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We propose and analyze continuous measurements of atom number and atomic currents using dispersive

probing in an optical cavity. For an atom-number measurement in a closed system, we relate both the detection

noise and the heating rate due to measurement backaction to Tan’s contact and identify an emergent universal

quantum nondemolition (QND) regime in the good-cavity limit. We then show that such a continuous QND

measurement of atom number serves as a quantum-limited current transducer in a two-terminal setup. We

derive a universal bound on the precision of the current measurement, which results from a trade-off between

detection noise and backaction of the atomic current measurement. Our results apply regardless of the strength

of interaction or the state of matter and set fundamental bounds on future precision measurements of transport

properties in cold-atom quantum simulators.

DOI: 10.1103/PhysRevA.98.063619

I. INTRODUCTION

Transport is among the best probes of quantum many-body

systems, because it is sensitive to the nature of the system’s

excitations. Recently, quantum simulation has emerged as

a new method to tackle the many-body problem by using

a controlled cold atomic gas as a model for electrons in

condensed matter [1]. With this approach getting ready to

address the open questions of condensed-matter physics, there

is a growing interest in the direct measurement of transport

properties in atomic gases [2,3]. The current methods used

to investigate transport in cold atomic gases suffer from the

intrinsically destructive nature of the observation. Even when

snapshots of the density distribution are obtained at the level

of individual atoms, the investigation of the dynamics involves

sample-to-sample fluctuations. As a result, the noise in the

preparation directly feeds in the measurement outcomes, ren-

dering the cold-atom transport measurements far less precise

than their condensed-matter counterparts [4].

In this paper, we describe a method for the continuous

measurement of atomic currents over single realizations of

a quantum gas, which applies equally well to weakly and

strongly interacting gases at the ultimate limit set by quantum-

mechanical backaction. The concept is depicted in Fig. 1: it

relies on (i) the two-terminal (or multi-terminal) configura-

tion, where the system of interest is connected to large atomic

reservoirs allowing to inject and collect particles, and (ii)

the use of continuous measurements of atom numbers using

a high-finesse cavity and a probe laser far from the atomic

resonance. The atomic current consists of atoms continuously

entering and leaving the reservoir, thereby interacting with

the cavity mode and causing the phase shift of a probe

laser, which is measured by a quantum-limited interferometer.

The high-finesse cavity ensures that the phase shift and the

measurement backaction do not suffer significantly from the

effects of spontaneous emission [5,6].

The outline of this paper is as follows: In Sec. II, we

investigate the continuous dispersive measurement of a reser-

voir in the absence of currents and express both the noise

spectrum and the heating due to measurement backaction in

terms of Tan’s contact—the parameter relating the two-body

correlations at short distance to the macroscopic properties

of the cloud [7,8]. The connection between Tan’s contact

and measurement backaction provides a quantitative estimate

of the measurement outcomes and allows one to identify a

good-cavity regime where the backaction vanishes, realizing

a emergent QND measurement. Similar to Tan’s relations, this

applies to an arbitrary strength of interaction, demonstrating

the universal character of the measurement scheme. This

complements existing proposals focusing on single-particle

physics or lattice systems [9–15]. In Sec. III, we consider the

reservoirs connected by a channel which carries atomic cur-

rents. There, even in the good-cavity regime, the observation

of a reservoir produces a backaction on the transport process,

which we interpret as fluctuations of the chemical-potential

bias across the channel. Together with the intrinsic detection

noise, this backaction yields a finite, universal quantum limit

on the precision of the atomic current measurement. Although

the atom-field coupling is treated within linear-response the-

ory, this result assume neither Fermi-liquid behavior nor linear

response of the atomic current to the applied bias. We express

the limit explicitly in terms of a finite-bias admittance of the

channel. Section IV discusses possible experiments with cold

atomic gases. In the appendixes, we discuss technical details

of our formulation.

II. CONTINUOUS RESERVOIR OBSERVATION

We first consider a closed reservoir containing N fermions

at zero temperature, dispersively coupled to the optical field

in a Fabry–Pérot cavity which, in turn, is coupled to an
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FIG. 1. Experimental concept of the atomic current detector. An

atomic cloud is shaped in a two-terminal setup with large reservoirs

connected by a mesoscopic channel. One reservoir overlaps with

the mode of a single-sided optical cavity. A chemical-potential

difference introduced between the two reservoirs drives a quasi-

dc current in the channel. A probe beam far detuned from the

atomic resonance is sent onto the cavity, and its phase, measured by

homodyne detection, provides a real-time measurement of the atom

number in the reservoir.

environment through an imperfect mirror. The field is far

detuned from the atomic resonance such that the excited

states of the atoms are not populated. The atoms populate

equally two hyperfine states, and for simplicity we assume

these two states to be coupled identically to the field, although

this assumption is not essential. Then the Hamiltonian of the

system reads [16]

Ĥ = Ĥat + ωcd̂
†d̂ + �M̂d̂†d̂. (1)

Here Ĥat is the Hamiltonian of the atoms in the absence of the

cavity field, consisting of the kinetic energy, the interaction

energy between the two spin components, and a possible

trapping potential. The empty cavity has frequency ωc, and d̂

(d̂†) annihilates (creates) a photon in the cavity. The coupling

� of the atoms to the field represents the shift of the cavity

resonance due to the presence of one atom maximally coupled

to the field, and M̂ is the overlap of the density distribution of

the atoms with the cavity mode:

M̂ =
∫

dr cos2 (kz)n̂(r) =
1

2
N̂ +

1

4
(n̂2k + n̂−2k ), (2)

where k is the wave vector of cavity photons. We have

introduced the operators for the total atom density n̂(r),

the total atom number N̂ and the density fluctuations n̂2k =
∫

dre−2ikzn̂(r). Here we consider a situation in which the

waist of the cavity mode is much larger than the atomic cloud.

