
1

Universal Piecewise Linear Prediction via

Context Trees

Suleyman S. Kozat, Andrew C. Singer and Georg Zeitler

Abstract

This paper considers the problem of piecewise linear prediction from a competitive algorithm ap-

proach. In prior work, prediction algorithms have been developed that are “universal” with respect to the

class of all linear predictors, such that they perform nearly as well, in terms of total squared prediction

error, as the best linear predictor that is able to observe the entire sequence in advance. In this paper,

we introduce the use of a “context tree,” to compete against a doubly exponential number of piecewise

linear (affine) models. We use the context tree to achieve the total squared prediction error performance

of the best piecewise linear model that can choose both its partitioning of the regressor space and its real-

valued prediction parameters within each region of the partition, based on observing the entire sequence

in advance, uniformly, for every bounded individual sequence. This performance is achieved with a

prediction algorithm whose complexity is only linear in the depth of the context tree per prediction.

Upper bounds on the regret with respect to the best piece-wise linear predictor are given for both the

scalar and higher-order case, and lower bounds on the regret are given for the scalar case. An explicit

algorithmic description and examples demonstrating the performance of the algorithm are given.

Index Terms

universal, prediction, context tree, piecewise linear.

EDICS Category: MAL-SLER, MAL-PERF, MAL-BAYL

I. INTRODUCTION

Linear prediction and linear predictive models have long been central themes within the signal pro-

cessing literature[1]. More recently, nonlinear models, based on piece-wise linear [27] and locally linear

[2] approximations, have gained significant attention as adaptive and Kalman filtering methods also turn

to methods such as extended Kalman and particle filtering[3] to capture the salient characteristics of

Suleyman S. Kozat is with IBM, Yorktown, NY, email:kozat@us.ibm.com, Andrew C. Singer and Georg Zeitler are with the

Department of ECE at the University of Illinois, Urbana, IL, email:singer@ifp.uiuc.edu.

September 19, 2006 DRAFT

2

many physical phenomena. In this paper, we address the problem of sequential prediction and focus

our attention on the class of piecewise linear (affine) models. We adopt the nomenclature of the signal

processing literature, and use the term “piecewise linear” to refer generally to affine models rather than

strictly linear models.

We formulate the prediction problem in a manner similar to that used in machine learning [4], [5],

[6], adaptive signal processing [7], [13], and information theory [14], to describe “universal” prediction

algorithms, in that they sequentially achieve the performance of the best model from a broad class of

models, for every bounded sequence and for a variety of loss functions. These algorithms are sequential

such that they may use only the past information, i.e., x[1], . . . , x[t− 1], to predict the next sample x[t].

By treating the prediction problem in this context, algorithms are sought which are competitive-optimal

with respect to a given class of prediction algorithms, in that they can perform nearly as well, for each

and every possible input, as the best predictor that could have been chosen from the competition class,

even when this “best predictor” is selected only after observing the entire sequence to be predicted, i.e.

non-causally.

Finite and parametrically-continuous linear model classes have been considered, where sequential

algorithms that achieve the performance of the best linear model, tuned to the underlying sequence, have

been constructed. Competition against linear models is investigated both in prediction and in regression in

[4], [7]. However, the structural constraint on linearity considerably limits the potential modeling power

of the underlying class, and may be inappropriate for a variety of data exhibiting saturation effects,

threshold phenomena, or other nonlinear behavior. As such, the achievable performance of the best linear

model may not be a desirable goal in certain scenarios.

In the most general extension of linear models, the prediction is given by an arbitrary nonlinear function,

i.e., the prediction of x[t] is given by f(x[t − 1], . . . , x[1]) for some arbitrary function f . However,

without any constraint on the nonlinear model, this class would be too powerful to compete against,

since for any sequence, there always exists a nonlinear function with perfect prediction performance,

i.e., one can choose f such that f(x[t − 1], . . . , x[1]) = x[t]. By constraining the class of predictors to

include piecewise linear (affine) functions, we can retain the breadth of such models, while mitigating

the overfitting problems associated with too powerful a competition class. Piecewise linear modeling is

a natural nonlinear extension to linear modeling, in which the space spanned by past observations is

partitioned into a union of disjoint regions over each of which, an affine model holds. In each region, an

estimate of the desired signal is given as the output of a fixed linear regressor. For example, suppose that

for a scalar linear predictor, the past observation space, x[t − 1] ∈ [−Ax, Ax] is parsed into J disjoint

regions Rj where
⋃J

j=1 Rj = [−Ax, Ax] and Ax ∈ R. At each time t, the underlying predictor forms its

prediction of x[t] as x̂[t] = wjx[t − 1] + cj , wj ∈ R and cj ∈ R, when x[t − 1] ∈ Rj . As the number

September 19, 2006 DRAFT

3

of regions grows, the piecewise linear model can better approximate any smoothly varying predictor

x̂[t] = f(x[t − 1]). This statement will be made more precise in the context of the main results of this

paper, namely, the upper bounds on regret of the prediction error of the universal predictor can be given

with respect to the best piecewise linear prediction algorithm and then extended to bounds on regret with

respect to a broad class of smoothly varying nonlinear predictors. Such piecewise linear models have

been referred to in the signal processing literature as “nonlinear autoregressive models”[2], and in the

signal processing and statistics literature as self-exciting threshold autoregressive (SETAR) models[8],

[9], and have been used in modeling a wide range of data in fields ranging from population biology[10]

to econometrics[11] to glottal flow in voiced speech[12].

In this paper, we first present results for the piecewise linear regression problem when the regions

Rj are fixed and known. We will demonstrate an algorithm that achieves the performance of the best

piecewise linear regressor for a given partition and then extend these results to when the boundaries of

each region are also design parameters of the class. In this case, we try to achieve the performance of

the best sequential piecewise linear regressor when the partitioning of the regressor space is taken from

a large class of possible partitions. These partitions will be compactly represented using a “context tree”

[17]. Here, we have neither a priori knowledge of the selected partition nor the best model parameters

given that partition. We initially focus on scalar piecewise linear regression, such that each prediction

algorithm in the competition class is a function of only the latest observation, i.e., x[t− 1]. These results

are then extended to higher-order regression models by considering context tree partitionings of multiple

past observations.

We start our discussion when the boundaries of each region are fixed and known. Given such a

partition
⋃J

j=1 Rj = [−Ax, Ax], the real valued sequence xn = {x[t]}n
t=1 is assumed to be bounded but

is otherwise arbitrary, in that |x[t]| < Ax for some Ax < ∞. Given past values of the desired signal x[t],

t = 1, . . . , n−1, we define a competing algorithm from the class of all scalar piecewise affine regressors

as

x̂wc[t] = ws[t−1]x[t − 1] + cs[t−1],

where s[t − 1] = j when x[t − 1] ∈ Rj , wj ∈ R and cj ∈ R, j = 1, . . . , J . For each region, wj ∈ R
and cj ∈ R, j = 1, . . . , J , can be selected independently.

Here we try to minimize the following regret

sup
xn

n
∑

t=1

(x[t] − x̂q[t])
2 − inf

wj∈R,cj∈R
j∈{1,...,J}

n
∑

t=1

(x[t] − x̂wc[t])
2

, (1)

where, x̂wc[t] = ws[t−1]y[t] + cs[t−1], and x̂q[t] is the prediction of a sequential algorithm; i.e., we try to

achieve the performance of the best model tuned to the underlying sequences xn.

September 19, 2006 DRAFT

4

We first demonstrate an algorithm x̂[t] whose prediction error, over that of the best piecewise linear

predictor is upper bounded by O(2JA2
x ln(n/J)), i.e,

n
∑

t=1

(x[t] − x̂[t])2 ≤ inf
cj∈R,wj∈R

j∈{1,...,J}

n
∑

t=1

(x[t] − x̂wc[t])
2 + O(2JA2

x ln(n/J)) (2)

for any xn. Our algorithm pays a “parameter regret” of O(2A 2
x ln(n/J)) per region to effectively learn

(or compete against) the best parameters for that region. We also derive corresponding lower bounds for

Equation (1) and show that under certain conditions, our algorithms are optimal in a minmax sense, such

that the upper bounds cannot be further improved upon.

We then extend these results and demonstrate an algorithm that achieves the performance of the best

sequential predictor (corresponding to a particular partition) from the doubly exponentially large class

of such partitioned predictors. To this end, we define a depth-K context tree for a partition with up

to 2K regions, as shown in Figure 1, where, for this tree, K = 2. For a depth-K context tree, the

2K finest partition bins correspond to leaves of the tree. On this tree, each of the bins are equal in

size and assigned to regions [Ax, Ax/2], [Ax/2, 0], [0,−Ax/2], [−Ax/2,−Ax]. Of course, more general

partitioning schemes could be represented by such a context tree.

For a tree of depth-K, there exist 2K+1 −1 nodes, including leaf nodes and internal nodes. Each node

η on this tree represents a portion of the real line, Rη. The region corresponding to each node η, Rη,

(if it is not a leaf) is constructed by the union of regions represented by the nodes of its children; the

upper node Rη
u

and the lower node Rη
l
, Rη = Rη

u
∪ Rη

l
. By this definition, any inner node is the

root of a subtree and represents the union of its corresponding leaves (or bins).

We define a “partition”of the real line as a specific partitioning P i = {Ri,1, . . . , Ri,Ji
} with

⋃Ji

j=1 Ri,j =

[−Ax, Ax], where each Ri,j is represented by a node on the tree in Figure 1 and Ri,j are disjoint. There

exist a doubly-exponential number, NK ≈ (1.5)2
K

, of such partitions, Pi, i = 1, . . . ,NK , embedded

within a full depth-K tree. This is equivalent to the number of “proper binary trees” of depth at most K,

and is given by Sloane’s sequence A003095[18], [19]. For each such partition, there exists a corresponding

sequential algorithm as in Equation (2) that achieves the performance of the best piecewise affine model

for that partition. We can then construct an algorithm that will achieve the performance of the best

sequential algorithm from this doubly exponential class.

To achieve the performance of the best sequential algorithm (i.e., the best partition), we try to minimize

the following regret

sup
xn

{

n
∑

t=1

(x[t] − x̂q[t])
2 − inf

Pi

n
∑

t=1

(

x[t] − x̂Pi
[t]
)2
}

, (3)

where x̂Pi
[t] is the corresponding sequential piecewise linear predictor for partition Pi, and x̂q[t] is the

prediction of a sequential algorithm.

