and the move-to-
tion of move-to-front coding follows. front algorithm differs significantly from the approaches used

The idea behind move-to-front coding appears in a varieiy algorithms like [1]-[3], which follow the BWT and move-to-
of works under a variety of names, including the “book stacKktont algorithm with a first-order entropy code. Since this work
codes of [39], the “move-to-front” codes of [40], [41], and theontains no direct analysis of this (extremely popular) entropy
“interval” and “recency ranking” codes of [42]. In each case;oding approach, a brief digression to compare these alterna-
the description length of a particular symbol or word dependises follows. In any move-to-front code—based either on in-
on the recency of its last appearance. Symbols used moretegval coding or on recency ranking—at timeafter coding sub-
cently get shorter descriptions than symbols used less recergquence\ 1, there are exactlj’| possible integers that the
The algorithms differ somewhat in their definitions of recencgncoder might need to describe. Th¢a# integers (which, in
describing either the interval since that symbol’s last appeararthe case of interval coding, vary as a function\df*) describe
[42] or that symbol’s rank in a list of symbols ordered by theithe intervals or recency ranks at timef all characters: € X

recency [39]-[42]. More precisely, in describing, ..., z,,at and are known to both the encoder and the decoder. If the data
time ¢, the interval coding encoder describes sequence to be compressed happensto be i.i.d., then attime
true conditional probability—conditioned on the full history of
fine (1) = min{k > 1: 2, 4 = z;} the data sequence—of the interval for charactequalsp(z).
] ] ) Thus, for a memoryless source, the best entropy code on the
while the recency ranking encoder describes move-to-front symbols requires memory and achieves perfor-
. . . . mance no better than that of the best first-order entropy code
Fur(@) = Hans 0 = fine(0) <k < 4} on the original data sequence. In fact, given an i.i.d. source

where for any sei C X, |A] denotes the number afs- {0, EEEE RO 0 e of the
tinct elements in4, and thus|.4| < |X|. Assuming that the y P ' N
move-to-front symbols may not match the source’s first-order

system memory is initialized with an ordered list of all ele-, .~ .
statistics.

ments from alphabet’, then the data sequence, z», ..., z, o . .

may be uniquely derived from eithef,. (1) Fins(n) oOF The analysis is more complicated for data sequences with
nt s ++ s JInt . . . . . . .

Fue(1)s ... fue(n). Thus, any lossless code on either the intep_!ecewse—constant distributions. Intuitively, by typically map-

vals or the recency ranks uniquely describes &hye A, ping more probable characters to low indexes and less prob-

Given a collection of symbols drawn i.i.d. from some fixe(ibéteiv(;?arri(:gsﬂt]% r:jl%?rilgjtiegsg’oTﬁ\é?-thol;gz:t Csoudb'gg Tzzcjé
distributionp(x) on source alphabeX,, the known performance k m()J/re similar to each other. The rgsult th%n wou?d be to
bounds for codes based on interval and recency ranking strA = j ' :

gies are the same [39]-[42]. Nonetheless, for any data seque ggrease the penalty associated with treating neighboring sub-
X, Xo Fucli) > F, (i).for all i and ,thus for any code sequences as if they come from the same distribution. Notice,
’ 3 =y Jint = Jrr ] ] ’

in which the description length for integgis nondecreasing in however, that this argument only applies when symbols from

7, the description length using a code based on interval codi gi{ﬁﬂ;g:tg%gs aég;;et?zdt:feg ;huimcﬁge fr%”;;ﬁi:amrzfe
cannot be better than the description length using a code base ' y pp

on recency ranking. Further, theaximahvalue of . () equals than an asymptotically insignificant portion of the data sequence

1, which may grow arbitrarily large, while the maximal value OFannot help but fail the test for uniyersality, this argument sug-
Fu(i) equals the alphabet siz&’|, which is finite and fixed, gests that the move-to-front algorithm should, at best, have an

a fact that simplifies later arguments. Thus, the discussion tﬁ%t?’sn;rézzcei"?hgfgeﬁ%e ?J%TﬁfLLfeO:BU\IIGT F;?]r;c’g:te:gcefza.n
follows uses recency ranking rather than interval coding. v ploy Py Ng.

The move-to-front algorithm considered here uses an inteqselpCe the combination of the move-to-front algorithm and en-

code to describe the recency rank of each synibig) i € ropy coding complicates the analysis considerably, this work

{1, .... n}. The chosen integer code is a logical extension (ﬁpntains an analysis of the move-to-front algorithm with in-

C . eger coding and several analyses of entropy coding without the
Elias’ codes [42]. In place of Elias’ codes of lengths move-to-front algorithm but does not treat the move-to-front al-
Li(5) = 1+ 2|log(4)] gorithm with entropy coding.

. . ) Combining the BWT with the move-to-front algorithm and
andLy(j) = 1+ [log(7)] + 1 + 2[log([log(7)] + )] jnieger coding results in a very simple source coding algorithm.

this code describes any> 1 with L3(j) < Gs(log(y)) bits, The BWT gives

where (Z™T U) = BWT (R(X™)8).
G3(z) =z +log(x + 1) + 2log(log(x + 1) + 1) + 3. ReplacingW™ = (Zy, ..., Zu_1, Zu41, .., Zp) With the
associated recency ranks yields sequefigél), ..., fi(n)
The functionLz(j) approximatesL..(j) = log"(j) + ¢ to from alphabet{1, ..., |X|}. Finally, |log(n + 1)] + 1 bits
sufficient accuracy for this work. (Hedeg™(j) = log(j) + and> ! ; Ls(f..(¢)) bits, respectively, suffice for describing
log(log(j)) + - - -, ending the sum with its last positive termfirst I/ and then f..(1), ..., fi:(n). The decoder reverses

andc is chosen to satisfy Kraft's inequality on the alphabet dhe above procedure. While this algorithm is not universal
interest.) when performed on alphabgf, it can be made universal by
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applying the algorithm on extensiod$™ of & with m — oo, x € X appearsin sequencé. Following the argument of [42],

as discussed in [15]-[17]. The proof used here takes a differéimé description length of the given recency rank code on se-
approach from the typicality arguments of the earlier workguencev™ is bounded as

The new approach results in a rate of convergence result in

addition to a proof of universality. The following analysis of I Z Z La(fex(4)

the properties of a data sequence created by blocking together TEX ieN (z)

symbols from a finite-memory source plays an important role S fuli)

in that analysis. <G [NV ()] log | 1<V @)
Consider a data sequencé,, X», X, ... drawn from a =N ; Sl T IV

finite-memory source with alphabet’, state spaceS, and

memory constraind/. Blocking the data sequence into-vec-

tors yields a new data sequence(", X, X_é”,’,’jﬂ, —nGs | HB™)

on alphabett¥™. The resultingm-vector source is also a fi-

nite-memory source, since the distribution on the mextector

relies on a maximum of M /m] previousm-vectors. Next, N (z)] 1 ,

consider the numbélS,,| of distinct conditional distributions + Z —log | ~ Z e

for them-vector source. This calculation is less straightforward

since that size relies on the states in the state spacher R |X|
<nGs < (B(v™)) +log <1 + —))

zCX iCN(x)

than merely the size of that state space. The numfigt of

distinct conditional distributions in the:-vector source is as

small as|S| for some sources but exceed for others. In <nGs <H(é(vn)) 1 | log 6)
particular, |Sm| < |SM| for all m, and|Sm| |SM| for all

> M. Further,|Sy| < |[XM| = &M, . , , o
= . [Sar} < ] = 1] whereH (6(v™)) is the first-order entropy of the empirical dis-

Theorem 1: The BWT-based source code that combines redibution of v™. The first inequality results from two applica-
cency-ranking with an integer code describing integer 1 tions of Jensen’s inequality; the second inequality follows from
with description lengttLs(j) < Gs(logj) and Yicn( (i) £ n + |X], sinceGs(-) andlog(:) are in-

Gs(z) = 2 + log(z + 1) + 2log(log(z + 1) + 1) + 3 creasinglog(1l +a) < aloge gives the final inequality.

