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Abstract

Maass [M] showed that the quadratic form x2 + y2 + z2 is universal
over the ring of integers of Q(

√
5), i.e., it represents every totally pos-

itive integer in Q(
√

5). In this paper, we extend this result to all real
quadratic fields. We show that there are only three real quadratic fields
which admit ternary universal classic integral quadratic forms; they are
Q(
√

2), Q(
√

3) and Q(
√

5). In each of these fields, we determine all
ternary universal classic integral quadratic forms.
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1 Introduction

In 1770, Lagrange proved the famous four square theorem. In the language
of quadratic forms, it says that the form x2 + y2 + z2 + u2 represents all
positive integers. At the beginning of this century, Ramanujan [R] extended
Lagrange’s result and he showed that up to equivalence, there are 54 diagonal
positive quarternary integral quadratic forms which represent all positive
integers. Later on, Dickson [D] further extended the results to non-diagonal
cases.

In a totally real number field K, one may ask whether there exist positive
integral quadratic forms over K which represent all totally positive integers
in K. We call such quadratic forms universal. The results in the paper by
Hsia, Kitaoka and Kneser [HKK] can easily imply that universal integral
quadratic forms always exist. However, the quadratic forms constructed by
their results may have too many variables. Therefore, one may want to find
universal integral quadratic forms with fewest variables. It is easy to see
that no positive binary quadratic forms can be universal. For the ternary
case, Maass [M] showed that the sum of three squares is universal when
K = Q(

√
5). This cannot happen in any other K since Siegel [S1] proved

that K admits a sum of squares that is universal if and only if K = Q or
Q(
√

5). However, K may admit other ternary universal integral quadratic
forms and concerning this, Kitaoka conjectured in a private communication
that there may be only finitely many K that admit such quadratic forms.
In this paper, we confirm Kitaoka’s conjecture for real quadratic fields K by
characterizing those which admit classic ternary universal integral quadratic
forms. An integral quadratic form is called classic if the coefficients of the
crossed terms are divisible by 2, that is, the corresponding quadratic lattice
is free and the scale is in the ring of integers of K. ¿From now on, by
quadratic forms or simply by forms we will mean positive classic integral
quadratic forms. In fact, we prove the following :

Theorem 1.1 Let K be a real quadratic number field. Ternary universal
quadratic forms over K exist if and only if K = Q(

√
2), Q(

√
3) or Q(

√
5).

We also determine all ternary universal quadratic forms over each of the
above K’s. They are, up to equivalence, as follows :

(1) Over K = Q(
√

2) :

x2 + y2 + (2 +
√

2)z2, x2 + (2 +
√

2)y2 + 2yz + (2−
√

2)z2,
x2 + (2 +

√
2)y2 + 2yz + 3z2, x2 + (2−

√
2)y2 + 2yz + 3z2.
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(2) Over K = Q(
√

3) :

x2 + y2 + (2 +
√

3)z2, x2 + (2 +
√

3)y2 + (2 +
√

3)z2.

(3) Over K = Q(
√

5) :

x2 + y2 + z2, x2 + y2 + 2z2, x2 + y2 +
5 +

√
5

2
z2,

x2 + 2y2 + 2yz +
5 +

√
5

2
z2, x2 + 2y2 + 2yz +

5−
√

5
2

z2.

We prove the necessity of Theorem 1.1 in Section 2 by showing that if
K = Q(

√
m) where m is a square free integer greater 5, then K does not

admit any ternary universal form. In Sections 3, 4 and 5, we will prove (1),
(2) and (3) above, from which the sufficiency of Theorem 1.1 also follows.
There, we first show that the forms listed above are the only possible candi-
dates for ternary universal forms. The universality of those forms are then
proved by showing that they represent all totally positive integers locally
everywhere and that they all have class number 1. An interesting observa-
tion from this is that all the universal forms over real quadratic fields are of
class number 1.

