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Abstract

In this paper, we propose a new univer-

sal machine translation approach focusing on

languages with a limited amount of paral-

lel data. Our proposed approach utilizes a

transfer-learning approach to share lexical and

sentence level representations across multi-

ple source languages into one target language.

The lexical part is shared through a Univer-

sal Lexical Representation to support multi-

lingual word-level sharing. The sentence-

level sharing is represented by a model of

experts from all source languages that share

the source encoders with all other languages.

This enables the low-resource language to uti-

lize the lexical and sentence representations of

the higher resource languages. Our approach

is able to achieve 23 BLEU on Romanian-

English WMT2016 using a tiny parallel cor-

pus of 6k sentences, compared to the 18 BLEU

of strong baseline system which uses multi-

lingual training and back-translation. Further-

more, we show that the proposed approach can

achieve almost 20 BLEU on the same dataset

through fine-tuning a pre-trained multi-lingual

system in a zero-shot setting.

1 Introduction

Neural Machine Translation (NMT) (Bahdanau

et al., 2015) has achieved remarkable translation

quality in various on-line large-scale systems (Wu

et al., 2016; Devlin, 2017) as well as achieving

state-of-the-art results on Chinese-English transla-

tion (Hassan et al., 2018). With such large sys-

tems, NMT showed that it can scale up to immense

amounts of parallel data in the order of tens of

millions of sentences. However, such data is not

widely available for all language pairs and domains.

∗This work was done while the authors at Microsoft.

In this paper, we propose a novel universal multi-

lingual NMT approach focusing mainly on low

resource languages to overcome the limitations of

NMT and leverage the capabilities of multi-lingual

NMT in such scenarios.

Our approach utilizes multi-lingual neural trans-

lation system to share lexical and sentence level

representations across multiple source languages

into one target language. In this setup, some of the

source languages may be of extremely limited or

even zero data. The lexical sharing is represented

by a universal word-level representation where var-

ious words from all source languages share the

same underlaying representation. The sharing mod-

ule utilizes monolingual embeddings along with

seed parallel data from all languages to build the

universal representation. The sentence-level shar-

ing is represented by a model of language experts

which enables low-resource languages to utilize

the sentence representation of the higher resource

languages. This allows the system to translate from

any language even with tiny amount of parallel

resources.

We evaluate the proposed approach on 3 differ-

ent languages with tiny or even zero parallel data.

We show that for the simulated “zero-resource"

settings, our model can consistently outperform

a strong multi-lingual NMT baseline with a tiny

amount of parallel sentence pairs.

2 Motivation

Neural Machine Translation (NMT) (Bahdanau

et al., 2015; Sutskever et al., 2014) is based

on Sequence-to-Sequence encoder-decoder model

along with an attention mechanism to enable bet-

ter handling of longer sentences (Bahdanau et al.,

2015). Attentional sequence-to-sequence models

are modeling the log conditional probability of the



Figure 1: BLEU scores reported on the test set for Ro-

En. The amount of training data effects the translation

performance dramatically using a single NMT model.

translation Y given an input sequence X . In gen-

eral, the NMT system θ consists of two compo-

nents: an encoder θe which transforms the input

sequence into an array of continuous representa-

tions, and a decoder θd that dynamically reads the

encoder’s output with an attention mechanism and

predicts the distribution of each target word. Gen-

erally, θ is trained to maximize the likelihood on a

training set consisting of N parallel sentences:
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where at each step, f att
t builds the attention mech-

anism over the encoder’s output h1:Ts . More pre-

cisely, let the vocabulary size of source words as V

h1:Ts = f ext
[

ex1
, ..., exTs

]

, ex = EI(x) (2)

where EI ∈ R
V×d is a look-up table of source

embeddings, assigning each individual word a

unique embedding vector; f ext is a sentence-

level feature extractor and is usually implemented

by a multi-layer bidirectional RNN (Bahdanau

et al., 2015; Wu et al., 2016), recent efforts also

achieved the state-of-the-art using non-recurrence

f ext, e.g. ConvS2S (Gehring et al., 2017) and Trans-

former (Vaswani et al., 2017).