We describe a coherent driving resonant with the cavity

and the coupling to the vacuum by using the input-output

formalism [17]. We decompose the atom-field coupling into

a nonfluctuating part which we include in Ĥat
1 and a part

containing the vacuum fluctuations η̂. To first order in η̂,

the coupling Hamiltonian reads F̂ M̂ , where F̂ = ig(η̂† − η̂)

with g = 2�
√

�/κ being the measurement strength, � is

the photon flux incident on the cavity, and κ is the cavity

decay rate. Importantly, to first order in fluctuations, the time

evolution of F̂ is decoupled from that of the atoms, so that the

freely evolving F̂ (t ) can be directly treated as a perturbation

for the atoms.

The presence of the operators n̂±2k in M̂ implies that M̂

does not commute with the atomic Hamiltonian, and that

the measurement is thus destructive. In fact, the Heisenberg

equation directly relates the commutator of M̂ with Ĥat to the

energy absorption rate due to measurement:

dĤat

dt
= −i[Ĥat, M̂]F̂ . (3)

We evaluate this expression by using linear-response theory,

obtaining (see Appendix B for details)

dEat

dt
= −

g2κ

16n
χR (2k, iκ/2), (4)

where Eat is the energy per atom, n is the atomic density,

and χR is the retarded density response function which is

determined by an equilibrium average.2

We now focus on the case with 2k ≫ kF and κ/2 ≫ ǫF ,

which we expect to be realized in typical cold-atom experi-

ments [20–23] (note however Ref. [24]). In this regime, the

density response function can be systematically evaluated us-

ing the operator product expansion [25–29] (OPE), regardless

of the interaction strength, temperature, and phase of matter.

The result of this expansion is expressed as

1

g2

dEat

dt
= gn(x) + gc(x, 2ka)

C

k4
F

(

kF

2k

)

+ gH (x)
Eat

E0at

(

kF

2k

)2

+ · · · , (5)

where C is Tan’s contact density, E0at = 3ǫF /5 is the energy

per atom of a noninteracting Fermi gas, gn is a function of x =
κm
4k2 , independent of interactions, and gc and gH are universal

functions of x and ka, where a is the s-wave scattering length.

The analytic expressions of these functions are shown in

Appendix C.

Figure 2 presents the right-hand side of Eq. (5) for the

ratio kF /(2k) = 0.2, in line with typical experiments using

1This implies the presence of a static lattice modulation. For k ≫
kF the modulation is negligible as long as the number of intracavity

photons is small compared with h̄k2/2m�. Moreover, the static

lattice can experimentally be suppressed by using the interrogation

techniques described in Refs. [18,19].
2It might seem that the heating rate given by the response at

momentum 2k is due to the cosine shape of the mode function in

the Fabry–Pérot configuration. In fact, heating is due to the effect

of photon back-scattering onto atoms, imparting momentum 2k to

the cloud, which arises regardless of the mode profile. Choosing

instead a ring cavity yields the same result up to a numerical factor

as discussed in Appendix E.

063619-2
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FIG. 2. Dimensionless energy absorption rate as functions of x

and the interaction parameter 1/(kF a). The cuts in red, green, and

blue present the dimensionless energy absorption rate for 1/(kF a) =
−0.5, 0, and 0.5, respectively.

6Li atoms, and well into the regime of validity of the OPE

[30,31]. The normalization implies that variations of x (i.e., κ)

are taken at a constant mean intracavity photon number. In the

regime of large x, the heating rate tends to vanish according

to a power law, a feature expected from Tan’s relations.

In the opposite regime x < 1, heating linearly decreases to

zero due to the saturation of χ at low frequency. There, the

cavity responds too slowly to resolve the atomic motion along

the cavity mode, thereby realizing an emergent QND mea-

surement [32,33]. Importantly, the conditions for both QND

operation (κ < 4k2

m
) and the validity of the OPE (ǫF < κ ) can

be fulfilled simultaneously, since ǫF and 4k2

m
differ by more

than one order of magnitude in typical experiments [30,31].

As interactions are varied from the BCS to the Bose–

Einstein condensate (BEC) limit, the maximum shifts towards

low frequencies, as a result of pairing becoming more pro-

nounced. Here, we have neglected heating due to spontaneous

emission [34], which is justified for cavities with large enough

cooperativities (see Appendix F for details).

The input-output formalism predicts that the photocurrent

of the homodyne detector can be expressed after appropriate

renormalization and up to a constant offset as Ih(t ) = b̂out +
b̂
†
out. Here b̂out describes the field emanating from the cavity,

and the phase of the interferometer is chosen to be zero. The

mean homodyne current relates to the atom number through

〈N̂〉 =
√

κ〈Ih〉/2g. Using again linear-response theory, we

relate the photocurrent noise spectral density, referred back

to the atom number, to the dynamical structure factor S of the

gas (see Appendix D for details):

SNN (ω) =
κ

4g2
+ N2δ(ω) +

V

4

S(2k, ω) + S(2k,−ω)

1 +
(

2ω
κ

)2
,

(6)

where V is the volume of the system. The first term on the

right-hand side shows the imprecision introduced by the pho-

ton shot noise, the second term arises from the constant value

of N , and the last term represents the quantum fluctuations

of atoms in the cavity mode. While a similar form of the

noise was obtained in a Bose–Einstein condensate inside a

cavity from a different perspective [35], we do not rely on

the mean-field approximation, and the above formula is valid

for any system in the weak atom-field coupling regime.

