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Abstract

In this paper, we study physical adversarial attacks on

object detectors in the wild. Previous works mostly craft

instance-dependent perturbations only for rigid or planar

objects. To this end, we propose to learn an adversar-

ial pattern to effectively attack all instances belonging to

the same object category, referred to as Universal Physical

Camouflage Attack (UPC). Concretely, UPC crafts camou-

flage by jointly fooling the region proposal network, as well

as misleading the classifier and the regressor to output er-

rors. In order to make UPC effective for non-rigid or non-

planar objects, we introduce a set of transformations for

mimicking deformable properties. We additionally impose

optimization constraint to make generated patterns look

natural to human observers. To fairly evaluate the effec-

tiveness of different physical-world attacks, we present the

first standardized virtual database, AttackScenes, which

simulates the real 3D world in a controllable and repro-

ducible environment. Extensive experiments suggest the

superiority of our proposed UPC compared with existing

physical adversarial attackers not only in virtual environ-

ments (AttackScenes), but also in real-world physical en-

vironments. Code and dataset are available at https://

mesunhlf.github.io/index_physical.html.

1. Introduction

Deep neural networks (DNNs) have achieved outstand-

ing performances on many computer vision tasks [37, 8,

10]. Nonetheless, DNNs have been demonstrated to be vul-

nerable to adversarial examples [38] — maliciously crafted

inputs that mislead DNNs to make incorrect predictions,

which present potential threats for the deployment of DNN-

based systems in the real world.
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Figure 1. Fooling the object detector, faster r-cnn, in the phys-

ical space. (a) Physical attacks (UPC) in virtual scenes and (b)

Physical attacks (UPC) in real world. Column 1 shows detection

results with natural patterns. Column 2-4 display results with cam-

ouflage patterns under different viewing conditions.

Adversarial attacks [26, 2] in general can be divided into

the following categories: 1) digital attacks, which mislead

DNNs by modifying the input data directly in the digital

space (e.g., pixel value [26, 11, 23], text content [15, 31]);

2) physical attacks, which attack DNNs by altering vis-

ible characteristics of an object (e.g., color [33], appear-

ance [6]) in the physical world. Current mainstream works

focus on the digital domain, which can be hardly transferred

to the real world due to the lack of considering physical con-

straints (e.g., invariant to different environmental conditions

such as viewpoint, lighting) [6]. In this paper, we study

adversarial attacks in the physical world, which are more

threatening to real-world systems [14]. Compared with pre-

vious works [3, 12, 1] which mostly focus on attacking im-

age classification systems, we consider the far more realistic

computer vision scenario, i.e., object detection.

Though prior works have revealed the vulnerability of

object detectors to adversarial perturbations in the real

world [4, 36, 46], there are several limitations: (1) focusing

on only attacking a specific object (e.g. a stop sign [6, 4]

, commercial logo [35] or car [46]); (2) generating pertur-

bations only for rigid or planar objects (e.g., traffic sign,
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vehicle body, board [39]), which can be less effective for

complex objects (articulated non-rigid or non-planar ob-

jects, e.g., human). (3) constructing meaningless which lack

semantics and appear unnatural for human observers (i.e.,

noisy or mosaic-like texture) [4, 39, 46]; and (4) a unified

evaluation environment is missing, which makes it difficult

to make fair comparisons between different attacks.

To address these issues, we present Universal Physi-

cal Camouflage Attack (UPC), which constructs a univer-

sal camouflage pattern to hide objects from being detected

or to misdetect objects as the target label. Unlike former

works which generate instance-level perturbations, UPC

constructs a universal pattern to attack all instances that be-

long to the same category (e.g., person, cars) via jointly at-

tacking the region proposal network, the classifier and the

regressor. To efficiently handle the deformations of com-

plex objects in the physical world, we propose to model

their deformable characteristics as well as external physi-

cal environments in UPC. Specifically, the internal proper-

ties are simulated by applying various geometric transfor-

mations (e.g., cropping, resizing, affine homography). We

impose additional optimization constraint to encourage the

visual resemblance between generated patterns and natural

images, which we refer to as semantic constraint. As shown

in Fig. 1, these camouflage patterns are visually similar to

natural images and thus can be regarded as texture patterns

on object surfaces such as human accessories/car paintings.

The overall pipeline is illustrated in Fig. 2.

To fairly evaluate the effectiveness of different physical

attacks, we provide the first standardized synthetic dataset,

i.e., AttackScenes. All experimental data is generated un-

der strict parametric-controlled physical conditions to en-

sure that the evaluation is reliable under virtual settings.

The contributions of our work are four-fold:

• UPC constructs a universal camouflage pattern for ef-

fectively attacking object detectors based on the fact

that the generated pattern can be naturally camouflaged

as texture patterns on object surfaces such as human

accessories/car paintings.

• We present the first standardized dataset, At-

tackScenes, which is simulates the real 3D world un-

der controllable and reproducible settings, to ensure

that all experiments are conducted under fair compar-

isons for future research in this domain.

