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ABSTRACT

Many different onset detection methods have been pro-

posed in recent years. However those that perform well

tend to be highly specialised for certain types of music,

while those that are more widely applicable give only mod-

erate performance. In this paper we present a new onset

detector with superior performance and temporal precision

for all kinds of music, including complex music mixes. It

is based on auditory spectral features and relative spectral

differences processed by a bidirectional Long Short-Term

Memory recurrent neural network, which acts as reduction

function. The network is trained with a large database of

onset data covering various genres and onset types. Due to

the data driven nature, our approach does not require the

onset detection method and its parameters to be tuned to a

particular type of music. We compare results on the Bello

onset data set and can conclude that our approach is on par

with related results on the same set and outperforms them

in most cases in terms of F1-measure. For complex music

with mixed onset types, an absolute improvement of 3.6%

is reported.

1. INTRODUCTION

Finding onset locations is a key part of segmenting and

transcribing music, and therefore forms the basis for many

high level automatic retrieval tasks. An onset marks the

beginning of an acoustic event. In contrast to music infor-

mation retrieval studies which focus on beat and tempo de-

tection via the analysis of periodicities (e. g. [7, 9]), an on-

set detector faces the challenge of detecting single events,

which need not follow a periodic pattern. Recent onset de-

tection methods (e. g. [5, 16, 17]) have matured to a level

where reasonable robustness is obtained for polyphonic

music. However, the methods are specialised or tuned to

specific kinds of onsets (e. g. pitched or percussive) and

lack the ability to perform well for music with mixed onset

types. Thus, multiple methods need to be combined or a

method has to be selected depending on the type of onsets
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to be analysed.

In this paper we propose a novel, robust approach to

onset detection, which can be applied to any type of music.

Our approach is based on auditory spectral features and

Long Short-Term Memory (LSTM) [13] recurrent neural

networks. The approach is purely data driven, and as we

will see, yields a very high temporal precision as well as

detection accuracy.

The rest of this paper is structured as follows. A brief

overview of the state of the art in onset detection is given in

Section 2, and Section 3 provides an introduction to LSTM

neural networks. Section 5 describes the Bello onset data

set [2] as well as introducing a new data set. Experimental

results for both data sets are provided in Section 6, along

with a comparison to related systems.

2. EXISTING METHODS

Most onset detection algorithms are based on the three step

model shown in Figure 1. Some methods include a prepro-

cessing step. The aim of preprocessing is to emphasise

relevant parts of the signal. Next, a reduction function is

applied, to obtain the detection function. This is the core

component of an onset detector. Some of the most com-

mon reduction functions found in the literature are sum-

marised later in this section.

Reduction Peak detectionSignal OnsetsPreprocessing

Figure 1. Traditional onset detection workflow

The last stage is to extract the onsets from the detec-

tion function. This step can be subdivided into post pro-

cessing (e. g. smoothing and normalising of the detection

function), thresholding, and peak picking. If fixed thresh-

olds are used, the methods tend to pick either too many on-

sets in louder parts, or miss onsets in quieter parts. Hence,

adaptive thresholds are often used. Finally the local max-

ima above the threshold, which correspond to the detected

onsets, are identified by a peak picking algorithm.

Early reduction functions, such as [14], operated in the

time domain. This approach normalises the loudness of the

signal before splitting it into multiple bands via bandpass
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filters. Onsets are then detected in each band as peaks in

the first order difference of the logarithm of the amplitude

envelope. These band-wise onsets are then combined to

yield the final set of detected onsets. More recent systems

employ spectral domain reduction functions. We describe

the most common ones in the following paragraphs.

2.1 Spectral domain reduction functions

Since onsets are often masked in the time domain by higher

energy signals, many reduction functions operate on a spec-

tral representation of the audio signal. The methods listed

below are all based on a short-time Fourier transform (STFT)

of the signal.

