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Abstract

The temporal dynamics of many natural populations involve intermittent
rarity, that is, the alternation, over variable periods of time, of phases of
extremely low abundance, and short outbreaks. In this paper we show that
intermittent rarity can arise in simple community models as a result of
competitive interactions within and between species. Intermittently rare species
are typified as weak invaders in fluctuating communities. Although the
dynamics of intermittent rarity are highly irregular, the distribution of time
spent in phases of rarity (‘rarity times’) involves strong regularity. Specifically,
intermittent rarity is governed by a well-defined power law. The scaling
exponent ( −3 2) is a universal feature of intermittent rarity: it does not depend

on species demographic parameters; it is insensitive to environmental
stochasticity; and the same exponent is found in very different models of
nonstructured populations. The distribution of rarity times implies that the
dynamics of rarity have no characteristic timescale. Yet in practice the universal
scaling law offers a general form of prediction in which one can calculate the
frequency of occurrence of rarity phases of any given duration. Data on marine
fish communities support the prediction of a −3 2  power law underlying the

dynamics of intermittently rare species. The scale-free dynamics reported here
place intermittent rarity in the same class as the critical states of other nonlinear
dynamical systems in the physical sciences. At a critical state, general laws
govern the systems’ dynamics irrespective to the specific details of the
interactions between constituents.

Key phrases: Community persistence and mutual invasibility; Intermittent rarity
resulting from interspecific competition; Intermittent rarity and weak
invasibility; Intermittent rarity and chaos; Statistics of the dynamics of
intermittently rare species; Power laws governing intermittent rarity; Universal
scaling of rarity times; Examples of models showing intermittent rarity: the
Gatto model, the Franke-Yakubu model and the Hochberg-Hawkins model.

Key words: community dynamics, invasibility, competition, chaos, intermittent
rarity, power law, universal scaling, criticality.
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Universal Power Laws Govern

Intermittent Rarity in Communities

of Interacting Species

Régis Ferrière
Bernard Cazelles

Introduction

Understanding the determinants of variability in species abundance is a central issue

in ecology. In the context of population management and conservation, the temporal

dynamics of rare species pose a difficult puzzle. Many rare species are thought to be

on a trajectory to extinction (e.g., Schonewald-Cox and Buechner 1991). Although the

destiny of any species is certainly extinction, the relationship between rarity and

persistence on the ecological timescale is far from clear (Gaston 1994). Perhaps the

most important question one can ask about the temporal dimension of rarity is

whether thoses species which we presently regard as rare have also been so in the

past and are likely to be so in the future. There is indeed ample evidence that some

animal species persist through intermittent rarity, that is, by alternating long periods

of very low abundance and short outbreaks in a seemingly unpredictable way

(Vandermeer 1982, Hanski 1985, Rosenzweig and Molino 1997). The population

dynamics of pathogens or pests offer examples of such intermittent dynamics, with

epidemics being usually regarded as a large positive fluctuation away from the

average endemic level (Anderson and May 1992). Likewise, commercial fisheries

have to deal with the alternation of periods of resource commonness and periods of

scarcity of variable duration, during which some of the exploited species are virtually

absent from the catches (May 1984, Rothschild 1986).
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Traditional explanations of rarity involve low species’ carrying capacity, or

alternative stable population states due to « natural enemies » (e.g., Southwood and

Comins 1976) or metapopulation structure (Hanski 1985). None of these theories can

explain the alternation of long periods of rarity and short bursts of abundance

without resorting to external factors: artificial release of control by competitors,

predators or pathogens; influx of immigrants; and/or seasonal forcing (Olsen and

Schaffer 1990, Royama 1992). More recently, however, Vandermeer (1993)

investigated the dynamics of a community of two predators and two preys, showing

that the species may experience long periods of rarity interspersed with population

flushes if the predators demonstrate asymmetric preferences for their preys. The

duration of rarity phases seems unpredictable. This dynamical behavior develops as

the overlap of predators’ diets increases, near to the point where the four-species

community can no longer be sustained and one prey goes extinct.

Although the elementary unit of ecological communities may be the predator-

prey connection as envisaged by Vandermeer (1993), a prevaling view has long been

that « the explanation of rarity must lie in an evaluation of the competitive

competency of species » (Griggs 1940). In this paper we consider simple cases of a

general community model (Warner and Chesson 1985) to investigate the occurrence

of intermittent rarity among species that compete for a common limiting resource.

Continuing from Vandermeer’s main findings, we ask under which conditions

intermittent rarity can develop among competing species, and whether beyond the

apparent irregularity of rarity dynamics noticed by Vandermeer (1993), there are

underlying patterns which may be amenable to predictions and recognised in time

series of population data.

Empirical Evidence for Intermittent Rarity

The extent to which rare species remain rare in time (and in space) is a pivotal

question in community biology (Rahel 1990, Gaston 1997). However, the analysis of

temporal rarity dynamics is usually hampered by the short series of population
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abundance data. A remarkable exception is provided by the Pacific sardine Sardinops

caerulea for which subfossil deposits of scales have generated estimates of population

size over the past two millennia—a timescale seldomly accessible to ecologists

(Soutar and Isaacs 1974, Baumgartner et al. 1992). The data extracted from marine

petroleum core show (Fig. 1A) that in over 55% of the decades from the year 160, the

sardine was so rare as to be virtually absent from core samples in the Santa Barbara

basin; every so often, however, it explodes (Soutar and Isaacs 1974). Other cores in

the same and another basin produced similar fluctuations, peaking and declining

simultaneously. Despite substantial efforts directed towards the elucidation of the

Pacific sardine dynamics, the intermittent and erratic phases of extreme rarity

observed in that species remain an ecological enigma (Rosenzweig and Molino 1997).

Following the pioneering research of Soutar and Isaacs (1974), DeVries and

Pearcy (1982) have used fish debris preserved in partly laminated marine sediments

on the upper continental slope off Peru to reconstruct a history of Holocene fishes,

mainly anchovies, sardines and hakes. They have shown that the anchoveta Engraulis

ringens has usually dominated the pelagic fish community through historical time. In

contrast, sardines Sardinops sagax occurred erratically and were often so rare that they

were not represented in the fish scale record (Fig. 1B). The abundance pattern so

obtained over 12,000 years (Fig. 1B) is qualitatively similar to the dynamics during

the past 2,000 years (Fig. 1A).

Similar patterns of quasi-extinction during periods much longer than the

duration of a species life cycle followed by quick resurgences to high abundance

levels have also been observed in the Japanese sardine Sardinops melanisticta (Kondô

1987, Cury 1988). Yearly data recorded from the beginning of this century show that

Japanese sardines remained at extremely low density till ca. 1925 and experienced

another rarity phase between 1945 and 1975 (Kondô 1987). On a longer timescale,

Tsuboi (1984) has documented six periods since the early seventeenth century during

which the species was common. Rarity phases appear highly variable in their

duration: from 20 to 100 years.
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Well-documented examples in terrestrial populations include the Finnish

metapopulation of the moth Amphipyra perflua. This system has long been known for

occasionally experiencing sudden increases in abundance at a regional scale (Mikkola

and Jalas 1979). It has been hypothesized that local populations behave sporadically

as outbreak foci and provide bursts of immigrants to nearby patches, thereby causing

regional flushes (Hanski 1985); yet what causes one or more populations to grow

large locally in the region of the outbreak is unknown (Mikkola 1979, Hanski 1985).