Now recall from (1) that the distribution ¢¥¥' ", /) contains

C subsequences withl < ||+ M. Fix an arbitraryz™ € X,
(S| +M)|x] c) and let(w™, ) be the corresponding BWT description. Since
n & the above analysis uses an arbitrary memory initialization, that
log(n+1) 1 analysis applies to each of tif¢ subsequences. In particular,
5 T, if {T;} describes the transitions between tiesubsequences,
bits per symbol for each” € X™. Given a finite-memory source then summing up the description lengths for¢hsubsequences
with unknown state spacgand memory constraifit/ < oo, the 0f w™ and the description length far gives

achieves per-symbol description length

Z'n,(x ) S G3 <Hé(l,n7s)(X)+

n

resulting redundancy is c
n A T;01—1
An(0) < log(He(X) + 1) + 2log(log(He(X) + 1) + 1) £o(2™) <Y (Tjq1 — T))Gs <H (9 (wTj ))
j=1
+3po(loer .
|
n +———-loge ) +login+1)+1
bits per symbol. Given any > 0, applying the above code to Liv1 = 1;
alphabetY™, wherem grows withn as c
_ log(nloglogn/(|8u(logn)?)) <nGo | Y I (0 (w0 7))
o log | X| i=1
yields a weakly minimax universal code with redundancy o|X|
bounded as + loge | +log(n+1)+1

1 log loe loe
An(6) < (1+(1+ ¢)log | X)) Og LY < oglog Ogn>

logn
bits per symbol for alp in the class of finite-memory sources. <nGs <H@(w",s)(2‘)
When|S | is unknown and the growth rate of cannot depend +log(n +1)+1.
on |Sxr|, setting

MHX
QS )
n

_ log(nlog log n/(logn)?) Taking an expectation with respect to the distributionh

log ] gives
yields A,,(8) < O(loglogn/logn). Ealn(X™) < nGs <H0(X) L s+ M)l bgC)
Proof: Forany fixed sequeneé' € X" and anyr € X', use - n

N(z) C {1, ..., n} to describe all positions in which symbol +log(n+1)+1
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by Jensen’s inequality. The redundancy of the resulting code islf

AL(0) <log(He(X)+ 1) + 2log(log(He(X) + 1) + 1) _— 1 log < nloglogn )
+3+O<10g”> log | X (|Snm] +2)log elogn

_ then|X'|™ /n = O(loglog n/logn) satisfies the constraint that
which approaches a constant greater than zere. @gows |x|™ /n — 0asm andn grow without bound, and for any> 0

without bound. andn large enough
Now consider applying the above algorithm to thevector (|‘§M| + M/m+ 1)|X|" loge

data source. To be more exact, first reverse the data sequence
X", and then break theverseddata sequence inta-vectors. .
(For simplicity, assume that: dividesn evenly.) Notice that _ < nloglogn ) (|Sp]+ 14+ M/m)loge

n

since the distribution of any symbol from the original data se- (|8a] + 2) log elogn
guence depends on at magt previous symbols, the distribu-
tion on anym-vector in the blocked data sequence dependsonat loglogn

n

most[ M /m] previousm-vectors. Now append an-vector of 7 logn

end of file symbolg and run the BWT on thex-vector alphabet. While

In this case, the integer portion of the BWT falls betweemnd logm loglog (ﬁ%) — loglog ||
n/m+1and the transformed data sequencediasbsequences m - 1 log log

with C < |S,,,| + [M/m]. Using the move-to-front algorithm Tog [X] 198 ((|$M|+2) 10gelogn)

(for alphabet¥™) and an integer code on the data sequence of loglog

m-vectors and applying the natural fixed-length binary descrip- < log ||

tion to the BWT row index gives a description length satisfying , logn/(1 +¢) A
and, thus, the dominant terms balance. Wign| is unknown,

Egl,(X™) 1 |n . similar results may be achieved by simply removing the depen-
n < nlm G | Hp(X™) dence ofm on |Sy|. In particular, setting
. m = log(nloglogn/logn)/log|X|
m | + M DX |™ log .
+ (Sm] + /m/+ Y] Oge) yieldsO(loglog n/logn) convergence. O
n/m

where Hy(X'™) is the entropy rate of the vector source cr
ated by breaking the data sequeiite Xs, . ..intom-vectors.
When|X|™/n — 0asm andn grow without bound, the redun-
dancy (relative to the original source alphabet) of the resulti
code satisfies

A, (6)

<

+1og(ﬁ+1)+1
m

(|$A4| + M/m+1)|X|"loge

1
+ —log <H9(A’m) +1
m

n

+

n/m

2
+ —log <10g <H9(Xm) +1
m

+

(|Sn| + M /m + 1)| X" log e

n/m

(|Swr|+M/mA1)| X" log ¢

<

+

logm
& +

n

2loglogm logn
2 10Z + 2

m

m

n

c/

m

(ISns] + M/m + 1)|X|™ 10ge>

)+Q+%

While the baseline code is not universal, the code is very
simple, and for practical-values the constant to which the re-
dundancy converges may be benign. The algorithm uses a fixed
integer code with onlyX’| symbols, and implementation of

€he move-to-front transformation, like the BWT, requires only
linear complexity, making the algorith(n) in space and time
complexity. (Throughout this work, space and time complexity
%pear as a single result since most algorithms allow easy trade-
offs between the two.)

In contrast with the baseline algorithm, the extension code
is universal, but the resulting code appears to be more expen-
sive in space and time complexity. In particular, allowimg
to grow with» as in Theorem 1 gives alphabet siZg|”™ =
O(nloglogn/logn), a value similar in size to the sequence
length itself.

Applying McCreight’s suffix tree algorithm [36] on the new
larger alphabet results in worst case

O(|X|™n) = O(n?loglogn/logn)
space and time complexity. The expected space and time com-
plexity may be considerably lower than these worst case results
for distributions encountered in data sources such as text. In par-
ticular, the expected space and time complexity are proportional
to the number of distinct characters frgdi|™ that appear in
that data stringrather than the number of characters in the al-
phabet itself. Since many combinations of characters never ap-
pear in English text, this number of distinct characters used may
be significantly smaller thajt|™.