Similar to the heating rate, the atomic contribution to the

noise is also universal in the regime where the OPE is valid. In

contrast to the density response at imaginary frequencies, the

OPE expansion for the structure factor has been considered

in Refs. [26–29]. In the good-cavity regime, the contribu-

tion of the atomic fluctuations becomes negligible, since S

decreases according to a power law in the low-frequency

regime, confirming the emergent QND character of the mea-

surement. Our analysis applies for any interactions between

fermions in the weak-measurement limit. In the opposite,

strong-measurement regime, even the noninteracting Fermi

gas shows large nonlinearities [36–38].

III. CURRENT MEASUREMENTS

We now consider the entire system in the presence of

connection between the reservoirs, which we describe with

the following Hamiltonian:

Ĥ = Ĥat,L + Ĥat,R + Ĥt + F̂ M̂, (7)

where we introduce a tunneling Hamiltonian Ĥt [39]. We

consider the QND regime for the atom-number measurement

and replace M̂ by N̂L/2, with N̂L being the atom number

operator in the left reservoir. The Hamiltonians for the left

and right reservoirs are identical to Ĥat from the previous part,

and [Ĥat,L, N̂L] = [Ĥat,R, N̂L] = 0. The Heisenberg equation

for N̂L reduces to the commutator with the tunneling Hamil-

tonian, and we suppose Kirchhoff’s law ˙̂NL = Îat , where Îat

is the atomic current operator.

To describe the backaction of the measurement of N̂L,

we introduce the phase operator �̂ as the generator of an

infinitesimal change of the atom number in the left reservoir

[39]. By construction, it verifies [N̂L, �̂] = i and its action

on states in the atom-number representation is −i ∂
∂NL

. For a

closed reservoir without the probe, the phase operator evolves

according to ˙̂
� = ∂Ĥat,L

∂NL
, as a result of [Ĥat,L, N̂L] = 0. Pro-

vided that the chemical potential in the right reservoir is fixed,

the above equation allows one to identify the fluctuations of
˙̂
� as those of the chemical-potential difference between the

reservoirs.

The continuous measurement of the atom number yields

noise on the phase as a result of Heisenberg’s uncertainty prin-

ciple, which we evaluate by using the Heisenberg equation:

˙̂
� =

1

i
[Ĥat,L + Ĥat,R + Ĥt, �̂] +

1

2
F̂ , (8)

where the first term on the right-hand side is the evolution in

the absence of measurement including the dynamical effects

of the coupling between the reservoirs and the channel, and

the last term represents the random fluctuations due to the

continuous observation. Owing to the fact that, in the weak-

measurement regime, F̂ is not correlated to the reservoir

dynamics, the power spectrum of the phase fluctuations is

given by S��(ω) = S0
��

(ω) + SFF (ω)

42ω2 , where SFF is the noise

spectrum of F , and S0
��

(ω) describes the fluctuations in

063619-3



SHUN UCHINO, MASAHITO UEDA, AND JEAN-PHILIPPE BRANTUT PHYSICAL REVIEW A 98, 063619 (2018)

FIG. 3. Total imprecision of current through a fully open quan-

tum point contact over the bandwidth 1/τ as a function of the

measurement parameter g2τ/κ . The dashed red curve represents the

contribution of photon shot noise, and the blue dashed-dotted curve

represents the contribution from the measurement backaction.

the absence of measurement [40]. For a probe resonant with

the cavity in the weak-measurement regime, the dynamical

backaction of the measurement vanishes since a small change

in the atom number does not alter the intracavity photon

number. The atomic current noise spectrum is then

SII (ω) = |Y (ω)|2
(

ω2S0
��

(ω) +
SFF (ω)

4

)

, (9)

where we introduce the frequency-dependent admittance of

the channel Y (ω) and the noise spectral density of F̂ , SFF (ω).

This assumes the linear response of the atomic current to small

fluctuations around the average bias, but does not assume the

linearity of the current-bias relation itself [40].

Measurements of the current in the setup of Fig. 1 will

proceed by measurements of the homodyne signal separated

in time by τ , yielding the averaged current operator

îτ (t ) =
N̂ (t + τ ) − N̂ (t )

τ
=

1

τ

∫ t+τ

t

Îat (u)du, (10)

where the second equality results from Kirchhoff’s law. We

assume that τ is much larger than both 1/κ and the dwell time

of atoms in the channel. The total imprecision on the current

measurement is then given by the total imprecision originating

from detection and the measurement backaction,

S
imp

ii (ω) = sinc2

(

ωτ

2

)

[

ω2κ

4g2
+ |Y (ω)|2

g2

κ

1

1 + 4ω2

κ2

]

, (11)

where consistently with the emergent QND operation we have

ignored the equilibrium fluctuations of the atoms within the

cavity mode, and we have expressed SFF (ω) in terms of the

cavity parameters. This expression represents the trade-off

between noise and backaction as the measurement strength

is varied, similar to the standard quantum limit in cavity

optomechanics [41,42].

We illustrate this for the case of a fully open quantum

point contact at low bias by using the universal conductance

quantum as the low-frequency admittance. The total current

imprecision δ2
ii obtained by integration over the bandwidth

1/τ is presented in Fig. 3. The lower bound on current

fluctuations is of the order of 1/τ , typically two orders of

magnitude below the technical noise of state-of-the-art cold-

atom measurements [43].

IV. DISCUSSION

The above result is universal in that it does not rely on

a Fermi-liquid description of the reservoirs and thus applies

to both normal and superfluid phases of interacting fermions.

It is a consequence of the existence of the emergent QND

measurement of the population of a reservoir, which rests

on Tan’s relations. It provides a general framework for the

quantum simulation of mesoscopic transport using tunable

Fermi gases. This concept differs from other proposals where

the current operator couples directly with the cavity field

via photon-assisted tunneling, which produces a dissipative

current [44–46]. It also differs from mesoscopic electronic

devices, in that the two terminals together form a closed

system, without electromagnetic environments [40], thereby

allowing for a simplified and universal analysis.

