
Universal Padding Schemes for RSA

Jean-Sébastien Coron, Marc Joye, David Naccache, and Pascal Paillier

Gemplus Card International, France
{jean-sebastien.coron,marc.joye,

david.naccache,pascal.paillier}@gemplus.com

Abstract. A common practice to encrypt with RSA is to first apply a
padding scheme to the message and then to exponentiate the result with
the public exponent; an example of this is OAEP. Similarly, the usual
way of signing with RSA is to apply some padding scheme and then
to exponentiate the result with the private exponent, as for example in
PSS. Usually, the RSA modulus used for encrypting is different from the
one used for signing. The goal of this paper is to simplify this common
setting. First, we show that PSS can also be used for encryption, and
gives an encryption scheme semantically secure against adaptive chosen-
ciphertext attacks, in the random oracle model. As a result, PSS can be
used indifferently for encryption or signature. Moreover, we show that
PSS allows to safely use the same RSA key-pairs for both encryption
and signature, in a concurrent manner. More generally, we show that
using PSS the same set of keys can be used for both encryption and
signature for any trapdoor partial-domain one-way permutation. The
practical consequences of our result are important: PKIs and public-key
implementations can be significantly simplified.

Keywords: Probabilistic Signature Scheme, Provable Security.

1 Introduction

A very common practice for encrypting a message m with RSA is to first apply
a padding scheme µ, then raise µ(m) to the public exponent e. The ciphertext c
is then:

c = µ(m)e mod N

Similarly, for signing a message m, the common practice consists again in
first applying a padding scheme µ′ then raising µ′(m) to the private exponent
d. The signature s is then:

s = µ′(m)d mod N

For various reasons, it would be desirable to use the same padding scheme µ(m)
for encryption and for signature: in this case, only one padding scheme needs
to be implemented. Of course, the resulting padding scheme µ(m) should be
provably secure for encryption and for signing. We say that a padding scheme is
universal if it satisfies this property.

M. Yung (Ed.): CRYPTO 2002, LNCS 2442, pp. 226–241, 2002.
c© Springer-Verlag Berlin Heidelberg 2002

Universal Padding Schemes for RSA 227

The strongest public-key encryption security notion was defined in [15] as
indistinguishability under an adaptive chosen ciphertext attack. An adversary
should not be able to distinguish between the encryption of two plaintexts, even
if he can obtain the decryption of ciphertexts of his choice. For digital signature
schemes, the strongest security notion was defined by Goldwasser, Micali and
Rivest in [10], as existential unforgeability under an adaptive chosen message
attack. This notion captures the property that an adversary cannot produce
a valid signature, even after obtaining the signature of (polynomially many)
messages of his choice.

In this paper, we show that the padding scheme PSS [3], which is originally
a provably secure padding scheme for producing signatures, can also be used as
a provably secure encryption scheme. More precisely, we show that PSS offers
indistinguishability under an adaptive chosen ciphertext attack, in the random
oracle model, under the partial-domain one-wayness of the underlying permu-
tation. Partial-domain one-wayness, introduced in [9], is a formally stronger
assumption than one-wayness. However, for RSA, partial-domain one-wayness
is equivalent to (full domain) one-wayness and therefore RSA-PSS encryption is
provably secure under the sole assumption that RSA is one-way.

Generally, in a given application, the RSA modulus used for encrypting is
different from the RSA modulus used for signing; our setting (and real-world
PKIs) would be further simplified if one could use the same set of keys for both
encryption and signature (see [11]). In this paper, we show that using PSS, the
same keys can be safely used for encryption and for signature.

2 Public-Key Encryption

A public-key encryption scheme is a triple of algorithms (K, E ,D) where:

– K is a probabilistic key generation algorithm which returns random pairs of
public and secret keys (pk , sk) depending on some security parameter k,

– E is a probabilistic encryption algorithm which takes as input a public key
pk and a plaintext M ∈ M, runs on a random tape r ∈ R and returns
a ciphertext c. M and R stand for spaces in which messages and random
strings are chosen respectively,

– D is a deterministic decryption algorithm which, given as input a secret key
sk and a ciphertext c, returns the corresponding plaintext M , or Reject.

The strongest security notion for public-key encryption is the aforementioned
notion of indistinguishability under an adaptive chosen ciphertext attack. An
adversary should not be able to distinguish between the encryption of two plain-
texts, even if he can obtain the decryption of ciphertexts of his choice. The attack
scenario is the following:

1. The adversary A receives the public key pk with (pk , sk)← K(1κ).
2. A makes decryption queries for ciphertexts y of his choice.

228 Jean-Sébastien Coron et al.

3. A chooses two messages M0 and M1 of identical length, and receives the
encryption c of Mb for a random unknown bit b.

4. A continues to make decryption queries. The only restriction is that the
adversary cannot request the decryption of c.