A second approach for implementing the BWT on alphabet

for large enoughn andn, wherec andc’ are nonnegative con- X, proposed by McCreight [36] for use on large alphabets,

stants.

involves an alternative hash table implementation of the same
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Alphabet: X = {a,b,n} contiguous subsequence of the transform output. When the
Output: ~ BWT(banana) = (nnbaaa, 4) boundaries between those subsequences are known, universal
[ [ Stepl ] Step 2 | Step 3 | coding performance on the finite-memory source may be
l[[bananalabanan(2) n achieved using a separate universal source code on each
2||abanan||anaban (4) n subsequence.
3|nabana|ananab(6) b In order to employ a strategy based on the above observation,
4lanaban| banana (1) a it is necessary for the state space to be knavgmiori. For this
5 |nanaba||nabana(3) a work, reference to a “known state space” implies thatehe
6||ananab |nanaba (5) a coderknows the state space in operation; the decoder’s knowl-
edge (or lack thereof) does not affect the algorithm. Note that
Alphabet: X2 = {aa,ab,an,ba,bb,bn,na,nb,nn} fch_e_ known state-space cond_ition is not as re_strictive as it seems
Output: BWT(banana) = ((na,na,ba), 1) initially. The algorithm con_S|dered here ach|eve_s perform_ance
| ” Step 1 ” Step 2 ” Step 3 | approaching the best possible performance ach|evat_)le using the
model assumed at the encoder. If the encoder estintats
l|ba na najba na na na A'™, then the resulting algorithm guarantees performance ap-
2|/na ba na|na ba na ha proaching the best possible performance for a Markomodel
S3|na na bajna na ba ba of the given source. (Allowingn to grow eventually yields a

Fia 4 The BWT dina tabl ohabatand 2. The BWT g code withm greater than or equal to the true source memory

1g. 4. e encoding table on alphal 5110 P il e encoding .

table on alphabet’? may be derived from the BWT encoding table on alphabeqonStra'nM') Further, the encoder has access to the full data

X by deleting those elements that sat in rows 2, 4, and 6 in Step 1. sequenceX ™, and thus the encoder calwaysknow the state
spacesS to arbitrary accuracy given sufficient computational

, . o . and memory resources. Thus, the assumption of a known state
suffix tree algorithm. The resulting implementation reduces “},'}:f)aces may be matched by practical algorithms that use ei-
memory toO(nlogn), but yieldsO(n log n) memory even on

ther guesses or estimates of the state space in their encoders. In
small alphabets.

. . . this subsection, the space and time complexity of the estima-
The last a?,ﬂroa?h considered herg for mplementmg the B ion procedure are not included in the analysis, and statements
on aIphabeR) derives from the relatlonsrlllp between the BWT universality apply only when the estimate §for M is ac-
on _alphabeﬂ and the BWT on alphab_el’ . Assume thatn curate. The known state-space assumption applies only to this
dividesn evenly. For any fixed data string®, the BWT output

. o m .~ algorithm.
achieved by treating™ asn,/m symbols from™ may be strik- ) o X1, X, ... be drawn from a finite-memory source with

ingly different from the BWT output achieved by treatint) as knownstate space. If (Z*+1, U) = BWT (R(X")$) and
n symbols fromX. Yet as Fig. 4 demonstrates, the BWT eNprn _ (z Z.v 7 ’ Zoir), then W™ com-
coding tables are closely related. While the BWT table¥ot e o theci’s.libéeqbu;zceg J;c’('l')' ’Gicg nd the BWT en-
has fewgr Fows, _each row in the BWT table R™ has a cor- coding table illustrated in Fig. 3, for eaghe {1, ..., C'} the
responding row in the BWT table fot'. Further, the Orde”ng\@]codercan immediately determine the boundasy; between
of those rows is the same in both tables. As a result, the B - . : .

. o ’ _ "distribution p; and distributionp;4; in this model. The algo-
for alphabetY™ may be achieved by building a BWT encodlngr 'DUtion p, Istrioutionp;4+1 In thi g

tabl Iohabet’ and th . llval di ithm achieves universal coding performance by explicitly de-
able on aipha and then removing afl values correspon Ingcribing the boundaries to the decoder and then independently
to rows not used for alphabé&t™. This approach yield&(n)

. } . encoding the subsequences. A variety of codes may be used in

space and time complexity. Thus, alphabet e_xtensm_n does @8&ing the individual subsequenceldf. The algorithm used

mcl\rleasehthle order of th‘la (rjnemt()) ryli) ' ccf)mr? IeX||t yhreguwed. here is an arithmetic code [44] with a Krichevsky—Trofimov
onetheless, several drawbacks of the alphabet extens R‘f) [25] probability model. The elegance, simplicity, and con-

procedure pers!st. In particular, _the.BWT |mpIementat_|on m érgence properties of this sequential code motivate the choice.
vary as a function of, and application of entropy coding (as

, : ] _> Given a probability modeP,.(z") for symbolsz;, ..., z,,
in [1] and most of its followers) rather than integer codlng{;he arithmetic code [44] guarantees a description lefigth™ )
(used here) after the move-to-front algorithm becomes co ich that

putationally prohibitive for large alphabet sizes. Further, [43,

Theorem 1] shows that applying the move-to-front algorithm (a™) < log(1/Po(z™)) + 2

on the mth-order extensions yields universal coding perfor- ’ ‘

mance, thus, the BWT is unnecessary for universality giveg, 5| possiblez”. The KT estimateP, (z") uses|X'| counters
the mth-order extensions. The universal algorithms describgq(x): z € X}. Letr;(z) denote the value of countefz) after
in the remainder of this work use no alphabet extensions aggbing thath symbol inz™. Setro(z) = 1/2 for eachz € X.

extremely simple and memory-efficient source codes. Then at each timé > 1, increment the counter corresponding
to symbolz;, leaving the remaining counters unchanged. Thus
C. Known State Spacg or Memory Constraini/ < L for anyi > 0
As discussed in Section IV, the BWT sorts the data sequence i

of a finite memory source so that all symbols drawn according ri(z) = 1
to the same conditional distribution are grouped in a single 2 1
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wherel(-) is the indicator function. The KT probability estimatethese boundary points correspond to regions of fixed state or

equals context in the BWT encoding table and the encoder knows the
" contexts, the encoder also kno®éw™).
P =] "r—1(2) ) The encoder begins by describing the index valuend the
P m;y r—1(2) lengths of theC’ subsequencésRather than describing index

u by its natural binary description, the encoder includes the de-
This probability is calculated sequentially and used in a sequestription of« with the description of the subsequence lengths
tial arithmetic code. The sequential probability updates are cabking the following two-stage code. In the first stage, the en-

culated as coder passes througft*! in order, sending 80 for each sub-
‘ i rio(m) sequence ab™ that has length one,1d for each subsequence of

Po(z") = Pe(z"77) W w™ that has length greater than one, ari@ #or the (length-one)
wex ot subsequence, = § of "1, These descriptions are followed

0 - by 01, indicating that no more subsequences need be described.
whereF(a) (the probability of the length zero data sequenc?)%,his inclusion is necessary since the decoder does not generally
equalsl by definition. o _ know the value of”.) Next, the encoder describes the lengths of

By [25], the resulting description length is bounded as 5 byt the last subsequence receivingladescription; for sim-
|X]—1 plicity, each of these descriptions uses the nat{itgin| + 1
bit expansion of the desired subsequence length. (The last subse-
" P || —1 qguence length need not be described since the sum of all subse-
< —log Po(a") < nH(8(z")) + —5—logn+c (2) quence lengths must equal the sequence leny®y (1), the re-
whereH (6(z™)) is the first-order entropy of the empirical dis-SUItIng descrlptlon réquires no more tl’&(ms|.—i_.M+2.)+(|S| N
tribution of ™ € A™. For anyX ™ drawn from i.i.d. distribution 1)(log 7+ 1) bits to describe both Fhe transition pomti between
Py, taking an expectation gives the C subsequences anc_i the rovv_m_deac BWTrn(R(2™)§).4 _
4
. The encoder follows its description of the subsequence di-
LEyH(O(X™))— Hy(X) <0 vision points with an independent description of each subse-

o . ence. Lew; = wr., wr,41, ..., wr, ,—1 denote thejth
by Jensen’s inequality, and thus the redundancy of the KT co ’ oy i
oi/\ ii.d. symbolgfromydistributioﬁ is bounded aZ Sl?bsequence. Then by (2), the per-symbol code length may be

nH(B(z")) + logn — ¢

bounded as
|X] — 1 logn 1
An(0) < —5— ——+0[ . INCS
n

Theorem 2: The arithmetic code that uses an independent KT 1. & R ¥ —1
distribution on each subsequence of the BWT of the reversed S n Z {|"’J|H(9('wj)) + log [w;] + C}
data sequence yields description length J=1