The most natural experimental platform would consist of

cold 6Li atoms in the two-terminal configuration accessible

in the state-of-the-art experiments [3], where the light mass

of the atom facilitates reaching the QND regime. In the

presence of a finite κ or finite cooperativity, the measurement

is not strictly QND. Phenomenologically, we can treat the

energy increase in the reservoir as generating a temperature

bias across the channel, leading to an extra thermoelectric

contribution to the average current [47].

The QND measurement presented here can be generalized

to multiterminal cases, where a comparable number of cavities

or cavity modes monitor several reservoirs simultaneously.

Further generalizations could describe situations, where the

cavity is focused on a small region within a single cloud in

order to observe the dynamics of the gas [33]. In addition,

the measurement is, in principle, spin-sensitive such that spin

currents as well as particle currents could be monitored along

the same principle [48].
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APPENDIX A: CONVENTION

In the input-output formalism, the interaction between the

cavity field d̂ and the bath field b̂ is modeled as [17]

Hint = i

∫ ∞

−∞
dωκ (ω)[d̂b̂†(ω) − d̂†b̂(ω)], (A1)

where b̂ commutes with all system operators such as those

of the cavity and atom fields. When the interaction is of the

Markov type, which is our interest, a frequency dependence

063619-4
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of the cavity-bath coupling is neglected and we set

κ (ω) =
√

κ

2π
. (A2)

The input field is defined in terms of the bath field as follows:

b̂in(t ) =
1

√
2π

∫ ∞

−∞
dωe−iω(t−t0 )b̂(ω), (A3)

where t0 is an initial time. By using the above convention, the

Heisenberg equation of motion for the cavity field is obtained

as
˙̂d = −i�M̂d̂ −

κ

2
d̂ −

√
κb̂in. (A4)

In addition, we consider the coherent-state input as de-

scribed by b̂in = −i
√

� + ξ̂ , where ξ̂ describes vacuum-field

fluctuations. Therefore, combined with the Markov approx-

imation, the vacuum fluctuation field satisfies the following

relations:

〈ξ̂ (t )〉 = 〈ξ̂ †(t )〉 = 〈ξ̂ †(t )ξ̂ (t ′)〉 = 〈ξ̂ (t )ξ̂ (t ′)〉 = 0,

〈ξ̂ (t )ξ̂ †(t ′)〉 = δ(t − t ′). (A5)

In the Fourier space, the above expressions can be rewritten as

〈ξ̂ (ω)〉 = 〈ξ̂ †(ω)〉 = 〈ξ̂ †(ω)ξ̂ (ω′)〉 = 〈ξ̂ (ω)ξ̂ (ω′)〉 = 0,

〈ξ̂ (ω)ξ̂ †(ω′)〉 = 2πδ(ω − ω′). (A6)

APPENDIX B: ENERGY ABSORPTION RATE

By using the Heisenberg equation of motion, the energy

absorption rate is expressed as

dEat(t )

dt
= −i〈[Ĥat(t ), Ĥ (t )]〉

= −
d

dt
〈M̂ (t )F̂ (t )〉 −

κ

2
〈M̂ (t )F̂ (t )〉

+ 2i�
√

�〈M̂ (t )(ξ̂ (t ) − ξ̂ †(t ))〉, (B1)

where we use

dF̂

dt
= −

κ

2
F̂ + 2i�

√
�(ξ̂ − ξ̂ †). (B2)

To proceed with the calculation, we next use the condition that

F̂ M̂ is treated as a perturbation. We then obtain

〈M̂ (t )F̂ (t )〉 ≈ −i

∫ t

−∞
dt ′〈[M̂ (t )F̂ (t ), M̂ (t ′)F̂ (t ′)]〉0, (B3)

〈M̂ (t )(ξ̂ (t ) − ξ̂ †(t ))〉 ≈ −i

∫ t

−∞
dt ′〈[M̂ (t )(ξ̂ (t ) − ξ̂ †(t )),

M̂ (t ′)F̂ (t ′)]〉0, (B4)

where 〈· · · 〉0 means the average without F̂ M̂ in the statistical
weight. Since the interaction between atoms and photons is

absent without F̂ M̂ , and by assumption there is no initial

entanglement between them, the average can be split into

photonic and atomic ones, which allows us to obtain a sim-

pler expression. Below, we omit the subscript 0, because we

always calculate averages on the atoms without F̂ M̂ in the

statistical weight. Equation (B2) can then be solved as

F̂ (t ) =
4i�

√
�

κ
[ ˆ̃ξ (t ) − ˆ̃ξ †(t )]. (B5)

Here, we introduce

ˆ̃ξ (t ) =
∫

dω

2π

e−iωt

1 − 2iω
κ

ξ̂ (ω), (B6)

which accounts for a finite lifetime of photons in the cavity.

Since for t − t ′ > 0,

〈(ξ̂ (t ) − ξ̂ †(t ))( ˆ̃ξ (t ′) − ˆ̃ξ †(t ′))〉

= −〈ξ̂ (t ) ˆ̃ξ †(t ′)〉

= −
∫

dω

2π

∫

dω′

2π

e−iωt+iω′t ′

1 + 2iω′

κ

〈ξ̂ (ω)ξ̂ †(ω′)〉 = 0, (B7)

and similarly

〈( ˆ̃ξ (t ′) − ˆ̃ξ †(t ′))(ξ̂ (t ) − ξ̂ †(t ))〉 = 0, (B8)

we find

〈M̂ (t )(ξ̂ (t ) − ξ̂ †(t ))〉 = 0. (B9)

The correlation functions between F̂ s at different times can

be calculated as

〈F̂ (t )F̂ (t ′)〉 =
16�

2
�

κ2
〈 ˆ̃ξ (t ) ˆ̃ξ †(t ′)〉

=
4�

2
�

κ
e− κ

2
(t−t ′ ), (B10)

and similarly

〈F̂ (t ′)F̂ (t )〉 =
4�

2
�

κ
e− κ

2
(t−t ′ ), (B11)

where we again use t − t ′ > 0. Therefore, the energy absorp-

tion rate is simplified to

dEat(t )

dt
=

4i�2
�

κ
e− κ

2
t d

dt

(∫ t

−∞
dt ′〈[M̂ (t ), M̂ (t ′)]〉e− κ

2
t ′
)

.