5. A outputs a bit b′, representing its “guess” on b.

The adversary’s advantage is then defined as:

Adv(A) = |2 · Pr[b′ = b]− 1|
An encryption scheme is said to be secure against adaptive chosen ciphertext at-
tack (and denoted IND-CCA2) if the advantage of any polynomial-time bounded
adversary is a negligible function of the security parameter. Usually, schemes are
proven to be IND-CCA2 secure by exhibiting a polynomial reduction: if some ad-
versary can break the IND-CCA2 security of the system, then the same adversary
can be invoked (polynomially many times) to solve a related hard problem.

The random oracle model, introduced by Bellare and Rogaway in [1], is a
theoretical framework in which any hash function is seen as an oracle which
outputs a random value for each new query. Actually, a security proof in the
random oracle model does not necessarily imply that a scheme is secure in the
real world (see [6]). Nevertheless, it seems to be a good engineering principle to
design a scheme so that it is provably secure in the random oracle model. Many
encryption and signature schemes were proven to be secure in the random oracle
model.

3 Encrypting with PSS-R

In this section we prove that given any trapdoor partial-domain one-way per-
mutation f , the encryption scheme defined by first applying PSS with message
recovery (denoted PSS-R) and then encrypting the result with f achieves the
strongest security level for an encryption scheme, in the random oracle model.

3.1 The PSS-R Padding Scheme

PSS-R, defined in [3], is parameterized by the integers k, k0 and k1 and uses two
hash functions:

H : {0, 1}k−k1 → {0, 1}k1 and G : {0, 1}k1 → {0, 1}k−k1

PSS-R takes as input a (k−k0−k1)-bit message M and a k0-bit random integer
r. As illustrated in Figure 1, PSS-R outputs:

µ(M, r) = ω||s
where ‖ stands for concatenation, ω = H(M ||r) and s = G(ω)⊕(M‖r). Actually,
in [3], M‖r is used as the argument to H and r‖M is used as the mask to xor
with G(ω). Here for simplicity we use M‖r in both places, but the same results
apply either way.

Universal Padding Schemes for RSA 229

���

�

�

� �

Fig. 1. The PSS-R padding scheme

3.2 The PSS-E Encryption Scheme

The new encryption scheme (K, E ,D), that we denote PSS-E, is based on µ and
a k-bit trapdoor permutation f :

– K generates the public key f and the secret key f−1.
– E(M, r): given a message M ∈ {0, 1}k−k0−k1 and a random r ∈ {0, 1}k0 , the

encryption algorithm outputs the ciphertext:

c = f(µ(M, r))

– D(c): the decryption algorithm recovers (ω, s) = f−1(c) and then M‖r =
G(ω) ⊕ s. If ω = H(M ||r), the algorithm returns M , otherwise it returns
Reject.

3.3 The Underlying Problem

The security of PSS-E is based on the difficulty of inverting f without knowing
f−1. As in [9], we use two additional related problems: the partial-domain one-
wayness and the set partial-domain one-wayness of f :
– (τ, ε)-one-wayness of f , means that for any adversary A who wishes to
recover the full pre-image (ω, s) of f(ω, s) in time less than τ , A’s success prob-
ability Succow(A) is upper-bounded by ε:

Succow(A) = Pr
ω,s

[A(f(ω, s)) = (ω, s)] < ε

– (τ, ε)-partial-domain one-wayness of f , means that for any adversary A
who wishes to recover the partial pre-image ω of f(ω, s) in time less than τ , A’s
success probability Succpd−ow(A) is upper-bounded by ε:

Succpd−ow(A) = Pr
ω,s

[A(f(ω, s)) = ω] < ε

– (�, τ, ε)-set partial-domain one-wayness of f , means that for any adver-
sary A who wishes to output a set of � elements which contains the partial pre-
image ω of f(ω, s), in time less than τ , A’s success probability Succs−pd−ow(A)
is upper-bounded by ε:

Succs−pd−ow(A) = Pr
ω,s

[ω ∈ A(f(ω, s))] < ε

230 Jean-Sébastien Coron et al.

As in [9], we denote by Succow(τ), (resp. Succpd−ow(τ) and Succs−pd−ow(�, τ)) the
maximal probability Succow(A), (resp. Succpd−ow(A) and Succs−pd−ow(A)), over
all adversaries whose running times are less than τ . For any τ and � ≥ 1, we
have:

Succs−pd−ow(�, τ) ≥ Succpd−ow(τ) ≥ Succow(τ)

Moreover, by randomly selecting any element in the set returned by the adversary
against the set partial-domain one-wayness, one can break the partial-domain
one-wayness with probability 1/�, which gives:

Succpd−ow(τ) ≥ Succs−pd−ow(�, τ)/� (1)

We will see in Section 5 that for RSA, the three problems are polynomially
equivalent.

