
Universal Proxy Re-Encryption

Nico Döttling 1 Ryo Nishimaki 2

1 CISPA Helmholtz Center for Information Security, Saarbrücken, Germany

doettling@cispa.saarland
2 NTT Secure Platform Laboratories, Tokyo, Japan

ryo.nishimaki.zk@hco.ntt.co.jp

Abstract

We put forward the notion of universal proxy re-encryption (UPRE). A UPRE scheme enables a proxy to

convert a ciphertext under a (delegator) public key of any existing public-key encryption (PKE) scheme into another

ciphertext under a (delegatee) public key of any existing PKE scheme (possibly different from the delegator one).

The proxy has a re-encryption key generated from the delegator’s secret key and the delegatee public key. Thus

UPRE generalizes proxy re-encryption by supporting arbitrary PKE schemes and allowing to convert ciphertexts

into ones of possibly different PKE schemes. In this work, we

• provide syntax and definitions for both UPRE and a variant we call relaxed UPRE. The relaxed variant

means that decryption algorithms for re-encrypted ciphertexts are slightly modified but still only use the

original delegatee secret keys for decryption.

• construct a UPRE based on probabilistic indistinguishability obfuscation (PIO). It allows us to re-encrypt

ciphertexts polynomially many times.

• construct relaxed UPRE from garbled circuits (GCs). We provide two variants of this construction, one

which allows us to re-encrypt ciphertexts polynomially many times, and a second one which satisfies a

stronger security requirement but only allows us to re-encrypt ciphertexts a constant number of times.

Keywords: universal proxy re-encrytion, public-key encryption, secret sharing.

Contents

1 Introduction 1

1.1 Background . 1

1.2 Our Contributions . 2

1.3 Technical Overview . 3

1.4 Related Work . 5

2 Preliminaries 6

2.1 Notations and Basic Concepts . 6

2.2 Basic Cryptographic Tools . 6

2.3 (Probabilistic) Indistinguishability Obfuscation . 8

3 Definition of Universal Proxy Re-Encryption 9

3.1 Unidirectional UPRE . 10

3.2 Unidirectional Multi-Hop UPRE . 13

3.3 Security against Corrupted-Delegator Re-Encryption Attacks . 15

3.4 On Re-Encryption Simulatability . 15

3.5 UPRE for More Advanced Encryption . 15

4 Multi-Hop Construction based on Indistinguishability Obfuscation 16

4.1 Trapdoor Encryption . 16

4.2 Our Multi-Hop Scheme from PIO . 17

4.3 Security Proof . 18

4.4 Instantiation of UPRE scheme based on PIO . 21

5 Multi-Hop Construction based on Garbled Circuits 21

5.1 Weak Batch Encryption . 21

5.2 Our Multi-Hop Scheme from GC . 23

5.3 Security Proof . 24

6 Constant-Hop Construction Secure against CRA 28

6.1 Our Constant-Hop Scheme from GC . 28

6.2 Security Proof . 30

A Re-Encryption Simulatability 35

A.1 Our Relaxed UPRE schemes are not Re-Encryption Simulatable 35

A.2 Weak Re-Encryption Simulatability . 35

1 Introduction

1.1 Background

Constructing cryptographic systems from scratch is a challenging task. When migrating from a legacy cryptosystem

to a new one with better security and functionality, it would be desirable to reuse existing public key infrastructures

(PKI) to reduce the cost of migration. In this work, we explore a universal methodology to construct a new and

easily deployable cryptographic system from existing cryptographic systems and PKI.

As a particular example of cryptographic systems, we consider proxy re-encryption (PRE) [BBS98]. PRE

allows to convert a ciphertext under public key pk f (we call delegator public key and f denotes “from”) into

another ciphertext under public key pkt (we call delegatee public key and t denotes “to”) by using a re-encryption

key rk f→t without decrypting the original ciphertext by sk f (we call delegator secret key). A third party, called

proxy, owns the re-encryption key rk f→t and executes the re-encryption procedure. PRE thus enables delegation of

re-encryption and several useful applications. It can be used to achieve encrypted email forwarding [BBS98, Jak99],

key escrow [ID03], encrypted file storage [AFGH05], secure publish-subscribe operation [PRSV17], and secure

payment systems for credit cards [GSL19].