2.1.1 High Frequency Content

Percussive sounds have a high energy in the upper fre-

quency bands. This is exploited by weighting each STFT

bin with a factor proportional to its frequency. Summing

all weighted bins yields a measure called the high frequency

content (HFC), which is used as a detection function. Al-

though this method works well for percussive onsets, it

shows weaknesses for other onset types [2].

2.1.2 Spectral difference

For computation of the spectral difference function (SD),

the difference of two consecutive short-time spectra is com-

puted bin by bin. All positive differences are then summed

up across all bins. Some approaches use the L2-norm [2]

for calculating the difference, whereas others use the L1-

norm [5], in which case the function is referred to as spec-

tral flux (SF). Onset detection methods based on these meth-

ods are among the best overall performers so far.

2.1.3 Phase deviation

The methods mentioned so far rely on the spectral magni-

tudes. In [2] a method utilising phase information is de-

scribed. The change of the phase in a STFT frequency

bin is a rough estimate of its instantaneous frequency. A

change of this frequency is an indicator of a possible onset.

To reduce the chance of a missed onset due to phase wrap

around, the mean phase change over all frequency bins is

used. Dixon proposes an improvement to the phase devi-

ation (PD) detection function called normalised weighted

phase deviation (NWPD) [5], where each frequency bin’s

contribution to the phase deviation function is weighted by

its magnitude. The result is normalised by the sum of the

magnitudes.

2.1.4 Complex Domain

Another way to incorporate both magnitude and the phase

information is proposed in [6]. First, the expected ampli-

tude and phase is calculated for the current frame based

on the two previous frames, assuming constant amplitude

and phase change rate. The sum of the magnitude of the

complex differences between the actual values for each fre-

quency bin and the estimated values is then computed and

used as a detection function. A variant of this method is

called the rectified complex domain (RCD) [5]. Observing

that increases of the signal amplitude are generally more

relevant than decreases for onset detection, RCD modifies

the original algorithm by only summing over positive am-

plitude changes.

2.2 Probabilistic reduction functions

An alternative approach is to base the description of sig-

nals on probabilistic models. The negative log-likelihood

method [1] defines two different statistical models and ob-

serves whether the signal follows the first or the second

model. A sudden change from the first model to the second

can be an indication of an onset. This method shows good

results for music with soft onsets, e. g. non-percussive sounds

[2].

2.3 Pitch-based onset detection techniques

Collins describes an onset detection function based on a

pitch detector front-end [4]. Zhou presented a combination

of pitch and energy based detection functions [17]. In prin-

ciple pitch-based onset detection is based on identification

of discontinuities and perturbations in the pitch contour,

which are assumed to be indicators of onsets.

2.4 Data-driven reduction functions

To build general detection functions, which are capable of

detecting onsets in a wider range of audio signals, clas-

sifier based methods emerged. In [15] an onset detection

algorithm based on a feed forward neural network, namely

a convolutional neural network, is described. This system

performed best in the MIREX 2005 audio onset detection

evaluation.

3. NEURAL NETWORKS

Motivated by the high performance of the onset detection

method of Lacoste and Eck, we investigate a novel artificial

neural network (ANN) based approach. Instead of a simple

feed forward neural network we use a bidirectional recur-

rent neural network with Long Short-Term Memory [13]

hidden units. Such networks were proven to work well

on other audio detection tasks, such as speech recogni-

tion [10].

This section gives a short introduction to ANN with a

focus on bidirectional Long Short-Term Memory (BLSTM)

networks, which are used for the proposed onset detector.

3.1 Feed forward neural networks

The most commonly used form of feed forward neural net-

works (FNN) is the multilayer perceptron (MLP). It con-

sists of a minimum of three layers, one input layer, one

or more hidden layers, and an output layer. All connec-

tions feed forward from one layer to the next without any

backward connections. MLPs classify all input frames in-

dependently. If the context a frame is presented in is rel-

evant, this context must be explicitly fed to the network,

e. g. by using a fixed width sliding window, as in [15].
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3.2 Recurrent neural networks

Another technique for introducing past context to neural

networks is to add backward (cyclic) connections to FNNs.