September 19, 2006 DRAFT

5

• Use a context-tree to represent partitions of R
• Depth-K full tree embeds N (K) different

context-tree partitions in the set

A
x

-A
x

1P

2K
1 2 ()

2

2

{ , , , }

() , 1.50283801...

() (1) 1

K

N k
P P P P

N k c c

N k N k

2P 3P 4P 5P

R
1

R
2

R
3

R
4

Fig. 1. A full tree of depth 2 that represents all context-tree partitions of the real line [−Ax, Ax] into at most four possible

regions.

We will then demonstrate a sequential algorithm, x̂[t], such that the “structural regret” in Equation (3)

is at most O(2C(Pi)), where C(Pi) is a constant which depends only on the partition Pi, i.e.,

n
∑

t=1

(x[t] − x̂[t])2 ≤ inf
Pi

n
∑

t=1

(

x[t] − x̂Pi
[t]
)2

+ O(2C(Pi)),

which yields, upon combining the parameter and structural regret, an algorithm achieving

n
∑

t=1

(x[t] − x̂[t])2 ≤ inf
Pi

{

inf
wi,j ,ci,j∈R

n
∑

t=1

(

x[t] − x̂Pi
[t]
)2

+ O(2J ln(n/J)) + O(2C(Pi))

}

,

uniformly for any xn, where x̂Pi
[t] = wi,si[t−1]x[t − 1] + ci,si[t−1].

Hence, the algorithms introduced here are “twice-universal” in that they asymptotically achieve the

prediction performance of the best predictor in which the regression parameters of the piecewise linear

model and also the partitioning structure of the model itself can be selected based on observing the whole

sequence in advance. Our approach is based on sequential probability assignment from universal source

coding [17], [23], [24] and uses the notion of a context tree from [17] to compactly represent the NK

partitions of the regressor space. Here, instead of making hard decisions at each step of the algorithm to

select a partition or its local parameters, we use a soft combination of all possible models and parameters

to achieve the performance of the best model, with complexity that remains linear in the depth of the

context tree per prediction.

In [14], sequential algorithms based on “plug-in” predictors are demonstrated that approach the best

batch performance with additional regret of O(n−1 ln(n)) with respect to certain nonlinear prediction

September 19, 2006 DRAFT

6

classes that can be implemented by finite-state machines. It is shown that Markovian predictors with

sufficiently long memory are asymptotically as good as any given finite-state predictor for finite-alphabet

data. A similar problem is investigated for online prediction for classes of smooth functions in [6], where

corresponding upper and matching lower bounds are found (in some cases) when there is additional

information about the data, such as the prediction error of the best predictor for a given sequence. The

problem of universal nonlinear prediction has also been investigated in a probabilistic context. In [25]

the authors propose a universal minimum complexity estimator for the conditional mean (minimum mean

square error predictor) of a sample, given the past, for a finite memory process, without knowing the true

order of the process. In [15], a class of elementary universal predictors of an unknown nonlinear system

is considered using an adaptation of the well-known nearest neighbor algorithm [26]. They are universal

in the sense that they predict asymptotically well for every bounded input sequence, every disturbance

sequence in certain classes, and every nonlinear system, given certain regularity conditions. In [27], a

regression tree approach is developed for identification and prediction of signals that evolve according

to an unknown nonlinear state space model. Here a tree is recursively constructed partitioning the state

space into a collection of piecewise homogeneous regions, resulting a predictor which nearly attains the

minimum mean squared error.

In the computational learning theory literature, the related problem of prediction as well as the best

pruning of a decision tree has been considered, in which data structures and algorithms similar to context

trees have been used[20], [21], [22]. In [20] the authors develop a sequential algorithm that, given a

decision tree, can nearly achieve the performance of the best pruning of that decision tree, under the

absolute loss function. While the data structure used is similar to that we develop, its use is similar in

spirit to that of the Willems, et al. context-tree weighting paper [17], in which the “context” of the data

sequence is based on a temporal parsing of the binary data sequence. As such, the leaves of a given

context tree (or pruning of the decision tree) are reached at depth k after k symbols of the data have

been observed. The predictor then makes its prediction based on the label assigned to the leaf of the

tree reached by the sequence. In [20], the observed sequence is binary, i.e., xn ∈ {0, 1}n , while the

predictions are real-valued, x̂n ∈ [0, 1]n, but fixed for each leaf of the decision tree.

These results are extended to other loss functions, including the square error loss, in [21], [22] using

similar methods to [20] and an approach based on dynamic programming. The main result of [21] is

an algorithm that competes well against all possible prunings of a given decision tree and upper bounds

on the regret with respect to the best pruning. However, in this result, predictions are permitted only

to be given by the labels of the leaves of the decision tree. As such, the main result of [21] considers

essentially competing against a finite (albeit large) number of predictor models. While the label function

is permitted to change with time (time-varying predictors at each leaf), it is only in the last section of

September 19, 2006 DRAFT

7

[21] that the competition class of predictor models is extended to include all possible labellings of the

leaves of the tree. However, for this case, the discussion and the subsequent bounds are only given for

binary sequences xn, for finite-alphabet predictions x̂[n] and the absolute loss function, rather than the

continuous-alphabet quadratic loss problem discussed in this paper. In our work, we consider piecewise

linear predictors, which would correspond to labels within the leaves of the pruned decision tree that

are not single prediction values (labels), but are rather functions of samples of the sequence xn, i.e. the

regressor space, x[n−1], x[n−2], . . . x[n−p]. Further, the “context” used in our context trees correspond

to a spatial parsing of the regressor space, rather than the temporal parsing discussed in [21], [22], [20].

Another key difference between this related work and that developed here, is the constructive nature of

our results. We illustrate a prediction algorithm with a time complexity that is linear in the depth of

the context tree and whose algebraic operations are explicitly given in the text. This is in contrast to

the methods described in these related works, whose time complexity is stated as polynomial (in some

cases linear), but whose explicit algebraic description is not completely given. This is largely due to the

search-like process necessary to carry out the final prediction step in the aggregating algorithm, on which

these methods build.

We begin our discussion of piecewise linear modeling with the case when the partition is fixed and

known in Section II. We then extend these results using context trees in Section III to include comparison

classes with arbitrary partitions from a doubly exponential class of possible partitions. In each section, we

provide theorems that upper-bound the regret with respect to the best competing algorithm in the class. The

theorems are constructive, in that they yield algorithms satisfying the corresponding bounds. An explicit

MATLAB implementation of the context tree prediction algorithm is also given. Extensions to higher-

order piecewise linear prediction algorithms are given in Section IV. Lower bounds on the achievable

regret are discussed in Section V. The paper is then concluded with simulations of the algorithms on

synthetic and real data.

II. PIECEWISE LINEAR PREDICTION: KNOWN REGIONS

In this section, we consider the problem of predicting as well as the best piecewise affine predictor,

when the partition of the regression space is given and known. As such, we seek to minimize the following

regret

sup
xn

{

n
∑

t=1

(x[t] − x̂q[t])
2 − inf

wj∈R,cj∈R

n
∑

t=1

(

x[t] − ws[t−1]x[t − 1] − cs[t−1]

)2

}

, (4)

where x̂q[t] is the prediction from a sequential algorithm and |x[t]| ≤ Ax. That is, we wish to obtain a

sequential algorithm that can predict every sequence xn as well as the best fixed piecewise linear (affine)

algorithm for that sequence with a partition of the regressor space given by
⋃J

j=1 Rj = [−Ax, Ax].

September 19, 2006 DRAFT

8

One of the predictors from the class against which this algorithm will compete can represented by the

parameter vector ~θ = [c1, . . . , cJ , w1, . . . , wJ]T and would accumulate the loss

ln(x, x̂~θ
)
△
=

n
∑

t=1

(x[t] − ws[t−1]x[t − 1] − cs[t−1])
2. (5)

Equation (5) can be written in a more compact form if we define extended vectors, ~y[t] = [x[t − 1] 1]T

and ~ws[t−1][t] = [ws[t−1] cs[t−1]]
T ,

ln(x, x̂~θ
) =

n
∑

t=1

(x[t] − ~wT [t]~y[t])2.

Since the number and boundaries of the regions are known, we have J independent least squares problems.

Defining J time vectors (or index sequences) of length nj , t
nj

j = {t : s[t − 1] = j}, with j = 1, . . . , J ,

and sequences x
nj

j = {x[tj [k]]}nj

k=1 and ~y
nj

j = {~y[tj [k]]}nj

k=1, then the universal predictor we suggest can

be constructed using the universal affine predictor of [7] in each region, i.e.,

x̃~w[n] = ~̃wT
s[n−1][n − 1]~y[n]

with

~̃wj [n − 1] = (D
nj

~yj~yj
+ δjI)−1D

nj−1
xj~yj

, (6)

where nj is the number of points of xn−1 that belong to Rj , δj > 0 is a positive constant, D
nj−1
xj~yj

=
∑nj−1

t=1 x[tj [t]]~y[tj [t]], D
nj

~yj~yj
=
∑nj

t=1 ~y[tj [t]]~y
T [tj [t]] and I is an appropriate sized identity matrix. The

following theorem relates the performance of the universal predictor, ln(x, x̃~w) =
∑n

t=1 (x[t] − x̃~w[t])2,

to that of the best batch scalar piecewise linear predictor.

Theorem 1: Let xn be an arbitrary bounded, real-valued sequence, such that |x[t]| < Ax for all t. Then

ln(x, x̃~w) satisfies

1

n
ln(x, x̃~w) ≤ 1

n
min

~θ

{ln(x, x̂~θ
) + δ‖~θ‖2} +

1

n

J
∑

j=1

2hj ln

(

1 +
njA

2
x

δj

)

(7)

with

hj =
1

nj

J
∑

k=1

njkA
2
x,k,

where njk is the number of elements of region k that result from a transition from region j and |x[t]| ≤
Ax,k when x[t] ∈ Rk,, δ > 0 and δj > 0 are arbitrary constants.