3.4 Security of PSS-E

The following theorem shows that PSS-E is semantically secure under adaptive
chosen ciphertext attacks (IND-CCA2), in the random oracle model, assuming
that the underlying permutation is partial-domain one-way.

Theorem 1. Let A be a CCA2-adversary against the semantic security of PSS-
E, with advantage ε and running time t, making qD, qH and qG queries to the
decryption oracle and the hash functions H and G, respectively. Then:

Succpd−ow(t′) ≥ 1
qH + qG

· (ε− qH2−k0 − qD2−k1
)

where t′ ≤ t + qH · Tf , and Tf denotes the time complexity of f .

The theorem follows from inequality (1) and the next lemma:

Lemma 1. Using the notations introduced in Theorem 1, we have:

Succs−pd−ow(qH + qG, t′) ≥ ε− qH · 2−k0 − qD · 2−k1 (2)

Proof. We describe a reduction B which usingA, constructs an adversary against
the set partial-domain one-wayness of f . We start with a top-level description
of the reduction and then show how to simulate the random oracles G, H and
the decryption oracle D. Eventually we compute the success probability of B.

Top-level description of the reduction B:

1. B is given a function f and c∗ = f(ω∗, s∗), for random integers ω∗ and s∗.
B’s goal is to output a list which contains the partial pre-image ω∗ of c∗.

2. B runs A with f and gets {M0, M1}. It chooses a random bit b and gives
c∗ as a ciphertext for Mb. B simulates the oracles G, H and D as described
below.

3. B receives from A the answer b′ and outputs the list of queries asked to G.

Universal Padding Schemes for RSA 231

Simulation of the random oracles G, H and D:
The simulation of G and H is very simple: a random answer is returned for each
new query of G and H. Moreover, when ω is the answer of a query to H, we
simulate a query for ω to G, so that G(ω) is defined.

On query c to the decryption oracle, the reduction B looks at each query
M ′||r′ to H and computes:

ω′ = H(M ′||r′) and s′ = G(ω′)⊕ (M ′‖r′)

Then if c = f(ω′, s′) the reduction B returns M ′. Otherwise, the reduction
outputs Reject.

Analysis:
Since c∗ = f(ω∗, s∗) is the ciphertext corresponding to Mb, we have the following
constraint for random oracles G and H:

H(Mb‖r∗) = ω∗ and G(ω∗) = s∗ ⊕ (Mb‖r∗) (3)

We denote by AskG the event: “ω∗ has been asked to G” and by AskH the
event: “there exists M ′ such that M ′||r∗ has been queried to H”.

If ω∗ was never queried to G, then G(ω∗) is undefined and r∗ is then a uni-
formly distributed random variable. Therefore the probability that there exists
M ′ such that (M ′, r∗) has been asked to H is at most qH · 2−k0 . This gives:

Pr[AskH|¬AskG] ≤ qH · 2−k0 (4)

Our simulation of D can only fail by rejecting a valid ciphertext. We denote
by DBad this event. Letting c = f(ω, s) be the ciphertext queried to D and

M‖r = G(ω)⊕ s

we reject a valid ciphertext if H(M ||r) = ω while M ||r was never queried to H.
However, if M‖r was never queried to H, then H(M‖r) is randomly defined.
Namely if the decryption query occured before c∗ was sent to the adversary, then
constraint (3) does not apply and H(M‖r) is randomly defined. Otherwise, if
the decryption query occured after c∗ was sent to the adversary, then c �= c∗

implies (M, r) �= (Mb, r
∗) and H(M‖r) is still randomly defined. In both cases

the probability that H(M, r) = ω is then 2−k1 , which gives:

Pr[DBad] ≤ qD · 2−k1 (5)

Let us denote by Bad the event: “ω∗ has been queried to G or (M ′, r∗) has
been queried to H for some M ′ or the simulation of D has failed”. Formally:

Bad = AskG ∨ AskH ∨ DBad (6)

Let us denote by S the event: “the adversary outputs the correct value for b, i.e.,
b = b′”. Conditioned on ¬Bad, our simulations of G, H and D are independent
of b, and therefore A’s view is independent of b as well. This gives:

Pr[S|¬Bad] =
1
2

(7)

232 Jean-Sébastien Coron et al.

Moreover, conditioned on ¬Bad, the adversary’s view is the same as when inter-
acting with (perfect) random and decryption oracles, which gives:

Pr[S ∧ ¬Bad] ≥ 1
2

+
ε

2
− Pr[Bad] (8)

From (7) we obtain

Pr[S ∧ ¬Bad] = Pr[S|¬Bad] · Pr[¬Bad] =
1
2
(1− Pr[Bad])

which gives using (8):
Pr[Bad] ≥ ε (9)

From (6) we have:

Pr[Bad] ≤ Pr[AskG ∨ AskH] + Pr[DBad]
≤ Pr[AskG] + Pr[AskH ∧ ¬AskG] + Pr[DBad]
≤ Pr[AskG] + Pr[AskH|¬AskG] + Pr[DBad]

which yields using (4), (5) and (9):