Extremely Low-Resource NMT Both θe and θd
should be trained to converge using parallel training

examples. However, the performance is highly

correlated to the amount of training data. As shown

in Figure. 1, the system cannot achieve reasonable

translation quality when the number of the parallel

examples is extremely small (N ≈ 13k sentences,

or not available at all N = 0).

Multi-lingual NMT Lee et al. (2017) and John-

son et al. (2017) have shown that NMT is quite

efficient for multilingual machine translation. As-

suming the translation from K source languages

into one target language, a system is trained with

maximum likelihood on the mixed parallel pairs

{X(n,k), Y (n,k)}n=1...Nk

k=1...K , that is

L (θ) =
1

N

K
∑

k=1

Nk
∑

n=1

log p
(

Y (n,k)|X(n,k); θ
)

(3)

where N =
∑K

k=1Nk. As the input layer, the sys-

tem assumes a multilingual vocabulary which is

usually the union of all source language vocabular-

ies with a total size as V =
∑K

k=1 Vk. In practice,

it is essential to shuffle the multilingual sentence

pairs into mini-batches so that different languages

can be trained equally. Multi-lingual NMT is quite

appealing for low-resource languages; several pa-

pers highlighted the characteristic that make it a

good fit for that such as Lee et al. (2017), John-

son et al. (2017), Zoph et al. (2016) and Firat et al.

(2016). Multi-lingual NMT utilizes the training

examples of multiple languages to regularize the

models avoiding over-fitting to the limited data of

the smaller languages. Moreover, the model trans-

fers the translation knowledge from high-resource

languages to low-resource ones. Finlay, the de-

coder part of the model is sufficiently trained since

it shares multilingual examples from all languages.

2.1 Challenges

Despite the success of training multi-lingual NMT

systems; there are a couple of challenges to lever-

age them for zero-resource languages:

Lexical-level Sharing Conventionally, a multi-

lingual NMT model has a vocabulary that repre-

sents the union of the vocabularies of all source

languages. Therefore, the multi-lingual words do

not practically share the same embedding space

since each word has its own representation. This

does not pose a problem for languages with suf-

ficiently large amount of data, yet it is a major

limitation for extremely low resource languages

since most of the vocabulary items will not have

enough, if any, training examples to get a reliably

trained models.

A possible solution is to share the surface form

of all source languages through sharing sub-units



such as subwords (Sennrich et al., 2016b) or char-

acters (Kim et al., 2016; Luong and Manning, 2016;

Lee et al., 2017). However, for an arbitrary low-

resource language we cannot assume significant

overlap in the lexical surface forms compared to

the high-resource languages. The low-resource lan-

guage may not even share the same character set as

any high-resource language. It is crucial to create a

shared semantic representation across all languages

that does not rely on surface form overlap.

Sentence-level Sharing It is also crucial for low-

resource languages to share source sentence rep-

resentation with other similar languages. For ex-

ample, if a language shares syntactic order with

another language it should be feasible for the low-

resource language to share such representation with

another high recourse language. It is also important

to utilize monolingual data to learn such represen-

tation since the low or zero resource language may

have monolingual resources only.

3 Universal Neural Machine Translation

We propose a Universal NMT system that is fo-

cused on the scenario where minimal parallel sen-

tences are available. As shown in Fig. 2, we intro-

duce two components to extend the conventional

multi-lingual NMT system (Johnson et al., 2017):

Universal Lexical Representation (ULR) and Mix-

ture of Language Experts (MoLE) to enable both

word-level and sentence-level sharing, respectively.

3.1 Universal Lexical Representation (ULR)

As we highlighted above, it is not straightforward

to have a universal representation for all languages.