Here, ln(x, x̂~θ
) =

∑n
t=1 (x[t] − ws[t−1]x[t − 1] − cs[t−1])

2 and s[t − 1] is the state indicator variable.

The proof of Theorem 1 is based on sequential probability assignment and follows directly from [28].

A relaxed, but perhaps more straightforward upper bound on the right hand side of (7) can be obtained

by maximizing the upper bound with respect to nj , replacing Ax,k with Ax and δj with δ yields

1

n
ln(x, x̃~w) − 1

n
min

~θ

{ln(x, x̂~θ
) + δ‖~w‖2} ≤ 2JA2

x

ln(n/J)

n
+ O

(

1

n

)

. (8)

September 19, 2006 DRAFT

9

III. PIECEWISE LINEAR PREDICTION: CONTEXT TREES

We now consider the prediction problem where the class against which the algorithm must compete

includes not only the best predictor for a given partition, but also the best partition of the regressor space

as well. As such, we are interested in the following regret

sup
xn

{

n
∑

t=1

(x[t] − x̂q[t])
2 − inf

Pi

n
∑

t=1

(

x[t] − x̂Pi
[t]
)2
}

,

where x̂q[t] is the prediction of any sequential algorithm, Pi is a partition of the real line with the state

indicator variable si[t−1] = j if x[t−1] ∈ Ri,j , and Pi = {Ri,1, . . . , Ri,Ji
} with

⋃Ji

j=1 Ri,j = [−Ax, Ax]

for some Ji, and x̂Pi
[t] is the corresponding sequential algorithm for the partition Pi. The partition Pi can

be viewed as in Figure 1 as a subtree or “context tree” of a depth K full tree with the R i,j corresponding

to the nodes of the tree. Each Ri,j is represented by a node on the full tree and Ri,j are disjoint. Given

the full tree, there exist NK such partitions, i.e., Pi, i = 1, . . . ,NK , where NK = N2
K−1 + 1. Although,

we use the sequential predictors introduced in Theorem 1 for each partition Pi, our algorithm has no

such restrictions; given any sequential algorithms running independently within each region Ri,j , our

algorithm will achieve the performance of the best partition with the corresponding sequential algorithms.

Nevertheless, by using these specific universal algorithms in each region, we also achieve the performance

of the best affine model for that region from the continuum of all affine predictors for any bounded data

xn. Hence, our algorithms are twice-universal [30].

Similar to [24], we define C(Pi) as the number of bits that would have been required to represent

each partition Pi on the tree using a universal code:

C(Pi) = Ji + nPi
− 1,

where nPi
is the total number of leaves in Pi that have depth less than K, i.e., leaves of Pi that are

inner nodes of the tree. Since nPi
≤ Ji,

C(Pi) ≤ 2Ji − 1.

We note that for our context tree, this definition of C(Pi) is identical to the “size” of a pruning |P i| used

in [20]. Given the tree, we can construct a sequential algorithm with linear complexity in the depth of

the context tree per prediction that asymptotically achieves both the performance of the best sequential

predictor and also the performance of the best affine predictor for any partition as follows.

Theorem 2: Let xn be an arbitrary bounded scalar real-valued sequence, such that |x[t]| < Ax, for all

t. Then we can construct a sequential predictor x̃wlin[t] with complexity linear in the depth of the context

September 19, 2006 DRAFT

10

tree per prediction such that

n
∑

t=1

(x[t] − x̃wlin[t])2 ≤ inf
Pi

(

inf
wi,j∈R,ci,j∈R

{

n
∑

t=1

(

x[t] − ~wT
i,si[t−1]~y[t]

)2
+ δ(‖~wi‖2)

}

+ (9)

8A2
xC(Pi) ln(2) + 2JiA

2
x ln(n/Ji)

)

+ O(1),

and also another sequential predictor x̃wpol[t] with complexity polynomial in the depth of the context tree

per prediction such that

n
∑

t=1

(x[t] − x̃wpol[t])
2 ≤ inf

Pi

(

inf
wi,j∈R,ci,j∈R

{

n
∑

t=1

(

x[t] − ~wT
i,si[t−1]~y[t]

)2
+ δ(‖~wi‖2)

}

+

2A2
xC(Pi) ln(2) + 2JiA

2
x ln(n/Ji)

)

+ O(1),

where δ > 0, Pi is any partition on the context tree, C(Pi) is a constant that is less than or equal to

2Ji − 1, ~wi,si[t−1] = [wi,si[t−1] ci,si[t−1]]
T , ~y[t] = [x[t − 1] 1]T .

The construction of the universal predictor x̃wlin[t] and x̃wpol[t] are given at the end of the proof of

Theorem 2. Note that the inequality in Theorem 2 holds for any partition of the data, including that

achieving infPi
over the right hand side. This implies that, without prior knowledge of any complexity

constraint on the algorithm, such as prior knowledge of the depth of the context tree against which

it is competing, the universal prediction algorithm can compete well with each and every subpartition

(context-tree) within the depth-K full tree used in its construction.

In the derivation of the universal algorithm we observe the following result. Suppose we are given

sequential predictors, x̂η[t], for each node η on the context tree. Without any restriction on these sequential

algorithms, x̂η [t], we have the following theorem:

Theorem 3: Let xn be an arbitrary bounded scalar real-valued sequence, with |x[t]| < Ax for all t.

Given a context tree with corresponding nodes η, η = {1, . . . , 2K+1 − 1} and sequential predictors for

each node x̂η[t], we can construct a sequential predictor x̃wlin[t] with complexity linear in the depth of

the context tree per prediction such that

n
∑

t=1

(x[t] − x̃wlin[t])2 ≤ inf
Pi

(

n
∑

t=1

(

x[t] − x̂Pi
[t]
)2

+ 8A2
xC(Pi) ln(2)

)

+ O(1)

and another sequential predictor x̃wpol[t] with complexity polynomial in the depth of the context tree per

prediction such that

n
∑

t=1

(x[t] − x̃wpol[t])
2 ≤ inf

Pi

(

n
∑

t=1

(

x[t] − x̂Pi
[t]
)2

+ 2A2
xC(Pi) ln(2)

)

+ O(1)

where δ > 0 and C(Pi) is a constant that is less than or equal to 2Ji − 1, and x̂Pi
[t] is the sequential

predictor obtained by the combination of the sequential predictors corresponding to its piecewise regions

September 19, 2006 DRAFT

11

Pi = {Ri,1, . . . , Ri,J}, i.e., x̂Pi
[t] = x̂η [t] if x[t − 1] ∈ Ri,j and Ri,j = Rη .

We can also consider expanding the class of predictors against which the algorithm must compete to

include any smooth nonlinear function f in the following manner.

Corollary 3: Let xn be an arbitrary bounded scalar real-valued sequence, with |x[t]| < Ax for all t.

Let F be the class of all twice differentiable functions x̂[t] = f(x[t− 1]), such that |fxx| < K2, K2 ≥ 0,

where fxx is the second derivative of f . Then we have that x̂K [t] satisfies,

n
∑

t=1

(x[t] − x̂K [t])2 ≤ inf
f∈F

n
∑

t=1

(x[t] − f(x[t − 1]))2 +
n

2
K22

−2K + O(ln(n))

where, x̂K [t] is a depth-K context-tree predictor of Theorem 2.

Corollary 3 follows from Theorems 2 and 3 and application of the Lagrange form of Taylor’s theorem

applied to f about the midpoint of each region in the finest partition.

A. Proof of Theorem 2

We first prove Theorem 2, for piecewise constant models, i.e., when ~y[t] = [0 1]T and x̂w[t] = cs[t−1],

cs[t−1] ∈ R. The proof will then be extended to include affine models.

Given a partition Pi =
⋃Ji

j=1 Ri,j , we consider a family of predictors, Pi ∈ P (the competing class)

each with its own prediction vector ~ci = [ci,1, . . . , ci,Ji
]T . Here, each ci,j represents a constant prediction

for the jth region of partition Pi, i.e., when x[t − 1] ∈ Ri,j , x̂~ci
= ci,j . For each pairing of Pi and

~ci, we also consider a measure of the sequential prediction performance, or loss, of the corresponding

algorithm,

ln(x, x̂~ci
|~ci,Pi)

△
=

n
∑

t=1

(x[t] − ci,si[t−1])
2,

where si[t − 1] is the state indicator variable for partition Pi, i.e., si[t − 1] = j if x[t − 1] ∈ Ri,j . We

define a function of the loss, namely, the “probability”

P (xn | ~ci,Pi)
△
= exp

(

− 1

2a

n
∑

t=1

(x[t] − ci,si[t−1])
2

)

= exp

(

− 1

2a
ln(x, x̂~ci

|~ci,Pi)

)

,

which can be viewed as a probability assignment of Pi, with parameters ~ci, to xn induced by the

performance of the corresponding predictor with Pi and ~ci on the sequence xn, where a is a positive

constant, related to the learning rate of the algorithm. Given Pi, the algorithm in the family with the best

constant predictor in each region assigns to xn the probability

P ∗(xn | Pi)
△
= exp

(

− 1

2a
inf
~ci

ln(x, x̂~ci
|~ci,Pi)

)

.

September 19, 2006 DRAFT

12

Maximizing P ∗(xn|Pi) over all Pi (on the tree) yields

P ∗(xn|Pi
∗)

△
= sup

Pi

P ∗(xn|Pi).

Here, P ∗(xn|Pi
∗) corresponds to the best piecewise constant predictor in the class on the tree of depth

K. Note that without any constraint on the complexity of the algorithms in the competing class, and

since this performance is computed based on observation of the entire sequence in advance, P ∗(xn|Pi
∗)

would correspond to the finest partition of the interval with the best piecewise constant predictors in

each interval, i.e., the full binary tree. There is no guarantee, however, that the sequential performance

of our algorithm will be the best if we choose the finest-grain model, given the increase in the number

of parameters that must be learned sequentially by the algorithm, and, correspondingly, the increase in

the regret with respect to the best “batch” algorithm, which is permitted to select all of its parameters in

hindsight (i.e., given all of the data in advance). In fact, the finest grain model generally will not have the

best performance when the algorithms are required to sequentially compete with the best batch algorithm

within each partition. As such, our goal is to perform well with respect to all possible partitions. As will

be shown, the context-tree weighting approach enables the algorithm to achieve the performance of the

best partition-based algorithm. Within each partition, the algorithm sequentially achieves the performance

of the best batch algorithm. This “twice-universality,” once over the class of partitions of the regressor

space, and again over the set of parameters within each partition, enables the algorithm to sequentially

achieve the best possible performance out of the doubly exponential number, NK , of partitions and the

infinite set of parameters given the partition.