• To make UPC effective for articulated non-rigid or

non-planar objects, we introduce additional transfor-

mations for the camouflage patterns to simulate their

internal deformations.

• Our proposed UPC not only achieves state-of-the-art

result for attacking object detectors in the wild, but

also exhibits well generalization and transferability

among different models.

Table 1. Comparison with existing methods.

Methods Rigid Non-Rigid Planar Non-Planar Universal Semantic

[4] X X

[36] X X

[46] X X X

Ours X X X X X X

2. Related Works

Universal Adversarial Attack. Image-agnostic attack,

i.e., universal adversarial attack [25, 13], is defined as an

attack which is able to fool different images with a sin-

gle global pattern in the digital domain. Here we extend

this definition to the physical domain and define instance-

agnostic perturbations as universal physical attacks for ob-

ject detectors. Unlike former physical attack methodologies

which craft instance-level patterns, our goal is to generate a

single camouflage pattern to effectively attack all instances

of the same object category given different physical scenes.

Physical Attacks. Stem from the recent observation that

printed adversarial examples can fool image classifiers in

the physical world [14, 12], efforts have been investigated

to study how to construct “robust” adversarial examples in

the real physical world. For instance, Athalye et al. [1] pro-

pose to construct 3D adversarial objects by attacking an en-

semble of different image transformations; Sharif et al. [33]

successfully attack facial recognition systems by printing

textures on eyeglasses; Evtimov et al. [6] use poster, sticker

and graffiti as perturbations to attack stop signs in the physi-

cal world. Zeng et al. [45] apply computer graphics render-

ing methods to perform attacks in the 3D physical world.

In addition, adversarial attacks also extend to fool tracking

system and Re-Identification models [40, 41].

Recently, physical attacks have also been studied for

the more challenging scenario of object detection. Song et

al. [36] propose a disappearance and creation attack to fool

Yolov2 [28] in traffic scenes. Chen et al. [4] adopt the ex-

pectation over transformation method [1] to create more ro-

bust adversarial stop signs, which mislead faster r-cnn [30]

to output errors. Zhang et al. [46] learn the clone network

to approximate detectors under black-box scenerio. How-

ever they cannot be effectively applied to non-rigid or non-

planar objects since they only focus on simulating exter-

nal environment conditions, e.g., distances or viewpoints,

for attacking object detectors. In addition, these approaches

generate instance-dependent patterns which exhibit less se-

mantics and therefore the perturbed images are usually un-

natural and noisy. Different from these works, our method

constructs a universal semantic pattern which makes the

perturbed images visually similar to natural images. Mean-

while, we introduce additional transformations to simulate

the deformable properties of articulated non-rigid or non-

planar objects. A detailed comparison with former methods

is summarized in Table. 1.
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Figure 2. The overall pipeline of UPC. (a) training the camouflage patterns in digital space; (b) attacking the target in physical space.

3. Methodology

3.1. Overview

Our goal is to attack object detectors by either hiding the

object from being detected, or fooling detectors to output

the targeted label. Without loss of generality, we use “per-

son” category as an example to illustrate our method.

Training framework of UPC in Digital Space. We at-

tack faster-rcnn [30], a two-stage detector, under white-box

settings. In the first stage, the region proposal network is

employed to generate object proposals. In the second stage,

the detector selects top-scored proposals to predict labels.

We propose to craft a universal pattern for faster-rcnn by

jointly fooling the region proposal network to generate low-

quality proposals, i.e., reduce the number of valid propos-

als, as well as misleading the classifier and the regressor to

output errors. Simply misleading predictions of the clas-

sification head cannot produce satisfying results (discussed

in Sec. 5.2) because it can be impractical to attack enor-

mous candidate proposals simultaneously. Extensive exper-

imental results also validate that the joint attack paradigm

demonstrates stronger attacking strength than simply at-

tacking the classifier as in prior methods [4, 6] (Table 3).

Furthermore, to deal with complex objects, we propose to

simultaneously model both internal deformable properties

of complex objects and external physical environments. The

internal attributes of objects, i.e., deformations, are simu-

lated by a series of geometric transformations. As illus-

trated in Fig. 2(a), UPC consists of 3 steps:

• Step 1. A set of perturbed images are synthesized by

simulating external physical conditions (e.g., viewpoint)

as well as internal deformations of complex objects. An

additional optimization constraint is imposed to make the

generated patterns semantically meaningful (Sec. 3.2).

• Step 2. Initial adversarial patterns are generated by at-

tacking the RPN, which results in a significant drop of

high-quality proposals (Sec. 3.3).

• Step 3. To enhance the attacking strength further, UPC

then jointly attacks RPN as well as the classification and

the bounding box regression head by lowering the detec-

tion scores and distorting the bounding box (Sec. 3.4).

We perform these steps in an iterative manner until the ter-

mination criterion is satisfied, i.e., fooling rate is larger than

the threshold or the iteration reaches the maximum.