Outbreaks in the spruce budworm Christoneura fumiferana dynamics have also

received considerable attention (for a review see Royama 1992). Budworm outbreaks

have been recurrent in the past two centuries. The pattern was not local but observed

widely over eastern Canada and the adjacent areas of the United States. Most local

populations tended to oscillate more or less in unison. Seven bursts in budworm

abundance have been reported since 1710 in Quebec (Royama 1992), separated by

time intervals of 25 to 75 years. More accurate data collected in recent years in New

Brunswick show that all local populations have reached their peaks more or less

simultaneously.
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FIG. 1. Intermittent rarity in the Pacific sardine over the past two millenia (A), and
during the whole Holocene period (B). In (B), the correspondence between depth in
core and timescale is roughly linear piece-wise. The depth interval 0-50cm
corresponds to present-500 yr BP; 60-140cm, to 1,800-2,500 yr BP; 150-190cm, to 3,000-
3,250 yr BP; 195-220cm, to 11,400-11,700 yr BP. Each datum comes from the density of
fish scales and debris in marine petroleum cores. Scales’ densities have been shown
to correlate very strongly with fish density (Baumgatner et al. 1992). Cores from
different basins produce similar fluctuations, peaking and declining simultaneously.
Redrawn from Soutar and Isaacs (1974) and Baumgatner et al. (1992) (A) and DeVries
and Pearcy (1982) (B).
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Theoretical Background: Invasibility and Coexistence

In the next Section, we formulate a simple mechanism for intermittent rarity in terms

of weak invasibility in a fluctuating community. Here we briefly review the

underlying theoretical issues. We consider a community comprising k species. Let

( )X ti  be the population density of species i at time t. At time t +1, the density of

species i is given by:

(1) ( ) ( ) ( )[ ] ( ) X t f X t X t X ti i k i+ =1 1 , ,K .

The term ( ) ( )[ ]f X t X ti k1 , ,K  denotes the instantaneous geometric rate of increase of

species i, which is potentially influenced by the densities of all k species. The

community dynamics can be described by an internal attractor in a k-dimensional

phase space, each axis corresponding to the density of species 1, ..., k. The dynamics

of species i when all other species have zero density is characterized by a ‘single-

species’ attractor which lies on the ith axis.

To see if species i persist in the system, one can use the invasibility criterion

introduced by Turelli (1978) and elaborated by Chesson and Ellner (1989), Metz et al.

(1992), Rand et al. (1994) and Ferriere and Gatto (1995). The invasibility criterion

involves the quantities

(2) ( )  χ χi
T

i
t

T

T
t=

→∞
=

−

∑lim
1

0

1

defined for each species. In this equation ( )χ i t  stands for the multiplicative growth

rate of species i calculated in the limit as its density tends to 0, that is

(3) ( ) ( ) ( )[ ]χ i i kt f X t X t= ln $ , , $1 K

with ( )$X ti ≡ 0 and all other ( )$X tj  follow the time-evolution given by Eq. (1) with the

density of species i set to zero. We shall refer to ( )χ i t  and χ i  as the ‘instantaneous

invasion exponent’ and the ‘long-term invasion exponent’ (or simply ‘invasion

exponent’) of species i. The latter measures the long-run growth rate of species-i at
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extreme rarity. The invasibility criterion says that the community persists if all

species have positive long-term invasion exponents: any of them could eventually

rebound should it decline to very low density.

Notice that if densities ( ) ( )$ , , $X t X tk1 K  fluctuate through time, so will the

instantaneous invasion exponent. Provided that the community model assumes

standard ergodic properties (e.g., Tuljapurkar 1990), the mean of the statistical

distribution of instantaneous invasion exponents should be equal to the long-term

invasion exponent.

There are well-known community models covered by Eq. (1). When density-

dependence is of Ricker-type, i.e.

(4) ( ) ( )[ ] ( ) ( )[ ]f X t X t r a X t a X ti k i i ik k1 1 1, , expK K= − − − ,

we obtain the natural analogue in discrete time of a Lotka-Volterra model (Hofbauer

et al. 1987). Competition parameters aij  measures the strength of competition exerted

by species j on species i. This model is appropriate to describe the dynamics of a

community of interacting semelparous species. Here the instantaneous invasion

exponent of, say, species k is

(5) ( ) ( ) ( )χ k k k kk kt r a X t a X t= − − − − −1 1 1 1
$ $K ,

and the long-term invasion exponent is

(6) χ k k k kk kr a X a X= − − − − −1 1 1 1
$ $K

where $X j  denotes the temporal average of species j density in the absence of

species k. This time-discrete Lotka-Volterra model can be extended to encompass

iteroparous species, using

(7) ( ) ( )[ ] ( ) ( )[ ]f X t X t s r a X t a X ti k i i i ik k1 1 1, , expK K= + − − − .

Parameter si  is the per capita adult survival rate and the exponential term is the per

capita rate of recruitment to the adult population (Warner and Chesson 1985). There
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are no simple formula for the instantaneous and long-term invasion exponents. For

species k, one has:

(8) ( ) ( ) ( )[ ]{ }χ k k k k kk kt s r a X t a X t= + − − − − −ln exp $ $
1 1 1 1K

and

(9) ( ) ( )[ ]{ }χ k
T

k k k kk k
t

T

T
s r a X t a X t= + − − −

→∞ − −
=

−

∑lim ln exp $ $
1

1 1 1 1
0

1

K .

Although such « mean-field » deterministic models have been a mainstay of

theoretical ecology, there is increasing recognition that they may fail to capture

essential aspects of community dynamics, which result from the discretess of

individuals, the stochastic nature of life histories and the spatial localisation of

interactions between individuals (Durrett and Levin 1994, Tilman and Kareiva 1997,

Dieckmann et al. in press). However, we emphasize that the Ricker density-

dependence offers itself as a remarkable exception, since it can be rigorously derived

as a deterministic approximation of a stochastic, spatial individually-based model of

competition (Royama 1992, Leitner submitted manuscript). Therefore, Eqs. (4) and (5)

offer sound models of communities of interacting species, that lend themselves to

tractable analysis while retaining the essence of the stochastic spatial processes

operating at the individual level.

A Universal Mechanism Causing Intermittent Rarity

Intermittent rarity due to weak invasibility in a fluctuating

community

In this section we present a simple mechanism for intermittent rarity. We

introduce a prototypical model governing the dynamics of a particular species, called

X, within a community. We assume that the X population is affected by both intra

and interspecific competition, whereas the other populations are not influenced by

species X. We describe the X population dynamics by making use of a Lotka-Volterra

type equation (see Eq. (4)):
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(10) ( ) ( ) ( )[ ] ( )X t r a X t a Y t X t+ = − − ⋅1 1 2exp

where ( )X t  is the density of species X at time t and ( )Y t  denotes a combination of

densities of the other species in the community, which we call the ‘background

community’; a1  and a2  are competition coefficients. In this section, the Y dynamics

are treated as a ‘black box’ that does not need explicit modelling. If the background

community settles on a stable equilibrium Y∗ , according to Eqs. (5) and (6) we have

(11) ( )χ χ= = − ∗t r a Y2 for all t

(compared to Eqs. (5) and (6), no hat is needed on Y because we are assuming that

the background community is not affected by competition with species X). The

coexistence criterion based on invasibility (see previous Section) says that species X

persists if r is larger than a Y2
∗ . As r assumes lower values that get close to a Y2

∗ ,

species X invasion exponent decreases and the population must settle on a stable

equilibrium given by

(12) X a∗ = χ 1 .

Thus, as species X becomes a weaker invader, its population equilibrium density

tends to be very low: species X displays a state of permanent rarity.

A new phenomenon arises when the background community density

fluctuates through time. Now the instantaneous and long-term invasion exponents of

species X are

(13) ( ) ( )χ t r a Y t= − 2

and

(14) χ = −r a Y2

(cf Eqs. (5) and (6)). The new feature is that if r is very close to a Y2 , which implies

that species X is again a weak invader, the statistical distribution of instantaneous

invasion exponents is likely to span both positive and negative values around its
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mean χ  (which is positive but very small). The X population may thus experience

negative growth over arbitrarily long periods of time, for the population growth rate

in any finite period of time is equal to the arithmetic mean of instantaneous invasion

exponents experienced during that period. As a result, phases of extreme rarity

develop. Likewise, occasional higher frequencies of positive instantaneous invasion

exponents allow population recovery and the return to phases of high density.