Pr[AskG] ≥ ε− qH · 2−k0 − qD · 2−k1

and hence (2) holds. This completes the proof of lemma 1. ��

4 Signing and Encrypting with the Same Set of Keys

In this section we show that when using PSS, the same public key can be used
for encryption and signature in a concurrent manner. For RSA, this means that
the same set (N, e, d) can be used for both operations. In other words, when
Alice sends a message to Bob, she encrypts it using Bob’s public key (N, e); Bob
decrypts it using the corresponding private key (N, d). To sign a message M ,
Bob will use the same private key (N, d). As usual, anybody can verify Bob’s
signatures using his public pair (N, e).

Although provably secure (as we will see hereafter), this is contrary to the
folklore recommendation that signature and encryption keys should be distinct.
This recommendation may prove useful is some cases; this is particularly true
when a flaw has been found in the encryption scheme or in the signature scheme.
In our case, we will prove that when using PSS-R, a decryption oracle does not
help the attacker in forging signatures, and a signing oracle does not help the
attacker in gaining information about the plaintext corresponding to a cipher-
text.

Nevertheless, we advise to be very careful when implementing systems using
the same keys for encrypting and signing. For example, if there are some imple-
mentation errors in a decryption server (see for example [13]), then an attacker
could use this server to create forgeries.

Universal Padding Schemes for RSA 233

4.1 The PSS-ES Encryption and Signature Scheme

The PSS-ES encryption and signature scheme (K, E ,D,S,V) is based on PSS-
R and a k-bit trapdoor permutation f . As for the PSS-R signature scheme,
the signature scheme in PSS-ES is with message recovery: this means that the
message is recovered when verifying the signature. In this case, only messages of
fixed length k − k0 − k1 can be signed. To sign messages M of arbitrary length,
it suffices to apply a collision-free hash function to M prior to signing.
– K generates the public key f and the secret key f−1.
– E(M, r): given a message M ∈ {0, 1}k−k0−k1 and a random value r ∈ {0, 1}k0 ,
the encryption algorithm computes the ciphertext:

c = f(µ(M, r))

– D(c): the encryption algorithm recovers (ω, s) = f−1(c) and computes

M‖r = G(ω)⊕ s

If ω = H(M ||r), the algorithm returns M , otherwise it returns Reject.
– S(M, r): given a message M ∈ {0, 1}k−k0−k1 and a random value r ∈ {0, 1}k0 ,
the signing algorithm computes the signature:

σ = f−1(µ(M, r))

– V(σ): given the signature σ, the verification algorithm recovers (ω, s) = f(σ)
and computes:

M‖r = G(ω)⊕ s

If ω = H(M‖r), the algorithm accepts the signature and returns M . Otherwise,
the algorithm returns Reject.

4.2 Semantic Security

We must ensure that an adversary is still unable to distinguish between the
encryption of two messages, even if he can obtain the decryption of ciphertexts
of his choice, and the signature of messages of his choice. The attack scenario is
consequently the same as previously, except that the adversary can also obtain
the signature of messages he wants.

The following theorem, whose proof is given in Appendix A, shows that PSS-
ES is semantically secure under adaptive chosen ciphertext attacks, in the ran-
dom oracle model, assuming that the underlying permutation is partial domain
one-way.

Theorem 2. Let A be an adversary against the semantic security of PSS-ES,
with success probability ε and running time t, making qD, qsig, qH and qG queries
to the decryption oracle, the signing oracle, and the hash functions H and G,
respectively. Then, Succpd−ow(t′) is greater than:

1
qH + qG + qsig

(
ε− (qH + qsig) · 2−k0 − qD2−k1 − (qH + qsig)2 · 2−k1

)

where t′ ≤ t + (qH + qsig) · Tf , and Tf denotes the time complexity of f .

234 Jean-Sébastien Coron et al.

4.3 Unforgeability

For signature schemes, the strongest security notion is the previously introduced
existential unforgeability under an adaptive chosen message attack. An attacker
cannot produce a valid signature, even after obtaining the signature of (polyno-
mially many) messages of his choice. Here the adversary can also also obtain the
decryption of ciphertexts of his choice under the same public-key. Consequently,
the attack scenario is the following:

1. The adversary A receives the public key pk with (pk , sk)← K(1κ).
2. A makes signature queries for messages M of his choice. Additionally, he

makes decryption queries for ciphertexts y of his choice.
3. A outputs the signature of a message M ′ which was not queried for signature

before.

An encryption-signature scheme is said to be secure against chosen-message
attacks if for any polynomial-time bounded adversary, the probability to output
a forgery is negligible.

The following theorem shows that PSS-ES is secure against an adaptive cho-
sen message attack. The proof is similar to the security proof of PSS [3] and is
given in Appendix B.