Attacking in Physical Space. By imposing the seman-

tic constraint (Sec. 3.2), the generated camouflage patterns

by UPC look natural for human observers and thus can be

regarded as texture patterns on human accessories. Con-

cretely, we pre-define several regions of human accessories

(e.g., garment, mask) to paint on the generated camouflage

patterns (Fig. 4) for attacking, and the corresponding phys-

ical scenes are captured under different viewing conditions

(e.g., illumination, viewpoints) for testing (Fig. 2(b)).

3.2. Physical Simulation

Material Constraint. To keep generated adversarial pat-

terns less noticeable, the perturbations are camouflaged

as texture patterns on human accessories (e.g., garment,

mask). External environments are simulated via controlling

factors such as lighting, viewpoint, location and angle [4, 6].

To effectively handle non-rigid or non-planar objects, we

also introduce addition transformation functions to model

their internal deformations (Eq. 2).

Semantic Constraint. Inspired by the imperceptibility

constraint in digital attacks, we use the projection func-

tion (Eq. 1) to enforce the generated adversarial patterns to

be visually similar to natural images during optimization.

Empirical results show that optimizing with this constraint

yields high-quality semantic patterns, which can be natu-

rally treated as camouflages on human clothing (Fig. 8).

Training Data. To obtain universal patterns, images with

different human attributes (body sizes, postures, etc.) are

sampled as the training set X .

In summary, the perturbed images are generated by:

δt = Proj∞(δt−1 +∆δ, I, ǫ), (1)

X̂ =
{

x̂i|x̂i = Tr(xi + Tc(δ
t)), xi ∼ X

}

. (2)

Eq. 1 is the semantic constraint, where δt and ∆δ denote the

adversarial pattern and its updated vector at iteration t, re-

spectively. Proj∞ projects generated pattern onto the sur-

face of L∞ norm-balls with radius ǫ and centered at I . Here

we choose I as natural images to ensure the generated cam-

ouflage patterns are semantically meaningful. Eq. 2 is the
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physical simulation we applied during the attack, where Tr

is applied to all training images and used for the environ-

mental simulation (e.g., illumination). Tc is acted on gener-

ated patterns, which is used for modeling the material con-

straint (e.g., deformations induced by stretching). x̂ is the

generated perturbed image (marked as blue in Fig. 2(a)).

3.3. Region Proposal Network (RPN) Attack

For an input image with height H and width W , the

RPN extracts M = O(HW ) proposals across all anchors.

We denote the output proposals of each image x̂ as P =
{

pi|pi = (si, ~di); i = 1, 2, 3...M
}

, where si is the confi-

dence score of i-th bounding box and ~di represents the coor-

dinates of i-th bounding box. We define the objective func-

tion for attacking the RPN as following:

Lrpn = E
pi∼P

(L(si, y
t) + si‖~di −∆~di‖p), (3)

where yt is the target score, and we set y1 for background

and y0 for foreground; L is the Euclidean distance loss; ∆~di
is a pre-difined vector, which used for attacking proposals

by shifting the center coordinate and corrupting the shape of

original proposals; p is the norm constant and we set p = 1
in the experiment.

By minimizing Lrpn, our goal is to generate adversar-

ial patterns for RPN which results in a substantial reduc-

tion of foreground proposals and severely distorted candi-

date boxes (marked as red in Fig. 2(a)).

3.4. Classifier and Regressor Attack

After applying non-maximum suppression (NMS) on the

outputs of RPN, top-k proposals are ordered by their confi-

dence scores and selected as a subset P̂ . These top-scored

proposals P̂ are then fed to the classification and the regres-

sion head for generating final outputs. We note that if only

a subset of proposed bounding boxes are perturbed, the de-

tection result of the attacked image may still be correct if

a new set of candidate boxes is picked in the next iteration,

which results in great challenges for attackers. To overcome

this issue, we instead extract proposals densely as in [43].

Specifically, we attack an object by either decreasing the

confidence of the groundtruth label or increasing the confi-

dence of the target label. We further enhance the attacking

strength by distorting the aspect ratio of proposals and shift-

ing the center coordinate simultaneously [17]. In summary,

we attack the classification and the regression head by:

Lcls = E
p∼P̂

C(p)y + E
p∼P∗

L(C(p), y′), (4)

Lreg =
∑

p∼P∗

‖R(p)y −∆~d‖l, (5)

where L is the cross-entropy loss, C and R are the pre-

diction output of the classifier and the regressor. P∗ is the

Algorithm 1 Algorithm of UPC

Input: Training images X ; Target label y′; Balance parameters

λ1, λ2; Iteration parameters iters and itermax; Fooling rate

threshold rs;

Output: Universal adversarial pattern δ; Fooling rate r;

1: δ0 ← random, ∆δ ← 0, r ← 0, t← 0
2: while t < itermax and r < rs do

3: t← t+ 1, δt ← Proj∞(δt−1 +∆δ, I, ǫ)
4: for all xi ∼ X do

5: Choose the transformation of Tr and Tc randomly

6: x̂i = clip (Tr(xi + Tc(δ
t)), 0, 1)

