UNIVERSAL OPERATORS AND INVARIANT SUBSPACES

S. R. CARADUS

For any Banach space X, let $B(X)$ denote the space of continuous endomorphisms of X. An operator U in $B(X)$ will be called universal if, given any T in $B(X)$, then some nonzero multiple of T is similar to a part of U i.e. there exists $\lambda \in C, \lambda \neq 0$, a closed subspace X_{0} of X such that $U X_{0} \subseteq X_{0}$ and a linear homeomorphism ϕ of X onto X_{0} such that $\lambda T=\phi^{-1}\left(U \mid X_{0}\right) \phi$. The first example of a universal operator (or model) was constructed by G.-C. Rota [1] for the Hilbert space case. In that instance, U is (unitarily equivalent to) the direct sum of countably many copies of the reverse shift $\left(\xi_{1}, \xi_{2}, \xi_{3}, \cdots\right) \rightarrow$ $\left(\xi_{2}, \xi_{3}, \xi_{4}, \cdots\right)$. Such a direct sum obviously defines an operator whose nullspace is infinite-dimensional and whose range is the whole space. In this note, we show that all such operators are universal (when X is a separable Hilbert space) and that, with rather obvious modifications, the arguments extend to arbitrary Banach spaces.

Theorem. Let X denote a separable Hilbert space and let U belong to $B(X)$. If U has the following properties:
(i) the nullspace $N(U)$ is infinite-dimensional,
(ii) the range space $R(U)$ is the space X, then U is universal.

Proof. We begin by constructing operators, V, W in $B(X)$ such that $U V=I, U W=0, N(W)=(0), R(W)$ is closed and $R(W) \perp R(V)$. To do this, we write \tilde{U} for the restriction of U to $N(U)^{\perp}$ and define $V=\tilde{U}^{-1}$. We then take an orthonormal basis $\left\{e_{n}\right\}$ for X and an orthonormal basis $\left\{e_{n}^{\prime}\right\}$ for $N(U)$ and define $W e_{n}=e_{n}^{\prime}$. That V and W have the required properties is obvious. Now let T be any operator in $B(X)$. Choose λ so that $|\lambda|\|T\|\|V\|<1$ and define ϕ $=\sum_{k=1}^{\infty} \lambda^{k} V^{k} W T^{k}$, observing that, by choice of λ, this series converges in $B(X)$. It is also evident that

$$
\begin{equation*}
U \phi=\lambda \phi T \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\phi=\lambda V \phi T+W . \tag{2}
\end{equation*}
$$

We can now deduce from (2) that ϕ is a linear homeomorphism. For suppose $\phi(x)=0$. Then since $R(W) \perp R(V)$, it is evident that $V \phi T x$ $=W x=0$. But W is invertible so $x=0$. Secondly, to show $R(\phi)$ is

[^0]closed, consider $\phi\left(x_{n}\right) \rightarrow y$. Then from (2), we have $\lambda V \phi T x_{n}+W x_{n} \rightarrow y$. Hence $W x_{n} \rightarrow P y$ where P is the orthogonal projection onto $R(W)$. Since $R(W)$ is closed, there exists x such that $W x_{n} \rightarrow W x$ and hence $x_{n} \rightarrow x$. Thus $\phi\left(x_{n}\right) \rightarrow \phi(x)=y$. Finally, from (1), $R(\phi)$ is U invariant and the result follows.

Extension to the general case. It is evident that the above proof is valid whenever we can perform the construction of V and W such that there is a continuous projection onto $R(W)$. In the case of arbitrary Banach space, the theorem is valid if we replace (i) by $(\mathrm{i})^{\prime}: N(U)$ is a complemented subspace containing a subspace which is linearly homeomorphic to X.

For suppose (i)' and (ii) hold and X_{0} is a closed complement of $N(U)$. Let $\widetilde{U}=U \mid X_{0}$ and define $V=\widetilde{U}^{-1}$. Then for W, take the linear homeomorphism with range in $N(U)$ whose existence is asserted by (i)'.

Applications. Let X be a separable Hilbert space. For any $T \in B(X)$, write $\mathscr{g}(T)$ to denote the lattice of closed invariant subspaces of T. If $\mathscr{g}(T) \neq\{0, X\}$, we call $\mathscr{g}(T)$ nontrivial.
(1) Either $\mathscr{G}(T)$ is nontrivial for every T or for every universal operator $U, \mathscr{G}(U)$ has an infinite-dimensional atom.
(2) If U has properties (i) and (ii), then there is a closed subspace X_{0} such that $U X_{0}=X_{0}$ and $X_{0} \cap N(U)=(0)$.

For take T which is invertible in $B(X)$. Then from equation (1), $U R(\phi)=R(\phi)$ and $N(U) \cap R(\phi)=(0)$.
(3) Suppose U has properties (i) and (ii). Then $\mathscr{G}(U)$ contains a countable family of mutually disjoint nonzero subspaces X_{n} such that $X_{n} \cap N(U)=(0)$.

For let $\left\{W_{n}\right\}$ be a sequence of operators with $R\left(W_{n}\right) \cap R\left(W_{m}\right)$ $=(0),(m \neq n), R\left(W_{n}\right)$ closed, $N\left(W_{n}\right)=(0)$ and $R\left(W_{n}\right) \subseteq N(U)$. Such a family can be constructed by the method used for constructing W in the proof of the theorem. Take V as in the proof and any T with $\|T\|<\|V\|^{-1}$ and $N(T)=(0)$. Each W_{n} defines a linear homeomorphism $\phi_{n}=\sum_{k=0}^{\infty} V^{k} W_{n} T^{k}$. Moreover, if $m \neq n, R\left(\phi_{n}\right) \cap R\left(\phi_{m}\right)=(0)$. For suppose $\phi_{n}(X)=\phi_{m}(y)$ then $W_{n} x+\sum_{k=1}^{\infty} V^{k} W_{n} T^{k} x=W_{m} y$ $+\sum_{k=1}^{\infty} V^{k} W_{m} T^{k} y$ so that $W_{n} x-W_{m} y \in N(U) \cap R(V)$. Thus $W_{n} x$ $=W_{m} y=0$ and therefore $x=y=0$.

Bibliography

1. G.-C. Rota, On models for linear operators, Comm. Pure Appl. Math. 13 (1960), 469-472.

Australian National University and
Queen's University at Kingston

[^0]: Received by the editors April 24, 1969.