Theorem 3. Let A be an adversary against the unforgeability of PSS-ES, with
success probability ε and running time t, making qD, qsig, qH and qG queries
to the decryption oracle, the signing oracle, and the hash oracles H and G,
respectively. Then Succow(t′) is greater than:

1
qH

(
ε− ((qH + qsig)2 + qD + 1) · 2−k1

)
(10)

where t′ ≤ t + (qH + qsig) · Tf , and Tf denotes the time complexity of f .

5 Application to RSA

5.1 The RSA Cryptosystem

The RSA cryptosystem [16] is the most widely used cryptosystem today. In this
section, we show that by virtue of RSA’s homomorphic properties, the partial-
domain one-wayness of RSA is equivalent to the one-wayness of RSA. This en-
ables to prove that the encryption scheme RSA-PSS-E and the encryption and
signature scheme RSA-PSS-ES are semantically secure against chosen ciphertext
attacks, in the random oracle model, assuming that inverting RSA is hard.

Definition 1 (The RSA Primitive). The RSA primitive is a family of trap-
door permutations, specified by:
– The RSA generator RSA, which on input 1k, randomly selects two distinct
k/2-bit primes p and q and computes the modulus N = p ·q. It randomly picks an

Universal Padding Schemes for RSA 235

encryption exponent e ∈ Z
∗
φ(N), computes the corresponding decryption exponent

d = e−1 mod φ(N) and returns (N, e, d).
– The encryption function f : Z

∗
N → Z

∗
N defined by f(x) = xe mod N .

– The decryption function f−1 : Z
∗
N → Z

∗
N defined by f−1(y) = yd mod N .

In the following, we state our result in terms of the RSA primitive with a ran-
domly chosen public exponent. The same results apply to the common practice
of choosing a small public exponent. Actually, using Coppersmith’s algorithm
[7] as in [17] for OAEP [2], it would be possible to obtain tigther bounds for a
small public exponent.

5.2 Partial-Domain One-Wayness of RSA

The following lemma shows that the partial-domain one-wayness of RSA is equiv-
alent to the one-wayness of RSA. This is a generalization of the result that
appears in [9] for OAEP and in [4] for SAEP+, wherein the size of the par-
tial pre-image is greater than half the size of the modulus. The extension was
announced in [9] and [4], even if the proper estimates were not worked out.

The technique goes as follows. Given y = xe mod N , we must find x. We
obtain the least significant bits of x ·αi mod N for random integers αi ∈ ZN , by
querying for the partial pre-image of yi = y · (αi)e mod N . Finding x from the
least significant bits of the x · αi mod N is a Hidden Number Problem modulo
N . We use an algorithm similar to [5] to efficiently recover x.

Lemma 2. Let A be an algorithm that on input y, outputs a q-set containing
the k1 most significant bits of yd mod N , within time bound t, with probability
ε, where 2k−1 ≤ N < 2k, k1 ≥ 64 and k/(k1)2 ≤ 2−6. Then there exists an
algorithm B that solves the RSA problem with success probability ε′ within time
bound t′, where:

ε′ ≥ ε · (εn−1 − 2−k/8) (11)

t′ ≤ n · t + qn · poly(k)

n =
⌈

5k

4k1

⌉

Proof. See the full paper [8].

5.3 RSA-PSS-E and RSA-PSS-ES

The RSA-PSS-E encryption scheme (K, E ,D) based on the PSS-R padding µ
with parameters k, k0, and k1 is defined as follows:
– K generates a (k + 1)-bit RSA modulus and exponents e and d. The public
key is (N, e) and the private key is (N, d).
– E(M, r): given a message M ∈ {0, 1}k−k0−k1 and a random r ∈ {0, 1}k0 , the
encryption algorithm outputs the ciphertext:

c = (µ(M, r))e mod N

236 Jean-Sébastien Coron et al.

– D(c): the decryption algorithm recovers x = cd mod N . It returns Reject if
the most significant bit of x is not zero. It writes x as 0‖ω‖s where ω is a k1-bit
string and s is a k − k1 bit string. It writes M‖r = G(ω) ⊕ s. If ω = H(M ||r),
the algorithm returns M , otherwise it returns Reject.

The RSA-PSS-ES encryption and signature scheme (K, E ,D,S,V) is defined
as follows:
– K, E(M, r) and D(c) are identical to RSA-PSS-E.
– S(M, r): given a message M ∈ {0, 1}k−k0−k1 and a random value r ∈ {0, 1}k0 ,
the signing algorithm computes the signature:

σ = µ(M, r)d mod N

– V(σ): given the signature σ, the verification algorithm recovers x = σe mod N .
It returns Reject if the most significant bit of x is not zero. It writes x as 0‖ω‖s
where ω is a k1-bit string and s is a (k−k1)-bit string. It writes M‖r = G(ω)⊕s.
If ω = H(M ||r), the algorithm accepts the signature and returns M , otherwise
it returns Reject.