The resulting network is called a recurrent neural network

(RNN). RNNs can theoretically map from the entire his-

tory of previous inputs to each output. The recurrent con-

nections form a kind of memory, which allows input values

to persist in the hidden layer(s) and influence the network

output in the future. If future context is also necessary re-

quired, a delay between the input values and the output

targets can be introduced.

3.3 Bidirectional recurrent neural networks

A more elegant incorporation future context is provided by

bidirectional recurrent networks (BRNNs). Two separate

hidden layers are used instead of one, both connected to the

same input and output layers. The first processes the input

sequence forwards and the second backwards. The net-

work therefore has always access to the complete past and

the future context in a symmetrical way, without bloating

the input layer size or displacing the input values from the

corresponding output targets. The disadvantage of BRNNs

is that they must have the complete input sequence at hand

before it can be processed.

3.4 Long Short-Term Memory

Although BRNNs have access to both past and future in-

formation, the range of context is limited to a few frames

due to the vanishing gradient problem [11]. The influence

of an input value decays or blows up exponentially over

time, as it cycles through the network with its recurrent

connections and gets dominated by new input values.

Forget

Gate

Output

Gate

Input

Input

Gate
•

•

•

1.0

Output

Memory

Cell

Figure 2. An LSTM block with one memory cell

To overcome this deficiency, a method called Long Short-

Term Memory (LSTM) was introduced in [13]. In an LSTM

hidden layer, the nonlinear units are replaced by LSTM

memory blocks (Figure 2). Each block contains one or

more self connected linear memory cells and three multi-

plicative gates. The internal state of the cell is maintained

with a recurrent connection of constant weight 1.0. This

connection enables the cell to store information over long

periods of time. The content of the memory cell is con-

trolled by the multiplicative input, output, and forget gates,

which – in computer memory terminology – correspond

to write, read, and reset operations. More details on the

training algorithm employed, and the bidirectional LSTM

architecture in general can be found in [10].

4. PROPOSED APPROACH

This section describes our novel approach for onset de-

tection in music signals, which is based on bidirectional

Long Short-Term Memory (BLSTM) recurrent neural net-

works. In contrast to previous approaches it is able to

model the context an onset occurs in. The properties of

an onset and the amount of relevant context are thereby

learned from the data set used for training. The audio data

is transformed to the frequency domain via two parallel

STFTs with different window sizes. The obtained mag-

nitude spectra and their first order differences are used as

inputs to the BLSTM network, which produces an onset

activation function at its output. Figure 3 shows this basic

signal flow. The individual blocks are described in more

detail in the following sections.

STFT & 
Difference

STFT & 
Difference

BLSTM 
Network

Peak
detection

Signal Onsets

Figure 3. Basic signal flow of the new neural network

based onset detector

4.1 Feature extraction

As input, the raw PCM audio signal with a sampling rate of

fs = 44.1 kHz is used. To reduce the computational com-

plexity, stereo signals are converted to a monaural signal

by averaging both channels. The discrete input audio sig-

nal x(t) is segmented into overlapping frames of W sam-

ples length (W = 1024 and W = 2048, see Section 4.2),

which are sampled at a rate of one per 10 ms (onset an-

notations are available on a frame level). A Hamming

window is applied to these frames. Applying the STFT

yields the complex spectrogram X(n, k), with n being the

frame index, and k the frequency bin index. The com-

plex spectrogram is converted to the power spectrogram

S(n, k) = |X(n, k)|
2
.