7: end for

8: Caculate the fooling rate r of perturbed images X̂
9: if t < iters and r < rs then

10: argmin
∆δ

E
x̂i∼X̂

Lrpn + Ltv

11: else

12: argmin
∆δ

E
x̂i∼X̂

(Lrpn + λ1Lcls + λ2Lreg) + Ltv

13: end if

14: end while

proposals which can arybe detected as true label y, and y′

is the target label for attacking. ∆~d denotes the distortion

offset. We select ℓ2 norm, i.e., l = 2 in Eq. 5. Eq. 4 and

Eq. 5 are designed for fooling the classifier and the regres-

sor, respectively, and are referred to as C&R attack (marked

as green in Fig. 2(a)). For untargeted attack, we set y = y′

for maximizing (instead of minimizing) Eq. 4.

3.5. Two­Stage Attacking Procedure

In summary, UPC generates the physical universal ad-

versarial perturbations by considering all the factors above:

argmin
∆δ

E
x̂∼X̂

(Lrpn + λ1Lcls + λ2Lreg) + Ltv(δ
t), (6)

where δ and X̂ denote the universal pattern and the set of

perturbed images, respectively. Ltv stands for the total

variation loss [24] with ℓ2 norm constraint applied. We

note that Ltv is important for reducing noise and producing

more natural patterns.

The overall procedure of UPC is illustrated in Algo-

rithm 1, where we alternately update the universal pertur-

bation pattern δ and the perturbed images x̂ ∼ X̂ until the

fooling rate becomes larger than a certain threshold or the

attack iteration reaches the maximum. δ is updated using

a two-stage strategy. During the first stage, we exclusively

attack the RPN to reduce the number of valid proposals,

i.e., set λ1 = 0 and λ2 = 0 in Eq. 6. After significantly

reducing the number of high-quality proposals, our attack

then additionally fools the classification and bounding box

regression head in the second stage. By minimizing Eq. 6,

the generated perturbation δ substantially lowers the quality

of proposals and thereby achieves a high fooling rate.
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detected as target labeldetected as correct label detected as others / undetectd

Figure 3. Examples of virtual scene experiments. Virtual scenes (i.e., AttackScenes) are shown in the first row, including indoors and

outdoors environments. The second rows shows results captured under various physical conditions with different pattern schemes.

Original Natural 3-Patterns 7-Patterns 8-PatternsNaive

Figure 4. Examples of pattern schemes in the virtual scenes

experiment. Original: humans without camouflage patterns;

Naive: humans with simple camouflages (i.e., army camouflage

cloths, pilot cap and snow goggles); Natural: humans with natu-

ral images as camouflage patterns. 3/7/8-Patterns: according to

the heatmaps of detection models, we pre-define 3/7/8 regions on

human accessories to paint on the generated camouflage patterns.

4. AttackScenes Dataset

Due to the lack of a standardized benchmark dataset, ear-

lier works measure the performance under irreproducible

physical environments, which makes it difficult to make

fair comparisons between different attacks. To this end, we

build the first standardized dataset, named AttackScenes,

for fair and reproducible evaluation.

Environments. AttackScenes includes 20 virtual scenes

under various physical conditions (Fig. 3). Specifically,

there are 10 indoors scenes (e.g., bathroom, living room)

and 10 outdoors scenes(e.g., bridge, market) in total.

Camera Setting. For each virtual scene, 18 cameras are

placed for capturing images from different viewpoints. To

ensure the diversity of images, these cameras are located at

different angles, heights and distances (Fig. 2(b)).

Illumination Control. To the best of our knowledge, ear-

lier studies usually conduct tests in bright environments.

However, this simulated condition is quite limited since

there exist many dark scenes in the real world. Accordingly,

we extend the testing environment to better simulate differ-

ent daily times like evening and dawn. Area lights and di-

rectional light sources are used to simulate indoors and out-

doors illuminations, respectively. The illumination varies

from dark to bright at 3 levels by controlling the strength of

light sources (i.e., L1∼L3).

5. Experiments

In this section, we empirically show the effectiveness

of the proposed UPC by providing thorough evaluations in

both virtual and physical environments.

5.1. Implementation Details

We mainly evaluate the effectiveness of our method on

“person” category due to its importance in video surveil-

lance and person tracking [16]. We collect 200 human im-

ages with various attributes (e.g., hair color, body size) as

our training set to generate universal adversarial patterns.

Following [43], we evaluate the performance of faster r-

cnn using 2 network architectures (i.e., VGG-16 [34] and

ResNet-101[8]) which are either trained on the PascalVOC-

2007 trainval, or on the combined set of PascalVOC-

2007 trainval and PascalVOC-2012 trainval. We

denote these models as FR-VGG16-07, FR-RES101-07,

FR-VGG16-0712 and FR-RES101-0712.