(B12)

Thus, the problem reduces to the calculation of the average

value related to the atomic density. We note that

〈[M̂ (t ), M̂ (t ′)]〉 =
V

8

∫ ∞

−∞
dωe−iω(t−t ′ )[S(2k, ω)

− S(2k,−ω)], (B13)

where V and S are the volume of the system and the dynam-

ical structure factor, respectively. To obtain the above result,

we have used the fact that N does not evolve in time, and that

〈nk (t )nk′ (t ′)〉 = 0 (B14)

unless k = −k′. Equation (B14) is correct as far as the energy

absorption up to O(�2) is concerned. In addition, we have

also assumed that the system possesses inversion symmetry,

which implies

S(2k, ω) = S(−2k, ω). (B15)

Therefore, the energy absorption rate can be expressed in

terms of the dynamical structure factor as follows:

dEat(t )

dt
=

iV �
2
�

4

∫ ∞

−∞
dω

[S(2k, ω) − S(2k,−ω)]

iω + κ
2

.

(B16)
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FIG. 4. Contour used in Eq. (B21).

The above expression contains the integral over the fre-

quency. To perform the integral, we introduce the retarded

density response function:

χR (2k, ω) =
−i

V

∫ ∞

−∞
dtθ (t )eiωt 〈[n2k (t ), n−2k (0)]〉. (B17)

By using the spectral representations for the retarded density

response and dynamical structure factor, the following rela-

tion is obtained:

Im[χR (2k, ω)] = −π [S(2k, ω) − S(2k,−ω)]

= −Im[χR (−2k, ω)]. (B18)

Thus, we obtain

dEat

dt
= −

V �
2
�

2π

∫ ∞

0

dω
ωIm[χR (2k, ω)]

κ2

4
+ ω2

. (B19)

We next note that the following relation is satisfied:
∫ ∞

0

dω
ωIm[χR (2k, ω)]

κ2

4
+ ω2

=
π

2
χR (2k, iκ/2). (B20)

This relation follows from the fact that the retarded

Green’s function is analytic for the upper-half complex

plane, Re[χR (2k,−ω)] = Re[χR (2k, ω)], and for the contour

shown in Fig. 4, we have
∮

c

dz

2πi

zχR (2k, z)

κ2

4
+ z2

=
1

2
χR (2k, iκ/2). (B21)

As a result, the energy absorption rate is given by Eq. (5).

APPENDIX C: DENSITY RESPONSE FUNCTION AT HIGH

MOMENTUM AND FREQUENCY

Here, we discuss the density response function in the

high-momentum and high-frequency limits. In this case, the

operator product expansion (OPE) developed in quantum field

theory is available. In the context of two-component Fermi

gases, the OPE was originally used to derive Tan’s relations

[25]. Later on, it was also employed to discuss the asymptotic

form of the dynamical structure factor and its sum rules

[26–29].

The OPE states that, in the short-range limit, a product of

two operators Â and B̂ can be expanded in local operators as

follows:

Â(x)B̂(0) ∼
∑

i

Ci (x)Ôi (0), (C1)

where the Ôi are some local operators and the Ci are c-number

quantities also known as Wilson’s coefficients in the OPE. We

are interested in the short-range limit of the density response

function, where Â and B̂ are given by the density operator. In

the Fourier space, this is related to the high-momentum and

high-frequency limits of the density response function:

χR (q, ω) = −i

∫

d4xeiqxθ (t )〈[n̂(x), n̂(0)]〉, (C2)

where qx = ωt − q · x. To establish Eq. (C1) for the density

operator, we explicitly calculate (C2) for specific few-body

states. Such a calculation can be implemented with the Feyn-

man diagrams as discussed in Refs. [26–28]. Here, we write

down the final expression [26–28]:

χR (q, ω) = cnn + ccC + cHEatn, (C3)

where

n =
∑

σ

〈ψ̂†
σ ψ̂σ 〉, (C4)

C = m2U 2〈ψ̂†
↑ψ̂

†
↓ψ̂↓ψ̂↑〉, (C5)

Eat =

〈

∑

σ

ψ̂†
σ

(

−
∇2

2m

)

ψ̂σ + Uψ̂
†
↑ψ̂

†
↓ψ̂↓ψ̂↑

〉

n, (C6)

with the Fermi field operator ψ̂ . Equation (C3) shows that the

density correlation function can be expressed in terms of the

particle density, Tan’s contact density, and energy per atom.