Given any Pi, using the sequential algorithm introduced in Equation (6) with c̃j [n] = x̃~w[n], where

~wj = [0 cj] and ~y[t] = [0 1]T , for all t, and for the partition Pi yields

P̃ (xn|Pi)
△
= exp

(

− 1

2a

n
∑

t=1

(x[t] − c̃si[t−1][t − 1])2

)

. (10)

As the first step, we will derive a universal probability assignment, P̃u(xn), to xn as a weighted

combination of probabilities on the context tree. We will then demonstrate that this universal probability

is asymptotically as large as that of any predictor in the class, including P ∗(xn|Pi
∗). As the final step we

construct a sequential prediction algorithm of linear complexity whose associated probability assignment

to xn is as large as P̃u(xn) and hence the desired result.

As the next step, we assign to each node η on the context tree a sequential predictor working only on

the data observed by this particular node. For a node η representing the region Rη , we first assign a time

vector (or index sequence) of length nη, t
nη
η = {t : x[t−1] ∈ Rη} and a sequence d

nη
η = {x[t

nη
η [k]]}nη

k=1.

Clearly, for each node η, there corresponds a portion of the observation sequence of length nη and for

a parent node in the tree with upper and lower children we have nη = nη
u

+ nη
l
, where nη

u
is the

September 19, 2006 DRAFT

13

length of the subsequence that is shared with the upper child and nη
l

is the partition shared with the

lower child. For each node, we assign a predictor

c̃η [n] =

∑nη
t=1 dη [t]

nη + 1 + δ
(11)

where δ is a positive constant for the prediction of dη [nη + 1].

We then define a weighted probability of a leaf node as

P̃η(xn) = exp

− 1

2a

nη
∑

t=1

(dη [t] − c̃η[t − 1])2

 , (12)

which is a function of the performance of the node predictor on the sequence d
nη
η . The probability of

an inner node is defined as [17]

P̃η(xn) =
1

2
P̃η

u
(xn)P̃η

l
(xn) +

1

2
exp

− 1

2a

nη
∑

t=1

(dη [t] − c̃η [t − 1])2

 , (13)

which is a weighted combination of the probabilities assigned to the data by each of the child nodes

operating on the substrings, x[t
nηu
ηu

] and x[t
nηl
ηl

], P̃η
u
(xn) and P̃η

l
(xn), and the probability assigned to

d
nη
η by the sequential predictor of Rη . We then define the universal probability P̃u(xn) of xn as the

probability of the root node

P̃u(xn) = P̃r(x
n),

where we represent the root note with η = r. Using the recursion in Equation (13), it can be shown, as

in Lemma 2 of [24], that the root probability P̃r(x
n) is given by the sum of weighted probabilities of

partitions Pi

P̃u(xn) =
∑

Pi

2−C(Pi)P̃ (xn|Pi),

where C(Pi) = Ji +nPi
−1 is defined as the “cost” of partition P i and P (Pi)

△
= 2−C(Pi) can be viewed

as a prior weighting of the partition Pi. It can also be shown that
∑

Pi
2−C(Pi) = 1 [17].

Hence, for any Pi

P̃u(xn) ≥ 2−C(Pi)P̃ (xn|Pi),

since Pi ≥ 0 and P̃ (xn|Pi) ≥ 0, for all i, this yields

−2a ln(P̃u(xn)) ≤ 2aC(Pi) ln(2) − 2a ln(P̃ (xn|Pi)).

Using Equation (8) on P̃ (xn|Pi), we obtain

− 2a ln(P̃u(xn)) ≤ (14)

2aC(Pi) ln(2) + inf
ci,j∈R

{

n
∑

t=1

(

x[t] − ci,si[t−1]

)2
+ δ‖~ci‖2

}

+ JiA
2
x ln(n/Ji) + O(1).

September 19, 2006 DRAFT

14

A

-A]1[−nx

Fig. 2. K + 1 nodes to be updated.

Hence we have a probability assignment P̃u(xn) which is as large as the probability assignment of the

best partition P ∗(xn|Pi
∗) to xn, to first order in the exponent. However, P̃u(xn) is not in the form of

the assigned probability from a valid sequential predictor. That is, we have no prediction algorithm that

achieves P̃u(xn). We now demonstrate a sequential prediction algorithm whose probability assignment

to xn is as large as P̃u(xn) and which is also in the proper prediction form, i.e. it arises from a valid

sequential predictor.

The universal probability P̃u(xn) can be calculated recursively by defining a conditional probability,

from the induced probability, i.e.,

P̃u(x[n]|xn−1)
△
=

P̃u(xn)

P̃u(xn−1)
,

where P̃u(xn) =
∏n

t=1 P̃u(x[t]|xt−1). To achieve P̃u(xn), we will demonstrate a sequential algorithm

with probability assignment as large or larger than P̃u(x[t]|xt−1) for all t. For this, we will present a

sequential update from P̃u(xn−1) to P̃u(xn).

Given xn−1 and P̃u(xn−1), node probabilities Pη(xn−1) should be adjusted after observing x[n] to

form P̃u(xn). However, owing to the tree structure, only probabilities of nodes that include x[n−1] need

to be updated to form P̃u(xn). We have K + 1 nodes that contain x[n − 1]: the leaf node that contains

x[n− 1] and all the nodes that contain the leaf that contains x[n− 1]. Hence, at each time n, only K +1

node probabilities in P̃u(xn−1) must be adjusted to form P̃u(xn). This enables us to update P̃u(xn−1), a

mixture of all NK predictors with only K + 1 updates, instead of updating all NK ≈ (1.5)2
K

predictor

probabilities to reach P̃u(xn).

We now illustrate this update procedure by an example. Without loss of generality, suppose x[n − 1]

belongs to the lowest leaf of the tree in Figure 2. All the nodes along the path of nodes indicated by

filled circles in Figure 2 include x[n−1] and only these need to be updated after observing x[n]. For any

x[n− 1] there exits such a path of K + 1 nodes, which we refer to as “dark nodes.”. Here, we represent

the root node as η = r; upper and lower children of the root node as ru and rl; and recursively, the upper

child of the upper child of the root node as ruu and the lower child of the upper child of the parent node

as rul. By this notation, we will now apply the recursion in Equation (13) to all dark nodes in P̃u(xn−1),

September 19, 2006 DRAFT

15

and indicate those probabilities updated using the symbol “⇓” in Equation (15), to obtain

P̃u(xn−1) =
1

2
P̃ru

(xn−1)
⇓

P̃ rl
(xn−1) +

1

2
exp

(

− 1

2a

nr−1
∑

t=1

(dr[t] − c̃r[t − 1])2

)

, (15)

=
1

2
P̃ru

(xn−1)

1

2
P̃rlu

(xn−1)
⇓

P̃ rll
(xn−1) +

1

2
exp

− 1

2a

nrl
−1
∑

t=1

(drl
[t] − c̃rl

[t − 1])2

+
1

2
exp

(

− 1

2a

nr−1
∑

t=1

(dr[t] − c̃r[t − 1])2

)

,

=
1

2
P̃ru

(xn−1)

1

2
P̃rlu

(xn−1)
1

2
exp

− 1

2a

nrll
−1

∑

t=1

(drll
[t] − c̃rll

[t − 1])2

 +

1

2
exp

− 1

2a

nrl
−1
∑

t=1

(drl
[t] − c̃rl

[t − 1])2

+
1

2
exp

(

− 1

2a

nr−1
∑

t=1

(dr[t] − c̃r[t − 1])2

)

,

where the recursion is applied for all nodes rl, rll, . . . until we reach the final node at depth K, i.e., rll

in the last line of (15) for this example. Using Equation (15), P̃u(xn−1) can be compactly represented

as sum of K + 1 terms, collecting all terms that will not be affected by x[n], i.e.,

P̃u(xn−1) =
K
∑

k=0

σk[n − 1] exp

− 1

2a

nη
k
−1

∑

t=1

(dη
k
[t] − c̃η

k
[t − 1])2

 , (16)

where, for this example, the dark nodes are labeled as η0 = r, η1 = rl and η2 = rll. We will enumerate

the dark nodes using the notation ηk, k = 0, . . . ,K. For each dark node ηk, σk[n− 1] contains products

of node probabilities P̃η(xn) that share the same parent nodes with ηk but will be unchanged by x[n]

(i.e., the sibling node of a dark node that does not include x[n − 1]). As an example, consider the same

tree of depth K = 2 in Figure 3 where we also included node probabilities. Then, it can be deduced

from Figure 3 and Equation (15) that for each time n − 1

σ0[n − 1] =
1

2
,

σ1[n − 1] =

(

1

2

)2

P̃ru
(xn−1) =

1

2
P̃ru

(xn−1)σ0[n − 1],

σ2[n − 1] =

(

1

2

)3

P̃ru
(xn−1)P̃rlu

(xn−1) =
1

2
P̃rlu

(xn−1)σ1[n − 1]

where for a tree, K > 2, in which x[n − 1] falls in the region for node rlK (a leaf), σk[n − 1] =

1
2 P̃rlk−1u

σk−1[n−1] (where we use short hand notation lk = llk−1). Hence, at each time n−1, σk[n−1]

can be calculated recursively with only K updates. Clearly in the calculation of σk[n − 1], we use the

nodes that will be unchanged by x[n], i.e., P̃ru
(xn) = P̃ru

(xn−1), P̃rlu
(xn) = P̃rlu

(xn−1). Thus, to obtain

September 19, 2006 DRAFT

16

�✁��✁�✂
✂

✄✄☎
☎

✆✆✝
✝

P (x)
~

r
n-1

P (x)

P (x)

P (x)