Intermittent rarity is typified by this alternation of rarity phases of highly irregular

durations, and phases of commonness.

An example is shown in Fig. 2, where the background community process

( )Y t  is modelled as a sequence of independent normally distributed random

variables. In general, such temporal fluctuations in the background community may

be thought of as deviations from an equilibrium or cyclic density due to

environmental stochasticity, or as deterministic chaos. The figure shows intermittent

rarity developing as the invasion exponent decreases while the background

community dynamics remain driven by the same process (Figs 2A-C). On a

logarithmic scale (Figs 2D-F), one can see that the X population can reach very low

densities during rarity phases, with a decreasing minimum as the invasion exponent

decreases. Also, logarithmic plotting makes it apparent that density fluctuations over

rarity phases resemble those observed at higher levels of abundance. As explained

above, intermittent rarity results from the statistical distribution of instantaneous

invasion exponents spanning negative and positive values almost evenly (Figs 2G-I).
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FIG. 2. Dynamics of a population driven by the prototypical model Eq. (10). The
background community process is an equilibrium with superimposed white noise

(equilibrium value a Y2 15∗ = . , Gaussian noise with zero mean and variance equal to

0.25). Panels (A)-(C) show the temporal dynamics of species X as its invasion
exponent is reduced. Without loss of generality, competition coefficient a1  is rescaled

to 1. In (A), r = 165.  hence χ = 015. , in (B) r = 155.  hence χ = 0 05. , in (C) r = 151.  hence

χ = 0 01. . Intermittent rarity is visible in panel (C). Panels (D)-(F): same as (A)-(C) but

densities are shown on a logarithmic scale. The minimum density approaches zero as
the invasion exponent decreases. In (F) the horizontal line indicates the rarity
threshold (0.1% of maximum density). Logarithmic plot (F) demonstrates that ups
and downs exhibited by the time series below the rarity threshold are similar to
fluctuations displayed at higher density levels. Panels (G)-(I): Statistical distributions
of instantaneous invasion exponents. The mean equals χ , and as χ  decreases, the

distribution support spans a larger range of negative values. This begets intermittent
rarity.



12

Recently, intermittent dynamics have been observed in the study of a one-

dimensional deterministic model of frequency-dependent selection (Gavrilets and

Hastings 1995). One may thus ask whether the mechanism inducing this kind of

intermittency (a global bifurcation, or « crisis ») as well as other classical mechanisms

for intermittency known in physics (Pomeau and Manneville 1980; see Schuster 1989

for a review) might also be operating in the simplest one-species Ricker model

( ) ( )[ ] ( )X t r X t X t+ = − ⋅1 exp  and might perhaps suffice to explain the occurrence of

intermittent rarity. The intuitive idea is that with no more than overcompensating

density-dependence, the species will go directly from peak density to a very low

density. There is then essentially exponential growth out of that trough. The length of

time in the rare phase depends simply on how deep the initial trough is and how fast

population growth is at low density. More precisely, if rarity is defined as density

being lower than a threshold ε, then the maximum duration of a rarity phase is easily

found to be ( )T X rmax minln ln= −ε  with ( )X e X r er X r
min max

max exp= = − −− −2 1 1 ; hence

( )T e r rr
max ln= + −−ε 1 . One may think of long-lasting rarity phases as being caused

by very low minimum population size Xmin , or equivalently very large maximum

population size Xmax. Larger values of Xmax are obtained by increasing r. Yet with r

equal to 4 for example, we find that rarity phases could not exceed Tmax = 3  only

(setting conservatively ε = 1); with r = 6 , Tmax  is less than 24 time units. This means

that intermittent rarity does not develop here. The reason is that increasing r may

lower the minimum population density but it concommitently accelerates the rate at

which the population leaves the range of low abundance. Alternatively, rarity might

be caused by extremely slow growth from low density, i.e. r being only slightly

greater than 1. But then T rmax ln≈ ε  which again may not be large. Thus classical

mechanisms for intermittency reviewed by Schuster (1989) cannot generate

intermittent rarity in our prototypical model (also see Rogers 1984). The argument

extends to generic one-dimensional models ( ) ( )[ ] ( )X t f X t X t+ = ⋅1  where ( )[ ]f X t
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denotes the instantaneous population growth rate; only in the degenerate case

( )X f X Xmin max max= = 0  may intermittent rarity develop if ( )f 0  is very close to 1.

Universality in the distribution of rarity times

An important characteristic of intermittent rarity dynamics is the sequence of times

elapsed between successive outbreak events, or rarity times. The statistical

distribution of rarity times has practical importance, as it provides a way of

estimating the likelihood, at any time, of entering a rarity episode of a given

duration. The distribution of rarity times is easily measured: given a rarity threshold

ε, a rarity episode of length T for species X is defined by

(15) ( ) ( ) ( ) ( ) ( )X X X X T X T0 1 2 1> ≤ ≤ ≤ + >ε ε ε ε ε, , , , ,     K

(for a suitably shifted time origin). Figure 3 displays a double logarithmic plot of the

distribution of rarity episodes corresponding to the time series ( )X t  shown in Fig.

2C. The pronounced linearity of the graph expresses the fact that the likelihood ( )P T

of rarity episodes of duration T decays as a power law in that duration. The fitting

form is

(16) ( )P T T∝ γ

with γ ≈ −3 2. The distribution does not depend upon the rarity threshold ε, as long

as ε be small enough to stand within the linear domain of the map Eq. (10) (near to

X = 0). The power law implies that there are rarity phases of arbitrary length. Thus,

the question “how long is a typical rarity phase?” has no answer: species X exhibits

intermittent rarity on all timescales. Also, the temporal patterns of ups and downs

are similar at all density levels (see Figs 2D-F), a fact which underlies the fractal

properties of intermittently rare time series. These fractal properties can actually be

used to derive a formal proof of the existence of the −3 2 power law (see

Venkataramani et al. 1995, 1996; and Appendix 1).
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FIG. 3. Power-law distribution of rarity times for a population driven by the
prototypical model Eq. (10) (rescaled with a1 1= ). On this log-log plot, the

distribution ( )P T T∝ −γ  is well fitted by a straight line with slope −3 2 (as shown).

The corresponding time series ( )X t  is displayed in Fig. 2C. A total of 2,000,000

iterations of Eq. (10) were used to construct this distribution.

Scale-free dynamics and power laws are known in physical sciences to

characterize systems formed of many interacting subunits which are poised at a

‘critical point’, where two or more macroscopic phases become indistinguishable

(Stanley 1971). The property of scaling goes along with the concept of ‘universality’

which entails that quite different systems can behave in a very similar fashion near

their respective critical states. Thus, at a critical point, many of the precise details of

the interactions between constituents of the system play virtually no role whatsoever

in determining the scaling property of the system (Baxter 1982, Stanley 1995). We

now probe the universality of the scaling property of intermittent rarity by analysing

the dynamics of several two-species discrete-time competition models.