One potential approach is to use a shared source

vocabulary, but this is not adequate since it as-

sumes significant surface-form overlap in order

being able to generalize between high-resource and

low-resource languages. Alternatively, we could

train monolingual embeddings in a shared space

and use these as the input to our MT system. How-

ever, since these embeddings are trained on a mono-

lingual objective, they will not be optimal for an

NMT objective. If we simply allow them to change

during NMT training, then this will not generalize

to the low-resource language where many of the

words are unseen in the parallel data. Therefore,

our goal is to create a shared embedding space

which (a) is trained towards NMT rather than a

monolingual objective, (b) is not based on lexical

surface forms, and (c) will generalize from the high-

resource languages to the low-resource language.

We propose a novel representation for multi-

lingual embedding where each word from any lan-

guage is represented as a probabilistic mixture of

universal-space word embeddings. In this way, se-

mantically similar words from different languages

will naturally have similar representations. Our

method achieves this utilizing a discrete (but proba-

bilistic) “universal token space”, and then learning

the embedding matrix for these universal tokens

directly in our NMT training.

Lexicon Mapping to the Universal Token Space

We first define a discrete universal token set of size

M into which all source languages will be pro-

jected. In principle, this could correspond to any

human or symbolic language, but all experiments

here use English as the basis for the universal token

space. As shown in Figure 2, we have multiple em-

bedding representations. EQ is language-specific

embedding trained on monolingual data and EK is

universal tokens embedding. The matrices EK and

EQ are created beforehand and are not trainable

during NMT training. EU is the embedding matrix

for these universal tokens which is learned during

our NMT training. It is worth noting that shaded

parts in Figure2 are trainable during NMT training

process.

Therefore, each source word ex is represented

as a mixture of universal tokens M of EU .

ex =

M
∑

i=1

EU (ui) · q(ui|x) (4)

where EU is an NMT embedding matrix, which is

learned during NMT training.

The mapping q projects the multilingual words

into the universal space based on their semantic

similarity. That is, q(u|x) is a distribution based

on the distance Ds(u, x) between u and x as:

q(ui|x) =
eD(ui,x)/τ

∑

uj
eD(uj ,x)/τ

(5)

where τ is a temperature and D(ui, x) is a scalar

score which represents the similarity between

source word x and universal token ui:

D(u, x) = EK(u) ·A · EQ(x)T (6)

where EK(u) is the “key” embedding of word u,

EQ(x) is the “query” embedding of source word x.



Figure 2: An illustration of the proposed architecture of the ULR and MoLE. Shaded parts are trained within

NMT model while unshaded parts are not changed during training.

The transformation matrix A, which is initialized to

the identity matrix, is learned during NMT training

and shared across all languages.

This is a key-value representation, where the

queries are the monolingual language-specific em-

bedding, the keys are the universal tokens embed-

dings and the values are a probabilistic distribution

over the universal NMT embeddings. This can rep-

resent unlimited multi-lingual vocabulary that has

never been observed in the parallel training data. It

is worth noting that the trainable transformation ma-

trix A is added to the query matching mechanism

with the main purpose to tune the similarity scores

towards the translation task. A is shared across all

languages and optimized discriminatively during

NMT training such that the system can fine-tune

the similarity score q() to be optimal for NMT.

Shared Monolingual Embeddings In general,

we create one EQ matrix per source language, as

well as a single EK matrix in our universal token

language. For Equation 6 to make sense and gener-

alize across language pairs, all of these embedding

matrices must live in a similar semantic space. To

do this, we first train off-the-shelf monolingual

word embeddings in each language, and then learn

one projection matrix per source language which

maps the original monolingual embeddings into

EK space. Typically, we need a list of source

word - universal token pairs (seeds Sk) to train the

projection matrix for language k. Since vectors

are normalized, learning the optimal projection is

equivalent to finding an orthogonal transformation

Ok that makes the projected word vectors as close

as to its corresponded universal tokens:

max
Ok

∑

(x̃,ỹ)∈Sk

(

EQk(x̃) ·Ok

)

· EK(ỹ)T

s.t. OT
k Ok = I, k = 1, ...,K

(7)

which can be solved by SVD decomposition based

on the seeds (Smith et al., 2017). In this paper, we

chose to use a short list of seeds from automatic

word-alignment of parallel sentences to learn the

projection. However, recent efforts (Artetxe et al.,

2017; Conneau et al., 2018) also showed that it is

possible to learn the transformation without any

seeds, which makes it feasible for our proposed

method to be utilized in purely zero parallel re-

source cases.