Furthermore, their coefficients are given by

cn =
2ǫq

[

(ω + iǫ)2 − ǫ2
q

] , (C7)

cc = −
1

m2

[

A(q )

{

I1(q ) +
2

A(0)

1

ω − ǫq + iǫ

}2

+A(−q )

{

I1(−q ) +
2

A(0)

1

−ω − ǫq − iǫ

}2

−
1

2
{I2(q ) + I3(q ) + I2(−q ) + I3(−q )}

]

+
2

m2A(0)

(

1

ω − ǫq + iǫ
+

1

ω + ǫq + iǫ

)2

+
4ǫq

3m2A(0)

(

1

(ω − ǫq + iǫ)3
−

1

(ω + ǫq + iǫ)3

)

,

(C8)

cH =
4ǫq

3

[

1

(ω − ǫq + iǫ)3
−

1

(ω + ǫq + iǫ)3

]

, (C9)

where

ǫq =
q2

2m
, (C10)

A(q ) =
4π
m

− 1
a

+
√

−m
(

ω − q2

4m

)

− iǫ

, (C11)

I1(q ) =
∫

d3k

(2π )3

1

ǫk

1

ω − ǫk − ǫk+q + iǫ
, (C12)
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I2(q ) =
∫

d3k

(2π )3

1

ǫ2
k

[

1

ω − ǫk − ǫk+q + iǫ
−

1

ω − ǫk + iǫ

]

,

(C13)

I3(q ) =
∫

d3k

(2π )3

1

ǫkǫk+q

1

ω − ǫk − ǫk+q + iǫ
, (C14)

with an infinitesimal positive parameter ǫ.

To estimate the energy absorption rate, we need χR at pure

imaginary frequencies, which can be obtained by the substitu-

tion ω → iω in the above expressions. By using the spectral

representation of the correlation function, we can easily show

that χR at pure imaginary frequencies becomes real, which

ensures that the energy absorption rate also becomes real.

We also note that integrals over momenta for I1, I2, and

I3 can be performed analytically. To show the procedure, we

consider I1 given by

I1(q, iω) = −2m2

∫

d3k

(2π )3

1

k2

1

k2 + k · q + q2/2 − imω
.

(C15)

To eliminate the angle dependence of the above expression,

we use the Feynman parameter integral,

1

AB
=
∫ 1

0

dx
1

[Ax + B(1 − x)]2
. (C16)

Then, we have

I1(q, iω) = −2m2

∫ 1

0

dx

∫

d3k

(2π )3

×
1

[k2 − {x(imω − q2/2) + x2q2/4}]2
. (C17)

By using the integral formula
∫

d3k

(2π )3

1

(k2 − α2)2
=

i

8πα
(Im[α] > 0), (C18)

we finally obtain

I1(q, iω) = −
m2i

2πq
[2 ln(1 +

√

−1 + 4imω/q2)

− ln(−2 + 4imω/q2)]. (C19)

In a similar manner, we obtain

I2(q, iω) = −
8m3i

πq3

√

−1 + 4imω/q2

(−2 + 4imω/q2)2
, (C20)

I3(q, iω) =
m3

2πmωq
[ln(1 −

√

−1 + 4imω/q2) − 3 ln(1 +
√

−1 + 4imω/q2) + ln(−2 + 4imω/q2)], (C21)

and we also find that Ij (−q,−iω) = I ∗
j (q, iω) (j = 1, 2, 3).

Thus, the energy absorption rate per particle is given by

dEat

dt
= g2

[

gn(x) + gc(x, 2ka)
C

k4
F

(

kF

2k

)

+ gH (x)
Eat

E0at

(

kF

2k

)2
]

, (C22)

where

gn(x) =
1

8

x

x2 + 1
, (C23)

gc(x, 2ka) = −
3π

16

x

− 1
2ka

+
√

1
4

− ix
2

[2 ln(1 +
√

−1 + 2ix) − ln(−2 + 2ix)]2 −
3π

16

x

− x
2ka

+
√

1
4

+ ix
2

[2 ln(1 +
√

−1 − 2ix)

− ln(−2 − 2ix)]2 +
3π

4

1

1 − 2ka

√

1
4

− ix
2

ix

1 − ix
[2 ln(1 +

√
−1 + 2ix) − ln(−2 + 2ix)]

−
3π

4

1

1 − 2ka

√

1
4

+ ix
2

ix

1 + ix
[2 ln(1 +

√
−1 − 2ix) − ln(−2 − 2ix)]

−
3π

4

1

2ka − (2ka)2

√

1
4

− ix
2

x

(1 − ix)2
−

3π

4

1

2ka − (2ka)2

√

1
4

+ ix
2

x

(1 + ix)2
−

3π

32
[ln(1 −

√
−1 + 2ix )

− 3 ln(1 +
√

−1 + 2ix ) + ln(−2 + 2ix)] −
3π

32
[ln(1 −

√
−1 − 2ix ) − 3 ln(1 +

√
−1 − 2ix) + ln(−2 − 2ix)]

+
3iπ

16

x
√

−1 + 2ix

(−1 + ix)2
−

3iπ

16

x
√

−1 − 2ix

(−1 − ix)2
−

3π

4ka

x3

(x2 + 1)2
−

π

4ka

x(1 − 3x2)

(x2 + 1)3
, (C24)

gH (x) =
1

5

x(1 − 3x2)

(x2 + 1)3
. (C25)
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APPENDIX D: NOISE OF THE HOMODYNE PHOTOCURRENT

We derive the noise expression of the homodyne photocurrent. To this end, we consider

〈Îh(t )Îh(0)〉 =

〈[

ξ̂ (t ) + ξ̂ †(t ) +
8�

√
�

κ

ˆ̃M (t ) − 2( ˆ̃ξ (t ) + ˆ̃ξ †(t ))

][

ξ̂ (0) + ξ̂ †(0) +
8�

√
�

κ

ˆ̃M (0) − 2( ˆ̃ξ (0) + ˆ̃ξ †(0))

]〉

. (D1)

It is then straightforward to calculate the following correlation functions between the noise fields and between atoms:

δ(t ) = 〈(ξ̂ (t ) + ξ̂ †(t ))(ξ̂ (0) + ξ̂ †(0))〉, (D2)

κe− κ
2
|t | = 4〈( ˆ̃ξ (t ) + ˆ̃ξ †(t ))( ˆ̃ξ (0) + ˆ̃ξ †(0))〉, (D3)