5.4 Security of RSA-PSS-E and RSA-PSS-ES

Combining Lemma 1 and Lemma 2, we obtain the following theorem which
shows that the encryption scheme RSA-PSS-E is provably secure in the random
oracle model, assuming that inverting RSA is hard.

Theorem 4. Let A be a CCA2-adversary against the semantic security of the
RSA-PSS-E scheme (K, E ,D), with advantage ε and running time t, making qD,
qH and qG queries to the decryption oracle and the hash function H and G,
respectively. Provided that k1 ≥ 64 and k/(k1)2 ≤ 2−6, RSA can be inverted with
probability ε′ greater than:

ε′ ≥ (
ε− qH · 2−k0 − qD2−k1

)n − 2−k/8

within time bound t′ ≤ n · t + (qH + qG)n · poly(k), where n = 5k/(4k1)�.
We obtain a similar theorem for the semantic security of the RSA-PSS-ES

encryption and signature scheme (from Lemma 2 and Lemma 3 in appendix A).

Theorem 5. Let A be a CCA2-adversary against the semantic security of the
RSA-PSS-ES scheme (K, E ,D,S,V), with advantage ε and running time t, mak-
ing qD, qsig, qH and qG queries to the decryption oracle, the signing oracle and
the hash function H and G, respectively. Provided that k1 ≥ 64 and k/(k1)2 ≤
2−6, RSA can be inverted with probability ε′ greater than:

ε′ ≥ (
ε− (qH + qsig) · 2−k0 − (qD + (qH + qsig)2) · 2−k1

)n − 2−k/8

within time bound t′ ≤ n · t + (qH + qG + qsig)n · poly(k), where n = 5k/(4k1)�.

Universal Padding Schemes for RSA 237

For the unforgeability of the RSA-PSS-ES encryption and signature scheme,
we obtain a better security bound than the general result of Theorem 3, by
relying upon the homomorphic properties of RSA. The proof of the following
theorem is similar to the security proof of PSS in [3] and is given in the full
version of this paper [8]

Theorem 6. Let A be an adversary against the unforgeability of the PSS-ES
scheme (K, E ,D,S,V), with success probability ε and running time t, making
qD, qsig, qH and qG queries to the decryption oracle, the signing oracle, and the
hash functions H and G, respectively. Then RSA can be inverted with probability
ε′ greater than:

ε′ ≥ ε− (
(qH + qsig)2 + qD + 1

) · (2−k0 + 2−k1) (12)

within time bound t′ ≤ t + (qH + qsig) · O(k3).

Note that as for OAEP [9], the security proof for encrypting with PSS is
far from being tight. This means that it does not provide a meaningful security
result for a moderate size modulus (e.g., 1024 bits). For the security proof to
be meaningful in practice, we recommend to take k1 ≥ k/2 and to use a larger
modulus (e.g., 2048 bits).

6 Conclusion

In all existing PKIs different padding formats are used for encrypting and sign-
ing; moreover, it is recommended to use different keys for encrypting and signing.
In this paper we have proved that the PSS padding scheme used in PKCS#1
v.2.1 [14] and IEEE P1363 [12] can be safely used for encryption as well. We have
also proved that the same key pair can be safely used for both signature and
encryption. The practical consequences of this are significant: besides halving
the number of keys in security systems and simplifying their architecture, our
observation allows resource-constrained devices such as smart cards to use the
same code for implementing both signature and encryption.

Acknowledgements

We wish to thank Jacques Stern for pointing out an error in an earlier version
of this paper, and the anonymous referees for their useful comments.

References

1. M. Bellare and P. Rogaway, Random oracles are practical: a paradigm for designing
efficient protocols. Proceedings of the First Annual Conference on Computer and
Commmunications Security, ACM, 1993.

2. M. Bellare and P. Rogaway, Optimal Asymmetric Encryption, Proceedings of Eu-
rocrypt’94, LNCS vol. 950, Springer-Verlag, 1994, pp. 92–111.

238 Jean-Sébastien Coron et al.

3. M. Bellare and P. Rogaway, The exact security of digital signatures - How to sign
with RSA and Rabin. Proceedings of Eurocrypt’96, LNCS vol. 1070, Springer-
Verlag, 1996, pp. 399-416.

4. D. Boneh, Simplified OAEP for the RSA and Rabin functions, Prooceedings of
Crypto 2001, LNCS vol 2139, pp. 275-291, 2001.

5. D. Boneh and R. Venkatesan, Hardness of computing the most significant bits of
secret keys in Diffie-Hellman and related schemes. Proceedings of Crypto ’96, pp.
129-142, 1996.