Parameters setting. We set fooling rate threshold rs =
0.95, iters = 100 and the maximum iteration itermax =
2000 in Algorithm 1. More parameters and transformation

details are recorded in sec. 1 of supplementary material.

Evaluation Metric. For faster r-cnn, we set the threshold

of NMS as 0.3 and the confidence threshold as 0.5 (instead

of the default value 0.8). Even though IoU is used for stan-

dard evaluation of object detection, we do not use this met-

ric here since our focus is whether the detector hits or misses

the true label of the attacked instance. To this end, we ex-

tend the metrics in [4, 6] to be applicable in our experi-

ments, precision p0.5, to measure the probability of whether

the detector can hit the true category:

p0.5 =
1

|X |

∑

v∼V,b∼B,s∼S

{

C(x)
x∈X

= y, C(x̂)
x̂∈X̂

= y

}

, (7)

where x is the original instance and x̂ denotes the in-

stance with camouflage patterns. V,L, S denote the sets of

camera viewpoints, brightness and scenes, respectively; C

is the prediction of detector and y is the groundtruth label

(i.e., person, car).
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Table 2. Average precision p0.5 in virtual scene experiments after

attacking faster r-cnn. Note that p0.5 is averaged over all view-

points of each pattern scheme under 3 brightness conditions.
Network FR-VGG16-0712 FR-RES101-0712

Schemes
Standing Standing

L1 L2 L3 Avg (Drop) L1 L2 L3 Avg (Drop)

Original 0.97 0.97 1.0 0.98 (-) 0.99 0.99 1.0 0.99 (-)

Naive 0.97 0.97 0.99 0.97 (0.01) 0.99 0.99 0.99 0.99 (0.0)

Natural 0.95 0.96 0.98 0.96 (0.02) 0.97 0.97 0.98 0.97 (0.02)

3-Patterns 0.64 0.36 0.18 0.39 (0.59) 0.73 0.69 0.70 0.69 (0.30)

7-Patterns 0.55 0.33 0.22 0.37 (0.61) 0.51 0.48 0.64 0.54 (0.45)

8-Patterns 0.15 0.03 0.02 0.07 (0.91) 0.10 0.09 0.13 0.11 (0.88)

Schemes
Walking Walking

L1 L2 L3 Avg (Drop) L1 L2 L3 Avg (Drop)

Original 0.93 0.94 0.99 0.95 (-) 0.98 0.99 1.0 0.99 (-)

Naive 0.92 0.94 0.96 0.94 (0.01) 0.98 0.97 0.98 0.98 (0.01)

Natural 0.91 0.93 0.95 0.93 (0.02) 0.98 0.99 0.98 0.98 (0.01)

3-Patterns 0.37 0.26 0.16 0.26 (0.69) 0.44 0.50 0.50 0.48 (0.51)

7-Patterns 0.28 0.25 0.16 0.23 (0.72) 0.31 0.33 0.34 0.33 (0.66)

8-Patterns 0.06 0.05 0.01 0.04 (0.91) 0.05 0.06 0.06 0.06 (0.93)

Schemes
Sitting Sitting

L1 L2 L3 Avg (Drop) L1 L2 L3 Avg (Drop)

Original 0.97 0.99 0.99 0.98 (-) 1.0 0.99 0.99 0.99 (-)

Naive 0.93 0.94 0.95 0.94 (0.04) 0.93 0.92 0.93 0.93 (0.06)

Natural 0.94 0.94 0.98 0.95 (0.03) 0.97 0.98 0.98 0.98 (0.01)

3-Patterns 0.83 0.64 0.63 0.70 (0.28) 0.75 0.77 0.79 0.77 (0.22)

7-Patterns 0.83 0.77 0.63 0.74 (0.24) 0.77 0.78 0.78 0.78 (0.21)

8-Patterns 0.60 0.47 0.32 0.46 (0.52) 0.49 0.57 0.62 0.56 (0.43)

5.2. Virtual Scene Experiment

Human Model and Pattern Schemes. We select human

models in AttackScenes with different poses (i.e., stand-

ing, walking and sitting) as the attacking target. 6 differ-

ent schemes (Fig. 4) are used under the material constraint

(Sec. 3.2) for experimental comparison.

Comparison Between Pattern Schemes. In the virtual

scene experiment, 1080(20×3×18) images are rendered for

each pattern scheme. Without loss of generality, we choose

“dog” and “bird” as target labels to fool detectors in our ex-

periment. We use 6 different pattern schemes illustrated in

Fig. 4 for validating the efficacy of the proposed UPC.