Lua™) 8104 +1) ) 1 (8- 1) "

ni\x , ogn -

T < Hyyo o)+ ST L8 +0<g>. n

: : - : [SIAx1+1) logn 1
The resulting code is weakly minimax universal over the class of < Hp(,n (&) + <f -1 0 +0 n
finite-memory sources and strongly minimax universal over the
class of finite-memory sources with state space gie< K since|w,| > 1 for at most|S| values of;. The resulting redun-
for some constank’ > 1. Given a finite-memory source with gancy is
alphabett” and known state spacg the redundancy associated

i i i Xl +1 log 1
with this code is bou;de; as1 1 1 A(6) < <|S|(| 2| +1) 1) g1 <_>
3 n n
Ay  SURFD Tozn <_)
n n
by Jensen’s inequality and the concavity-ef log x. O

bits per symbol. . . )
Whens is unknown but a bound/ < L on the source’s T he rate of convergence described in Theorem 2 differs from

memory constraint is known, then the application of the sanfdssanen’s optimal rate of convergence by a constant factor of

algorithm with state-space estimate= X’ gives (I¥]+1)/(]x[=1). (The bound giveninside the proof is slightly
’ tighter.) For very smal|X| (e.g., a binary source), this factor
An(8) < [ X7 (X[ +1) logn +0 <l> grows as large a3. For text compression using the ASCII al-
2 n n phabet|X’| =128, giving a factor bounded b$29/128 =1.008
bits per sy.mb(.)l for iIP in the class of finite-memory sources. 3In practice, the encoder would likely intersperse the descriptions of
Proof: Givenz™, let the lengths of the subsequence with the descriptions of the subsequences
ntl " themselves. This modification affects the ordering of the bit stream but not its
(2", w) = BWT (R(z™)8) content or length.
dwt = h 4More sophisticated (and more complex) boundary point encoders would ex-
and w" = (Z1, ..., Zu—1; Zusl; -5 Znt1). DeNOte the o ihe relationships between these boundary points, which are not indepen-

boundary points from (1) b§'(w™) = (T1, ..., Tc4+1). Since  dent. The discussion used here sticks to the simplest approach.
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and nearly optimal performance. The factor shrinksfar large  with unknown state spacg and unknown memory constraint
alphabets. M, the redundancy is bounded as
The suboptimal constant in the rate of convergence results
from the algorithm’s inefficiencies. Using a code matched t - logn loglogn
the statistics of¥™ rather than a code matched to the statistic%"(e) < V(ISI=1)(1¥1-1)log 4] n +O<\/n logn)
of Z™*! or taking advantage of that fact that there exist data ) ] ) )
sequences” € X™ for which the inverse BWT is undefined,b'ts per symbolifor alb in the given class if the choice of the
should give better performance. memory length is allowed to depend {#]. When the memory
To its credit, this algorithm achieves very good performandgndth cannot depend ¢4, the redundancy equation varies by
while remaining both conceptually and computationally simpl&@ constant factor, again giviny,, (¢) < O(y/logn/n).
Further, the algorithmic complexity does not grow wijg{ or Proof: Given a finite-memory source model, fix' € A™
M. In particular, while the above code tracks as marjgas )/~ 2nd again let
distributions, only one distribution is tracked at a time, and thus
the memory and computation requirements for the codes are
independerjt ort9|.andM. Since the space and timg complexity, \y ,n  _ (%1, s Zuts Zutts- -+ Zns1). The encoder
of grlthmetlc <_:od|ng and the sequential calculatlor_1 of the Kgreaks the data sequeneé into subsequences;, vs, . ...
estimate are linear in the sequence lengtthe resulting code v where
is O(n) in memory and computation. /)l

(2", u) = BWT (R(2")§)

D. A Finite Memory Code

Explicit knowledge or calculation of need not be part of

BWT-based universal codes. The algorithms that follow co
Zn-l—l

v, = {wz‘;—(’ll;w(n)_i_l’ 1<i< fn/w(n)]
Wi ey E= [n/wn)].

) > ‘ . df‘?]e encoder uses an independent KT probability model for each
by employing strategies that can deal with the PieC&ypsequence. Thus, after eactn) samples, the counts()
wise-constant nature of its statistics. While many such alggy; 4| € X reset tol/2 and the coding algorithm begins
rithms exist, this work treats only three examples, chosen fQ{;ain. Recall from (1) that the data sequencebreaks into
their simplicity and their relationship with earlier codes. C component subsequences With< |S| + M and at mos}S]|

The first algorithm results from a very simple observatiogpsequences of length greater than one. Thus, for any window
aboutW™. The boundC < |S| + M on the number of dis- lengthw(n) > 1, at mostS| — 1 code sequences contain

tinct distributions in (1) does not grow with the sequence 'enggémples from more than one distribution. For any sughhe
n. Further, for largen, the length of the subsequence for pref"&escription length for the entire window of symbols is
s should approximate(s)n by the law of large numbers. Given

“window” length w(n), suppose that the encoder breaks the A Xl-1

data sequence intE) )consecutive subsequences of lerfgth blos (i) < o[ H(6(vs)) + % log |us| + ¢
and uses an independent KT code on €athe window length x| -1
w(n) must grow withn so that the per-symbol redundancy on <w(n)log|X|+ 5 logw(n) + c.
each lengtho(n) sequence goes to zero. The growth should be

slow, however, so that the fraction of windows containing twdhe total per-symbol description length is bounded as
or more distributions is small. The following theorem bounds

the redundancy achieved using the optiméh). Thisw(n)is  £,(z™) 1 A X -1,
instructive for designing “forgetting” mechanisms in practical™ ,, ~ = > o DMH(Q(”"/)) + 5 log v + c}
codes =t
' log(n +1)+1
Theorem 3: The arithmetic code that codes the BWT of the - n
reversed data string using the KT distribution with a fixed-length o
finite memory yields per-symbol description length < Z MH(é(wj)) n (IS] = Dw(n)log | X|
o) = '
("
" SH@(J}”,S)(X)—'_\/(|$|_1)(|X|_1)10g|x| n || — 1 logw(n) of L
2 w(n) w(n)
/10gn+0<10g10gn> (n)
. — win
n vnlogn :Hé(m717$)(2\’)+(|$|—1)log|X|T
bits per symbol for eackk™ € A™. The resulting code is + X[~ 1 logw(n) + O< 1 )
strongly minimax universal on the class of finite-memory 2 w(n) w(n)

sources withS| < K and weakly minimax universal on the

class of finite-memory sources. Given a finite-memory sourb (2) and Jensen’s inequality 1f/w(n) decays more slowly