Before we move on, we fix some notations. For any real quadratic number
field K, let O be the ring of integers in K and O+ be the set of all totally
positive integers. Let ε be the fundamental unit of K. For any two integers
α, β ∈ O, we write α ∼ β when α = βu2 for some unit u ∈ O. The norm
and trace from K to Q are denoted by N and Tr, respectively. For any
element α ∈ O, α′ will denote the conjugate of α.

In the following sections, we will adapt lattice theorectic languange. An
O-lattice means a finitely generated O-module equipped with a bilinear form
B. The corresponing quadratic map will be denoted by Q. Since classic
integral quadratic forms correpond to free O-lattices with scales contained
in O, we will assume every O-lattice considered in this paper is such unless
stated otherwise. For any unexplained terminologies and basic facts about
quadratic lattices, we refer the readers to O’Meara’s book [O1]. We conclude
this section with a lemma which will be used frequently in this paper.

Lemma 1.1 Let α, γ ∈ O+, β ∈ O+∪{0}, and x ∈ O such that αx2+β = γ.
Then 0 ≤ αx2 ≤ γ and 0 ≤ (αx2)′ ≤ γ′ so that 0 ≤ N(αx2) ≤ N(γ). In
particular, N(α) ≤ N(γ) if x 6= 0.

Proof. Trivial. �
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2 m > 5

In this section, we will prove the only if part of Theorem 1.1. Throughout
this section, K = Q(

√
m) where m is a square free integer greater than 5.

We first give three propositions which are useful in future discussion.

Proposition 2.1 (1) < 1 >⊥< 1 > does not represent 3.
(2) < 1 >⊥< 1 > does not represent ε if N(ε) = 1.
(3) < 1 >⊥< ε > does not represent 2 if N(ε) = 1 and 2ε is not a square.
(4) < 1 >⊥< ε > does not represent 5 if N(ε) = 1 and 2ε is a square.
(5) < 1 >⊥< 2 > does not represent 5.

Proof. (1) - (5) follow immediately from the following observations. Box

(∗)































If α, 1− α ∈ O+ ∪ {0}, then α = 0 or 1.
If α, 2− α ∈ O+ ∪ {0}, then α = 0, 1 or 2.
If α, 3− α ∈ O+ ∪ {0}, then α = 0, 1, 2 or 3.
If α, 4− α ∈ O+ ∪ {0}, then α = 0, 1, 2, 3 or 4.
If α, 5− α ∈ O+ ∪ {0}, then α = 0, 1, 2, 3, 4, 5 or

2 + 1+
√

m
2 for m = 13, 17, 21.

We omit the proof of the following proposition since it is similar to that
of Proposition 2.3 but is lengthier.

Proposition 2.2 Let α, β, γ be positive rational integers. Then
(1) < α >⊥< β >⊥< γ > cannot represent µ +

√
m nor 2µ + 2

√
m if

m ≡ 2, 3 (mod 4) where µ is the smallest rational integer bigger than
√

m.
(2) < α >⊥< β >⊥< γ > cannot represent ν+

√
m

2 nor ν +
√

m if m ≡ 1
(mod 4) where ν is the smallest rational odd integer bigger than

√
m.

Proposition 2.3 Suppose N(ε) = 1 and 2ε is a square. If γ is a positive
rational integer, then < 1 >⊥< ε >⊥< γ > cannot represent µ+

√
m where

µ is the smallest rational integer bigger than
√

m.

Proof. Observe that a necessary condition for 2ε being a square is that
m ≡ 2, 3 (mod 4). Suppose x2 + εy2 + γz2 = µ +

√
m for some x, y, z ∈ O.

Let εy2 = a + b
√

m. Then it is clear that x and z are rational integers and
hence x2 + a + γz2 = µ and b = 1. Since εy2 ∈ O+, we obtain x = z = 0
and εy2 = µ +

√
m. Now consider 2εy2 = 2µ + 2

√
m. This is a square since

2ε is. So, 2µ + 2
√

m = (c + d
√

m)2 for some rational integers c and d. From
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this, we get c = d = ±1 and m + 1 = 2µ < 2(
√

m + 1), which is not possible
since m > 5. Box.