The dimensionality of the spectra is reduced by apply-

ing psychoacoustic knowledge: a conversion to the Mel-

frequency scale is performed with openSMILE [8]. A fil-

terbank with 40 triangular filters, which are equidistant on

the Mel scale, is used to transform the spectrogram S(n, k)
to the Mel spectrogram M(n, m). To match human per-

ception of loudness, a logarithmic representation is cho-

sen:

Mlog(n, m) = log (M(n, m) + 1.0) (1)
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The positive first order difference D+(n, m) is calcu-

lated by applying a half-wave rectifier function H(x) =
x+|x|

2
to the difference of two consecutive Mel spectra:

D+(n, m) = H (Mlog(n, m) − Mlog(n − 1, m)) (2)

4.2 Neural Network stage

As a neural network, an RNN with BLSTM units is used.

As inputs to the neural network, two log Mel-spectrograms

M23
log(n, m) and M46

log(n, m) (computed with window sizes

of 23.2 ms and 46.4 ms (W = 1024 and W = 2048 sam-

ples), respectively) and their corresponding positive first

order differences D+

23s(n, m) and D+

46s(n, m) are applied,

resulting in 160 input units. The network has three hidden

layers for each direction (6 layers in total) with 20 LSTM

units each. The output layer has two units, whose outputs

are normalised to both lie between 0 and 1, and to sum

to 1, using the softmax function. The normalised outputs

represent the probabilities for the classes ‘onset’ and ‘no

onset’. This allows the use of the cross entropy error crite-

rion to train the network [10]. Alternative networks with a

single output, where a value of 1 represents an onset frame

and a value of 0 a non-onset frame, which are trained us-

ing the mean squared output error as criterion, were not as

successful.

4.2.1 Network training

For network training, supervised learning with early stop-

ping is used. Each audio sequence is presented frame by

frame (in correct temporal order) to the network. Stan-

dard gradient descent with backpropagation of the output

errors is used to iteratively update the network weights.

To prevent over-fitting, the performance (cross entropy er-

ror, cf. [10]) on a separate validation set is evaluated af-

ter each training iteration (epoch). If no improvement of

this performance over 20 epochs is observed, the training

is stopped and the network with the best performance on

the validation set is used as the final network. The gradi-

ent descent algorithm requires the network weights to be

initialised with non zero values. We initialise the weights

with a random Gaussian distribution with mean 0 and stan-

dard deviation 0.1. The training data, as well as validation

and test sets are described in Section 5.

4.3 Peak detection stage

A network obtained after training as described in the previ-

ous section is able to classify each frame into two classes:

‘onset’ and ‘no onset’. The standard method of choosing

the output node with the highest activation to determine

the frame class has not proven effective. Hence, only the

output activation of the ‘onset’ class is used. Thresholding

and peak detection is applied to it, which is described in

the following sections:

4.3.1 Thresholding

One problem with existing magnitude based reduction func-

tions (cf. Section 2) is that the amplitude of the detection

Figure 4. Top: log Mel-spectrogram with ground truth on-

sets (vertical dashed lines). Bottom: network output with

detected onsets (marked by dots), ground truth onsets (dot-

ted vertical lines), and threshold θ (horizontal dashed line).

4 s excerpt from ‘Basement Jaxx - Rendez-Vu’.

function depends on the amplitude of the signal or the mag-

nitude of its short time spectrum. Thus, to successfully

deal with high dynamic ranges, adaptive thresholds must

be used when thresholding the detection function prior to

peak picking. Similar to phase based reduction functions,

the output activation function of the BLSTM network is

not affected by input amplitude variations, since its value

represents a probability of observing an onset rather than

representing onset strength. In order to obtain optimal clas-

sification for each song, a fixed threshold θ is computed

per song proportional to the median of the activation func-

tion (frames n = 1 . . . N ), constrained to the range from

θmin = 0.1 to θmax = 0.3:

θ∗ = λ · median{ao(1), . . . , ao(N)} (3)

θ = min (max (0.1, θ∗) , 0.3) (4)

with ao(n) being the output activation function of the

BLSTM neural network for the onset class, and the scaling

factor λ chosen to maximise the F1-measure on the valida-

tion set. The final onset function oo(n) contains only the

activation values greater than this threshold:

oo(n) =

{

ao(n) for ao(n) > θ

0 otherwise
(5)