¢ anlogn/n. Choosing
1 || —1

5An alternative to the above finite-memory approach would be a sliding- wlin)y= =, /—" = Jnloegn 3
window approach. (n) 2V (IS] = 1) log | X 5 )
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gives n C(X[+1) 1Y)logn L0 1
ba(a™) VST= DX = 1) log [ X] 2 2) n n
< H.
" S Hp(pn g)(X) + 5
logn  log(nlogn) + ¢ 6D (") AN~ T =Ty (5 (et
<V w T Valen i GG )
Jj=
=H, X
i, ) (V) o(x|+2) .\ logn 1
logn + 2 —1 n +O| -
+V/(IS] = D)(1X] — 1)log |X]
loglogn where the minima are both taken with respect to the choice of
© Vvnlogn )’ CandT¢*t with1 =73 <--- < Tcyy = n+ 1. The space

complexities of the two algorithms grow more slowly than the

Thus, time complexities, which ar®(»?®) andO(n?), respectively.
logn loglogn In [47], Shamir and Merhav describe an algorithm givin
8,(6) =TT DAl [ "+ 0 (EZEL) - (47 gorithm giing
n vnlogn K%l)(a:")
for all  in the given class. While the optimal window length (3)—
depends onsS|, settingw(n) = v/nlogn maintainsA,,(6) = c
O(y/logn/n). | < min [Z Tip, - 15 H (é (x?}lfl))
. . N n 7
The above analysis gives worst case results. For many sources j=1

o L o N log log
have similar contexts and thus similar statistics, yielding good + 0 <M> .
performance even in coding regions overlapping more than one "

distribution. . . . . 9
Since this algorithm, like its predecessor, relies only on tr;lzahe spacrc]e an(r:i] t|rr]ne corr1|p|gxny ofrt1he|r aIgont.rlllnﬂézn )-
BWT and arithmetic coding, the complexity and memory res Eve_n though the results in Mer av [45], Wi ems .[46]’ and
quirements of the code are agaitn). hamir angl Merhav [47] are for p.|._|.d. sources, it is easy _to
check that if (1) holds, then all of their results go through. This
yields Theorem 4. In each case, the redundancy of the earlier

algorithms is increased Hyg n/n due to the need to describe
Next, consider coding the BWT's output using a code dgwT,(R(X™)§).

signed for data sequences with piecewise-constant parameters. ) )
In [45], Merhav considers the problem of universal lossless 1neorem 4:Coding the BWT of the reversed data string

coding for sources with piecewise-constant parameters, cons$fd"9

ering both upper and lower bounds on coding performance. The * an algorithm achieving Merhav’s bound yields the rate

achievability argument given in [45] gives a sequential code

such as text, neighboring distributions in the BWT output often . <C(|X| 1) ~ 1) log 7
n

2

E. Coding for Piecewise-Constant Parameters

yielding b (") < Hypo () + |5|(|/‘2| +1) logn 40 <l)
£, (x™) ) T—-1__ .~ 74 n—T+1 " " "
2 < min HO(z; 7))+ — - .
n 1<T<n+1| n n and, on a finite-memory source with unknown state space
R logn 1 S and unknown memory constraifd, redundancy
-H(e(a:’%))} + |X| +0 <—)
" n A (8) < |S|(|X] + 1) logn O 1\
bits per symbol for ang™ € A™ and suggests that the result n(0) < 9 n + n/’

generalizes from two subsequenceg§’tsubsequences to give

n C m .
fn(l' ) < min 11]-1'1 111 H(9 (‘T;j‘Fl_l))

n TC £ n i
J=1

« Willems’ O(n?) algorithm yields the rate

[SI(|X]+1) 1\logn 1
H(x’l,S)(X)—i_( 5 +§ " +0 o

H.
<C(|X|+1) _1> logn O<l) n
2 n n)’ and, on a finite-memory source with unknown state space

Unfortunately, the algorithmic complexity grows exponentially S and unknown memory constraiff, redundancy
with n for unknownC' [46]. )

In [46], Willems suggests two alternative sequential algo- AL (0) < <w + 1) logn +0 <l> :
rithms. The algorithms differ in their performances and their 2 2 n n
complexities, giving

3

£, (™)

IA

 Willems’ O(n?) algorithm yields the rate
C

o9 (zm) Tipr—Tj (sl 10—
il < mi ST g (6 (Tt Lo (z™ S|(|X|+2)\ log 1
. ; n (0(27) (;)SHW,S)(X)JF(' |(|2| )> =240 <5>
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/

and, on a finite-memory source with unknown state space ~ lim 1 Ho(X™) + n —n Hy(X| X"
& and unknown memory constraifd, redundancy n’—oo | 1/ n/
. 1 1 ,
A (6) < (110X £2)) logn ) (1Y <L Bt (X7) — lim = Ha(X™)
- 2 n n n niooo
=A,(6).
 Shamir and Merhav'®)(n?) algorithm yields the rate Thus

£, (x™) [S|(]X]+ 1)\ logn _

2 < H g+ (20 s 60(6) < 5.(6) < A4 (6)

Lo loglogn for all  in the given class of stationary ergodic sources. Now
for any integenn, let

and, on a finite-memory source with unknown state space 8, ) (0) = 1 Eolp(X™) — Ho(X | X™ 1),
S and unknown memory constraifd, redundancy n
, This(n, m)th-order redundancy bounds the difference between
An(8) < <|S|(|A| + 1)> logn +0 <bglﬂ> ) the per-symbol expected description length for sequence length
2 n n n and a lower bound on the optimal per-symbol description
length for sequence lengitx < n on the same distribution.
3PRe difference betweef, (#) andé,,, . (6) equals

These algorithms are strongly minimax universal on the cl
of finite-memory sources withS| < K and weakly minimax B
universal on the class of finite-memory sources. 6n(0) = O(n,m)(0) = Hp(Xn|X™ 1) — Hy(X,| XY

m—1
F. Stationary Ergodic Sources < Ho(Xm [X™77) — Hy(X)

The approach taken in the following discussion is to model d¥hich does not vary with the algorithm in operation.
arbitrary stationary ergodic source using a Markov model with !N [48], Shields proves that for any functigrin) such that
memorym — 1. As m grows without bound, the accuracy oflimn—co p(n) = 0, there exists a souregin the class of sta-
the model in approximating the true source statistics beconfary ergodic sources such that
arbitrarily tight. As a result, the performance of the BWT-based ) 5.(0)
source code that uses a finite-memory model designed for state lim Sup p(n) =
space|X|™~! converges to the optimal coding performance )
for the source in operation. The following discussion treats exUS: there do not exist general bounds &) (or, con-
pected performance results only since the individual sequerRGUENtY.5.(6)) for the class of stationary ergodic sources.
results given previously require no source model assumptior“or_]etheless’ therelo exist bounds onb,, ,,,(6), and the

Recall that while the definition for universality relies on thél€rivation of such a bound for the BWT-based source
redundancys,,(¢), discussions in previous sections bound thgodes discussed in this work appears in Theorem 5. Several

rate of convergence ak,, (). This choice made the anaWSiScorolIaries following the theorem discuss the consequences

simpler and caused no harm sindg (8) — 6.(6) = O(1/n) of this rate of convergence result for different subsets of

for finite memory sources by Lemma 4. Unfortunately, the san]ilée class_ Ofd stbatlokr;ary dergodlc hsources. :’hese subsets a;e
does not hold for the more general class of stationary ergo&?&arade”fnefl y oounds on t E rate o corr:vergencfe o
sources. As a result, the focus in this subsection turns to a thffd(Xm|X™ ) — He(X|-X"™ %) whenm < or the rate o

- m—1 H R
measure of redundancy, here denoted bi) and defined as  CONVergence oy (X, | X™%) — Ho (') for all 6 in the given
class. Any of the algorithms described previously may be used

to effectively code sources from stationary ergodic sources.
The simplest choice is the known state-space algorithm from

1
5n(0) = ~ Epl,(X™) — Ho( X, | X™71).