Let L be a tenary universal O-lattice. Then L represents 1 and so < 1 >
splits L and hence L ∼=< 1 >⊥ L0 for some binary sublattice L0 of L. We
have two cases : (I) L0 represents a unit and (II) L0 does not represent any
unit.

Case (I) L0 represents a unit.
It is clear that for some γ ∈ O+,

L ∼=
{

< 1 >⊥< 1 >⊥< γ > (a)
< 1 >⊥< ε >⊥< γ > (b)

where (b) occurs only if N(ε) = 1. We treat (a) and (b) separately below.

(a) First assume N(ε) = −1. By Proposition 2.1 (1), Lemma 1.1 and Siegel’s
result [S1], we have 2 ≤ N(γ) ≤ 9. Using this and the equation x2 + y2 +
γz2 = 3, one can show that γ ∼ 2 or 3 and hence by Proposition 2.2, we can
eliminate these two possibilities.

Now assume N(ε) = 1. Then by Proposition 2.1 (2) and Lemma 1.1, we
have N(γ) = 1 and hence by Siegel’s result, γ ∼ ε is the only possibility. We
now claim that 2ε must be a square. Suppose not. Since 2ε is represented
by L, there exist x, y, z ∈ O such that ε−1x2 + ε−1y2 + z2 = 2. Then
by (∗), ε−1x2 = 0 because ε cannot be a square. Applying (∗) again to
ε−1y2 + z2 = 2, we obtain ε−1y2 = 0 and z2 = 2, which is absurd. So 2ε is a
square and hence the possibility γ ∼ ε can be eliminated by Propostion 2.3.
Therefore, we do not have any ternary universal O-lattice in this case.

(b) By Proposition 2.1 (3),(4) and Lemma 1.1, we have

N(γ) ≤
{

4 if 2ε is not a square
25 if 2ε is a square.

Then applying (∗) repeatedly as above to the equations x2 + εy2 + γz2 = 2
or 5, respectively, one can show that

γ ∼
{

1, 2 if 2ε is not a square
1, ε, 2, 2ε, 3, 4, 5 if 2ε is a square.

The case γ ∼ 1 is already ruled out in (a). Furthermore, by Proposition 2.3,
we can reduce to

γ ∼
{

2 if 2ε is not a square
ε, 2ε if 2ε is a square.
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Assume 2ε is a square. The lattice < 1 >⊥< ε >⊥< ε > cannot be universal
because it can be obtained from scaling < 1 >⊥< 1 >⊥< ε > by ε. And
neither can be < 1 >⊥< ε >⊥< 2ε > because it is isometric to a sublattice
of < 1 >⊥< 1 >⊥< ε >. Now if 2ε is not a square, then the lattice
< 1 >⊥< ε >⊥< 2 > cannot represent 2ε. The proof is almost same as that
for the lattice < 1 >⊥< 1 >⊥< ε > and so we do not present it here.

Case (II) L0 does not represent any unit.
In this case, we must have N(ε) = −1. Since L represents 2, one can see
immediately that L0 must represent 2 also. For convenience, we divide this
case into two subcases : (a) L0 is diagonal and (b) L0 is indecomposable.

(a) We may assume that L0 ∼=< β >⊥< γ > for some β, γ ∈ O+. Since L0
represents 2, there are y, z ∈ O such that βy2 + γz2 = 2. We then have

N(βy2) + Tr(βy2(γz2)′) + N(γz2) = 4.

Since β and γ are not units, we can see that either y = 0 or z = 0. Without
loss of generality, we may assume z = 0. Then βy2 = 2. Since N(β) ≥ 2,
y2 must be a unit and hence β ∼ 2. Therefore L0 ∼=< 2 >⊥< γ >. By
Proposition 2.1 (5) and Lemma 1.1, we have N(γ) ≤ 25. Together with the
equation x2 + 2y2 + γz2 = 5, we can show that γ ∼ 1, 2, π2

2, (π
′
2)

2, 3, 4 or
5, where π2 is a prime element in O with N(π2) = 2 when 2Z splits into a
product of two principal prime ideals. Proposition 2.2 rules out the cases
γ ∼ 1, 2, 3, 4 and 5. If γ ∼ π2

2 or (π′2)
2, then L is isometric to a sublattice

of < 1 >⊥< 2 >⊥< 1 > which is not universal again by Proposition 2.2.
Therefore we do not have any universal ternary O-lattice in this case.