It is worth noting that Ok is a language-specific

matrix which maps the monolingual embeddings of

each source language into a similar semantic space

as the universal token language.

Interpolated Embeddings Certain lexical cate-

gories (e.g. function words) are poorly captured

by Equation 4. Luckily, function words often have

very high frequency, and can be estimated robustly

from even a tiny amount of data. This motivates

an interpolated ex where embeddings for very fre-

quent words are optimized directly and not through

the universal tokens:

α(x)EI(x) + β(x)
M
∑

i=1

EU (ui) · q(ui|x) (8)

Where EI(x) is a language-specific embedding of

word x which is optimized during NMT training.

In general, we set α(x) to 1.0 for the top k most

frequent words in each language, and 0.0 otherwise,



where k is set to 500 in this work. It is worth noting

that we do not use an absolute frequency cutoff

because this would cause a mismatch between high-

resource and low-resource languages, which we

want to avoid. We keep β(x) fixed to 1.0.

An Example To give a concrete example, imag-

ine that our target language is English (En), our

high-resource auxiliary source languages are Span-

ish (Es) and French (Fr), and our low-resource

source language is Romanian (Ro). En is also

used for the universal token set. We assume to

have 10M+ parallel Es-En and Fr-En, and a few

thousand in Ro-En. We also have millions of mono-

lingual sentences in each language.

We first train word2vec embeddings on mono-

lingual corpora from each of the four languages.

We next align the Es-En, Fr-En, and Ro-En paral-

lel corpora and extract a seed dictionary of a few

hundred words per language, e.g., gato → cat,

chien → dog. We then learn three matrices

O1, O2, O3 to project the Es, Fr and Ro embed-

dings (EQ1 , EQ2 , EQ3), into En (EK) based on

these seed dictionaries. At this point, Equation 5

should produce reasonable alignments between the

source languages and En, e.g., q(horse|magar) =
0.5, q(donkey|magar) = 0.3, q(cow|magar) =
0.2, where magar is the Ro word for donkey.

3.2 Mixture of Language Experts (MoLE)

As we paved the road for having a universal embed-

ding representation; it is crucial to have a language-

sensitive module for the encoder that would help in

modeling various language structures which may

vary between different languages. We propose a

Mixture of Language Experts (MoLE) to model

the sentence-level universal encoder. As shown in

Fig. 2, an additional module of mixture of experts

is used after the last layer of the encoder. Similar to

(Shazeer et al., 2017), we have a set of expert net-

works and a gating network to control the weight

of each expert. More precisely, we have a set of ex-

pert networks as f1(h), ..., fK(h) where for each

expert, a two-layer feed-forward network which

reads the output hidden states h of the encoder is

utilized. The output of the MoLE module h′ will

be a weighted sum of these experts to replace the

encoder’s representation:

h′ =
K
∑

k=1

fk(h) · softmax(g(h))k, (9)

where an one-layer feed-forward network g(h) is

used as a gate to compute scores for all the experts.

In our case, we create one expert per auxiliary

language. In other words, we train to only use

expert fi when training on a parallel sentence from

auxiliary language i. Assume the language 1...K−
1 are the auxiliary languages. That is, we have a

multi-task objective as:

Lgate =

K−1
∑

k=1

Nk
∑

n=1

log [softmax (g(h))k] (10)

We do not update the MoLE module for training

on a sentence from the low-resource language. In-

tuitively, this allows us to represent each token in

the low-resource language as a context-dependent

mixture of the auxiliary language experts.

4 Experiments

We extensively study the effectiveness of the pro-

posed methods by evaluating on three “almost-zero-

resource” language pairs with variant auxiliary lan-

guages. The vanilla single-source NMT and the

multi-lingual NMT models are used as baselines.