−κe
κ
2
tθ (t ) = −2〈( ˆ̃ξ (t ) + ˆ̃ξ †(t ))(ξ̂ (0) + ξ̂ †(0))〉, (D4)

−κe
κ
2
tθ (−t ) = −2〈(ξ̂ (t ) + ξ̂ †(t ))( ˆ̃ξ (0) + ˆ̃ξ †(0))〉, (D5)

64�
2
�

κ2
〈 ˆ̃M (t ) ˆ̃M (0)〉 =

16�
2
�N2

κ2
+

8�
2
�V

κ2

∫

dω
e−iωt

1 + 4ω2

κ2

S(2k, ω). (D6)

Thus, the correlation function is simplified as

〈Îh(t )Îh(0)〉 = δ(t ) +
16�

2
�N2

κ2
+

8�
2
�V

κ2

∫ ∞

−∞
dω

e−iωt

1 + 4ω2

κ2

S(2k, ω) +
8�

√
�

κ
〈(ξ̂ (t ) + ξ̂ †(t )) ˆ̃M (0)〉

+
8�

√
�

κ
〈 ˆ̃M (t )(ξ̂ (0) + ξ̂ †(0))〉 −

16�
√

�

κ
〈( ˆ̃ξ (t ) + ˆ̃ξ †(t )) ˆ̃M (0)〉 −

16�
√

�

κ
〈 ˆ̃M (t )( ˆ̃ξ (0) + ˆ̃ξ †(0))〉. (D7)

We use linear-response theory to calculate the remaining correlations, which are summarized as follows:

8�
√

�

κ
〈(ξ̂ (t ) + ξ̂ †(t )) ˆ̃M (0)〉 =

4�
2
�V

κ2
θ (−t )

∫ ∞

−∞
dω

[e
κ
2
t − eiωt ][S(2k, ω) − S(2k,−ω)]

(

1 − 2iω
κ

)2
, (D8)

8�
√

�

κ
〈 ˆ̃M (t )(ξ̂ (0) + ξ̂ †(0))〉 ≈ −

4�
2
�V

κ2
θ (t )

∫ ∞

−∞
dω

[e− κ
2
t − e−iωt ][S(2k, ω) − S(2k,−ω)]

(

1 − 2iω
κ

)2
, (D9)

−
16�

√
�

κ
〈( ˆ̃ξ (t ) + ˆ̃ξ †(t )) ˆ̃M (0)〉 ≈

4�
2
�V

κ2
θ (−t )

∫ ∞

−∞
dω

[

eiωt [S(2k, ω) − S(2k,−ω)]

1 + 4ω2

κ2

−
[e

κ
2
t − eiωt ][S(2k, ω) − S(2k,−ω)]

(

1 − 2iω
κ

)2

]

, (D10)

−
16�

√
�

κ
〈 ˆ̃M (t )( ˆ̃ξ (0) + ˆ̃ξ †(0))〉 ≈ −

4�
2
�V

κ2
θ (t )

∫ ∞

−∞
dω

[

e−iωt [S(2k, ω) − S(2k,−ω)]

1 + 4ω2

κ2

−
[e− κ

2
t − e−iωt ][S(2k, ω) − S(2k,−ω)]

(

1 − 2iω
κ

)2

]

. (D11)

Thus, the noise spectral density is obtained as

〈Ih(t )Ih(0)〉 = δ(t ) +
4g2N2

κ
+

g2V

κ

∫ ∞

−∞
dω

e−iωt

1 + 4ω2

κ2

[S(2k, ω) + S(2k,−ω)]. (D12)

It follows from this result that the noise spectral density referred back to the atom number is given in Eq. (6).

We finally discuss how the dynamical structure factor behaves under 2k ≫ kF . Since the dynamical structure factor has the

same dimension as the density response function, it is useful to multiply it by (2k)2/(2mn). Then, by means of the OPE, the

063619-8
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dimensionless dynamical structure factor S̄ can be obtained as [26–28]

S̄(2k, ω) ≡
(2k)2

2mn
S(2k, ω)

=
(

C

k4
F

)(

kF

2k

)

⎧

⎨

⎩

θ

(

y −
1

2

)

⎡

⎣

3
√

2

2

√

y − 1
2

(y − 1)2
+

3

2y
ln

⎛

⎝

y +
√

2

√

y − 1
2

|y − 1|

⎞

⎠

⎤

⎦

−
3
√

2

2
Im

⎧

⎪

⎨

⎪

⎩

1

−
√

2
2ka

+
√

−y + 1
2

− iη

⎡

⎣−i ln

⎛

⎝

y +
√

2

√

y − 1
2

|y − 1|

⎞

⎠− πθ (1 − y) −
2

2ka(y − 1)

⎤

⎦

2
⎫

⎪

⎬

⎪

⎭

⎫

⎪

⎬

⎪

⎭

, (D13)

where y = mω
2k2 . We note that the dynamical structure factor obtained above diverges at the single-particle peak y = 1, which is

known to be an artifact of the OPE [26]. More recently, it has been pointed out in Ref. [29] that such an artifact can be resolved

by considering an impulse approximation that is correct near the single-particle peak at y = 1. Under the impulse approximation,

the dynamical structure factor is expressed as

SIA(2k, ω) =
∫

d3k

(2π )3
n(k)δ(ω + ǫk − ǫk+2k ). (D14)

As shown in Fig. 5, the global behavior of the dimensionless dynamical structure factor can be obtained by connecting the OPE

and impulse-approximation expressions in a smooth manner [29].