4.3.2 Peak picking

The onsets are represented by the local maxima of the on-

set detection function oo(n). Thus, using a standard peak

search, the final onset function o(n) is given by:

o(n) =

{

1 for oo(n − 1) ≤ oo(n) ≥ oo(n + 1)

0 otherwise
(6)
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5. DATA SETS

We evaluate our onset detector using the data set intro-

duced by Bello in [2], which consists of 23 sound excerpts

with lengths ranging from a few seconds to one minute

(cf. Table 1). the data set is divided into four categories:

pitched percussive (PP ), pitched non-percussive (PNP ),

non-pitched percussive (NPP ), and complex music mixes

(MIX). The set includes audio synthesised from MIDI

files as well as original recordings.

In order to effectively train the BLSTM network, the

onset annotations had to be corrected in a few places: miss-

ing onsets were added and onsets in polyphonic pieces

were properly aligned to match the annotation precision of

the MIDI based samples. For rule-based onset detection

approaches, minor inaccuracies of a few frames are not

crucial since these are levelled out by the detection win-

dow during evaluation. For the BLSTM network, however,

it is necessary to have temporally precise data for train-

ing. Nonetheless, the original, unmodified transcriptions

are used for evaluation, to ensure a fair comparison.

To increase the size of the training data set, 87 10 s ex-

cerpts of ballroom dance style music (BRDo in the ongo-

ing) from the ISMIR 2004 tempo induction contest 1 [9]

were included (cf. Table 1). A part of the annotation work

was done by Lacoste and Eck for their neural network ap-

proach 2 . The remaining parts were manually labelled by

an expert musician 3 . As with the Bello data set, all anno-

tations have been revised for network training.

Set # files # onsets min/max/mean length [s]

BRDo 87 5474 10.0 / 10.0 / 10.0

PNP 1 93 13.1 / 13.1 / 13.1

PP 9 489 2.5 / 60.0 / 10.5

NPP 6 212 1.4 / 8.3 / 4.3

MIX 7 271 2.8 / 15.1 / 8.0

Table 1. Statistics of the onset data sets.

For network training, the full set (BRDo and Bello set)

is initially randomly split on the file level into eight dis-

junctive folds. Next, in an 8-fold cross validation, results

for the full set are obtained. Thereby for each fold six sub-

sets are used for training, one for validation, and one for

testing. Since the initial weights of the neural nets are ran-

domly distributed, the 8-fold cross validation is repeated

10 times (using the exact same folds) and the means of the

output activation functions are used for the final evaluation.

6. RESULTS

In [2] and [5], an onset is reported as correct if it is detected

within a 100 ms window (±50 ms) around the annotated

ground truth onset position. In [3] a smaller window of

±25ms was used for percussive sounds. We therefore de-

cided to report two results for each set, one using a 100 ms

1 http://mtg.upf.edu/ismir2004/contest/tempoContest/node5.html
2 http://w3.ift.ulaval.ca/˜allac88/dataset.tar.gz
3 Data available at: http://mir.minimoog.org/

window ω100 for comparison with results in [2] and [5],

and the second using a 50 ms window ω50. All results were

obtained with a fixed threshold scaling factor of λ = 50.

Table 2 shows the results of our BLSTM network ap-

proach for each set of onsets in comparison to six other on-

set detection methods as reported in [2] and [5].The PNP

data set consists of 93 onsets from only one audio file of

string sounds. As a consequence, the results are not as rep-

resentative as the others, and can vary a lot, depending on

the used parameters, as shown by [5]. The number of on-

sets of the PP set has changed from originally 489 (used

in [2, 5]) to 482 now, due to modifications by its author.

The new results are therefore slightly worse (up to max.

1.4%) than the original results but can still compete.