4.1 Settings

Dataset We empirically evaluate the proposed

Universal NMT system on 3 languages – Roma-

nian (Ro) / Latvian (Lv) / Korean (Ko) – translating

to English (En) in near zero-resource settings. To

achieve this, single or multiple auxiliary languages

from Czech (Cs), German (De), Greek (El), Span-

ish (Es), Finnish (Fi), French (Fr), Italian (It), Por-

tuguese (Pt) and Russian (Ru) are jointly trained.

The detailed statistics and sources of the available

parallel resource can be found in Table 1, where we

further down-sample the corpora for the targeted

languages to simulate zero-resource.

It also requires additional large amount of mono-

lingual data to obtain the word embeddings for

each language, where we use the latest Wikipedia

dumps 5 for all the languages. Typically, the mono-

lingual corpora are much larger than the parallel

corpora. For validation and testing, the standard

validation and testing sets are utilized for each tar-

geted language.

1http://www.statmt.org/wmt16/translation-task.html
2https://sites.google.com/site/koreanparalleldata/
3http://www.statmt.org/europarl/
4http://opus.lingfil.uu.se/MultiUN.php (subset)
5https://dumps.wikimedia.org/



Zero-Resource Translation Auxiliary High-Resource Translation

source Ro Ko Lv Cs De El Es Fi Fr It Pt Ru

corpora WMT161 KPD2 Europarl v83 UN 4

size 612k 97k 638k 645k 1.91m 1.23m 1.96m 1.92m 2.00m 1.90m 1.96m 11.7m

subset 0/6k/60k 10k 6k / 2.00m

Table 1: Statistics of the available parallel resource in our experiments. All the languages are translated to English.

Preprocessing All the data (parallel and mono-

lingual) have been tokenized and segmented

into subword symbols using byte-pair encoding

(BPE) (Sennrich et al., 2016b). We use sentences

of length up to 50 subword symbols for all lan-

guages. For each language, a maximum number

of 40, 000 BPE operations are learned and applied

to restrict the size of the vocabulary. We concate-

nate the vocabularies of all source languages in

the multilingual setting where special a “language

marker " have been appended to each word so that

there will be no embedding sharing on the surface

form. Thus, we avoid sharing the representation of

words that have similar surface forms though with

different meaning in various languages.

Architecture We implement an attention-based

neural machine translation model which consists

of a one-layer bidirectional RNN encoder and a

two-layer attention-based RNN decoder. All RNNs

have 512 LSTM units (Hochreiter and Schmidhu-

ber, 1997). Both the dimensions of the source and

target embedding vectors are set to 512. The di-

mensionality of universal embeddings is also the

same. For a fair comparison, the same architec-

ture is also utilized for training both the vanilla and

multilingual NMT systems. For multilingual exper-

iments, 1 ∼ 5 auxiliary languages are used. When

training with the universal tokens, the temperature

τ (in Eq. 6) is fixed to 0.05 for all the experiments.

Learning All the models are trained to maximize

the log-likelihood using Adam (Kingma and Ba,

2014) optimizer for 1 million steps on the mixed

dataset with a batch size of 128. The dropout rates

for both the encoder and the decoder is set to 0.4.

We have open-sourced an implementation of the

proposed model. 6

4.2 Back-Translation

We utilize back-translation (BT) (Sennrich et al.,

2016a) to encourage the model to use more in-

formation of the zero-resource languages. More

concretely, we build the synthetic parallel corpus

6https://github.com/MultiPath/NA-
NMT/tree/universal_translation

by translating on monolingual data7 with a trained

translation system and use it to train a backward

direction translation model. Once trained, the same

operation can be used on the forward direction.

Generally, BT is difficult to apply for zero resource

setting since it requires a reasonably good trans-

lation system to generate good quality synthetic

parallel data. Such a system may not be feasible

with tiny or zero parallel data. However, it is possi-

ble to start with a trained multi-NMT model.

4.3 Preliminary Experiments

Training Monolingual Embeddings We

train the monolingual embeddings using

fastText8 (Bojanowski et al., 2017) over the

Wikipedia corpora of all the languages. The

vectors are set to 300 dimensions, trained using the

default setting of skip-gram . All the vectors are

normalized to norm 1.