(b) For any vector v ∈ L0, we use Iv to denote the coefficient of v. Take any
e ∈ L0 such that Q(e) = 2. Since L0/Iee is finitely generated and torsion
free, it is projective (see [J]) and so we can find a vector f ∈ L0 such that
L0 = Iee + If f . Since Q(e) = 2, Ie can be O or ℘−1 where ℘ is the unique
dyadic prime of O when 2Z ramifies. We treat these two cases separately.

Firstly, let Ie = O. Then If = O because L0 is free. Therefore

L0 = Oe +Of ∼=
〈

2 β
β γ

〉

where B(e, f) = β ∈ O and Q(f) = γ ∈ O+. Note that β 6∈ 2O because
otherwise Oe splits L0 and it contradicts to the hypothesis that L0 is in-
decomposable. Since L represents 5, L0 represents 4 or 5. So, there exist

5



y, z ∈ O such that 2y2 + 2βyz + γz2 = 4 or 5. By completing square and
multiplying 2, we have (2y + γz)2 + (2γ − β2)z2 = 8 or 10.

If m ≡ 2, 3 (mod 4), then the smallest m with N(ε) = −1 is 10. So we
may assume m ≥ 10 here. It is easy to see that (2y+βz)2 must be a rational
integer square and hence (2γ − β2)z2 = 1, 4, 6, 7, 8, 9 or 10. From this, one
can show that 2γ − β2 = 1, 2, π2

3, (π
′
3)

2, 4, 6, 7, 8, 9 or 10 by adjusting the
vector f suitably. The element π3 is a prime element in O with N(π3) = 3
when 3Z splits into a product of two distinct principal prime ideals. Now,
since L is universal, the lattice < 2 >⊥< 1 >⊥< 2γ−β2 > should represent
all integers in 2O+ which is impossible in view of Proposition 2.2 (1) if
2γ − β2 ∈ Z. Therefore 2γ − β2 can only be π2

3 or (π′3)
2. However, these

are also impossible because otherwise < 2 >⊥< 1 >⊥< 1 > represents
2µ + 2

√
m which is absurd again by Proposition 2.2 (1).

Suppose m ≡ 1 (mod 4). The smallest m with N(ε) = −1 is 13. So we
may assume m ≥ 13. If m > 40, we may argue as in previous paragraph to
obtain 2γ−β2 = 1, π2

2, (π
′
2)

2, π2
3, (π

′
3)

2, 4, 6, 7, 8, 9 or 10. Since L is universal,
< 2 >⊥< 1 >⊥< 2γ−β2 > represents ν +

√
m ∈ 2O which is impossible by

Proposition 2.2 (2) if 2γ − β2 ∈ Z. The remaining cases are also impossible
because they would imply that < 2 >⊥< 1 >⊥< 1 > represents ν +

√
m.

When m ≤ 40, the only possible m’s are 13, 17, 29 and 37. Again we
consider the equation (2y + βz)2 + (2γ − β2)z2 = 8 or 10. Although the
first term may no longer be a rational integer square, one can directly check
that when m = 29 and 37, we have the same candidates as above and they
can be ruled out by Proposition 2.2 (2). When m = 13 and 17, beside the
candidates listed above, which can be eliminated again by Proposition 2.2
(2), we have eight additional candidates : 2γ − β2 = 9±

√
13

2 or 13±
√

13
2 when

m = 13 ; 2γ − β2 = 7±
√

17
2 or 11±

√
17

2 when m = 17. However, none of

these are possible since L cannot represent 5+
√

13
2 when 2γ − β2 = 9±

√
13

2 or
13±

√
13

2 ; 5+
√

17
2 when 2γ − β2 = 7±

√
7

2 or 11±
√

17
2 .