Intermittent Rarity in a Two-Species Model

The above description of a simple mechanism underlying intermittent rarity is based

on the fundamental assumption that there is no feedback of the intermittently rare
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species on the background community. We now examine the consequences of

relaxing this assumption. To this end, we consider a two-species version of the

general community model introduced by Warner and Chesson (1985) and involving

Ricker-like density-dependence (Eq. (7)). Our study continues from Gatto’s (1993)

preliminary investigation of coexistence in such a model. Whereas the basic Ricker

model was intended to model Pacific salmon populations and assumed discrete

generations, Gatto (1993) addressed the case where a small fraction of adults of two

species survive after reproduction, and within and between-species competition

effects are the same on the recruitment of both species. Gatto’s model reads

(17.1) ( ) ( ) ( ) ( )[ ] ( )  X t s X t r a X t a X t X t1 1 1 1 1 1 2 2 11+ = + − −exp

(17.2) ( ) ( ) ( ) ( )[ ] ( )  X t s X t r a X t a X t X t2 2 2 2 1 1 2 2 21+ = + − −exp

which can be rescaled such that a a1 2 1= = . Coexistence may occur through the so-

called « storage effect » (Warner and Chesson 1985) provided that single-species

dynamics do not correspond both to stable equilibria. The community attractor may

then be a stable equilibrium, a cycle, a quasicycle or a strange attractor (Gatto 1993).

A detailed mathematical analysis of Eqs. (17) is beyond the scope of this

paper. Instead, we concentrate on selected examples chosen to investigate how the

model conforms to the general predictions obtained in the previous Section.

We first consider the model Eqs. (17) with species 1 parameters set to

s1
2 310= − .  and r1 37= . . These values, that might be representative of a nearly

semelparous marine fish species as envisaged by Gatto (1993), generate chaotic

population dynamics. The storage effect can operate and there exists a range of

species 2 parameters that allow for coexistence with species 1. This coexistence

region is shown on Fig. 4A. It encompasses all species 2 parameter values for which

mutual invasibility occurs, that is, χ 1 0>  and χ 2 0> . Inside the coexistence region,

the long-term invasion exponent of species 2 decreases smoothly towards zero as one

approaches the invasion boundary χ 2 0= . Thus, near to this boundary, all trait
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values correspond to ‘weakly invading’ species which are characterized by a very

low long-term invasion exponent.

To examine whether there exist regions in the parameter space that are

conducive to intermittent rarity in species 2, we define a rarity index (between 0 and

1) as the length of the longest episode spent by ( )X t2  below a rarity threshold,

relative to the total duration of a simulation run. Large values of the rarity index

indicate that intermittent rarity may develop. Figure 4B plots the rarity index across

species 2 parameter space while species 1 parameters are fixed as above. A high

rarity index is observed all along the invasion boundary χ 2 0=  (see Fig. 4A).

Varying species 2 parameters such that χ 2  increases from zero results in a

decreasing rarity index.

Then we examine the dynamics of the system when species 2 is a weak

invader with a high rarity index. The shape of a typical community attractor and

trajectories are shown in Fig. 5. The community attractor is chaotic with a very

skewed shape (Fig. 5A), showing a marked accumulation of points near to the

species 1 axis. Thus, species 2 spends much time at very low density. Whereas no

particular pattern emerges from the chaotic dynamics of species 1 (Fig. 5B), the

behavior of species 2 does exhibit the two qualitatively distinct, intermittent states

which are typical of intermittent rarity (Fig. 5C): the state of rarity which seems

nearly constant, close to zero density, and can remain so for very long periods of

time; and the bursting state, departing quickly from, and returning quickly to, the

rarity state. This dynamical pattern is not transitory and persists on the long run.
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FIG. 4. (A) Coexistence diagram for the two-species Gatto model Eqs. (17). Without
loss of generality, competition coefficients a1  and a2  are rescaled to 1. Life-history

parameters of species 1 are fixed to s1
2 310= − .  and r1 37= .  (black circle). Bold lines

correspond to zero invasion coefficients χ 1 and χ 2 . Life-history traits s2  and r2

permitting coexistence with species 1 are comprised between these two lines. Thin
lines are contour lines for χ 2  at the following levels: 0.01, 0.05, 0.1, 0.2, 0.3, 0.5. (B)

Rarity diagram. The diagram shows contours of a rarity index (between 0 and 1; see
text for details) for species 2 in the Ricker-Gatto model, Eqs. (17). Dark grey: 0 0 2− . ;
light grey: 0 2 05. .− ; white: > 05. . Intermittent rarity develops across the white area
overlapping the coexistence region. Parameter values for species 1 (black circle) are
the same as in panel (A). Numerical methods: (A) We calculated invasion exponents

from Eq. (9). The time series ( )$X ti  were computed after discarding 5,000 time steps

corresponding to transient behavior. Then the sum in Eq. (9) was taken over the 5,000

next time steps. Species 2 parameters were sampled over a 100×100 grid. Initial

conditions: ( )X1 0 10 0= . , ( )X2 0 10 0= . . (B) The rarity index was computed over 50,000

time steps, after eliminating 5,000 transitory iterates. The rarity threshold was set to
1% of the maximum density reached by species 2 over 50,000 iterates.
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FIG. 5. Examplary dynamics for the Gatto model Eqs. (17) when species 2 is a weak
invader ( χ 2 0 017= . ). Parameter values for species 1 are the same as in Fig. 4.

Parameter values for species 2 are: s2
3 5210= − . , r2 4 04= . . (A) Community attractor. (B)

Plot of species 1 density vs. time. Dynamics are chaotic, with no apparent pattern. (C)
Plot of species 2 density vs. time. Species 2 is intermittently rare. (D) Power-law
distribution of rarity times. The thin straight line has slope −3 2. The rarity threshold

was set to 1% of maximum species 2 density.
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The reason why the weak invasibility condition for intermittent rarity found

in the prototypical model extends to the Gatto two-species model can be understood

from the mathematical analysis of De Feo and Ferriere (submitted manuscript; also see

Hadeler and Gerstmann [1990] and Neubert and Kot [1992]). In the community phase

space, a positive invasion exponent for species 2 means that the single-species 1

attractor is ‘transversally’ unstable: a small perturbation in the direction of the

species 2 axis results in a trajectory that diverges from the species 1 axis into the

interior of the phase space. When the single-species 1 attractor is chaotic, it contains

infinitely many unstable cycles (e.g., Ruelle 1989). Mathematically, one can still

define the invasion exponent of species 2 with respect to any of these cycles: Eq. (3)

still applies, with ( )X t1  taking values on the cycle. The transverse instability of the

whole chaotic attractor can then be interpreted in terms of the transverse stability

and instability of each of the cycles ‘hidden’ in the chaotic attractor. A sligthly

positive invasion exponent means that there are slightly more cycles that are

transversally unstable. Transversally unstable periodic orbits will repel the

community trajectory away from the species 1 axis, whereas the transverse stability

of the other cycles will attract it back close to the axis. The resulting burst-and-crash

dynamics is akin to what mathematicians call a ‘heteroclinic cycle’ (e.g., Hofbauer

1994, Krupa 1997) which forms the backbone of the chaotic community attractor

observed in simulations like those reported in Fig. 5A (Mira 1987, Dellnitz et al.

1995).

Figure 5D shows that the statistical distribution of rarity times generated by

the Gatto model in the dynamics of species 2 is identical to the −3 2 power law

found in the prototypical model Eq. (10). This happens in spite of the correlation

structure present in the chaotic dynamics of the competing species 1, whereas in the

prototypical model the background community dynamics ( )Y t  assumed no temporal

autocorrelation. In fact, the chaotic dynamics ( )X t1  have a characteristic timescale

beyond which their autocorrelation is negligible. If the invasion exponent of the

intermittently rare species is small enough, the typical time between bursts is likely
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to be much longer than the autocorrelation time of ( )X t1 , which leaves the power

law found in the prototypical model basically unchanged. Only the observed

frequency of very short rarity episodes extends above the fitted power law. Short-

term negative autocorrelations in the chaotic species 1 dynamics are likely to be

responsible for this slight over-representation of short rarity phases, by increasing

the chance that a negative instantaneous invasion exponent be followed by a positive

one.