Pre-projection In this paper, the pre-projection

requires initial word alignments (seeds) between

words of each source language and the universal

tokens. More precisely, for the experiments of

Ro/Ko/Lv-En, we use the target language (En) as

the universal tokens; fast_align9 is used to

automatically collect the aligned words between

the source languages and English.

5 Results

We show our main results of multiple source lan-

guages to English with different auxiliary lan-

guages in Table 2. To have a fair comparison, we

use only 6k sentences corpus for both Ro and Lv

with all the settings and 10k for Ko. It is obvious

that applying both the universal tokens and mixture

of experts modules improve the overall translation

quality for all the language pairs and the improve-

ments are additive.

To examine the influence of auxiliary languages,

we tested four sets of different combinations of aux-

iliary languages for Ro-En and two sets for Lv-En.

7We used News Crawl provided by WMT16 for Ro-En.
8https://github.com/facebookresearch/fastText
9https://github.com/clab/fast_align
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Src Aux Multi +ULR + MoLE

Ro

Cs De El Fi 18.02 18.37

Cs De El Fr 19.48 19.52

De El Fi It 19.11 19.33

Es Fr It Pt 14.83 20.01 20.51

Lv
Es Fr It Pt 7.68 10.86 11.02

Es Fr It Pt Ru 7.88 12.40 13.16

Ko Es Fr It Pt 2.45 5.49 6.14

Table 2: Scores over variant source languages (6k sen-

tences for Ro & Lv, and 10k for Ko). “Multi" means

the Multi-lingual NMT baseline.

It shows that Ro performs best when the auxiliary

languages are all selected in the same family (Ro,

Es, Fr, It and Pt are all from the Romance family of

European languages) which makes sense as more

knowledge can be shared across the same family.

Similarly, for the experiment of Lv-En, improve-

ments are also observed when adding Ru as addi-

tional auxiliary language as Lv and Ru share many

similarities because of the geo-graphical influence

even though they don’t share the same alphabet.

We also tested a set of Ko-En experiments to ex-

amine the generalization capability of our approach

on non-European languages while using languages

of Romance family as auxiliary languages. Al-

though the BLEU score is relatively low, the pro-

posed methods can consistently help translating

less-related low-resource languages. It is more

reasonable to have similar languages as auxiliary

languages.

5.1 Ablation Study

We perform thorough experiments to examine ef-

fectiveness of the proposed method; we do ablation

study on Ro-En where all the models are trained

Models BLEU

Vanilla 1.21

Multi-NMT 14.94

Closest Uni-Token Only 5.83

Multi-NMT + ULR + (A=I) 18.61

Multi-NMT + ULR 20.01

Multi-NMT + BT 17.91

Multi-NMT + ULR + BT 22.35

Multi-NMT + ULR + MoLE 20.51

Multi-NMT + ULR + MoLE + BT 22.92

Full data (612k) NMT 28.34

Table 3: BLEU scores evaluated on test set (6k), com-

pared with ULR and MoLE. “vanilla" is the standard

NMT system trained only on Ro-En training set

based on the same Ro-En corpus with 6k sentences.

As shown in Table 3, it is obvious that 6k sen-

tences of parallel corpora completely fails to train a

vanilla NMT model. Using Multi-NMT with the as-

sistance of 7.8M auxiliary language sentence pairs,

Ro-En translation performance gets a substantial

improvement which, however, is still limited to be

usable. By contrast, the proposed ULR boosts the

Multi-NMT significantly with +5.07 BLEU, which

is further boosted to +7.98 BLEU when incorporat-

ing sentence-level information using both MoLE

and BT. Furthermore, it is also shown that ULR

works better when a trainable transformation ma-

trix A is used (4th vs 5th row in the table). Note

that, although still 5 ∼ 6 BLEU scores lower than

the full data (×100 large) model.

We also measure the translation quality of sim-

ply training the vanilla system while replacing each

token of the Ro sentence with its closet universal

token in the projected embedding space, consid-

ering we are using the target languages (En) as



the universal tokens. Although the performance is

much worse than the baseline Multi-NMT, it still

outperforms the vanilla model which implies the

effectiveness of the embedding alignments.