BRDo & Bello-set Precision Recall F1-measure

BLSTM (ω100) 0.945 0.925 0.935

BLSTM (ω50) 0.920 0.901 0.911

BLSTM (comb, ω100) 0.938 0.916 0.927

BLSTM (comb, ω50) 0.911 0.890 0.900

Table 3. 8-fold cross validation results for BLSTM on the

full data set with 100 ms and 50 ms detection windows (ω).

comb: all onsets within 30 ms combined.

Table 3 shows the results obtained by cross validation

for the full data set. The first two rows reflect the results

obtained with the same settings as for the individual Bello

sets. It has been shown that two onsets are perceived as one

if they are not more than 30 ms apart [12]. Hence we also

report results, where all onsets less than 30 ms apart have

been combined to a single one. There are 6 605 onsets in

the original annotations and 5 861 after combining.

6.1 Discussion

The results show that our algorithm can compete with, and

in most cases outperform, a range of existing methods for

all types of onsets. However, we must temper this conclu-

sion by adding that we were not able to compare to the lat-

est MIREX participants (e.g. [16]), since the MIREX test

data is not publicly available and the authors did not pub-

lish results on the Bello data set. Perhaps the most exciting

aspect of our approach is that it does not require adaptation

to specific onset types to achieve good results. This is an

important step towards a universal onset detector.

If a detection window of only 50 ms is chosen our ap-

proach even outperforms the reference algorithms in some

cases. This shows the excellent temporal precision of the

BLSTM onset detector. In our opinion the results given

for a detection window of 50 ms with all onsets less than

30 ms apart combined to a single one should be used in the

future, as they better reflect the temporal precision of the

algorithm and the perception of the human ear.

7. CONCLUSION

We have presented a novel onset detector based on BLSTM-

RNN, which – on the Bello onset data set – achieves results
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PNP PP NPP MIX

P R F P R F P R F P R F

HFC [2] 0.844 0.817 0.830 0.947 0.941 0.944 1.000 0.967 0.983 0.888 0.845 0.866

SD [2] 0.910 0.871 0.890 0.983 0.949 0.966 0.935 0.816 0.871 0.886 0.804 0.843

NLL [2] 0.968 0.968 0.968 0.968 0.924 0.945 0.980 0.929 0.954 0.889 0.860 0.874

SF [5] 0.938 0.968 0.952 0.981 0.988 0.984 0.959 0.975 0.967 0.882 0.882 0.882

NWPD [5] 0.909 0.968 0.938 0.961 0.981 0.971 0.950 0.966 0.958 0.916 0.845 0.879

RCD [5] 0.948 0.978 0.963 0.983 0.979 0.981 0.944 0.983 0.963 0.945 0.819 0.877

BLSTM (ω100) 0.968 0.968 0.968 0.987 0.987 0.987 0.991 0.995 0.993 0.941 0.897 0.918

BLSTM (ω50) 0.918 0.957 0.937 0.955 0.981 0.968 0.982 0.995 0.989 0.844 0.865 0.855

Table 2. Results for the Bello data sets PNP , PP , NPP , and MIX . Precision (P), Recall (R), and F1-measure (F) (as

used in [5]). BLSTM with 100 ms and 50 ms detection windows (ω) in comparison to other approaches: high frequency

content (HFC), spectral difference (SD), negative log-likelihood (NLL), spectral flux (SF), normalised weighted phase

deviation (NWPD), and rectified complex domain (RCD).

on par with or better than existing results on the same data

(wrt. F1-measure), regardless of onset type. We have also

introduced a new thoroughly annotated data set of onsets

in ballroom dance music.

The average improvement on the whole Bello data set,

is 1.7% F1-measure absolute. The improvement was best

(3.6% F1-measure, absolute) for complex music mixes, re-

flecting the adaptivity of our method to different musical

genres. Competitive results are obtained even if the detec-

tion window is halved in size (50 ms instead of 100 ms).

In future work we will investigate whether the approach

is suitable for identifying the onset type (e. g. instrument

type, vocal, etc.) via detectors trained on respective data.
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