P (x)

n-1

n-1

n-1

n-1

r

r

r

~

~

P (x)
r

n-1

P (x)n-1
r

~~~

~

~

~

ru

l

ll

lu

uu

ul

Fig. 3. Node probabilities at time n− 1. Only dark nodes are to be updated, where each dark node uses a single sibling node

to calculate σk[n− 1].

P̃u(xn), we need to update only the exponential terms in Equation (15) or in Equation (16). Since also

dr[nr] = drl
[nrl

] = drll
[nrll

] = . . . = x[n],

P̃u(xn)

=

K
∑

k=0

σk[n − 1] exp



− 1

2a

nη
k
−1

∑

t=1

(dη
k
[t] − c̃η

k
[t − 1])2



 exp

(

− 1

2a
(dη

k
[nη

k
] − c̃η

k
[nη

k
− 1])2

)

,

=

K
∑

k=0

σk[n − 1] exp



− 1

2a

nη
k
−1

∑

t=1

(dη
k
[t] − c̃η

k
[t − 1])2



 exp

(

− 1

2a
(x[n] − c̃η

k
[nη

k
− 1])2

)

,

hence the sequential update for P̃u(xn). A complete algorithmic description of this tree update with

required storage and number of operations will be given in Section III-C.

Thus, P̃u(x[n]|xn−1) can be written

P̃u(x[n]|xn−1) =
P̃u(xn)

P̃u(xn−1)

=
K
∑

k=0

µk[n − 1] exp

(

− 1

2a
(x[n] − c̃η

k
[nη

k
− 1])2

)

,

where weights µk[n − 1] are defined as

µk[n − 1]
△
=

σk[n − 1] exp
(

− 1
2a

∑nη
k
−1

t=1 (dη
k
[t] − c̃η

k
[t − 1])2

)

P̃u(xn−1)
.

We are now ready to construct sequential prediction algorithms whose associated probability assignments

asymptotically achieve P̃u(xn) by upper bounding P̃u(x[n]|xn−1) at each time n. If we can find a

prediction algorithm such that

exp

{

− 1

2a
(x[n] − x̃c[n])2

}

≥ P̃u(x[n]|xn−1), (17)

September 19, 2006 DRAFT



17

then we have achieved the desired result, that is, we will have a sequential prediction algorithm whose

prediction error is asymptotically as small as that of the best predictor in the competition class. We will

now introduce two different approaches to finding an x̃c[n] satisfying Equation (17). The first method is

based on a concavity argument and results in an algorithm that can be constructed using a simple linear

mixture. Although this approach results in a looser upper bound, it may be more suitable for adaptive

filtering applications, given the reduced computational complexity. The second approach is based on the

Aggregating Algorithm (AA) of [4] and requires a search, taking substantially greater, yet still polynomial

time to construct each prediction. This second approach results the tighter upper bound introduced in

Theorem 3. Both approaches use the same context tree and probabilities, and only differ in the last stage

to form the final output.

Observe that P̃u(x[n]|xn−1) can be written

P̃u(x[n]|xn−1) =

K
∑

k=0

µk[n − 1]fn(c̃η
k
[nη

k
− 1]), (18)

where ft(.) is defined as

ft(z)
△
= exp

(

−(x[t] − z)2

2a

)

. (19)

Since
K
∑

k=0

µk[n − 1] = 1,

P̃u(x[n]|xn−1) is sum of a function evaluated at a convex combination of values.

In the first method, if the function ft(.) is concave and
∑n

i=1 θi = 1, then

ft

(

n
∑

i=1

θizi

)

≥
n
∑

i=1

θift(zi)

by Jensen’s inequality. The function defined in Equation (19) will be concave for values of zi such that

(x[n] − zi)
2 < a. This corresponds to −√

a ≤ (x[n] − c̃[n]) ≤ √
a, where c̃[n] is any prediction in

Equation (18). Since the signal |x[n]| ≤ Ax, then the prediction values in Equation (18) can be chosen

such that |c̃[n]| ≤ Ax. If the predicted values are outside this range, then the prediction error can only

decrease by clipping. Therefore, by Jensen’s inequality, whenever a ≥ 4A2
x the function ft(.) will be

concave at all points of the prediction and

P̃u(x[n]|xn−1) ≤ exp







− 1

2a

(

x[n] −
K
∑

k=0

µk[n − 1]c̃η
k
[n − 1]

)2






which gives the universal predictor as

x̃c[n] =

K
∑

k=0

µk[n − 1]c̃η
k
[nη

k
− 1], (20)

September 19, 2006 DRAFT



18

where ηk are the nodes such that x[n− 1] ∈ Rη
k
, i.e., dark nodes. By using Equation (14) we conclude

that

n
∑

t=1

(x[t] − x̃c[t])
2 (21)

≤ 2aC(Pi) ln(2) + inf
ci,j∈R

{

n
∑

t=1

(

x[t] − ci,si[t−1]

)2
+ δ‖~ci‖2

}

+ JiA
2
x ln(n/Ji) + O(1)

≤ 8A2
xC(Pi) ln(2) + inf

ci,j∈R

{

n
∑

t=1

(

x[t] − ci,si[t−1]

)2
+ δ‖~ci‖2

}

+ JiA
2
x ln(n/Ji) + O(1).

For the second method, since Pu(x[n] | xn−1) in Equation (18) is the sum of certain exponentials

evaluated at a convex combination values, then for values of a ≥ A2
x there exists an interval of x̃c[n]

that satisfies Equation (17) and a value in this interval can be found in polynomial time [4]. Using this

value of a yields an upper bound with one fourth the regret per node of that in Equation (21). Hence,

using the AA of [4] in the final stage, instead of the convex combination, results in the following regret

n
∑

t=1

(x[t] − x̃c[t])
2 ≤

2A2
xC(Pi) ln(2) + inf

ci,j∈R

{

n
∑

t=1

(

x[t] − ci,si[t−1]

)2
+ δ‖~ci‖2

}

+ JiA
2
x ln(n/Ji) + O(1)

This concludes Proof of Theorem 2 for piecewise constant models. The proof of Theorem 2 for general

affine models follows along similar lines. For construction of the universal algorithm, x̃w[n], we need

only replace the prediction algorithm in Equation (11) with [7]

c̃η [n]
△
= ~̃wT

η [n − 1]~y[n], (22)

with

~̃wη[n] =
(

(Q
nη+1

~yη~yη
+ δI)−1Q

nη
xη~yη

)

where ~y[n] = [x[n − 1]1]T , Q
nη
~yη~yη

=
∑nη

t=1 ~y[t
nη
η ]~yT [t

nη
η ], Q

nη
xη~yη

=
∑nη

t=1 x[t
nη
η ]~y[t

nη
η ], δ > 0 and I is

an appropriate sized identity matrix. Here xη[t] and ~yη[t] are the samples that belong to node η. By this

replacement the universal algorithm is given by

x̃w[n] =

K
∑

k=0

µk[n − 1]~wT
η

k
[n − 1]~y[n],

where ηk are the nodes such that x[n − 1] ∈ Rη
k
. This completes Proof of Theorem 2. �

September 19, 2006 DRAFT



19

B. Outline of Proof of Theorem 3

Proof of Theorem 3 follows directly the proof of Theorem 2. We first update the definition of Equation

(10) as,

P̃ (xn|Pi)
△
= exp

(

− 1

2a

n
∑

t=1

(x[t] − x̂Ri,si[t−1]
[t])2

)

,

where x̂Ri,j
[t] = x̂η[t] when Ri,j is the region represented by the node η. The weighted probability of

each node in Equation (12) is now defined as, P̃η(xn) = exp
(

−(1/2a)
∑nη

t=1(dη [t] − x̂η[t])2
)

. Using the

same recursion used in Equation (13), we again conclude P̃u(xn) = P̃r(x
n) =

∑

Pi
2−C(Pi)P̃ (xn|Pi)

where r is the root node. After this point, we follow the Proof of Theorem 2 which concludes the outline

of the proof of Theorem 3. �

C. Algorithmic description

In this section we give a description of the final context tree prediction algorithm. A complete

description is given in Figure 4.

For this implementation, given a context-tree of depth K, we will have 2K+1 − 1 nodes. Each node,

indexed, η = 1, . . . , 2K+1 − 1, has a corresponding predictor Cη[n − 1] = ~̃wT
η [n − 1]~y[n] and two node

variables, the total assigned probability of the node η

Pη [n − 1]
△
= P̃η(xn−1)

and the prediction performance of the node η

Eη[n − 1]
△
= exp



− 1

2a

nη−1
∑

t=1

(dη [t] − ~̃wT
η [n − 1]~y[n])2



 .

Hence, for a full tree of depth K, we need to store a total of 3(2K+1 − 1) variables. At each time n− 1,

only K + 1 of these predictors or variables will be used or updated.

At each time n−1, we first determine the dark nodes, i.e., the nodes ηk such that x[n−1] ∈ Rη
k
. For

these nodes we calculate σk[n − 1] which are in turn to be used to calculate µk[n − 1] and final output,

after O(K) operations. Here, each σk[n − 1] is recursively generated by the product of the probability

of the corresponding sibling nodes P̃s(x
n−1) and σk−1[n− 1]. For the update, only the variables and the

predictors of the selected nodes (K +1 of them) are updated using the new sample value x[n]. Hence, we

efficiently combine NK predictors only using K +1 predictions and O(K +1) operations per prediction.

IV. 2-DIMENSIONAL PREDICTION WITH CONTEXT TREE ALGORITHM

For a 2-dimensional predictor, the predictions in each region can be given as a function of x[n − 1]

and x[n − 2]. The past observation space [−Ax, Ax]2 is now divided into disjoint regions (areas) by the

September 19, 2006 DRAFT



20

Variables:

η = 1, . . . , 2K+1 − 1:

Pη [n − 1]
△
= P̃η(xn−1) : Total node probability.

Eη[n − 1]
△
= exp

(

− 1
2a

∑nη−1

t=1 (dη [t] − ~̃wT
η [t − 1]~y[n])2

)

: Prediction performance of node η.

Cη[n − 1]
△
= ~̃wT

η [t − 1]~y[n] : Prediction of node η for x[n].

δ, δ1, δ2 : small, positive real constants.

A : Upper bound for the absolute value of the underlying process |x[n]| < A.

~d[k] : the kth component of vector ~d.

Initialization:

For η = 1, . . . , 2K+1 − 1: Pη [0] = δ−1
1 , Eη [0] = δ−1

2 , Cη [0] = 0.

For k = 1, . . . ,K + 1: µk[0] = 0 (initial weights of the universal predictor.), σk[0] = 0

Algorithm:

For n = 1, . . . ,N ,

~d = [ ] (vector containing indices of dark nodes)

For η = 1, . . . , 2K+1 − 1, (find dark nodes in O(K) computations)

if x[n − 1] ∈ Rη ,

~d = [~d; η]

σ0[n − 1] = 1
2 (find weight for each node)

For η = ~d[2], . . . , ~d[K + 1],

σk[n − 1] = 1
2Ps[n − 1]σk−1[n − 1] (where R~d[k]

⋃

Rs = R~d[k−1]

i.e., s is the sibling node of ~d[k])

µk[n − 1] =
σk[n−1]E~d[k][n−1]

P~d[1][n−1]

x̃c[n] =
∑K

k=0 µk[n − 1]C~d[k]
[n − 1] (prediction in O(K) operations)

For k = K + 1, . . . , 1, (update node probabilities in O(K) operations)

E~d[k]
[n] = E~d[k]

[n − 1] exp
(

− 1
2a

(x[n] − C~d[k]
[n − 1])2

)

if k = K + 1, P~d[k][n] = P~d[k][n] (leaf node).

elseif k 6= K + 1, P~d[k]
[n] = 1

2P~d[k]u
[n − 1]P~d[k]l