Robustness of the –3/2 Power Law

Here we probe further the robustness of the −3 2 power law. First, one can vary the

species’ demographic parameters considerably in Eqs. (17) without affecting the

conditions for, and statistical properties of, intermittent rarity in species 2. We were

able to classify all coexistence and rarity diagrams that we have studied numerically

into three categories according to their qualitative geometrical features. One category

is typified by the example studied above (Figs 4 and 5). Figure 6 displays exemplary

intermittent time series that pertain to the two others. Although the dynamics across

bursting episodes look qualitatively very different (insets in Figs 6A and 6B), rarity

phases possess the same statistical property: they are distributed according to a

power law with exponent very close to −3 2 (Figs 6A and 6B).

Second, we examine the effect of including environmental stochasticity in the

model. In general, we know that weak invaders in the deterministic case remain so in

the stochastic setting if noise amplitude is small, for long-term invasion exponents

are stable to small perturbations (Ferriere and Gatto 1995). We have incorporated

environmental noise in the Gatto model as multiplicative, uncorrelated perturbations

(e.g., Dennis et al. 1995). Equations (17) are replaced by

(18.1) ( ) ( ) ( ) ( )[ ] ( ){ } ( )[ ]  X t s X t r a X t a X t X t W t1 1 1 1 1 1 2 2 1 11+ = + − −exp exp

(18.2) ( ) ( ) ( ) ( )[ ] ( ){ } ( )[ ]  X t s X t r a X t a X t X t W t2 2 2 2 1 1 2 2 2 21+ = + − −exp exp .



21

where ( )W t1  and ( )W t2  are independent, Gaussian random variables with zero mean

and time-independent variances. Figure 6C shows the distributions of rarity phases

for three levels of environmental noise. Species 2 is still a weak invader at all noise

levels, and the distributions remain accurately fitted by a power law with exponent

−3 2.
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FIG. 6. Robustness of the power-law distribution of rarity times in the Gatto model
Eqs. (17). (A) and (B) display the power law for other combinations of parameters in
Eqs. (17), which typify the possible geometries for the community attractor in this

model. In (A) s1
2 398510= − . , r1 34= . , s2

1 710= − . , r2 2 815= . . In (B) s1
3 93410= − . , r1 38795= . ,

s2
210= − , r2 31= . . In (C) parameters are the same as in Fig. 5 but environmental noise

is added according to Eqs. (18) with noise variance equal to 10 3− ; the distribution was
computed for a population trajectory that did not go extinct over 2,000,000 iterations.
In all cases, species 2 is a weak invader ( χ 2 0 006= .  in [A], χ 2 0 009= .  in [B] and [C])

and intermittent rarity develops (insets). All thin lines’ slope is −3 2.
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FIG. 7. Influence of species 2 invasion exponent χ 2  on the distribution of rarity times.

Species 1 parameters are the same in all panels (values as in Figs. 4). (A) to (C): Log-
log plot of the distribution of rarity times for different invasion exponents obtained

by varying s2 : s2
3 5210= − .  and χ 2 0 017= .  in (A) (same as in Fig. 5), s2

3 4210= − .  and

χ 2 0 032= .  in (B), s2
3 3210= − .  and χ 2 0 046= .  in (C). Parameter r2  is fixed ( r2 4 04= . ).

(D) Inverse average rarity time plotted against the invasion exponent. Values of
parameters r2  and s2  were randomly sampled within ranges 3 95 4 05. .−  and

10 103 55 3 50− −−. . , respectively. The set of points is well fitted by a quadratic curve:

1 14485 100
6

2
2T = ⋅. χ . Note that as the rare species becomes a weaker invader ( χ 2

tends to zero), 1 0T  tends to zero, implying that the average rarity time becomes

arbitrarily large, and the distribution of rarity times approaches a power law.
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Finally, the theory of critical phenomena predicts that as one smoothly moves

the system away from the critical state, power laws should bend down with an

exponential falloff (see, e.g., Csilling et al. 1994). This actually happens in the Gatto

model, as shown in Fig. 7. As the long-term invasion exponent χ 2  increases from

very low values, the distribution of rarity phases changes to better fit the form

(19) ( ) ( )P T T T T∝ −γ exp 0

where T0  is the characteristic average rarity phase (Figs. 7A-C). In general, we find

that the inverse characteristic time 1 0T  increases from zero with the long-term

invasion exponent χ 2  according to a quadratic relation

(20) 1 0 2
2T ∝ χ ,

(Fig. 7D), although the coefficient of proportionality seems dependent upon species 1

parameters.

The effect of demographic stochasticity

During periods of rarity, the species will be at risk of extinction due to demographic

stochasticity. We now examine how this affects the power-law distribution of rarity

times. The prototypical model and the Gatto model describe the population

dynamics in terms of a continuous dynamical variable. This is a valid approximation

in the limiting and idealized case of an infinite ‘system size’. Here the system size,

denoted by K, depends on the individual’s requirements and environmental

resources—a notion which corresponds in individually-based models to that of a

carrying capacity (Royama 1992, Leitner submitted manuscript). We derive a stochastic

description of the Gatto model, in which the finite system size and integer structure

of the population is taken into account (see e.g. Nisbet and Gurney 1982).

Species density X is merely defined as population size N (an integer number)

divided by K. We assume that each individual’s survival probability follows a

binomial distribution with mean si  ( i = 1 2,  ). Individual recruitment at time t is
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drawn at random from a Poisson distribution with mean ( ) ( )[ ]exp r N t K N t Ki − −1 2

( i = 1 2,  ). The Gatto model then becomes

(21.1) ( ) ( )
( ) ( ) ( )( )

N t Binom s Poisson r a
N t

K
a

N t

Kn

N t

n

N t

1 1
1

1 1
1

2
2

1

1
1 1

+ = + − −




















= =
∑ ∑ exp

(21.2) ( ) ( )
( ) ( ) ( )( )

N t Binom s Poisson r a
N t

K
a

N t

Kn

N t

n

N t

2 2
1

2 1
1

2
2

1

1
2 2

+ = + − −




















= =
∑ ∑ exp

We have run extensive simulations of this model taking a a1 2= , and typical

outcomes for the distributions of rarity times are reported in Fig. 8. Here the rarity

threshold is defined as a percentage of the system size. Our simulations show that

the likelihood of extinction during a rarity phase increases as the system size

decreases. Extinction due to demographic noise tends to terminate the species

lifetime during potentially long rarity phases. As a consequence, we observe the

appearance of an exponential falloff in the distribution of rarity phases, which means

that long rarity phases become less likely (Fig. 8A). The −3 2 power law is recovered

from the stochastic Gatto model Eqs. (21) as the system size K increases. For finite

values of K, the distribution fits the form given by Eq. (19) which includes an

exponential correction. Remarkably, we found yet another algebraic scaling,

involving the characteristic average rarity phase T0  as a function of the system size K.