The stationarity of the source and the fact that conditioning r&n€orem 2.

duces entropy give Theorem 5: Given a stationary ergodic source, applying the
" known state-space algorithm of Theorem 2 with state-space
5, (0) = 1 Eol (X™) — 1 ZHB(Xi|Xi_1) model A™~! achieves an (n, m)th-order redundancy
" nia 8(n, m)(6) bounded as
1 1 . XX 1) logn | (1™
- ny _ = | <
< n Eoln(XT) n ;He(XZ|X7‘,—n+1) 6(nml)(9) = 2 n +0 n
bits per symbol for all® in the class of stationary ergodic
= Bl (X™) — Ho(X,| X" 1) sources. Lettingn andn grow without bound yields perfor-
f mance approaching the source’s entropy rate providednthat
=6,(0) grows more slowly thaog(n/logn)/log|X|. Under these

N conditions, the BWT-based source code is weakly minimax
Bl (XT) universal on the class of stationary ergodic sources.

SRS
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Proof: Consider a data sequen&é drawn from an arbi- gives a rate of convergence
trary stationary ergodic sourdg,. Again let 3 1
6,(0) < 0n(8) < c(14+(1+¢)log|X|) —.

(2", U) = BWT (R(X")5) togn

and W?" = (Zi, ..., Zu_1, Zusts -+ Zns1). While (1) Corollary 3: Consider the class of stationary ergodic sources

does not apply when the source violates the finite-memofjth H(Xm|_mel) — H(X) < clogm/m for constant > 0
condition, a similar property applies. In particular, for gt @ndm sufficiently large. Given any > 0, allowingm to grow
context of lengthn — 1, the BWT aligns all symbols following &S

that context into a contiguous subsequebe of W". Since 1 [ 2|X|cenloglogn

the en_coder has access to all of the qurmatlon in the BWT m= log | X 08 <(|X| + 1)10g2n>

encoding table, the encoder can determine the start and stop

positions for each of these contexts and can describe thgives a rate of convergence

to the decoder. Applying the argument of Theorem 2 with B loglogn
S = ym1 gives On(0) < 6,(0) < (14 (1+¢)log|X]|) Togn .
Egﬁn(a:")
n VI. BWT OUTPUT STATISTICS. ASYMPTOTIC PROPERTIES
< 1 E, Z [|WJ|H(é(Wj)) + & -1 log |W;| + ¢ Section V di;cussed the e_ffect of the BWT on fiqite-_memory
(L 2 sources, drawing a connection between the distribution of the
B logn BWT output and the family of p.i.i.d. distributions. While this
+ (X" =1 connection is sufficient for all of the coding results described
1 in Section V, it does not fully characterize the statistics of the
< H(X|X™ Y+ (X" (| X +1) — 2 logn BWT output. Such a characterization is the topic of this section.
o 2 n The approach taken here deviates from that of previous sections
L0 <|X| ’ ) by discontinuing the use of the end-of-file symbol.
n Consider an arbitrary data sequence € X™. Lety" =
R(z™) and

yielding (n, m)th-order redundancy

- X" (| X]4+1)—2 log x|m=t
5y ()< ] (|2|+) Og”+0<| |n ) O

(2", u) = BWT (¢"*) = BWT (R(z™)).

Notice that while BWT X" — X™ x {1, ..., n} is a one-to-
one mapping, BWL: A" — &™ is a many-to-one mapping.

Obtaining a bound on the rate of convergence of the univerd4pre precisely,
lossless code requires knowledge of either the rate of conver- BWT(R(&")) = BWT ¢ (R(z"))
gence ofH(X,,|X™ 1) to H(X,|X" 1) or the rate of con-
vergence ofH (X,,|X™~1) to H(X) as a function ofn. The if and only if £ is a cyclic shift ofz™. To avoid complications
optimal growth rate forn as a function ofx depends on these in the notation, fix the value of and—for notational purposes
rates of convergence, as the following examples illustrate. only—treat the data sequence as if it were periodic with period
n, usingz;4+, andx;_,, as alternative names far; for each

Corollary 1: Consider the class of stationary ergodic sourceLé6 {1,..., n}. Using this notation, the. cyclic shifts ofz"

for which there exists ai/ > 0 such that itn
arex, i1, t €{0,...,n — 1}
For any distributionPx~ on alphabet”, letZ( Px~, z™) be

defined as
Usingm = M + 1 in the algorithm described in Theorem 5 n t+n
. . T P n =<0<¢t<L —1: P n 0
then for alln sufficiently large,H (X, | X" 1) = H(X), and (P, 2 { =t=n o (237) >
thus Ny A eI Vo< <t

H(X,,| X" Y =HWX), forallm>M+1.

M .
A (0)=6,(0) < ] (|2X| +1) logn +0 <1> . Thus,{z{1}: t € Z(Px~, z™)} gives all distinct cyclic shifts
" " of 2™ with Py (2} 17) > 0. For example, i~ is the uniform
This is the case for finite-memory sources. distribution on{0, 1}", then

Corollary 2: Consider the class of stationary ergodic sources I(Px~, (0,0,...,0)) ={0}
for which H(X,,,|X™~1) — H(X) < ¢/m for constant > 0 B
andm sufficiently large. Given any > 0, allowingm to grow g Py (0,1,0,1, ..., 0, 1)) ={0, 1}

I(.F))(n7 .Tn) = {0, . 71—1}

m for any nonperiodie:™ € {0, 1}™.

) < 2|X|en )
= Og
log |X] 7\ (|JA| + 1) log®n
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Let wherep(z™) is the stationary distribution oA'* induced by
o . the given finite-memory source. In this case, (4) implies that for
Z(n) = {BWTx(z"): 2" € A"} anyz" € Z(n) andz™ = R(BWT 1(z", 1))
For any random sequencé™ drawn according to distribution
P, let ( t+1\4)
n p
Z" = BWT4(Y™) = BWT x(R(X™)). Pzu(2") = > .y H
I(Pxn,zm k—1
Then, for anyz" € Z(n), " = R(BWT (2", 1)) implies P2 Lgﬂp(xﬂsuf(“’k—M))]
that the probabilityPz- (»") that Z" equals:" is B

Pp() = 3 Po(li]). ) ~[Hp(wilsuf(w§_i4))]-

teT(Pxn, x™) i=1

For anyz™ ¢ Z(n), Pz+.(z") = 0. If the state spacé = {s1, s, ..., s|s} is ordered so that for
If Px~ describes an i.i.d. source, then allj € {1, ..., |S] —1}, R(s;) comes befor&(s; 1) lexico-
n graphically, then BWTR(X™)) places all rows beginning with
Pxn(2iT}) = Pxa(a]) = Hp(xi) R(s;) before all rows beginning witiR (s;+1) in the BWT en-
=1 coding table. Thus,
forallt € {0, ..., n —1}. Inthis case™ € Z(n) andz™ =
R(BWT (2", 1)) together imply Py (") p(z )
Zn\2 ) = t+ M
Py (2") = |Z(Pxo, &™) Pyn (a7) ez, o) P IPioars)
by (4). Since 151 Tt
. . T I pit=)
j=1 =T
Pxn (™) = [[ p(ei) = [] p(=) J
=t = where, for eachj € {1, ..., || + 1}
and|z(f))(n7 .Tn)| S n
n j—1
1 1 PZn (Zn) _ e
~ D(Pze|Pxe) = Z Pen (") log =23 T=1 +Z > sul(riThy) = =)
zreZ(n) 1=1 k=1
— L B log [Z(Py, XM andp;(-) = p(:[s;)- _ S
n While it seems appropriate to compare the distribution on
< logn the BWT output to aS|-p.i.i.d. distribution with the same
= random boundary point§Z}}, defining such a distribution is

Thus, the distribution of the BWT output is asymptotically closdifficult. As a rgsu!t, the analysis that follows treats the 'd.istance
to an i.i.d. distribution when the input is i.i.d. The bound oR€tween the distribution of the BWT output and [&-p.i.i.d.