[n − 1] + 1
2E~d[k]

[n].

C~d[k]
[n] = ~̃wT

~d[k]
[n]~y[n + 1]

Fig. 4. Complete algorithmic description of the context tree algorithm.

September 19, 2006 DRAFT



21

[ ]x n

[ 1]x n −
[ ]x n

[ 1]x n −

[ ]x n

[ 1]x n −

[ ]x n

[ 1]x n −

[ ]x n

[ 1]x n −

[ ]x n

[ 1]x n −

[ ]x n

[ 1]x n −

[ ]x n

[ 1]x n−

[ ]x n

[ 1]x n−
[ ]x n

[ 1]x n−

[ ]x n

[ 1]x n−

[ ]x n

[ 1]x n−
[ ]x n

[ 1]x n−

[ ]x n

[ 1]x n−

[ ]x n

[ 1]x n−

[ ]x n

[ 1]x n−

[ ]x n

[ 1]x n−
[ ]x n

[ 1]x n−

[ ]x n

[ 1]x n−

[ ]x n

[ 1]x n−

[ ]x n

[ 1]x n−

[ ]x n

[ 1]x n−

[ ]x n

[ 1]x n−

[ ]x n

[ 1]x n−
[ ]x n

[ 1]x n−

[ ]x n

[ 1]x n−

[ ]x n

[ 1]x n−

[ ]x n

[ 1]x n−

1P 2P 3P 4P

5P

2D context tree

K=2 Partition Trees

Fig. 5. Multi-dimensional extension: A 2-dimensional prediction using a context tree with K = 2. Each leaf in the context

tree corresponds to a different quadrant in the real space [−Ax, Ax]2, which is represented as a dark region in the fi gure. In the

same fi gure, we also present the 5 different partitions represented by the K = 2 context tree algorithm. For each partition, again,

the darker regions represents a leaf or a node. For each partition, the union of all dark regions results in the space [−Ax, Ax]2.

context tree,
⋃J

j=1 Sj = [−Ax, Ax]2 , as seen in Figure 5. Each area Sj is assigned to a leaf in the

context tree. On this figure, we present a partition of [−Ax, Ax]2 by a K = 2 context tree into 4 different

regions, i.e., each leaf of the tree corresponds to a quadrant. For each region, the prediction is given by

x̂[t] = w1,jx[n− 1]+w2,jx[n− 2]+ cj , w1,j ∈ R, w2,j ∈ R, cj ∈ R when (x[n− 1], x[n− 2]) ∈ Sj . For

K = 2, there exist 5 different partitions as seen in Figure 5. Each of these partitions can be selected by

the competing algorithm which then selects the corresponding 2-dimensional predictors in each region.

After the selection of the context tree and the assignment of each region to the corresponding leaf, the

algorithm proceeds as a one dimensional context tree algorithm. For each new sample x[n−1], we again

find the nodes corresponding to (x[n−1], x[n−2]) on the tree which are labeled as dark nodes. Then, we

accumulate the corresponding probabilities based on the performance of each node. Only the prediction

equations need to be changed to second order linear predictions.

In this section, we use the context tree method to represent a partition of the (x[n − 1], x[n − 2])

regressor space. The same context tree can be generalized to represent any partition of an arbitrary multi-

dimensional space. Furthermore, a context tree can be used to represent more general state information.

Here, the state information is derived from the membership of samples. The state information can be

derived from an arbitrary source provided that the state information has a tree structure, i.e., membership

in inner nodes infer membership in the corresponding leaves.

September 19, 2006 DRAFT



22

The algorithm from Theorem 2 can be extended to include pth-order partitioning of the p-dimensional

regressor space by a straightforward generalization, yielding the following result:

Theorem 4: Let xn be an arbitrary bounded real-valued sequence, such that |x[t]| < Ax for all t. Then

we can construct a sequential predictor x̃w[t] with complexity linear in the depth of the context tree per

prediction such that

n
∑

t=1

(x[t] − x̃w[t])2 ≤ inf
Pi

(

inf
~wi,j∈Rp

,ci,j∈R

{

n
∑

t=1

(

x[t] − ~wT
i,si[t−1]~y[t] − ci,j

)2
+ δ(‖~wi‖2)

}

+ (23)

8A2
xC(Pi) ln(2) + (p + 1)JiA

2
x ln(n/Ji)

)

+ O(1),

where δ > 0, and for a given p-dimensional partition Pi of the regressor space, the sequential algorithm

competes with the vector of piecewise affine pth-order prediction vectors. A similar sequential predictor

with polynomial complexity can also be constructed. The proof of Theorem 4 is a straightforward

generalization of that for Theorem 2.

V. LOWER BOUNDS: KNOWN REGIONS

To obtain lower bounds on the regret for any sequential predictor, we consider a set of J regions

such that x[t] ∈ Rj if Ax,j−1 < |x[t]| < Ax,j , i.e., we consider a set of J regions which are concentric

around the origin. Note that the upper bound in this case continues to be valid, since we do not make

any assumption on the shape of the regions to obtain it, other than assuming that inside the jth region

|x[t]| < Ax,j . For piecewise linear prediction, we have the following theorem.

Theorem 5: Let xn be an arbitrary bounded, real-valued sequence such that |x[t]| < Ax for all t. Let

x̂q[t] be the predictions from any sequential prediction algorithm. Then

inf
q∈Q

sup
xn

1

n

{

ln(x, x̂q) − inf
~w∈RJ

ln(x, x̂~w)

}

≥ 1

n

J
∑

j=1

2Cj

2Cj + 1
A2

x,j ln

(

1 +
nj − 2

2Cj

)

, (24)

where Q is the class of all sequential predictors, Cj are positive constants, ln(x, x̂~w) =
∑n

t=1(x[t] −
ws[t−1]x[t−1])2 and s[t−1] is the indicator variable for the underlying partition with concentric regions

around origin.

Theorem 5 provides a lower bound for the loss of any sequential predictor. Note that this bound

depends on the values of Ax,j and nj (i.e., the number of samples inside each region). Since the values

of Ax,j are fixed and the lower bound holds for all values of nj ,
∑J

j=1 nj = n and nj integer, nj can be

chosen to maximize the lower bound with the hope of asymptotically matching the upper bound derived

in Theorem 1. A more general, but weaker, lower bound, can be derived by maximizing only with respect

to nj as

inf
q∈Q

sup
xn

{

ln(x, x̂q) − inf
~c∈RJ

ln(x, x̂~c)

}

≥ (1 − ǫ)

∑J
j=1 A2

x,j

J
ln(n/J) − G,

September 19, 2006 DRAFT



23

for all ǫ > 0.

A. Proof of Theorem 5

We begin by noting that for any distribution on xn

inf
q∈Q

sup
xn

{

ln(x, x̂q) − inf
~c∈RJ

ln(x, x̂~c)

}

≥ inf
q∈Q

Exn

{

l(xn, x̂n
q ) − inf

~c∈RJ
ln(x, x̂~c)

}

, (25)

where Exn(·) is the expectation taken with respect to the distribution on xn. Hence, to obtain a lower

bound on the total regret, we just need to lower bound the right term in Equation (25).

Consider the following way of generating the sequence x
nj

j . Let θj be a random variable drawn from

a beta distribution with parameters (Cj , Cj), such that

p(θj) =
Γ(2Cj)

Γ(Cj)Γ(Cj)
θ

Cj−1
j (1 − θj)

Cj−1,

where Cj > 0 is a constant, and Γ(·) is the gamma function. The sequence x
nj

j generated has only

two possible values: −Ax,j, Ax,j . Hence, the sequence xn can take a total of 2J different values:

−Ax,J , . . . ,−Ax,1, Ax,0, Ax,1, . . . , Ax,J . We generate the sequence in such a way that it spends the

first n1 points in the first region, the next n2 points in the second region, and so on, spending the last

nJ points in the J th region. Obviously,
∑J

j=1 nj = n. Inside each region, the sequence is generated

such that x[t] = x[t − 1] with probability θj and x[t] = −x[t − 1] with probability (1 − θj). In the

transitions between regions, we generate the sequence such that x[t] = Ax,j+1 with probability 1/2 and

x[t] = −Ax,j+1 with probability 1/2. Thus, given θj , any sequence x
nj

j forms a two-state Markov chain

with transition probability (1 − θj). The corresponding two states of the jth Markov chain are −Ax,j

and Ax,j . Hence, we have J Markov chains with transitions between them at predefined instants, and a

probabilistic transition mechanism which determines the initial state of the (j + 1)-th chain.

Given this distribution, we can now compute a lower bound for (25). Due to the linearity of the

expectation, the right hand side of (25) becomes

L(n) = inf
q∈Q

E{ln(x, x̂q)} − E{inf
~w

ln(x, x̂~w)}, (26)

where we drop the explicit dependence on xn of the expectations to simplify notation. After this point,

the proof of Theorem 5 directly follows from Theorem 2 of [7], where we apply the lower bound derived

in Theorem 2 of [7] for each region separately. �

VI. SIMULATIONS

In this section, we illustrate the performance of context tree algorithm with several examples. The first

set of experiments involve prediction of a signal generated by a piecewise linear model by the following

September 19, 2006 DRAFT



24

equation,

x[t] = 0.1 ∗ x[t − 1] + 0.7 ∗ x[t − 2] + w[t], if x[t − 1] > 0 and x[t − 2] > 0 (27)

x[t] = 0.1 ∗ x[t − 1] − 0.7 ∗ x[t − 2] + w[t], if x[t − 1] > 0 and x[t − 2] < 0

x[t] = 0.25 ∗ x[t − 1] + 0.1 ∗ x[t − 2] + w[t], if x[t − 1] < 0 and x[t − 2] > 0

x[t] = 0.9 ∗ x[t − 1] − 0.1 ∗ x[t − 2] + w[t], if x[t − 1] < 0 and x[t − 2] < 0

where w[t] is a sample function from a stationary white Gaussian process of variance 1. Since the

main results of this paper are on prediction of individual sequences, Figure 6a shows the normalized

accumulated prediction error of our algorithms for a sample function of the process in Equation (27).

Here, we use a 2-dimensional binary context-tree introduced in Section IV where K = 4 with second

order linear predictors in each node. In the figures, we plot normalized accumulated prediction error for the

context-tree algorithm, the sequential piecewise affine predictor that is tuned to the underlying partition in

Equation (27) and the sequential algorithm corresponding to the finest partition. The underlying partition

in Equation (27) corresponds to one of the partitions represented by the context-tree. The context-tree