This power-law scaling, shown in Fig. 8B, appears to be robust and parameter-

independent. We believe that the theory of perturbed random walks should allow

one to elaborate on the proof sketched in Appendix 1 to unravel the mathematical

underpinning of this seemingly general relationship.
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FIG. 8. Effect of demographic stochasticity on the distribution of rarity times. Rarity
threshold set to 5% of system size K (carrying capacity). (A) Distributions of rarity

times for K = 5 104⋅ , 2 105⋅ , 6 105⋅ , 106  and 107  (left to right). For each K, the
distribution was computed from the rarity phases produced by a large number of
community trajectories governed by the stochastic model Eqs. (21). Rarity phases
during which extinction occurs were discarded. As K increases, the distribution
approaches a power law with exponent −3 2 (indicated by the straight line). For

finite K, the average rarity time T0  is finite and the distribution fit Eq. (19) which

involves a negative exponential correction to the power law. (B) Algebraic scaling of
the inverse of mean rarity time T0  with system size K.
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Intermittent Rarity in Other Competition Models

We further investigate how robust our findings are by considering two very different

versions of Warner-Chesson’s community model. First, we assume that two

competing species differ in the way individuals cope with crowding. In species 1,

intra and interspecific competition adversely affect all individuals equally (scramble

competition). In species 2, individuals have an uneven access to the resources and

some of them eventually do better than others when the habitat becomes highly

populated (contest competition). Franke and Yakubu (1991) used the Hassel-Comins-

May and Ricker population growth models to investigate the conditions for

exclusion and coexistence in such a system when both species reproduce

semelparously. Their model reads

(22.1) ( ) ( ) ( )[ ]{ } ( )  X t r c X t X t X t1 1 1 1 2 11+ = − +exp

(22.2) ( ) ( )
( ) ( )[ ] ( )  X t

r

c X t X t
X t2

2

2 1 2
21

1
+ =

+ +
exp

.

Due to the contest competition mechanism, species 2 possesses a single nontrivial

equilibrium density which is always stable. The density of species 1, however, obeys

to the overcompensatory Ricker mechanism that produces oscillations and chaos.

Alike the Gatto model, the Franke-Yakubu equations assume that both species have

equal competitive abilities.

The second model we consider in this section incorporates the effect of

« refuges » on the dynamics of host-parasitoid associations. The model is adapted

from Hochberg and Hawkins (1993) to the simple case of one parasitoid and two

competing hosts. The parasitoid is assumed to be a generalist species whose density

is maintained at a constant level by other host species in addition to the two host

species considered here. Hosts experience complete invulnerability to parasitoid

attack in specific structural refuges. Within refuges, resources are sufficiently

abundant to ignore the effects of intraspecific competition. Generations are discrete
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and non-overlapping, and during each generation, a proportion of the larval host

community is vulnerable to parasitism. The model is given by

(23.1) ( ) ( ) ( ) ( ) ( )[ ] ( ) ( )[ ]{ }  X t f X t d X t X t g X t X t1 1 1 1 1 1 2 1 21 1+ = + −α α , ,

(23.2) ( ) ( ) ( ) ( ) ( )[ ] ( ) ( )[ ]{ }  X t f X t d X t X t g X t X t2 2 2 2 2 1 2 1 21 1+ = + −α α , ,

where f denotes the average number of offspring produced per host; α is the

proportion of the host population that is invulnerable to parasitism; d is the

proportion of hosts surviving from intra and interspecific competition outside

refuges; and g is the functional response of parasitoids. The competition term

involves the Maynard-Smith density-dependence type (Maynard Smith 1974). Both d

and g are fully expounded in Appendix 2.

The structure of coexistence and rarity diagrams computed for the Franke-

Yakubu and Hochberg-Hawkins models (not shown) lead to the same conclusions as

those previously stated for the Gatto model. Intermittent rarity arises in

correspondence with weak invasibility and fluctuations in the competing population.

In spite of the purposedly disparate structure of these models, power laws with

exponent close to −3 2 still characterize the dynamics of intermittent rarity (Figs 9A

and 9B). For both models, the same power law is observed for all combinations of

demographic parameters that generate intermittent rarity; the power law is also

stable to white noise (results not shown).
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FIG. 9. Power-law distributions of rarity phases and dynamics of intermittent rarity
(insets) from two other competition models. (A) Franke-Yakubu model Eqs. (22).
Species 1 parameters are r1 2 916= .  and c1 01= .  (single-species 1 dynamics are

chaotic) and species 2 parameters are r2 30= .  and c2 12= . . Species 2 invasion

exponent: χ 2 0 022= .  (weak invasion). (B) Hochberg-Hawkins model Eqs. (22).

Species 1 parameters are α 1
510= −  and f1 150= .  (single-species 1 dynamics are

chaotic) and species 2 parameters are α 2 0 018= .  and f2 50= . . Species 2 invasion

exponent: χ 2 0 00001= .  (weak invasion).
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Detecting the –3/2 Power Law in Real Data

The power laws shown in the previous Sections are based on simulations involving

several millions of iterations. One thus should ask how well these power laws are

still visible from shorter time series. One way of dealing with smaller sample sizes

for the rarity times is not to plot the frequency distribution, but the so-called survival

function of rarity times, that is the function ( ) ( )s t P T t= > which gives the frequency

of rarity times T larger than t. Given that the probability distribution ( )P T  is a power

law scaling as T−3 2 , the survival function must also scale algebraically, like t −1 2 . For

a graphical analysis, survival functions are considerably superior to frequency

distributions, especially when sample sizes are small.

Figure 10 displays plots of the survival function of intermittent rarity

dynamics generated by the Gatto model. The data were obtained by running the

model for only 1,500 iterations, and the procedure was repeated several times. The

resulting bundle of survival functions turns out to be very consistent with the

underlying ideal t −1 2  scaling. On the same graph, we have plotted the survival

function calculated for the Pacific sardines data shown in Fig. 1A. In spite of the data

scarciness, the fit is remarkable. The slight over-represensation of short rarity phases

predicted by all models we have considered is even perceivable. This, we believe,

brings strong support to the hypothesis that intermittent rarity in the Pacific sardine

is essencially determined by the sardine’s weak invasibility in the fluctuating marine

community.



30

0 0.5 1 1.5 2 2.5
logHrarity timeL

-2

-1.5

-1

-0.5

0

lo
gH

fr
eq

ue
nc

yL

FIG. 10. Survival function of rarity times from short simulations of the Gatto model
(plain lines) and from the Pacific sardine data shown in Fig. 1A (black circles). The
survival function estimated at any t gives the frequency of rarity phases longer than

t. Given that the distribution of rarity phases scales as T−3 2 , the survival function

must scale as t −1 2 . The figure displays the survival functions computed from 25 runs
of the Gatto model Eqs. (17) over 1,500 time steps.

Discussion

Intermittent rarity has been observed in species of prominent interest to population

biologists, including various species under conservation efforts, harvested

populations of fish and insect pects. The mechanisms that underlie intermittent rarity

have remained poorly understood (Royama 1992, Rosenzweig and Molino 1997). Yet

knowing the causes and processes that underlie intermittent rarity is needed to

predict the natural occurrence and extent of recurrent episodes of low abundance

with the aim of taking appropriate management decisions (Rosenzweig and Molino

1997).

The study of a prototypical community model and three purposedly disparate

two-species competition models has yielded two main results, that we discuss below.

(1) There needs not be any external factor (e.g. artificial relase of competition or

predation pressures, or immigration) for explaining the alternation of rarity and
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commonness. Intermittent rarity develops in species that demonstrate weak invading

abilities against a fluctuating background community.

(2) In spite of apparent irregularity through time, rarity phases are distributed

according to a well-defined power law, which shows that intermittent rarity is a

scale-free phenomenon. The scaling exponent of the power law is universal within

the class of competition models considered here. Incorporating demographic

stochasticity in the model shows that the distribution of rarity times changes

predictably with the community carrying capacity.

Competition, fluctuations and intermittent rarity

After Vandermeer (1993) who reported the occurrence of intermittent rarity in two

coupled resource-consumer systems, our results show that similar extreme

population fluctuations can arise from the simplest competitive interactions. The

background community operates as a slaving system for the intermittently rare

species. This endogeneous forcing generates significant variations in the

instantaneous invasion exponent of the rare species, through both positive and

negative values, begetting a decline into arbitrarily long periods of scarcity followed

by bursts of abundance. Fluctuations in the background community may be random

(environmental noise superimposed on the background community steady state or

cycle) or deterministic (when the background community settles on a strange

attractor). In the latter case, the whole community (including the intermittently rare

species) is chaotic.