As shown in Table 2, we find that the attack strength is

generally weaker in darker environments. This can be at-

tributed to the fact that the adversarial patterns are badly

captured when the level of brightness is low, which induces

low-quality attacks. Additionally, we observe that for dif-

ferent human poses the average precision almost stays at

the same level via attacking Naive/Natural pattern scheme

which indicates that simply using naive camouflage or nat-

ural images as adversarial patterns is invalid for physical at-

tacks. By contrast, our method yields a distinct drop rate of

p0.5 for all 3 pattern schemes (i.e., 3/7/8-Pattern schemes),

among which 8-Pattern scheme observes the highest perfor-

mance drop (i.e., Standing: p0.5 drops from 0.98 to 0.07
using FR-VGG16). It is no surprise to observe such a phe-

nomenon since using more generated patterns for physical

attack results leads to a higher fooling rate. The detection

result further shows our attack is invariant to different view-

ing conditions (e.g., viewpoints, brightness). Additionally,

we also find that among these 3 poses “Sitting” is the most

difficult to attack since some patterns (e.g., pants or cloth

patterns) are partially occluded (see sampled images from

Fig. 1 and Fig. 3).

Table 3. Performance comparison with prior arts of physical at-

tacks under different settings. We record p0.5 and drop rate aver-

aged over all viewpoints of 8-pattern scheme.

Network FR-VGG16-0712

Setup Standing Walking Sitting

UPCrc (ours) 0.07 (0.91) 0.04 (0.91) 0.46 (0.52)

UPCr (ours) 0.66 (0.32) 0.33 (0.62) 0.76 (0.22)

CLSrc (ours) 0.18 (0.80) 0.06 (0.89) 0.54 (0.44)

Shape [4] 0.70 (0.28) 0.39 (0.56) 0.78 (0.20)

ERP 2 [6] 0.85 (0.13) 0.48 (0.47) 0.87 (0.11)

AdvPat [39] 0.77 (0.21) 0.31 (0.64) 0.78 (0.20)

Network FR-RES101-0712

Setup Standing Walking Sitting

UPCrc (ours) 0.11 (0.88) 0.06 (0.93) 0.56 (0.43)

UPCr (ours) 0.73 (0.26) 0.42 (0.57) 0.86 (0.13)

CLSrc (ours) 0.30 (0.69) 0.16 (0.83) 0.65 (0.34)

Shape [4] 0.83 (0.16) 0.47 (0.52) 0.88 (0.11)

ERP 2 [6] 0.79 (0.20) 0.44 (0.55) 0.91 (0.08)

AdvPat [39] 0.91 (0.08) 0.71 (0.28) 0.93 (0.06)

Compare with Existing Attacks. We compare UPC with

existing physical attacks under the following settings (Ta-

ble 3): (1) both internal deformations Tc and external phys-

ical environments Tr are simulated in Eq. 2, denoted as

UPCrc; (2) only external physical environments are mod-

eled, i.e., Tr is used in Eq. 2, denoted as UPCr. (3) only

attack the classification head, i.e., Lcls is used to generate

patterns, denoted as CLSrc; (4) ShapeShifter [4], i.e., only

use Tr in Eq. 2 and attack against the classifier, denoted as

Shape. (5) we follow [36] by extending RP 2 [6] for at-

tacking faster r-cnn, denoted as ERP 2, and (6) Adversarial

Patches [39], which utilize various transformations to fool

all proposals across images, denote as AdvPat. These six

scenarios were tested under same training setup (detailed in

sec.1 of supplementary material).

The performance of 8-patterns scheme is recorded in Ta-

ble 3, and the implications are two-fold. First, we can see

the drop rates of p0.5 in UPCrc and CLSrc are signifi-

cantly higher than those of UPCr, SS and ERP 2. These

quantitative results indicate that the proposed transforma-

tion function Tc can effectively mimic the deformations

(e.g., stretching) of complex objects. Second, UPCrc and

UPCr outperform CLSrc and Shape, which suggest that

the joint attack paradigm (i.e., RPN and C&R attack) gen-

erally shows stronger attacking strength than only attack-

ing the classification head [4]. In conclusion, all these ex-

perimental results demonstrate the efficacy of the proposed

transformation term Tc as well as the joint attack paradigm

for fooling object detectors in the wild. Moreover, our pro-

posed UPC outperforms existing methods [4, 6, 39], and

thereby establish state-of-the-art for physical adversarial at-

tack on proposal-based object detectors.

The visualization of discriminative regions are showed

in supplementary material [32]. We can observe that the

UPC has superior attacking capability while other methods

can not depress the activated features of un-occluded parts

effectively, which may lead higher detection accuracy.
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Figure 5. Experimental results in (a) stationary testing and (b)

motion testing. The camouflage is generated by FR-VGG16.

5.3. Physical Environment Experiment

Following the setup of virtual scene experiments, we

stick the same camouflage pattern on different volunteers

with diverse body sizes and garment styles. During the

physical experiment, we use Sonyα7r camera to take pho-

tos and record videos. Our physical experiments include

two parts: stationary testing and motion testing.