algorithm appears particularly useful for short data records. As expected, the performance of the finest

partition suffers when data length is small, due to over-fitting. The context tree algorithm also outperforms

the sequential predictor that is tuned to the underlying partition. Since the context tree algorithm adaptively

combines predictors (for each different partition) based on their performance, it is able to favor the coarser

models with a small number of parameters during the initial phase of the algorithm. This avoids the

over-fitting problems faced by the sequential algorithms using the finest partition or the exact partition

in Equation (27). As the data length increases, all three algorithms converge to the same minimum error

rate. This makes the context-tree algorithm attractive for adaptive processing in time-varying environments

for which a windowed version of the most recent data is typically used. Such applications require that

algorithms continually operate in the short effective data length regime.

In Figure 6b, similar results to those in Figure 6a are presented and averaged over 100 different sample

functions from Equation (27). The ensemble average performances and converge rates of each algorithm

are similar to those for a single sample function.

In Figures 6a and 6b, the superior performance of the context-tree algorithm is shown with respect to the

sequential algorithms corresponding to best partition and the true partition. As the data record increases,

the context-tree algorithm also attains the performance of the best batch algorithm. Although the other

sequential linear predictors will also asymptotically achieve their corresponding batch performance with

different rates, the rate at which the context tree algorithm achieves the best batch performance and the

performance of the best sequential algorithm is upper bounded by Theorem 2. These rates are at most

September 19, 2006 DRAFT



25

O(C(Pi)/n) + O(ln(n)/n) and O(C(Pi)/n), respectively.

We next compare the performance of the context tree algorithm to a sequential algorithm using a

recursive least squares (RLS) predictor with quadratic kernels. This set of experiments involve prediction

of a signal generated by the following nonlinear equation,

x[t] = 0.1 ∗ x[t − 1] − 0.5 ∗ (cos(3 ∗ x[t − 1])) + 0.4 ∗ sin(x[t − 2]) + 0.1 ∗ x[t − 2] + w[t], (28)

where w[t] is a sample function from a stationary white Gaussian process with unit variance. The RLS

algorithm with quadratic kernels is given by

x̂[t] = ax[t − 1] + bx[t − 2] + c(x[t − 1])2 + d(x[t − 2])2 + ex[t − 1]x[t − 2] (29)

where each five parameters a, b, c, d, e are estimated using the RLS algorithm. Since the lattice imple-

mentation of the RLS algorithm would have complexity linear in the filter length per prediction, we

compare it with a 1D context-tree algorithm which has K = 4 and linear predictors in each node,

i.e.,x̂ = wx[t− 1] without the constant term. In Figure 7, we plot the normalized accumulated prediction

error for the context-tree algorithm and the RLS algorithm with quadratic kernels for 100 trials. Again,

the context-tree algorithm appears particularly useful for short data samples. The performance of the RLS

algorithm attains the performance of the context tree algorithm as data lengths grows.

As the last example, we illustrate the performance of the context tree algorithm for a zero-mean

sequence generated by removing the mean from a sample function of the Henon map, a chaotic process

given by

x[n] = 1 − α(x[n − 1])2 + βx[n − 2] (30)

and known to exhibit chaotic behavior for the values of α = 1.4 and β = 0.3. The chaotic behavior

of x[n] can be seen in Figure 8, where we plot x[n] given n. Although, x[n] is chaotic, it is perfectly

predictable, via Equation (30) given two prior samples. In Figure 9, we plot the normalized total square

error (MSE) of several context tree prediction algorithms with different depths K = 1, 2, 3, . . . 10, i.e.,
∑n

t=1(x[t] − x̂[t])2. Each context tree algorithm uses an affine predictor x̂[n] = wjx[n − 1] + cj for

prediction. We also plot the MSE of a linear predictor which uses the recursive least squares (RLS)

algorithm. The order of the RLS predictor is 10. The context tree algorithms have superior performance

with respect to the linear RLS predictor. The context tree algorithms are able to model the nonlinear

term, x[n − 1]2, in the Henon map while the RLS predictor tries to approximate the nonlinearity with

linear terms. The performance of the context tree algorithms improve as we increase the depth of the tree

K. Although, the modeling power of the algorithms increase with the increased depth, the performance

of the algorithms eventually saturate since the Henon map contains a second order term.

September 19, 2006 DRAFT



26

We then construct 2-dimensional context tree algorithms as in Section IV where we again try to predict

the same Henon Map. In Figure 10, we plot the MSE of 1-dimensional and 2-dimensional context tree

algorithms where each algorithm has depth K = 8. We plot context tree algorithms using constant

predictors, x̂[n] = cj and affine predictors x̂[n] = wjx[n − 1] + cj in one dimension and constant

predictors, x̂[n] = cj and affine predictors x̂[n] = w1,jx[n − 1] + w2,jx[n − 1] + cj in two dimensions.

Since, the Henon Map is perfectly predictable, the MSE of the second order linear (affine) context tree

algorithm continuously decreases with K.

To observe the learning process of the context tree, we simulate the performance of a 2-dimensional

context tree algorithm with depth K = 10 for the same Henon Map. In Figure 11, we plot the probability

Pη(xn
1 ) assigned by the context tree algorithm to the predictor in each region of [−Ax, Ax]2, for n =

100, 500, 1000, 2000, 4000 as a 2-D image. In the figure, darker regions correspond to smaller weights.

Since the assigned probability of each region determines the contribution of its predictor to the final

prediction, the larger the weight the greater the contribution of that region’s prediction to the final output,

from Equation (20). As n increases, the weight distribution of each region closely depicts the attractor

of the Henon Map plotted in Figure 11a, i.e., the algorithm rapidly adapts to the underlying structure of

the relation.

To further illustrate the operation of the context tree algorithm, Figure 12 depicts the probabilities

assigned by the context tree algorithm to each level of the context tree for the same Henon map process.

Here, we use a 2D context tree algorithm of depth-3 with affine predictors in each node. The probability

assignments determines how much weight is given to the prediction of each partition in the final output by

the context tree. On the figure, the first bar corresponds to the root probability. The second row (first level)

has two bars for the two children, the third row(second level) has four bars for the four grandchildren

and finally fourth row has 8 bars for 8 leaves. Figure 12 illustrates how the weights initially favor coarser

partitions. As the data length increases the context tree algorithm shift its weights from coarser models

to finer models.

From this representative set of simulations, we observe that the context tree algorithms provide con-

siderable performance gains with respect to linear models (even with different effective window lengths)

with similar computational complexity for variety of different applications. The unknown nonlinearity in

the models are effectively resolved by the context tree approach.

VII. CONCLUSIONS

In this paper, we consider the problem of piecewise linear prediction from a competitive algorithm

perspective. Using context trees and methods based on sequential probability assignment, we have shown

a prediction algorithm whose total squared prediction error is within O(ln(n)) of that of the best piecewise

September 19, 2006 DRAFT



27

0 100 200 300 400 500 600 700 800 900 1000
1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

Data Length

N
o
rm

a
liz

e
d
 A

c
c
u
m

u
la

te
d
 M

S
E

Piecewise Linear AR(2)

Context Tree Weighting

Partition Tuned to Sequence

Finest Partition

0 100 200 300 400 500 600 700 800 900 1000
1

1.5

2

2.5

Data Length

N
o
rm

a
liz

e
d
 A

c
c
u
m

u
la

te
d
 M

S
E

Piecewise Linear AR(2)

Context Tree Weighting

Partition Tuned to Sequence

Finest Partition

(a) (b)

Fig. 6. (a) Prediction results for a sample function of the second-order piecewise linear process (27). The normalized accumulated

sequential prediction error ln(x, x̂)/n for: a context-tree algorithm of depth-4 with second order predictors in each node; a

sequential piecewise linear predictor that is tuned to the underlying partition as in (27); a sequential piecewise linear predictor

with the fi nest partition on the context tree. (b) the same algorithms averaged over 100 trials.

0 100 200 300 400 500 600 700 800 900 1000
0.5

1

1.5

2

2.5

3

Data Length

N
o
rm

a
liz

e
d
 A

c
c
u
m

u
la

te
d
 M

S
E

Nonlinear AR(2)

Context Tree Weighting

RLS with Quadratic Kernel

Fig. 7. Prediction results for a sample function of a nonlinear

process given in Equation (28). The average normalized accu-