Other mechanisms for chaotic outbreaks have been documented from the

study of periodically-forced epidemiological and predator-prey models (e.g., Olsen

and Schaffer 1990, Rinaldi et al. 1993, Gragnani and Rinaldi 1995), and models of tri-

trophic food chains (e.g., Hastings and Powell 1991, De Feo and Rinaldi 1997). All of

these models involve the coupling of several subsystems, each of them exhibiting

periodic oscillations on its own. If the oscillation frequencies of the different

subsystems are incommensurate, then chaos may develop; if in addition the

frequencies are of very different orders of magnitude, meaning that the subsystems
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oscillate on very different timescales, the system dynamics may exhibit long laminar

phases (Muratori and Rinaldi 1992). Important differences with our description of

intermittent rarity include: (i) In these models, laminar phases need not be phases of

rarity. (ii) The conditions for intermittent rarity do not require that the rare species be

oscillating should it be isolated from the background community. (iii) In models

giving rise to intermittent rarity, the occurrence of long versus short rarity phases

does not rely on timescale separation in the dynamics of different components of the

system; short-term fluctuations in the instantaneous invasion exponent suffice to

account for rarity phases of any duration.

Criticality and scaling exponents of intermittent rarity

It is remarkable that two-species competition models as disparate as the Gatto,

Franke-Yakubu and Hochberg-Hawkins models all predict that irrespective to

specific parameter values, the statistical distribution of rarity times in the limiting

case of very large carrying capacity is a power law with scaling exponent close to

−3 2. This is further in agreement with the analytical study of a prototypical model

(Eq. [10] and Appendix 1).

The power law indicates that rarity dynamics have no characteristic timescale

and that there are rarity phases of arbitrarily long length. There is « nothing special »

about extremely long rarity phases, and no wild perturbations of the community are

needed to produce them (Bak 1994). The smoothness of the power law, with the

number of long rarity phases extending smoothly from the much larger number of

short rarity events, shows that the same competition mechanism that governs short

rarity episodes also governs long ones. The frequency of short rarity phases tells us

the expected frequency of the long rarity phases.

How does the scaling dynamics found in two-species models apply to more

complicated community structures? The theory of critical phenomena suggests that

scaling exponents should depend most strongly upon gross features like the system

symmetries and dimension (Baxter 1982, Stanley and Ostrowsky 1990, Stanley 1995).
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In the ecological context, the proof of the −3 2 scaling in our prototypical model Eq.

(10) is illuminating (see Appendix 1). The detailed calculations rely on the rare

population being nonstructured and the background community being modelled as a

one-dimensional density variable ( ( )Y t  in Eq. [10]). We can therefore conclude that

the −3 2 exponent holds for any unstructured population that interacts with a

background community which possesses an ergodic property (see Crowe 1997 for a

review). Here ergodicity means convergence to a stable structure, irrespective to

initial conditions (whereas densities may fluctuate cyclically or chaotically).

Ergodicity applies when vital rates are all affected by the same density variable. Then

the multidimensional community model boils down to a scalar nonlinear difference

equation governing the dynamics of that single density variable (Cushing 1989,

Crowe 1994, 1997).

When ergodicity does not hold, the background community will no longer be

reducible to a one-dimensional system and the scaling exponent should be affected.

The higher dimension of the community can then be estimated as the ‘feedback

environment dimension’ (Metz et al. 1996, Heino et al. 1997, Meszéna and Metz in

press). The feedback environment dimension measures the maximum number of

interacting species which can be mutually invasible in the community. In practice, if

the population densities settle on stable equilibria (no complex dynamics), then the

feedback environment dimension is equal to the minimum number of variables

needed to make the community’s equations linear in the species densities (O.

Diekmann, personal communication). We suggest that there may be a predictable

relationship between the community dimension so defined and the scaling exponent

of intermittent rarity.

Intermittent rarity and scaling: empirical evidence

Several harvested marine fish populations provide instances of intermittent rarity.

Their dynamics have been reconstructed from fish scale-deposition records (Soutar

and Isaacs 1974, DeVries and Pearcy 1982, Baumgartner et al. 1992). In sardines, one
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of the best documented case, the alternation of phases of extreme rarity and phases of

commonness are visible in data on several timescales: during the last century (see e.g.

Cury 1988), across the past two millenia (Fig. 1A) and over the whole Holocene

period (Fig. 1B). We analysed the largest data set (Fig. 1A) and found a remarkable

agreement with the predicted −3 2 scaling. Weak invasibility in a fluctuating

community may therefore offer a consistent explanation to the rarity phases

observed in the Pacific sardine. As a competitor of the sardine, a serious candidate is

the Northern anchovy Engraulis mordax (see Radowich 1981, Baumgartner et al.

1992). Food may be a limiting resource and a factor of interspecific competition at the

critical time in the larval development when feeding first begins. The presence of the

proper food of the right size at the right density in the vicinity of the larva should

determine whether or not a larval anchovy or sardine survives past this critical stage.

Intraspecific density-dependence involves cannibalism of eggs by sardines and

anchovies (Radowich 1981). Furthermore, studies of fish debris from coastal

upwelling off California (Soutar and Isaacs 1974) and Peru (DeVries and Pearcy 1982)

showed that the anchovy has remained abundant through historical time in both

ecosystems, though its density has been fluctuating widely on the three timescales

mentioned above. The requirement for intermittent rarity that a species interacts with

a fluctuating competitor seems to be met in the sardine-anchovy community.

Multispecies interactions may also explain intermittent rarity in the

extensively studied spruce budworm outbreak processes (see Royama 1992, chapter

9, for a review). Royama (1992) argues that the theory of epicenters (seasonal climatic

forcing and migration between local populations) is inoperative as budworm

outbreaks are concerned. Budworm larval survival is not as sensitive to wheather

conditions as the theory supposed. Also, moth dispersal may significantly enhance

regional abundance only when the population has already entered a growing phase.

Royama’s alternative theory, based on a careful analysis of long-term data,

emphasizes the role of density dependence (when defoliation becomes severe, the

recruitment rate drops) and interactions with parasitoids. Our study gives support to
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the view that such intra and interspecific factors may fully account for the recurrent

epidemics and rarity phases experienced by the spruce budworm.

Implications for conservation and population management

The power law that governs intermittent rarity provides a useful way of estimating

the likelihood, in a given interval of time, of a rarity phase of any given duration.

When entering a rarity phase, the species viability becomes highly vulnerable to

demographic stochasticity. We are currently studying general means of

quantitatively predicting the extinction risk in periods of rarity. How small

immigration may affect the distribution of rarity phases and the population viability

is also a topic under current investigation.

The stochastic version of our model that incorporates demographic noise

shows that intermittent rarity is not inconsistent with a large carrying capacity. Such

large carrying capacities are typical of fish populations that undergo harvesting (e.g.

Cury 1988), including the various species of rare sardines mentioned in this paper.

Future work should address the effect of harvesting on the viability of intermittently

rare species. Over-fishing, that was thought to be responsible for the Pacific sardine

collapse a few decades ago, cannot explain the intermittent rarity of the fish over the

past centuries. Rather counter-intuitively, the indiscriminate harvesting of a fish

community may have little effect on intermittently rare species during their periods

of scarcity, for the likelihood of them being affected by catches becomes negligible,

whereas the removal of a substantial amount of competitors may facilitate recovery

out of a rarity phase. In contrast, harvesting during times of abundance may hasten

the opening of a rare episode, thereby increasing the overall extinction risk due to

rarity phases.