Stationary Testing. In the physical world, we choose 5

scenes including indoors and outdoors scenes under dif-

ferent lighting conditions. Similar to virtual scene ex-

periments, we take 18 photos of the attacked person for

each pattern scheme. To evaluate the robustness of our

method under different deformations, the person is required

to switch from 6 different poses (i.e., standing, sitting, leg

lifting, waving hands, fork waist, shaking head) during pho-

tographing (Fig. 5(a)). We record the average precision p0.5
and drop rates of FR-VGG16-0712 and FR-RES101-0712

under three brightness conditions in Table 4 (detailed in

sec.2 of supplementary material). Similar to our findings

in Sec. 5.2, UPC expresses its superior attacking capability

in the real physical world compared to natural image pat-

terns which results in nearly zero drop rate in every posture.

As can be seen from Table 2 and Table 4, the behaviors

of detectors exhibit similar trends under different physical

conditions such as lighting conditions in both virtual scenes

and physical environments. Another noteworthy comment

is that the generated patterns from virtual scene experiments

demonstrate high transferability to the real physical world

(Table 4). These facts indicate that our AttackScenes is a

suitable dataset to study physical attacks.

Motion Testing. To further demonstrate the efficacy of

UPC, we also test our algorithm on human motions. The

video clips were obtained under different physical condi-

tions (e.g., different lighting conditions, scenes) while the

volunteers are walking towards the camera. Meanwhile,

they are randomly changing postures from the 6 classes as

mentioned above. A total of 3693 frames where 583, 377,

219, 713, 804 and 997 frames are collected under 5 dif-

ferent physical scenes so as to make this dataset diverse

and representative. And the detection precisions are 26%
(150/583), 21% (80/377), 17% (37/219), 34% (240/713),

15% (118/804) and 24% (240/997), respectively. Experi-

Table 4. Average precision p0.5 and drop rate under 3 brightness

conditions in stationary testing.
Network FR-VGG16-0712 FR-RES101-0712

Schemes Standing Shaking Head Standing Shaking Head

Original 1.0 (-) 1.0 (-) 1.0 1.0 (-)

Natural 0.98 (0.02) 0.98 (0.02) 0.98 (0.02) 1.0 (0.0)

3-Patterns 0.67 (0.33) 0.74 (0.26) 0.72 (0.28) 0.76 (0.24)

7-Patterns 0.59 (0.41) 0.59 (0.41) 0.59 (0.41) 0.57 (0.43)

8-Patterns 0.17 (0.83) 0.20 (0.80) 0.19 (0.81) 0.20 (0.80)

Schemes Fork Waist Leg Lifting Fork Waist Leg Lifting

Original 1.0 (-) 1.0 (-) 1.0 (-) 1.0 (-)

Natural 1.0 (0.0) 1.0 (0.0) 1.0 (0.0) 1.0 (0.0)

3-Patterns 0.72 (0.28) 0.74 (0.26) 0.76 (0.24) 0.71 (0.29)

7-Patterns 0.56 (0.44) 0.54 (0.46) 0.57 (0.43) 0.57 (0.43)

8-Patterns 0.20 (0.80) 0.26 (0.74) 0.24 (0.76) 0.30 (0.70)

Schemes Rasing Hands Sitting Rasing Hands Sitting

Original 1.0 (-) 1.0 (-) 1.0 (-) 1.0 (-)

Natural 0.98 (0.02) 1.0 (0.0) 1.0 (0.0) 1.0 (0.0)

3-Patterns 0.83 (0.17) 0.76 (0.24) 0.85 (0.15) 0.74 (0.26)

7-Patterns 0.65 (0.35) 0.54 (0.46) 0.69 (0.31) 0.59 (0.41)

8-Patterns 0.35 (0.65) 0.22 (0.78) 0.35 (0.65) 0.26 (0.74)

(a) (b)
Figure 6. The precision p0.5 of detectors under different an-

gle/distance conditions. We note that high viewing angle or far

distance can make attacks less effective.

ments in all physical scenes have observed low detection

rates, which further confirms the effectiveness of UPC. The

detection results of some sampled frames are shown in

Fig. 5(b), where people are detected as “dog”. We find

this attack is much more effective under brighter conditions.

This phenomenon coincides with previous observations in

virtual scene studies (Sec. 5.2), and also further justify the

potential value of AttackScenes. Moreover, we find that

blurred camouflage patterns during motion make UPC less

effective, which lead to higher detection accuracy.

We also plot the relationship between the detection preci-

sion vs. angle/distance under 8-Pattern schemes as in Fig. 6.

It can be concluded that when the absolute value of the an-

gle/distance between the person and the camera becomes

larger, camouflage patterns are captured with lower quality

and thus hampering the attacks.

5.4. Transferability Experiment

We generate camouflage patterns from one architecture

to attack other models. In our experiment, FR-VGG16-

0712 and FR-RES101-0712 are used to compute cam-

ouflage patterns. We introduce ResNet-50, ResNet-152

and MobileNet [9] based faster r-cnn which are trained

on MS-COCO2014 [20] dataset as transfer-testing mod-

els. Other architecture models including R-FCN (ResNet-

101) [5], SSD (VGG-16) [21], Yolov2 [28], Yolov3 [29]

and RetinaNet [19] are considered in our transferability

experiments. Eight models are publicly available, and

we denote them as FR-RES50-14, FR-RES152-14, FR-
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detected as others undetecteddetected as car
Figure 7. The results of attacking Volvo XC60 (top row) and

Volkswagen Tiguan (bottom row). The generated camouflage

patterns fool detectors to misrecognize the car as bird.