mulated sequential prediction error for: a 1D binary context-

tree algorithm with K = 4 using linear predictors at each

node; a sequential algorithm using RLS with quadratic kernels

as given in Equation (29).

0 20 40 60 80 100
-1

-0.5

0

0.5

1
Henon Map

index, n

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

x[n]

x
[n

-1
]

0.5 0.6 0.7 0.8

0

0.1

0.2

0.3

0.4

0.5

x[n]

x
[n

-1
]

-0.15 -0.1 -0.05 0 0.05 0.1

0.9

0.92

0.94

0.96

0.98

x[n]

x
[n

-1
]

Fig. 8. Henon Map. x[n] = 1 − 1.4x[n − 1]2 + 0.3x[n −

2]. The chaotic behavior of the Henon Map. Time evolution

of x[n] with respect to n. (upper left); x[n] versus x[n − 1]

(upper right); Zoomed version of the lower-rectangle (lower

left); Zoomed version of the upper-rectangle (lower right).

September 19, 2006 DRAFT



28

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
10

-2

10
-1

10
0

k=1

k=2

k=3

k=4

k=10

samples, n

M
e
a
n
 S

q
u
a
re

d
 E

rr
o
r

Context Tree Prediction of the Henon Map

RLS Predictor

Fig. 9. Context tree prediction of the Henon Map. MSE per-

formance of 1-dimensional context tree prediction algorithms

with depths K = 1, 2, 3, 4, . . . , 10 with uniform partition of

the real line, using affi ne predictors. The Henon Map is given

in Equation (30). Also, in the same fi gure, MSE performance

of a linear predictor of order 10 using the RLS algorithm.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
10

-3

10
-2

10
-1

10
0

2D locally affine

1D locally affine

1D locally constant

2D locally constant

samples, n

M
e

a
n

 S
q
u
a

re
d

 E
rr

o
r

Henon Map, 1D and 2D context trees, k=8

Fig. 10. Context tree prediction of the Henon Map. MSE per-

formance of K = 8, 1-dimensional (scalar) and 2-dimensional

context tree prediction algorithms with constant and linear

(affi ne) predictors in each region. The Henon Map is given in

Equation (30). Since the Henon map is perfectly predictable by

2-dimensional linear context tree algorithm, the MSE decreases

continuously as n increases.

-1

-0.5

0

0.5

1
-1 0 1

x
[n

]

x[n-1]

Henon Map P
η
(x

1
100), η at depth 10

10 20 30

5

10

15

20

25

30

P
η
(x

1
500), η at depth 10

10 20 30

5

10

15

20

25

30

P
η
(x

1
1000), η at depth 10

10 20 30

5

10

15

20

25

30

P
η
(x

1
2000), η at depth 10

10 20 30

5

10

15

20

25

30

P
η
(x

1
4000), η at depth 10

10 20 30

5

10

15

20

25

30

Fig. 11. Context tree prediction of the Henon Map. Pη(xn)

is shown at depth 10 in the context tree for various times, n =

100, 500, 1000, 2000, and 4000. The structure of the attractor

becomes readily apparent as n increases.

1234

12345678

0

0.5

1

N = 1

1234

12345678

0

0.5

1

N = 100

1234

12345678

0

0.5

1

N = 500

1234

12345678

0

0.5

1

N = 1000

1234

12345678

0

0.5

1

N = 2500

1234

12345678

0

0.5

1

N = 5000

1234

12345678

0

0.5

1

N = 10000

1234

12345678

0

0.5

1

N = 15000

1234

12345678

0

0.5

1

N = 20000

Fig. 12. 2D context tree prediction of the Henon Map. The

weights assigned to the sequential predictors represented by

the context-tree are shown. The fi rst bar is the root probability.

The second row has two bars for the two children, the third

has four bars for the four grandchildren and fi nally fourth has

8 bars for 8 leaves. The heights are the node probabilities.

corresponding to root node, fi rst-level, second-level and third-

level.

September 19, 2006 DRAFT



29

linear model tuned to the data in advance. We use a method similar to context tree weighting to compete

well against a doubly exponential class of possible partitionings of the regressor space, for which we pay

at most a “structural regret” proportional to the size of the best context tree. For each partition, we use

a universal linear predictor to compete against the continuum of all possible affine models, for which

we pay at most a “parameter regret” of O(ln(n)). Upper and lower bounds on the regret are derived

and scalar and vector prediction algorithms are detailed and demonstrated with examples. The resulting

algorithms are efficient, with time complexity only linear in the depth of the context tree and perform

well for a variety of data.

REFERENCES

[1] J. Makhoul, “Linear prediction: a tutorial review,” Proc. IEEE 63:561-80, 1975.

[2] A. Singer, G. Wornell, and A. Oppenheim, “Nonlinear Autoregressive Modeling and Estimation in the Presence of Noise.”

Digital Signal Processing, vol. 4, no. 4, pp. 207-221, October 1994.

[3] P. Djuric, J. Kotecha, J. Zhang, Y. Huang, T. Ghirmai, M. Bugallo, and J. Miguez, “Particle Filtering.” IEEE Magazine on

Signal Processing, vol. 20, no. 5, pp. 19-38, September 2003.

[4] V.Vovk, “Aggregating strategies” COLT, 1990, pp.371-383.

[5] V. Vovk, “Competitive on-line linear regression,” In: Advances in Neural Information Processing Systems (ed by M.I.

Jordan, M.J. Kearns, and S.A. Solla), pp. 364–370, 1998.

[6] N. Cesa-Bianchi; P. M. Long; Warmuth, M.K., “Worst-case quadratic loss bounds for prediction using linear functions and

gradient descent,” IEEE Transactions on Neural Networks, Volume: 7 , Issue: 3 , May 1996 Pages:604 - 619

[7] A. C. Singer, S. S. Kozat, M. Feder, “Universal linear least squares prediction: upper and lower bounds,” IEEE Transactions

on Information Theory, vol. 48, no.8, pp. 2354-2362, Aug. 2002

[8] H. Tong. Non-Linear Time Series: A Dynamical System Approach. Oxford University Press, 1990.

[9] R.S. Tsay. “Testing and Modeling Threshold Autoregressive Processes.” Journal of the American Statistical Association,

vol. 84(405), pp. 231-240, 1989.

Reports

[10] T. Coulson, E.A. Catchpole, S.D. Albon, B.J.T. Morgan, J.M. Pemberton, T.H. Clutton-Brock, M.J. Crawley and B.T.

Grenfell. “Age, Sex, Density, Winter Weather, and Population Crashes in Soay Sheep.” Science. May, 2001, Vol. 292. no.

5521, pp. 1528 - 1531.

[11] M.P. Clements, and J. Smith. “A Monte Carlo Study of the Forecasting Performance of Empirical SETAR Models.” Journal

of Applied Econometrics. John Wiley & Sons, Ltd., vol. 14(2), pp.123-41, March-Apr 1999.

[12] Schoentgen, Jean. “Modelling the glottal pulse with a self-excited threshold auto-regressive model.” In EUROSPEECH’93,

pp. 107-110, 1993.

[13] A. C. Singer, M. Feder, “Universal linear prediction by model order weighting,”IEEE Transactions on Signal Processing,

vol. 47, no. 10, October 1999.

[14] N. Merhav, M. Feder, “Universal schemes for sequential decision from individual data sequences,” IEEE Transactions on

Information Theory, , Volume: 39 , Issue: 4 , July 1993 Pages:1280 - 1292

[15] S.R. Kulkarni and S.E. Posner, “Universal Prediction of Nonlinear Systems,” in Proceedings of 34th Conference on Decision

& Control, pp. 4024–4029, Dec. 1995.

September 19, 2006 DRAFT



30

[16] M. Feder, N. Merhav, and M. Gutman, “Universal prediction of individual sequences”, in IEEE Transactions on Information

Theory, vol. 38, no. 4.,

[17] Willems, F.M.J.; Shtarkov, Y.M.; Tjalkens, T.J.; “The context-tree weighting method: basic properties,” IEEE Transactions

on Information Theory, Volume: 41 , Issue: 3 , May 1995 p.p. 653 - 664

[18] Sloane, N. J. A. Sequence A003095 (formerly M1544) in “The On-Line Encyclopedia of Integer Sequences.”

[19] A. V. Aho, N. J. A. Sloane, “Some Doubly Exponential Sequences,” Fibonacci Quarterly, vol. 11, pp. 429-437, 1970.

[20] D. P. Helmbold, R. E. Schapire, “Predicting nearly as well as the best pruning of a decision tree,” Machine Learning,

27(1):51-68, 1997

[21] E. Takimoto, A. Maruoka and V. Vovk, “Predicting nearly as well as the best pruning of a decision tree through dyanamic

programming scheme,” Theoretical Computer Science, 261, 179-209, 2001

[22] E. Takimoto, M. K. Warmuth, “Predicting nearly as well as the best pruning of a planar decision graph” Theoretical

Computer Science, 288, 217-235, 2002

[23] G. I. Shamir, N. Merhav, “Low-Complexity Sequential Lossless Coding for Piecewise-Stationary Memoryless Sources,”

IEEE Transactions on Information Theory, vol. 45, no. 5, pp.1498-1519, July 1999

[24] F. M. J. Willems, “Coding for a Binary Independent Piecewise-Identically-Distributed Source,” IEEE Transactions on

Information Theory, vol. 42, pp. 2210-2217, Nov. 1996

[25] D. S. Modha, E. Masry, “Universal, Nonlinear, Mean-Square Prediction of Markov Processes,” in Proceedings of IEEE

On International Symposium on Information Theory, p. 259, 1995.

[26] T. M. Cover, “Estimation by the nearest neighbor rule,” in IEEE Transactions on Information Theory, vol. IT-14, pp. 50–55,

Jan. 1968.

[27] Michel, O.J.J.; Hero, A.O., III; Badel, A.E., “Tree-structured nonlinear signal modeling and prediction,” IEEE Transactions

on Signal Processing, Volume: 47 , Issue: 11 , Nov. 1999 Pages: 3027 - 3041

[28] David Luengo, Suleyman S. Kozat, Andrew C. Singer, “Universal Piecewise Linear Least Squares Prediction: Upper and

Lower Bounds,” International Symposium on Information Theory, Chicago, 2004

[29] R. E. Krichevsky and V. K. Trofi mov, “The Performance of Universal Encoding”, IEEE Transactions on Information

Theory, vol. 27, pp. 190-207, March 1981

[30] B. Ya. Ryabko, “Twice-universal coding,” Prob. Inf. Trans, vol. 20, no. 3, pp. 173-7, 1984.

September 19, 2006 DRAFT