An important further issue in the context of management of rare species is

temporal concordance (e.g., McGowan and Walker 1985, Rahel 1990, Gaston 1994), a

notion that has received little theoretical attention so far. Our modelling framework

could be extended to include more than one intermittently rare species and to
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examine conditions on the community structure for the synchronized development

of rarity phases in different species.

Concluding remarks

A remarkable consequence of scaling and criticality is that predictions of even highly

idealized models can be used to describe real systems accurately (Stanley 1995). This

is especially desirable in biology, as we require models that give robust dynamical

behavior without the need to adjust parameters to exact values. In physics, the

universality property of critical phenomena has been demonstrated recently by Back

et al. (1995) who experimentally tested the scaling dynamics of the Ising model

(which describes ferromagnetic interactions). Although the details of the system they

studied did not perfectly mirror the conditions of the model, the measured scaling

exponent strikingly conformed to the calculated result. The key here is that the

model, in spite of its caricatural nature, retains the essential symmetry and

dimensionality properties of the physical process.

In the ecological perspective, critical phenomena and power laws have been

documented in the spatio-temporal dynamics of epidemics of communicable

diseases, both in models (Rhodes and Anderson 1996a) and in real populations

(Rhodes and Anderson 1996b); and in the dynamics of bird communities (Keitt and

Stanley 1998). Here we suggest that even crude information on the community

structure might be sufficient to estimate the scaling exponent of the dynamics of

intermittently rare species, thereby facilitating predictions of relevance for

population management and conservation. Conversely, when population time series

showing intermittent rarity are available, one can measure scaling exponents directly

from them. This might offer a new way of getting insights into the structure of

communities of interacting species, for we expect the scaling exponent of an

intermittently rare species to reflect the dimension of the community to which it

belongs. Predicting the quantitative relationship between the scaling exponent of

rarity dynamics and community dimension is a challenging problem that urgently

needs be tackled by theoretical ecologists.
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Appendix 1

Heagy et al.’s (1994) and Venkataramani et al.’s (1995, 1996) have carried out

extensive mathematical studies of ‘on-off  intermittency’, an aperiodic switching

between laminar behavior and bursts of oscillations that arise in a large number of

physical phenomena. Their results can be used straightforwardly to prove the

existence of a −3 2 power law in the dynamics of intermittent rarity governed by our

prototypical model Eq. (10). Here we outline the main steps of such a proof.

During a rarity phase, the rare species dynamics are ‘slaved’ by the density of

the common population. Thus, in first approximation, ( )X t  follows the recursion

equation ( ) ( ) ( )X t e X tt+ =1 χ . To capture the basic features of intermittent rarity one

may choose ( )χ t  to be any stochastic process with a small positive mean χ  and non-

zero variations about the mean so that ( )χ t  is sometimes negative. To satisfy these

requirements, we construct the process ( )χ t  given by −α  with probability p and +α

with probability 1− p  where p < 1 2 . Then the invasion exponent is ( )χ α= −1 2p .

The pivotal argument to derive the scaling property of rarity times is that as χ  goes

to zero, the set Θ  of time intervals when the rare species experiences densities above

a given threshold approaches a fractal if time is rescaled appropriately. More

precisely, let us choose the rarity threshold equal to 1 and rescale time by defining

( )τ = −1 2
2

p t . We then let p goes to 1 2 and look at the process in the range 0 1≤ ≤τ .

If ( )B δ  denotes the number of ‘boxes’ of length δ required to cover Θ , a random

walk argument developped by Venkataramani et al.’s (1996) shows that the

distribution of ( )B δ  is a power law with exponent −1 2, which means that Θ  is

fractal. The random walk description of the process ( )X t  is based on defining

( ) ( )u t X t= − ln α . For appropriate choice of ( )X 0 , the process ( )u t  will take on

integer values. If one sets an absorbing boundary at 0 (which corresponds to X = 1),

then ( )u t  is a random walk on the line of integers with a one-step increment to the
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right with probability p if ( )u t > 0. Then one can write recursion equations for the

probability ( )π l t,  that ( )u t l= , from which one can calculate the probability of being

absorbed in any given number of steps. ( )B δ  is then equal to this probability divided

by δ, given that the total number of intervals of length δ in the interval 0 1≤ ≤τ  is

1 δ . We emphasize that the random walk argument used here critically relies on the

assumption that the intermittently rare process ( )X t  is one-dimensional.

The calculations go on by introducing the probability ( )b δ  that ( )X t

experience one burst in any (rescaled) time interval of length δ given that ( )X t  burst

once in the previous contiguous interval of length δ. One can look at ( )b δ  in two

ways. First, ( )b δ  and ( )B δ  are related by

(A-1) ( ) ( ) ( )[ ]B B b2 1δ δ δ= − ,

for successive bursts in any pair of consecutive intervals of length δ will require two

boxes in a cover by intervals of length δ, but only one box in a cover by intervals of

length 2δ . Second, ( )b δ  is the conditional probability of having a rarity phase of

(rescaled) length between δ and 2δ  given that there is a rarity phase longer than δ. If

( )q δ  denotes the probability of having a rarity phase longer than δ, then one obtains

(A-2) ( ) ( ) ( )[ ] ( )b q q qδ δ δ δ= − 2 .

Thus, ( )q δ  can be derived from ( )b δ  which can itself be derived from ( )B δ . We

obtain ( )b δ = −1 1 2 from Eq. (A-1), which combines with (A-2) to yield

( ) ( )q q2 1 2δ δ = , hence

(A-3) ( )q qδ δ= −
0

1 2

where q0  is a constant. If ( )P T  is the probability of having a rarity phase of

(unscaled) length T, we must have
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(A-4) ( ) ( )
( )[ ]

q P T
p

δ
δ

=
−

+∞

∑
int 1 2 2

.

The series is absolutely convergent, hence

(A-5) ( ) ( )
( )

q P T dTδ
δ

≈
+∞

∫  
1-2p 2

which, together with (A-3), leads to ( )P T T∝ −3 2 .
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Appendix 2

The Hochberg-Hawkins model Eqs. (23) assumes that hosts experience two sources

of refuge from parasitoid attack: spatial heterogeneity and complete invulnerability

in specific structural refuges. Generations are discrete and non-overlapping. During

each generation, a proportion of the larval host community is vulnerable to

parasitism. The parasitoid is assumed to be a generalist species whose density is

maintained at a constant level by other host species in addition to the two host

species considered here. The difference equations, constituting the density ( )X t1  and

( )X t2  of hosts, are given by Eqs. (23). Maynard-Smith density dependence (Maynard

Smith 1974) is used to model the proportion d of hosts surviving from intra and

interspecific competition:

(A.1) ( ) ( )[ ] ( )( ) ( )( )[ ]{ }d X t X t X t f Q X t f Q
c

1 2 1 1 2 2

1

1 1 1, = + − + −
−

,

where Q is the carrying capacity of the host community and c refers to individual

competitive ability, the same for both host species. The functional response of

parasitoids, g, is given by

(A.2) ( ) ( )[ ] ( ) ( )[ ]
( )( ) ( )( )( )[ ]g X t X t

aG X t X t

k a f X t f X t

k

1 2
1 2

1 1 1 2 2 2

1
1 1 1

,
,

= +
+ − + −













−

α α η

Here, a is the per capita searching efficiency of the parasitoids; h is the maximum

number of hosts that a single parasitoid individual may attack in a given generation;

k is the clumping parameter of the negative binomial distribution of parasitoid search

(with small values of k signalling increased heterogeneity); and

(A.3) ( ) ( )[ ] ( )( ) ( )( )( )[ ]{ }G X t X t h f X t f X t b1 2 1 1 1 2 2 21 1 1, exp= − − − + −α α ,

with h the maximum number of parasitoids attacking and b a constant, is the actual

number of parasitoids that launch attacks on the hosts concerned here (see Hochberg

and Hawkins 1992).