Monolingual Data In Table. 3, we also showed

the performance when incorporating the mono-

lingual Ro corpora to help the UniNMT training

in both cases with and without ULR. The back-

translation improves in both cases, while the ULR

still obtains the best score which indicates that the

gains achieved are additive.

Corpus Size As shown in Fig. 3, we also evalu-

ated our methods with varied sizes – 0k10, 6k, 60k

and 600k – of the Ro-En corpus. The vanilla NMT

and the multi-lingual NMT are used as baselines. It

is clear in all cases that the performance gets better

when the training corpus is larger. However, the

multilingual with ULR works much better with a

small amount of training examples. Note that, the

usage of ULR universal tokens also enables us to

directly work on a “pure zero" resource translation

with a shared multilingual NMT model.

Unknown Tokens One explanation on how ULR

help the translation for almost zero resource lan-

guages is it greatly cancel out the effects of missing

tokens that would cause out-of-vocabularies during

testing. As in Fig. 4, the translation performance

heavily drops when it has more “unknown" which

cannot be found in the given 6k training set, espe-

cially for the typical multilingual NMT. Instead,

these “unknown" tokens will naturally have their

embeddings based on ULR projected universal to-

kens even if we never saw them in the training set.

When we apply back-translation over the monolin-

gual data, the performance further improves which

can almost catch up with the model trained with

60k data.

5.2 Qualitative Analysis

Examples Figure 5 shows some cherry-picked

examples for Ro-En. Example (a) shows how the

lexical selection get enriched when introducing

ULR (Lex-6K) as well as when adding Back Trans-

lation (Lex-6K-BT). Example (b) shows the effect

of using romance vs non-romance languages as the

supporting languages for Ro. Example (c) shows

the importance of having a trainable A as have

10For 0k experiments, we used the pre-projection learned
from 6k data. It is also possible to use unsupervised learned
dictionary.

been discussed; without trainable A the model con-

fuses "india" and "china" as they may have close

representation in the mono-lingual embeddings.

Visualization of MoLE Figure 6 shows the ac-

tivations along with the same source sentence

with various auxiliary languages. It is clear that

MoLE is effectively switching between the ex-

perts when dealing with zero-resource language

words. For this particular example of Ro, we can

see that the system is utilizing various auxiliary

languages based on their relatedness to the source

language. We can approximately rank the related-

ness based of the influence of each language. For

instance, the influence can be approximately ranked

as Es ≈ Pt > Fr ≈ It > Cs ≈ El > De > Fi,

which is interestingly close to the grammatical re-

latedness of Ro to these languages. On the other

hand, Cs has a strong influence although it does not

fall in the same language family with Ro, we think

this is due to the geo-graphical influence between

the two languages since Cs and Ro share similar

phrases and expressions. This shows that MoLE

learns to utilize resources from similar languages.

5.3 Fine-tuning a Pre-trained Model

All the described experiments above had the low

resource languages jointly trained with all the auxil-

iary high-resource languages, where the training of

the large amount of high-resource languages can be

seen as a sort of regularization. It is also common to

train a model on high-resource languages first, and

then fine-tune the model on a small resource lan-

guage similar to transfer learning approaches (Zoph

et al., 2016). However, it is not trivial to effectively

fine-tune NMT models on extremely low resource

data since the models easily over-fit due to over-

parameterization of the neural networks.

In this experiment, we have explored the fine-

tuning tasks using our approach. First, we train

a Multi-NMT model (with ULR) on {Es, Fr, It,

Pt}-En languages only to create a zero-shot setting

for Ro-En translation. Then, we start fine-tuning

the model with 6k parallel corpora of Ro-En, with

and without ULR. As shown in Fig. 7, both models

improve a lot over the baseline. With the help of

ULR, we can achieve a BLEU score of around 10.7
(also shown in Fig. 3) for Ro-En translation with

“zero-resource" translation. The BLEU score can

further improve to almost 20 BLEU after 3 epochs

of training on 6k sentences using ULR. This is

almost 6 BLEU higher than the best score of the



	

(a)	 Source	 situatia	este	putin	diferita	atunci	cand	sunt	analizate	separat	raspunsurile	barbatilor	si	ale	femeilor	.	 	