Secondly, let Ie = ℘−1. This case happens only when m ≡ 2, 3 (mod 4).
Recall that N(ε) = −1. The lattice L0 can be written as ℘−1e + ℘f . Let
B(e, f) = β ∈ O and Q(f) = γ ∈ O+. Again, from the representation of 4
or 5 by L0, we obtain (2y + βz)2 + (2γ − β2)z2 = 8 or 10. where y ∈ ℘−1

and z ∈ ℘. Since 2y ∈ O, (2y + βz)2 is still in O. Therefore, (2y + βz)2 is
again a square of a rational integer and this gives (2γ−β2)z2 = 4, 6, 8 or 10
since z ∈ ℘. ¿From these, one can show that 2γ − β2 = 1 or 2 by adjusting
f suitably. By a similar argument using Proposition 2.2 (1) as above, one
can eliminate these possibilities, too.
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In conclusion, we have shown that if K = Q(
√

m) with m > 5 and
square-free, then K does not admit any ternary universal quadratic forms.

3 m = 2

In this section, we will determine all ternary universal O-lattices over the
field Q(

√
2). Note that ε = 1 +

√
2 and N(ε) = −1. We need the following

proposition but we omit the proof since it is straightforward.

Proposition 3.1 Let L ∼=< 1 >⊥< 1 + ε >⊥< γ > be a positive O-lattice.
Then L cannot represent 3 + 3ε if γ = 2 or 3.

Let L be a ternary universal O-lattice. As before, L ∼=< 1 >⊥ L0 for
some binary O-lattice. If L0 represents a unit, then L0 represents 1 and so
L ∼=< 1 >⊥< 1 >⊥< γ >. It can be checked that < 1 >⊥< 1 > does not
represent 1+ε ∈ O+. Therefore, by Lemma 1.1, we have N(γ) ≤ N(1+ε) = 2
and so γ ∼ 1 or 1 + ε. Since < 1 >⊥< 1 >⊥< 1 > is not universal by [S1],
we just have one candidate in this case :

W =< 1 >⊥< 1 >⊥< 1 + ε > .

If L0 does not represent any unit, then L0 must represent 1 + ε. We
divide this case into two subcases :

(a) L0 is diagonal : Since 1 + ε cannot be a sum of totally positive integers,
< 1+ ε > should split L0. So, L ∼=< 1 >⊥< 1+ ε >⊥< γ > with N(γ) ≥ 2.
Now applying (∗) to x2 + (1 + ε)y2 + γz2 = 3, we obtain γ ∼ 2, 3. By
Proposition 3.1, however, neither can make L universal.

(b) L0 is indecomposable : Take any vector e ∈ L0 such that Q(e) = 1 + ε.
Clearly, e is a maximal vector in L0. So, L0 = Oe + Of for some f ∈ L0.
Let B(e, f) = β ∈ O and Q(f) = γ ∈ O+. If β ∈ ℘ = (1 + ε)O, then Oe
splits L0 which is impossible. Therefore, β 6∈ ℘. Since |O/℘| = N℘ = 2, we
may assume β = 1 by adjusting f suitably. The following proposition says
that the discriminant of L determines the isometry class of L.

Proposition 3.2 If the discriminant of L0 ∼=
〈

1 + ε 1
1 γ0

〉

and L1 ∼=
〈

1 + ε 1
1 γ1

〉

are the same, then they are isometric.
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Proof. Suppose (1 + ε)γ1− 1 = ((1 + ε)γ0− 1)ε2n. Cleary 1− ε2n is divisible
by 1 + ε. Therefore either 1 + εn or 1 − εn is divisble by 1 + ε. However,
(1+ εn)+ (1− εn) = 2 is divisible by 1+ ε. Therefore both 1+ εn and 1− εn

must be divisible by 1+ε. Let {ei, fi} be a basis of Li such that Q(ei) = 1+ε,
B(ei, fi) = 1 and Q(fi) = γi for i = 0, 1. Now it is direct to check that the
linear map σ : L0 −→ L1 defined by e0 7−→ e1, f0 7−→ 1−ε−n