D(Pz.||Px~) is tight to within an additive constant. For ex-distribution with deterministic boundary points. The bounds
ample, if X" is uniformly distributed or{0, 1}", then on the divergence of the output distribution of the BWT and

an |S]-p.i.i.d. distribution with deterministic boundary points

logn — Ex» log |Z(Pxn, X7 {17} are dominated by a term stemming from the difference
n between{T;} and{T"}.
TS O] Consider ans|-p.i..d. dat ith distributi
[Z(Pxn, X)) onsider ajS|-p.i:i.d. data sequence with distribution

" T/ -1

= Pr(|Z(Px», X™)| = n/d)logd . |S| 254
dzz:? Q (z ) = H H pj(zi)
n J=1 i=T]

< Z 9 non/2 logd < (n 10,5.{71)2_"/2 <c . ]
wherep; (-) is defined as abové,; = 1 + |C(j)n], and

d=2
giving D(P~||Px») > logn — ¢ for some constant. i1
While the above analysis does not apply directly to sources () — > ow(sk),  forallje{l, ..., |S[+1}.

with memory, a similar argument applies. Py~ describes a P

stationary finite-memory source with memaby, state space

&, and next-state functiosuf(-), then Lemma 1 bounds the normalized Kullback-Leibler distance be-

" tweenPz» andQ™ under the assumption thaf(z) > 0 for all
Pxo(z™) = p(z™) H pla;lsuf(zi73)) je{l,...,|S|}and allz € X. This assumption is removed

=M1 in Lemma 2.
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Lemma 1:Given a stationary finite-memory source forexists a2 € Z(n) for which Pz~ (2™) > 0 while Q™(

which p(x|s) >0 for all s€ S andz € X, Z* =BWT (R(X"™))
implies that there exists some constant- 0 for which

1 Q" <

= R(BWT?

D(Pz-

E\

Proof. Usingz™
Q")
Z Pzn (Zn)

z"CZ(n)

IS

z"€Z(n) i€ (Pxn,zm)

(=)

z—l—l

1‘P,
N RSNeTED)

> >

ZzE€Z(n)i€L(Pxn,x™)

(=", 1)) for 2™ € Z(n)

D(Pg»

[log Pyn(2™) + log ﬁ}

i+n

P (577}

)

+log |Z(Px», @ )I]

PX”( z—l—l)

|S] Tj41—1

i+ M H H pj(zi)
plzi) =1 =Ty

log v Y +logn
p(x Liy1 |377 M+1) 18] Ti4a

II II piz)

j=1 =T}
1S
(XM X0 + D ¢ Exa|T; = Tj| +logn

j=1
|S|

< Zc', [Exn(L; — T})* +logn
j=1

where the first inequality follows from (4) and the log-sum in-
equality and the last inequality follows from Jensen’s inequality.

Note that

¢ =maxlog(1/p;(#)) < oo
4z

sincep;(z ) is positive for allj and » by assumption. For each

Jjed{l, ..., |8} let
1 n
EZ L(suf(iZ};) = si)-
Then
Ex»(T; = T;7)?
-1 i—1 2
= EXn <7’LZ7ATk - \‘TLZW;&J>
k=1 k=1
j—1 j—1 2 _
< Ex» <n27rk —an) +2n27rk +1
k=1 k=1 k=1
< c//n +c///

by Lemma 5 in the Appendix. O

The above argument fails when there exists sergeX’” and
J € {1,..., 8} such thap;(x) = 0, since in this case there

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 48, NO. 5, MAY 2002

2™ =0,
giving D(Pz-||Q™) = oo. This problem may be avoided by
comparingPz~» to some distributio)? approximatingl™ for

which Q7 (z™) > 0 for all z™. Specifically, definel” as
S| Tj 41—t
=11 II »ie(=)
j=1 =T}
where, foreachh € {1, ..., |S|} andz € &
pi.c() = plals)(L = ) + 3

and{77} is defined as described previously.

Lemma2: Let Xy, X,, ...bedrawn from a stationary finite-
memory source. The#d™ = BWT (R(X™)) implies that there
exists some constant > 0 for which

1 logn
- n <
2D (P2 Qym ) S € Nk
Proof: Using an argument similar to the one previously
given
D (PZ” e(n)) Z Z PX”( z—l—l)
2 €Z(n) 1€T(Pxn , a™)
P N i+n
- |log — (i) +log |Z(Pxn, z™)]
F(n)(7 )

wherelog |Z(Px~, z™)| < logn. The first logarithm breaks
into a sum of terms, corresponding to thesymbolsz™. Most
of these terms take the form

p;(%i)
(1 = e(n)p;(zi) + e(n)/|X]
for somep;(z) > 0, which is bounded as
o8 pj(%i)

(1 = e(n)p;(zi) + e(n)/|X|

The remainder of the terms take the form

p
(1 —e(n))g+e(n)/|X]
wherep and g are distinct probability values with > 0 and

q > 0. This term is bounded as

p
(1 —e(n))g+e(n)/|1X] ~
Terms of this type can occur in the firdf symbols ofxzi? or
mtheZ'Sl1 |7 —T7| remaining symbols, where the probability
models rer on d|fferent histories. There can be at mastrms

of the first type and at mos¥/ + Z L |1 = T7| terms of the
second type. Thus, for all > 2

D (PZ” ||Q?(n))

log

< log !
- Ogl—e(n)'

log

X

log <log —
e(n)’