	 Reference	 the	situation	is	slightly	different	when	responses	are	analysed	separately	for	men	and	women	.	 	

	 Mul-6k	 the	situation	is	less	different	when	it	comes	to	issues	of	men	and	women	.	 	

	 Mul-60k	 the	situation	is	at	least	different	when	it	is	weighed	up	separately	by	men	and	women	.	 	

	 Lex-6k	 the	situation	is	somewhat	different	when	we	have	a	separate	analysis	of	women	‘s	and	women	‘s	responses	.	 	

	 Lex-6k	+BT	 the	situation	is	slightly	different	when	it	is	analysed	separately	from	the	responses	of	men	and	women	.	 	

(b)	 Source	 ce	nu	stim	este	in	cat	timp	se	va	intampla	si	cat	va	dura	.	 	

	 Reference	 what	we	don	'	t	know	is	how	long	all	of	that	will	take	and	how	long	it	will	last	.	 	

	 Lex	(Romance)	 what	we	do	not	know	is	how	long	it	will	be	and	how	long	it	will	take	.	 	

	 Lex	(Non-Rom)	 what	we	know	is	as	long	as	it	will	happen	and	how	it	will	go	 	

(c)	 Source	 limita	de	greutate	pentru	acestea	dateaza	din	anii	'	80	,	cand	air	india	a	inceput	sa	foloseasca	grafice	cu	greutatea	si	inaltimea	ideale	.	 	

	 Reference	 he	weight	limit	for	them	dates	from	the	'	80s	,	when	air	india	began	using	ideal	weight	and	height	graphics	.	 	

	 Lex	(A	=	I)	 the	weight	limit	for	these	dates	back	from	the	1960s	,	when	the	chinese	air	began	to	use	physiars	with	weight	and	the	right	height	.	 	

	 Lex	 the	weight	limit	for	these	dates	dates	from	the	1980s	,	when	air	india	began	to	use	the	standard	of	its	standard	and	height	.	 	

Figure 5: Three sets of examples on Ro-En translation with variant settings.

Figure 6: The activation visualization of mixture of language experts module on one randomly selected Ro source

sentences trained together with different auxiliary languages. Darker color means higher activation score.

Figure 7: Performance comparison of Fine-tuning on

6K RO sentences.

baseline. It is worth noting that this fine-tuning is a

very efficient process since it only takes less than 2

minutes to train for 3 epochs over such tiny amount

of data. This is very appealing for practical applica-

tions where adapting a per-trained system on-line

is a big advantage. As a future work, we will fur-

ther investigate a better fine-tuning strategy such as

meta-learning (Finn et al., 2017) using ULR.

6 Related Work

Multi-lingual NMT has been extensively studied in

a number of papers such as Lee et al. (2017), John-

son et al. (2017), Zoph et al. (2016) and Firat et al.

(2016). As we discussed, these approaches have

significant limitations with zero-resource cases.

Johnson et al. (2017) is more closely related to

our current approach, our work is extending it to

overcome the limitations with very low-resource

languages and enable sharing of lexical and sen-

tence representation across multiple languages.

Two recent related works are targeting the same

problem of minimally supervised or totally un-

supervised NMT. Artetxe et al. (2018) proposed

a totally unsupervised approach depending on

multi-lingual embedding similar to ours and dual-

learning and reconstruction techniques to train the

model from mono-lingual data only. Lample et al.

(2018) also proposed a quite similar approach while

utilizing adversarial learning.

7 Conclusion

In this paper, we propose a new universal ma-

chine translation approach that enables sharing re-

sources between high resource languages and ex-

tremely low resource languages. Our approach is

able to achieve 23 BLEU on Romanian-English

WMT2016 using a tiny parallel corpus of 6k sen-

tences, compared to the 18 BLEU of strong multi-

lingual baseline system.
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