1+ε e1 + ε−nf1 is an
isometry. Box

Since L represents 3, L0 should represent 2 or 3. If L0 represents 2, then
there exist y, z ∈ O such that (1+ε)y2+2yz+γz2 = 2. By completing square
and multiplying 1 + ε, we obtain ((1 + ε)y + z)2 + ((1 + ε)γ − 1)z2 = 2 + 2ε.
By norm consideration, we can see that (1+ε)γ−1 ∼ 1. By Proposition 3.2,
we can simply choose γ = 1 + ε′. If L0 represent 3, by a similar argument,
we obtain γ = 3 or 3 + 6ε′. Observing

〈

1 + ε 1
1 3 + 6ε′

〉

∼=
〈

1 + ε′ 1
1 3

〉

,

we obtain three more candidates :

M =< 1 >⊥
〈

1 + ε 1
1 1 + ε′

〉

,

J =< 1 >⊥
〈

1 + ε 1
1 3

〉

, J ′ =< 1 >⊥
〈

1 + ε′ 1
1 3

〉

.

Theorem 3.1 Let K = Q(
√

2). Up to isometry, the lattices W,M, J and
J ′ are the only ternary universal O-lattices.

Proof. It suffices to show that W,M, J are universal since J ′ is conjugate to
J . To accomplish this, we prove

(A) Each of them represents all totally positive integers locally everywhere.
(B) They all have class number 1.

Proof of (A) :
At the nondyadic primes ℘ : The localization W℘ and M℘ are unimodular.
So they represent all integers in O℘ [O1, 92:1]. For J℘, it is unimodular
at all other primes except at ℘ = π7O, where π7 = 2 + 3ε. At this ℘,
J℘ ∼=< 1 >⊥< 1 + ε >⊥< (1 + ε)π7 >. Since −(1 + ε) ≡ ε2 (mod π7),
< 1 >⊥< 1 + ε > is hyperbolic and hence J℘ represents all integers at this
℘ also.
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At the dyadic prime ℘ = (1+ ε)O : The lattices J℘ and M℘ are unimodular
at ℘. It is easy to see that their norm groups are O2

℘ + ℘ which is just
O℘. By Riehm’s theorem [Ri, Theorem 7.4], Q(J℘) and Q(M℘) contain
precisely the elements in their respective norm groups which are represented
by the ambient spaces. But since K℘J℘ and K℘M℘ are isotropic, Q(J℘) =
Q(M℘) = O℘.

For W℘, it is not unimodular so Riehm’s theorem cannot apply. However,
one can check directly that W℘ represents all the square classes of O℘.

At the infinite primes : Clearly, W℘,M℘ and J℘ represent all positive real
numbers.

Proof of (B) :
For any positive O-lattice L, the mass of L is defined to be

m(L) =
∑

Li

1
|O(Li)|

where Li runs through a complete set of representatives of classes in the
genus of L and |O(Li)| is the order of the orthogonal group of Li. If we
can show that m(L) is equal to 1

|O(L)| , then L must have class number 1.
Siegel [S2] proved that m(L) can be expressed as an infinite product of local
densities. Körner [K] provided formulae of the local densities for binary and
ternary O-lattices over real quadratic fields (see Satz 4, 6 and Hilfssatz 26
in his paper). It is then a direct application of Körner’s results to show that
m(W ) = 1

16 ,m(M) = 1
32 and m(J) = 1

8 . On the other hand, from a simple
computation, we obtain |O(W )| = 16, |O(M)| = 32 and |O(J)| = 8. So, the
class numbers of M, W and J are all 1. Box

4 m = 3

In this section K = Q(
√

3), ε = 2 +
√

3 and N(ε) = 1. Let L be a ternary
universal O-lattice. Then L ∼=< 1 >⊥< ε >⊥< γ >. It is easy to see that
< 1 >⊥< ε > cannot represent 2 + ε. By Lemma 1.1, we have N(γ) ≤
N(2 + ε) = 13. Therefore, γ ∼ 1, ε, 2, 1 + ε, 1 + ε′, 3, 2 + ε or 2 + ε′. One can
check that

L cannot represent







1 + 2ε if γ = 2, 3
3 + 2ε if γ = 1 + ε, 1 + ε′

5 + 2ε if γ = 2 + ε, 2 + ε′.
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Therefore we have only two candidates remaining in these cases :

E =< 1 >⊥< 1 >⊥< ε >, Eε =< 1 >⊥< ε >⊥< ε > .