1
<F log——
< Epy. |n 081—6(71)
! . -
+ M+]E:1|Tj_Tj| log%—i-logn
X
< 2ne(n)loge + (M + v/cn) log 11 +logn

e(n)
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sincelogz < (v — 1)loge ande(n) < 1/2foralln > 2. < Z P (2™)
Finally, e(n) = 1/n gives A
1 logn [ 1
— D P n n < C/ . I:l n i—
o D Qf) < ¢ 2 Py AL plail=izh)
-log = log
For general stationary ergodic distributions, the distribution o8 ﬁ (i) ) |S] Tipy—1 +logn
of the BWT output can be compared to the p.i.i.d. distribution o PAEil—m) T 11 pi(z)
corresponding to the BWT output of amth-order Markov dis- L =1 i=T; J
tribution. Toward this end, lef = X™ = {s1, ..., i} n
) .7 — P "
where|S| = |X|™ andsy, ..., s|s are ordered lexicograph- x; (@)
ically. Define e -
IS| Tj41—1
U i—1 pj(zi)
T, =1+ Z Wz = sk) Pxn(2™) =1 =T,
i=1 k=1 log | S T 1 + logn
i—1 J+1
and il;llp(a:z|xz m) Hl I pi(z)
! i i j=1 i=T]
T/ =1+ [C(Gm),  je{l,....|8|+1} I i=t =T |
where < —H(X™)—mlogp, + (n — m)H (X 1| X™)
i1 ||
C(j):ZW(Sk), forallj e {1, ..., |S|+1}. +ZC/EX”TJ_T;'|+10g”
j=1
DefineQ™ andQ? as < nH(Xpat | X™) — H(X™) + ¢|X]™Vn
8] Tipa—1
n for some constant. Thus,
QM(=") = H H pj\z 1
j=1 i=T] lim = D(Py||Q™) < H(Xpy1|X™) — H(X).
n—oo N
S| Tjy—1 Dropping thep, > 0 assumption and replacing™ with Q7
=II II »ietzo, gives
j=1 =T/ n
h ’ D(PZ” Qe )
where itn
< 2 ) PeGdD
pile) = plals;) R
P . TN
gives the conditional distribution of given the preceding log Xn( ”:1) +log |Z(Px~, x )|]
m-tuple s; and Qe (=)
€
pj,e(x) = (1 —€e)p;(x) + Kk
The proof of the following lemma closely follows the earlier Z Pxn (™) log Py (x")
arguments. T i ﬁ ( |2 )
) i i Inax{l i—m}
Lemma 3: Let X1, X5, ... be drawn from a stationary er- -
godic source with distributiop and entropy ratéd(X). Let
= BWT(R(X™)). For anym such that(x|s) > 0 for all ﬁ ( i )
seX™andallx € X i:lp A% max(1,i—m}
1 |$| — +logn
hm— P ||Q™) < H(X 1| X™)— H(AX). i
( 7z ||Q ) ( +1| ) ( ) H ‘H, (1—e)pj(zi)—|—e/|.)(|
Further, there exists some sequefigg{n)} such that J=1 =]
1 my n
lim ~ D (P2 |Q jyy ) = O- < mH(X1) + nH(Xppr| X™) = H(X™)
n—oo 1 » |S|
Proof: First, consider the case whepér|s) > 0 for all + log ] m+ ZEX” T; = Ti| | + ne+1logn
r € X ands € A™ for some fixedm > 0. Letp, = € =1
mingey, ses p(z|s) > 0. Then 1
D(Pz||Q™) < nH(X 1| X™)—H(X™) +(c|X])™v/n) log —E—i—c/ne.
Z Z Py (z27) Usinge¢(m) = 1/m gives
2N EE(n) JET(Pxn, 2" 1 1 e X|™ logm
L D(Py Q) < H(Xppr | X™)— L (x4 A2 logm
PX ( z+1) n n \/ﬁ
log =2+ log [T( Py, 2™)| . . :
Q" (z") Careful choice ofn gives the desired result. O
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TABLE |
RATE OF CONVERGENCE(DOMINANT TERM ONLY) AND COMPLEXITY RESULTS FORBWT-BASED CODES ONFINITE-MEMORY SOURCES THE THEORETICAL
LiMITS AND CORRESPONDINGRESULTS FORZIV—LEMPEL CODES ARE INCLUDED FOR COMPARISON

Source Coding Results on Finite-Memory Sources
[ Thm | Algorithm | Redundancy | Compl.
1 Move-to-Front (14+(1+¢)X])loglogn/logn O(n)
BWT- 2 Known State Space & IS|(|X] + 1) logn/(2n) O(n)
Based 2 Known Memory M |X[M(|X| + 1)logn/(2n) O(n)
Codes 3 Finite Memory VS| - 1)(|X]| —1)log|X[logn/n | O(n)
4 LPID. [S](|X| + 1) logn/(2n) O(n?)
Other LZ’77 [21] O(loglogn/logn) O(n)
Univ. LZ’78 (23] LZ’77 var [22] O(1/logn) O(n)
Codes CTW [49] [S](|X| — 1) logn/(2n) O(n)
| Limit || | Optimal Redundancy [28] | ISI(|X] — 1) log n/(2n) | |
VIl. SUMMARY AND CONCLUSION Proof: Given a stationary finite-memory source, there ex-

The preceding sections describe a variety of univers'gfS some integeb/ > O such that

lossless source codes employing the BWT. One of these code 1 M
is a minor variation on an existing BWT-based code, while the Ho(X = 5 M Ho (Xars1) + (n = M) Ho(Xnr41 [ X17)]
other strategies are new. Analyses of the expected description MIs(XM; Xprp)
lengths achieved by these algorithms on both finite-memory =Hp(X) + =
sources and more general stationary ergodic sources yield both

proofs of minimax universality and bounds on the resulting Lemma 5: Let Z;, Z,, ... be a first-order Markov chain (in
rates of convergence. Table | summarizes the rates of cefeady state). Lgi(1|0) = p > 0 andp(0|1) = ¢ > 0. Let
vergence and complexities of the BWT-based source codfe steady-state probabilities bey, 7, } and letN (Z") be the

on finite-memory sources, comparing those results both g@mber ofl’s in Z”. Then there exist constantsandd such
the corresponding bounds for LZ'77, LZ'78, and CTW [49}hat

and to the optimal rate of convergence. While CTW, like the

O
n

algorithms described in Theorems 1-3, requires complexity E((N(Z™) —nm1)?) < en +d.
that grows only linearly withn, that complexity has a hidden . .
dependence on the memory constraifithat makes the algo- Proof: The steady-state probabilities are givensy =

rithm computationally expensive whé is large or unknown. ¢/(p+q) andr, = p/(p+q). Letpi, (i) denote the probability
(In the interest of space, the rate of convergence results ge= 1 givenZ, = 1. It can be verified that

only thedominant termén those convergences.) For stationary . ptql—p—q)
ergodic sources, discussed at the end of Section V, BWT-based pu(i) = Ptg .
codes achievém, n)th-order redundancy
SinceN(Z") =31, Z;
[ X[ (X + 1) logn [ .
S(n,m)(8) < 5 +0 . E((N(Z") — nm)?)
n n

As indicated by these results, the BWT is an extremely useful = E | "> 7,7; | —n?r}
tool for data compression, leading to algorithms that yield near- —1 =
optimal rates of convergence on finite-memory sources with nom
very low complexity. _ mipr (| — 4|) — nn?

While many of the algorithms considered here use sequential s

codes on the BWT output, the overall data compression algo- o
rithms are nonsequential since the transform itself requires si- _ zn: zn: < p ) <p +q(1—p— Q)|’Z|>
multaneous access to allsymbols of a data string. (Note that p+q

n need not be the length of the entire data sequence, as the algo-

rithm may be applied independently erblocks from the orig- 5 P 2
: ! 2 £
inal file.) p+q
LR — p— )il
APPENDIX _ pal-p—q)
. - ; ; (p+9)?
Lemma 4: For any stationary finite-memory sourég, f € A =tJ
n—1

%HQ(X") — Hp(X) =0 <l> . =2mmo Y _(n—i)(1—p—q)

n
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1—7r"
1—17r

9 1
=2mmg | —
110 1—r

[21]

- Pnrt =t 4+ (1 — 7")}
(1-7)2

r(1—7r") [22]

(L—r)? }

= 27(17(0 |:7’L

(23]

wherer = 1—p—gq. Finally,0 < p+q < 2implies—1 < » < 1,

giving the desired result.
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