6. R. Canetti, O. Goldreich and S. Halevi, The random oracle methodology, revisited,
STOC’ 98, ACM, 1998.

7. D. Coppersmith, Finding a small root of a univariate modular equation, in Euro-
crypt ’96, LNCS 1070.

8. J.S. Coron, M. Joye, D. Naccache and P. Paillier, Universal padding schemes
for RSA. Full version of this paper. Cryptology ePrint Archive, http://eprint.
iacr.org.

9. E. Fujisaki, T. Okamoto, D. Pointcheval and J. Stern, RSA-OAEP is secure under
the RSA assumption, Proceedings of Crypto’ 2001, LNCS vol. 2139, Springer-
Verlag, 2001, pp. 260-274.

10. S. Goldwasser, S. Micali and R. Rivest, A digital signature scheme secure against
adaptive chosen-message attacks, SIAM Journal of computing, 17(2), pp. 281-308,
April 1988.

11. S. Haber and B. Pinkas, Combining Public Key Cryptosystems, Proceedings of the
ACM Computer and Security Conference , November 2001.

12. IEEE P1363a, Standard Specifications For Public Key Cryptography: Additional
Techniques, available at http://www.manta.ieee.org/groups/1363

13. J. Manger, A chosen ciphertext attack on RSA Optimal Asymmetric Encryption
Padding (OAEP) as Standardized in PKCS #1 v2.0. Proceedings of Crypto 2001,
LNCS 2139, pp. 230-238, 2001.

14. PKCS #1 v2.1, RSA Cryptography Standard (draft), available at http:
www.rsasecurity.com /rsalabs/pkcs.

15. C.Rackoff and D. Simon, Noninteractive zero-knowledge proof of knowledge and
chosen ciphertext attack. Advances in Cryptology, Crypto ’91, pages 433-444, 1991.

16. R. Rivest, A. Shamir and L. Adleman, A method for obtaining digital signatures
and public key cryptosystems, CACM 21, 1978.

17. V. Shoup, OAEP reconsidered, Proceedings of Crypto 2001, LNCS vol. 2139, pp
239-259, 2001.

A Proof of Theorem 2

The theorem follows from inequality (1) and the following lemma.

Lemma 3. Let A be an adversary against the semantic security of PSS-ES, with
success probability ε and running time t, making qD, qsig, qH and qG queries
to the decryption oracle, the signing oracle, and the hash functions H and G,
respectively. Then, the success probability Succs−pd−ow(qH+qG+qsig, t

′) is greater
than:

ε− (qH + qsig) · 2−k0 − qD2−k1 − (qH + qsig)2 · 2−k1

where t′ ≤ t + (qH + qsig) · Tf , and Tf denotes the time complexity of f .

Universal Padding Schemes for RSA 239

Proof. The proof is very similar to the proof of lemma 1. The top-level descrip-
tion of the reduction B is the same and the simulation of the decryption oracle
is the same. However, oracles H and G are simulated differently. Instead of sim-
ulating H and G so that µ(M, r) = y is a random integer, we simulate H and
G so that µ(M, r) = f(x) for a known random x, which allows to answer the
signature query for M .

Simulation of oracles G and H and signing oracle:
When receiving the query M‖r to H, we generate a random x ∈ {0, 1}k and
compute y = f(x). We denote y = ω‖s. If ω never appeared before, we let
G(ω) = s⊕ (M‖r) and return ω, otherwise we abort.

When receiving a query ω for G, if G(ω) has already been defined, we return
G(ω), otherwise we return a random (k − k1)-bit integer.

When we receive a signature query for M , we generate a random k0-bit
integer r. If M‖r was queried to H before, we know ω, s, y and x such that:

H(M‖r) = ω and G(ω) = s⊕ (M‖r) and y = f(x) = ω‖s
so we return the corresponding signature x. If M‖r was never queried before,
we simulate an H-query for M‖r as previously: we pick a random x ∈ {0, 1}k
and compute y = f(x). We denote y = ω‖s. If ω never appeared before, we let
H(M‖r) = ω, G(ω) = s⊕(M‖r) and return the signature x, otherwise we abort.

Analysis:
As in lemma 1, we denote by AskG the event: “ω∗ has been asked to G” and
by AskH the event: “there exists M ′ such that M ′||r∗ has been queried to H”;
we denote by DBad the event: “a valid ciphertext has been rejected by our
simulation of the decryption oracle D”. Moreover, we denote by SBad the event:
“the reduction aborts when answering an H-oracle query or a signature query”.
As previously, we have:

Pr[AskH|¬AskG] ≤ (qH + qsig) · 2−k0

and
Pr[DBad] ≤ qD · 2−k1

When answering an H-oracle query or a signature query, the integer ω which is
generated is uniformly distributed because f is a permutation. Moreover, at most
qH + qsig values of ω can appear during the reduction. Therefore the probability
that the reduction aborts when answering an H-oracle query or a signature query
is at most (qH + qsig) · 2−k1 , which gives:

Pr[SBad] ≤ (qH + qsig)2 · 2−k1

We denote by Bad the event:

Bad = AskG ∨ AskH ∨ DBad ∨ SBad

Let S denote the event: “the adversary outputs the correct value for b, i.e. b = b′”.
Conditioned on ¬Bad, our simulation of oracles G, H, D and of the signing oracle

240 Jean-Sébastien Coron et al.

are independent of b, and therefore the adversary’s view is independent of b. This
gives:

Pr[S|¬Bad] =
1
2

(13)

Moreover, conditioned on ¬Bad, the adversary’s view is the same as when in-
teracting with (perfect) random oracles, decryption oracle and signing oracle,
which gives:

Pr[S ∧ ¬Bad] ≥ 1
2

+
ε

2
− Pr[Bad] (14)

which yields as in Lemma 1:
Pr[Bad] ≥ ε (15)

and eventually:

Pr[AskG] ≥ ε− (qH + qsig) · 2−k0 − qD · 2−k1 − (qH + qsig)2 · 2−k1

B Proof of Theorem 3

From A we construct an algorithm B, which receives as input c and outputs η
such that c = f(η).

Top-level description of the reduction B:
1. B is given a function f and c = f(η), for a random integer η.
2. B selects uniformly at random an integer j ∈ [1, qH].
3. B runs A with f . It simulates the decryption oracle, the signing oracle and

random oracles H and G as described below. B maintains a counter i for the
i-th query Mi‖ri to H. The oracles H and G are simulated in such a way
that if i = j then µ(Mi‖ri) = c.

4. B receives fromA a forgery σ. Letting M and r be the corresponding message
and random, if (M, r) = (Mj , rj) then f(σ) = µ(Mj‖rj) = c and B outputs
σ.

Simulation of the oracles G, H, D and signing oracle:
When receiving the i-th query Mi‖ri to H, we distinguish two cases: if i �= j,
we generate a random xi ∈ {0, 1}k and compute yi = f(xi). If i = j, we let
yi = c. In both cases we denote yi = ωi‖si. If ωi never appeared before, we let
G(ωi) = si ⊕ (Mi‖ri) and return ωi, otherwise we abort.

When receiving a query ω for G, if G(ω) has already been defined, we return
G(ω), otherwise we return a random (k − k1)-bit integer.

When we receive a signature query for M , we generate a random k0-bit
integer r. If M‖r was queried to H before, we have M‖r = Mi‖ri for some i. If
i �= j, we have:

H(Mi‖ri) = ωi, G(ωi) = si ⊕ (Mi‖ri) and yi = ωi‖si = f(xi)

so we return the corresponding signature xi, otherwise we abort. If M‖r was
never queried before, we simulate an H-query for M‖r as previously: we generate

Universal Padding Schemes for RSA 241

a random x ∈ {0, 1}k and compute y = f(x). We denote y = ω‖s. If ω never
appeared before, we let H(M‖r) = ω and G(ω) = s ⊕ (M‖r) and return the
signature x, otherwise we abort.

The simulation of the decryption oracle is identical to that of Lemma 1.

Analysis:
Let σ be the forgery sent by the adversary. If ω was not queried to G, we
simulate a query to G as previously. Let ω‖s = f(σ) and M‖r = G(ω) ⊕ s.
If M‖r was never queried to H, then H(M‖r) is undefined because there was
no signature query for M ; the probability that H(M‖r) = ω is then 2−k1 .
Otherwise, let (M, r) = (Mi, ri) be the corresponding query to H. If i = j, then
µ(Mj , rj) = c = f(σ) and B succeeds in inverting f .

Conditioned on i = j, our simulation of H and the signing oracle are perfect,
unless some ω appears twice, which happens with probability less than (qH +
qsig)2 · 2−k1 . As in lemma 1, our simulation of D fails with probability less than
qD · 2−k1 . Consequently, the reduction B succeeds with probability greater than:

1
qH
· (ε− 2−k1 − (qH + qsig)2 · 2−k1 − qD · 2−k1

)

which gives (10).

	1 Introduction
	2 Public-Key Encryption
	3 Encrypting with PSS-R
	3.1 The PSS-R Padding Scheme
	3.2 The PSS-E Encryption Scheme
	3.3 The Underlying Problem
	3.4 Security of PSS-E

	4 Signing and Encrypting with the Same Set of Keys
	4.1 The PSS-ES Encryption and Signature Scheme
	4.2 Semantic Security
	4.3 Unforgeability

	5 Application to RSA
	5.1 The RSA Cryptosystem
	5.2 Partial-Domain One-Wayness of RSA
	5.3 RSA-PSS-E and RSA-PSS-ES
	5.4 Security of RSA-PSS-E and RSA-PSS-ES

	6 Conclusion
	References
	A Proof of Theorem 2
	B Proof of Theorem 3