Theorem 4.1 Let K = Q(
√

3). Up to isometry, E and Eε are the only
ternary universal O-lattices.

It suffices to show the universality for E. We omit the proof since it is
similar to that of Theorem 3.1. As a remark, we record that m(E) = 1

16 and
|O(E)| = 16.

5 m = 5

In this section, K = Q(
√

5), ε = 1+
√

5
2 and N(ε) = −1. Let L be a ternary

universal O-lattice. As before, L ∼=< 1 >⊥ L0 for some binary O-lattice L0.
We need the following proposition.

Proposition 5.1 Let γ be a totally positive integer. Then
(1) < 1 >⊥< 1 >⊥< γ > is not universal if γ = 3, 3 + ε or 3 + ε′.
(2) < 1 >⊥< 2 >⊥< γ > is not universal if γ = 2 or 2 + ε.

Proof. We just provide totally positive integers that are not represented by
the lattice. (1) < 1 >⊥< 1 >⊥< γ > cannot represent 3 + ε if γ = 3 ; 7 + ε′

if γ = 3 + ε ; 7 + ε if γ = 3 + ε′. (2) < 1 >⊥< 2 >⊥< γ > cannot represent
2 + ε if γ = 2 ; 4 + 2ε if γ = 2 + ε. Box

If L0 represents a unit, then L ∼=< 1 >⊥< 1 >⊥< γ >. Since 3 + ε
cannot be represented by < 1 >⊥< 1 >, we have N(γ) ≤ N(3 + ε) = 11.
Therefore γ ∼ 1, 2, 2 + ε, 3, 3 + ε or 3 + ε′. Proposition 5.1 (1) then leaves us
the following candidates :

I =< 1 >⊥< 1 >⊥< 1 >, S =< 1 >⊥< 1 >⊥< 2 >,

T =< 1 >⊥< 1 >⊥< 2 + ε > .

The lattice I corresponds to Masses’s three square theorem.
If L0 does not represent any unit, then L0 must represent 2. Any vector

of length 2 is a maximal vector in L0. As in Section 3, we divide the dicussion
into two cases.

(a) L0 is diagonal : In this case, L ∼=< 1 >⊥< 2 >⊥< γ >. Since 2 + ε
cannot be represented by < 1 >⊥< 2 >, we have 2 ≤ N(γ) ≤ N(2 + ε) = 5.
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So, γ ∼ 2 or 2 + ε. However, neither can make L universal by Proposition
5.1 (2).

(b) L0 is indecomposable : Since {0, 1, ε, ε′} is a complete set of represen-

tatives of O/2O, we can assume that L ∼=< 1 >⊥
〈

2 1
1 γ

〉

by a similar

argument as in Section 3 (b). We omit the proof the following propositon
since it is almost identical to that of Proposition 3.2.

Proposition 5.2 If the discriminants of
〈

2 1
1 γ0

〉

and
〈

2 1
1 γ1

〉

are the

same, then they are isometric.

One can proceed as in Section 3 to obtain 2γ − 1 ∼ 5 − 2ε or 3 + 2ε
from the representation of 2 + ε by L. By Proposition 5.2, we may assume
γ = 2 + ε′ or 2 + ε. Therefore we have two more candidates :

R =< 1 >⊥
〈

2 1
1 2 + ε

〉

, R′ =< 1 >⊥
〈

2 1
1 2 + ε′

〉

.

Now the following theorem can be proved similarly as in Theorem 3.1.

Theorem 5.1 Let K = Q(
√

5). Up to isometry, I, S, T, R and R′ are the
only ternary universal O-lattices.

As a remark, we record that m(I) = 1
48 ,m(S) = m(T ) = 1

16 and m(R) =
1
8 while |O(I)| = 48, |O(S)| = |O(T )| = 16, and |O(R)| = 8.
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