APPENDIX E: COMPARISON WITH A RING CAVITY

To study the role of the particular mode function in the

noise measurement and heating rate, we now reproduce the

reasoning leading to equation (A4) for the case of a ring

cavity, which comprises two counterpropagating, degenerate

modes, which we label d̂+ and d̂−. The dispersive coupling

between the atoms and the field is written as

ĤAt−Field = �

∫

dr|eikzd̂+ + e−ikzd̂−|2n̂(r, t ). (E1)

Expanding the field strength, and introducing the Fourier

components of the density, we obtain

ĤAt−Field = �(d̂
†
+d̂+ + d̂

†
−d̂−)N̂ + �(d̂

†
−d̂+n̂−2k + d̂

†
+d̂−n̂2k ).

(E2)

As in the case of the Fabry–Pérot cavity, the Heisenberg

equations of motion for the photon fields under resonant

driving can be obtained as

˙̂d+(t ) = −i�Nd̂+ −
κ

2
d̂+ −

√
κb̂+,in − i�d̂−n̂2k, (E3)

FIG. 5. Typical behavior of the dynamical structure factor. The

dashed orange, red, and dotted blue curves represent the behavior in

the BCS [1/(kF a) = −1], unitarity [1/(kF a) = 0], and BEC regime

[1/(kF a) = 1], respectively.

˙̂d−(t ) = −i�Nd̂− −
κ

2
d̂− −

√
κb̂−,in − i�d̂+n̂−2k, (E4)

where we have introduced the input modes in the “+” and

“−” directions as b̂+,in and b̂−,in, respectively. To apply the

measurement protocol, we drive the cavity resonantly with a

coherent state b̄+,in in the cavity in the + mode, while the −
mode remains in the vacuum state. We introduce the vacuum

noise operators and the coherent states in each modes by

d̂+(t ) = d̄+ + η̂+(t ), (E5)

d̂−(t ) = d̄− + η̂−(t ), (E6)

b̂+,in = b̄+,in + ξ̂+, (E7)

b̂+,in = ξ̂−. (E8)

As in the Fabry–Pérot-cavity case, we treat �n̂i and the

vacuum noise amplitudes as small quantities. With b̄+ =
−i

√
� and to zeroth order, we obtain d̄+ = 2i

√

�

κ
and d̄− =

0. By using this zeroth-order result, we obtain the following

first-order equations:

˙̂η+(t ) = −
κ

2
η̂+ −

√
κξ̂+ + gN̂, (E9)

˙̂η−(t ) = −
κ

2
η̂− −

√
κξ̂− + gn̂−2k. (E10)

We observe that the noise on the + mode up to this order is not

coupled to n2k due to the absence of coherent driving in b̂−,in.

Therefore, a measurement of the outgoing field in the forward

direction does not carry any extra noise apart from shot noise,

in contrast to the case of a standing-wave mode treated in the

Fabry–Pérot-cavity case.

To understand heating due to the vacuum fluctuations en-

tering the cavity, we rewrite the coupling Hamiltonian in terms

of the fluctuating fields. As in the case of the Fabry–Pérot
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cavity, we focus on the part of the Hamiltonian that couples

the light with the atomic density fluctuations, which is given

by

ĤAt−Field = ig(η̂
†
+ − η̂+)N̂ + ig(η̂

†
−n̂−2k − η̂−n̂2k ). (E11)

The energy absorption rate in the presence of ĤAt−Field can

be calculated in a manner similar to the Fabry–Pérot cavity,

within second-order perturbation theory. We find that the

energy absorption rate per particle in the ring cavity case is

obtained as

dEat

dt
= −

g2κ

2n
χR (2k, iκ/2). (E12)

We note that the above expression is similar to one for the

Fabry–Pérot cavity except for the factor of 1/8. The differ-

ence in the factor can easily be understood by recalling that

there are the factor 1/4 in front of n̂±2k and the S(−2k, ω)

contribution from the Fabry–Pérot cavity.

APPENDIX F: SPONTANEOUS EMISSION

We consider the effects of spontaneous emission in the

regime of a dispersive coupling of the cavity to the atoms,

modeled as two-level systems, where the detuning � of the

cavity with respect to the atomic resonance is very large

compared with the natural decay of the excited state γ . The

presence of spontaneous emission is effectively accounted for

by a modified Schrödinger equation for the wave function of

the atom projected onto the excited state ψe:

ψ̇e = i

[

∇2

2m
+ �

]

ψe − ig0d̂ψg − γψe, (F1)

where ψg is the wave function of the atom in the ground state,

and g0 is twice the single-photon Rabi frequency. Here we

only consider spontaneous emission at the single-atom level.

For large detuning, the rate of spontaneous emission in free

space is then

Ŵ =
4�

κ

g2
0γ

�2
, (F2)

and the dispersive shift is

� =
g2

0

�
. (F3)

FIG. 6. Heating rate due to spontaneous emission as a function

of x for different values of the cooperativity. For comparison, the

heating rate due to measurement backaction for the unitary Fermi

gas is shown as a dashed curve.

Considering the fact that the average energy of an atom

undergoing spontaneous emission is entirely dissipated in the

cloud, the average increase of the energy per particle due to

spontaneous emission is then

dEsp

dt
= Ŵǫr , (F4)

where ǫr = k2/2m is the recoil energy [34]. This is actually an

upper bound since in many cases the atom will not dissipate its

energy in the cloud but will rather be lost, yielding a heating

of the order of the Fermi energy rather than the recoil energy.

With the notations used in Eat, we obtain

1

g2

dEsp

dt
=

γ

g2
0

ǫr . (F5)

Introducing the cooperativity of the cavity C = g2
0/κγ , we

obtain

1

g2

dEsp

dt
=

1

8xC
. (F6)

Figure 6 presents the heating rate due to spontaneous

emission as a function of x for several cooperativities. Note

that, due to the normalization used, this is also done at a

fixed photon number in the cavity. We observe that, even for

moderate cooperativities, the measurement backaction dom-

inates over spontaneous emission over a significant range of

the bandwidth.
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