UNIVERSAL OPERATORS AND INVARIANT SUBSPACES

S. R. CARADUS

For any Banach space X, let B(X) denote the space of continuous endomorphisms of X. An operator U in B(X) will be called *universal* if, given any T in B(X), then some nonzero multiple of T is similar to a part of U i.e. there exists $\lambda \in \mathbb{C}$, $\lambda \neq 0$, a closed subspace X_0 of X such that $UX_0 \subseteq X_0$ and a linear homeomorphism ϕ of X onto X_0 such that $\lambda T = \phi^{-1}(U|X_0)\phi$. The first example of a universal operator (or *model*) was constructed by G.-C. Rota [1] for the Hilbert space case. In that instance, U is (unitarily equivalent to) the direct sum of countably many copies of the reverse shift $(\xi_1, \xi_2, \xi_3, \cdots) \rightarrow$ $(\xi_2, \xi_3, \xi_4, \cdots)$. Such a direct sum obviously defines an operator whose nullspace is infinite-dimensional and whose range is the whole space. In this note, we show that all such operators are universal (when X is a separable Hilbert space) and that, with rather obvious modifications, the arguments extend to arbitrary Banach spaces.

THEOREM. Let X denote a separable Hilbert space and let U belong to B(X). If U has the following properties:

- (i) the nullspace N(U) is infinite-dimensional,
- (ii) the range space R(U) is the space X,

then U is universal.

PROOF. We begin by constructing operators, V, W in B(X) such that UV = I, UW = 0, N(W) = (0), R(W) is closed and $R(W) \perp R(V)$. To do this, we write \tilde{U} for the restriction of U to $N(U)^{\perp}$ and define $V = \tilde{U}^{-1}$. We then take an orthonormal basis $\{e_n\}$ for X and an orthonormal basis $\{e'_n\}$ for N(U) and define $We_n = e'_n$. That V and W have the required properties is obvious. Now let T be any operator in B(X). Choose λ so that $|\lambda| ||T||| ||V|| < 1$ and define $\phi = \sum_{k=1}^{\infty} \lambda^k V^k W T^k$, observing that, by choice of λ , this series converges in B(X). It is also evident that

(1)
$$U\phi = \lambda\phi T$$

and

(2)
$$\phi = \lambda V \phi T + W.$$

We can now deduce from (2) that ϕ is a linear homeomorphism. For suppose $\phi(x) = 0$. Then since $R(W) \perp R(V)$, it is evident that $V\phi Tx$ = Wx = 0. But W is invertible so x = 0. Secondly, to show $R(\phi)$ is

Received by the editors April 24, 1969.

closed, consider $\phi(x_n) \rightarrow y$. Then from (2), we have $\lambda V \phi T x_n + W x_n \rightarrow y$. Hence $W x_n \rightarrow P y$ where P is the orthogonal projection onto R(W). Since R(W) is closed, there exists x such that $W x_n \rightarrow W x$ and hence $x_n \rightarrow x$. Thus $\phi(x_n) \rightarrow \phi(x) = y$. Finally, from (1), $R(\phi)$ is U invariant and the result follows.

EXTENSION TO THE GENERAL CASE. It is evident that the above proof is valid whenever we can perform the construction of V and Wsuch that there is a continuous projection onto R(W). In the case of arbitrary Banach space, the theorem is valid if we replace (i) by (i)': N(U) is a complemented subspace containing a subspace which is linearly homeomorphic to X.

For suppose (i)' and (ii) hold and X_0 is a closed complement of N(U). Let $\tilde{U} = U | X_0$ and define $V = \tilde{U}^{-1}$. Then for W, take the linear homeomorphism with range in N(U) whose existence is asserted by (i)'.

APPLICATIONS. Let X be a separable Hilbert space. For any $T \in B(X)$, write $\mathfrak{I}(T)$ to denote the lattice of closed invariant subspaces of T. If $\mathfrak{I}(T) \neq \{0, X\}$, we call $\mathfrak{I}(T)$ nontrivial.

(1) Either $\mathfrak{I}(T)$ is nontrivial for every T or for every universal operator $U, \mathfrak{I}(U)$ has an infinite-dimensional atom.

(2) If U has properties (i) and (ii), then there is a closed subspace X_0 such that $UX_0 = X_0$ and $X_0 \cap N(U) = (0)$.

For take T which is invertible in B(X). Then from equation (1), $UR(\phi) = R(\phi)$ and $N(U) \cap R(\phi) = (0)$.

(3) Suppose U has properties (i) and (ii). Then $\mathscr{G}(U)$ contains a countable family of mutually disjoint nonzero subspaces X_n such that $X_n \cap N(U) = (0)$.

For let $\{W_n\}$ be a sequence of operators with $R(W_n) \cap R(W_m) = (0)$, $(m \neq n)$, $R(W_n)$ closed, $N(W_n) = (0)$ and $R(W_n) \subseteq N(U)$. Such a family can be constructed by the method used for constructing W in the proof of the theorem. Take V as in the proof and any T with $||T|| < ||V||^{-1}$ and N(T) = (0). Each W_n defines a linear homeomorphism $\phi_n = \sum_{k=0}^{\infty} V^k W_n T^k$. Moreover, if $m \neq n$, $R(\phi_n) \cap R(\phi_m) = (0)$. For suppose $\phi_n(X) = \phi_m(y)$ then $W_n x + \sum_{k=1}^{\infty} V^k W_n T^k x = W_m y$ $+ \sum_{k=1}^{\infty} V^k W_m T^k y$ so that $W_n x - W_m y \in N(U) \cap R(V)$. Thus $W_n x$ = $W_m y = 0$ and therefore x = y = 0.

BIBLIOGRAPHY

1. G.-C. Rota, On models for linear operators, Comm. Pure Appl. Math. 13 (1960), 469-472.

Australian National University and Queen's University at Kingston