Table 5. Average precision p0.5 in transferability testing. First

seven rows show the results of cross-training transfer testing, and

rest five rows display the cross-network transfer’s results (bold in

“Network” column).

Network Original
FR-VGG16-0712 FR-RES101-0712

Average (Drop) Average (Drop)

FR-VGG16-0712 0.95 0.04 (0.91) 0.10 (0.85)

FR-RES101-0712 0.99 0.78 (0.21) 0.06 (0.93)

FR-VGG16-07 0.95 0.08 (0.87) 0.11 (0.84)

FR-RES101-07 0.99 0.51 (0.48) 0.10 (0.89)

FR-RES50-14 1.0 0.85 (0.15) 0.78 (0.22)

FR-RES152-14 1.0 0.62 (0.38) 0.43 (0.57)

FR-MN-14 0.99 0.51 (0.48) 0.25 (0.74)

RFCN-RES101-07 [5] 0.98 0.64 (0.34) 0.41 (0.57)

SSD-VGG16-0712 [21] 0.75 0.13 (0.62) 0.16 (0.59)

Yolov2-14 [28] 1.0 0.59 (0.41) 0.38 (0.62)

Yolov3-14 [29] 1.0 0.69 (0.31) 0.71 (0.29)

Retina-14 [19] 1.0 0.72 (0.31) 0.49 (0.51)

MN-14, RFCN-RES101-07, SSD-VGG16-0712, Yolov2-

14, Yolov3-14 and Retina-14. The confidence threshold of

all models is set as 0.5 for evaluation.

The following experiments are conducted: (1) Cross-

Training Transfer. The transferability between source

and attacked models have the same architecture but are

trained on different datasets (e.g., using the pattern gener-

ated from FR-VGG16-0712 to attack FR-VGG16-07); (2)

Cross-Network Transfer. The transferability through dif-

ferent network structures (e.g., using the pattern computed

from FR-VGG16-0712 to attack Yolov3-14).

For transfer experiments, virtual walking humans with

8-Patterns scheme (Fig. 4) are used to evaluate the trans-

ferability under transfer attacks. The transfer performances

are illustrated in Table 5. The original pattern scheme is

used to calculate the baseline precision of each model (de-

noted as “Original” in Table 5). We observe the precisions

of all detectors have dropped, which means the generated

patterns exhibits well transferability and generality across

different models and datasets. It is noteworthy to mention

our proposed UPC also successfully breaks 4 state-of-the-

art defenses [18, 42, 7, 27] (see Supplementary).

5.5. Generalization to Other Categories

To demonstrate the generalization of UPC, we construct

camouflage patterns by untargeted attacks to fool the “car”

category (i.e., rigid but non-planar object). We use Volvo

XC60 (champagne) and Volkswagen Tiguan (white) as the

attacking target in the real world. The pattern will be re-

CarCat

w/ constraint w/o constraint

BoatCatCar BoatCatCar

Figure 8. Generated camouflage patterns are semantically

meaningful. Even for unconstrained patterns, human observer can

relate the generated camouflage patterns to the targeted label.

garded as car paintings by human observers. In order to

not affect driving, we restrict the camouflage coverage re-

gions to exclude windows, lightings, and tires. We collect

120 photos which includes different distances (8 ∼ 12m)

and angles (−45◦ ∼ 45◦) in 5 different environments

(Fig. 7). The video is recorded simultaneously at same

angles. The performance of pure non-camouflage car is

p0.5 = 1, while after attacking only 24% (29/120) images

and 26% (120/453) frames are detected as “car” correctly,

which verifies the efficacy of UPC.

6. Discussion

Abstract Semantic Patterns. A side finding is that the

generated patterns without semantic constraint (Eq. 1) can

be less semantic meaningful but exhibits abstract meanings

(Fig. 8). This observation suggest that human and machine

classification of adversarial images are robustly related as

suggested in [47].

Defense Method Evaluation. With the development of de-

fense methods in digital domain [22, 44], we hope the col-

lected dataset, AttackScenes, can benefit future research of

defense methods against physical attacks.

7. Conclusion

In this paper, we study the problem of physical attacks

on object detectors. Specifically, we propose UPC to gen-

erate universal camouflage patterns which hide a category

of objects from being detected or to misdetect objects as

the target label by state-of-the-art object detectors. In ad-

dition, we present the first standardized benchmark dataset,

AttackScenes, to simulate the real 3D world in controllable

and reproducible environments. This dataset can be used

for accessing the performance of physical-world attacks at

a fair standard. Our study shows that the learned univer-

sal camouflage patterns not only mislead object detectors in

the virtual environment, i.e., AttackScenes, but also attack

detectors successfully in the real world.
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