However, all known PRE schemes only support conversions from ciphertexts under a public key generated by

their key generation algorithm into other ones under another key generated by the same key generation algorithm

with the same parameter. They cannot convert ciphertexts into ones under another key generated by another key

generation algorithm of another encryption scheme. Moreover, almost all known PRE schemes were constructed

from scratch by using specific cryptographic assumptions such as the decisional Diffie-Hellman (DDH) assumption

and the learning with errors (LWE) assumption. The formats of their keys and ciphertexts are fixed in advance

at the setup and can never be changed. Only a few PRE schemes use public-key encryption (PKE) schemes

generically [HKK+12]. However, in such schemes, we cannot use a PKE scheme as it is (some additional conversion

is needed). Moreover, only delegatees (receivers of converted ciphertexts) can select any PKE scheme and delegators

(senders of original ciphertexts) cannot. From a practical point of view, this is unsatisfactory as we need to build a

new system using a PRE scheme from scratch if we want to use applications of PRE described above. When we use

a PRE scheme, we cannot use existing and widely used public-key cryptosystems to achieve the applications of

PRE. Ideally, we would like to achieve a re-encryption mechanism that works for any pair of PKE schemes without

any modification and setup.

Universal Proxy Re-Encryption. To resolve the problems above, we put forward the concept of universal proxy

re-encryption (UPRE). UPRE enables us to convert ciphertexts under a public key of a scheme Σ f (delegator

scheme) into ciphertexts under another public key of another scheme Σt (delegatee scheme). We can select arbitrary

secure PKE schemes for Σ f , Σt. For example, we can use Goldwasser-Micali PKE [GM84] as Σ f and ElGamal

PKE [ElG85] as Σt. If a delegator and delegatee have key pairs (pk f , sk f) and (pkt, skt) of schemes Σ f and Σt,

respectively, then a re-encryption key generation algorithm of UPRE can output a re-encryption key rk f→t from

(Σ f , Σt, sk f , pkt). A proxy can generate a re-encrypted ciphertext rct from rk f→t and Enc f (pk f , m) where Enc f

is the encryption algorithm of Σ f . Of course, the re-encrypted ciphertext rct can be correctly decrypted to m by

using skt.

Ideally, a re-encrypted ciphertext should be decrypted by the original decryption algorithm of the delegatee

scheme (i.e., Dect(skt, ·)). However, we can also consider a relaxed variant where a re-encrypted ciphertext can be

decrypted via a slightly modified decryption algorithm with the original delegatee decryption key skt. We call this

variant relaxed UPRE. Here, we emphasize that the delegator uses only pk f and Enc f to encrypt a message and

the delegatee uses only skt to decrypt a re-encrypted ciphertext (they do not need any additional keys) even if its

decryption procedure is slightly modified. Our work is the first to explore such a universal methodology for proxy

re-encryption.

UPRE enables us to build a re-encryption mechanism dynamically by using currently deployed cryptosystems.

Users who have already used PKE schemes can convert ciphertexts into other ones by using a UPRE scheme. They

do not need to setup a proxy re-encryption system from scratch. Therefore, UPRE offers more flexibility than

standard PRE. In addition, UPRE has applications that PRE does not have, e.g. the following. UPRE enables

us to delegate migration of encryption systems to a third party such as cloud-servers with many computational

resources when an encryption scheme with some parameter settings becomes obsolete, or vulnerability is found in

an encryption system. That is, we can outsource renewing encrypted storage to a third party.

UPRE can be seen as a generalized notion of PRE. Therefore, we can consider several analogies of the notions

used in PRE. They are the notions of “direction” and “the number of hops”. For directions, there are unidirectional

1

and bidirectional, which means that a re-encryption key between pk f and pkt can be used for only one-way from

f to t and both ways, respectively. For the number of hops, there are single-hop and multi-hop, which mean a

re-encrypted ciphertext cannot be converted anymore and can be converted polynomially-many times, respectively.

In particular, when only a constant number of conversions is possible, we call it constant-hop. We consider

unidirectional single/constant/multi-hop but do not focus on bidirectional since the functionality of a bidirectional

re-encryption key is simulated by two unidirectional re-encryption keys.

The main question addressed in this work is how to achieve UPRE. Regarding feasibility, it seems plausible

that UPRE can be achieved from indistinguishability obfuscation (IO) [BGI+12, GGH+16] or multilinear

maps [GGH13, CLT13, GGH15].1. And in fact, we present a construction based on IO as an initial step, though we

emphasize that formally proving security is not a trivial task even if we use IO. Consequently, the main focus of this

work is concerned with the following question.

Is it possible to achieve a UPRE scheme without IO and multilinear maps?

We give a positive answer to this question.

1.2 Our Contributions

The main contributions of this study are the following.

1. We introduce the notion of UPRE and formally define its security.

2. We present a general construction of multi-hop UPRE for some class of PKE by using probabilistic IO (PIO).

3. We present a general construction of multi-hop relaxed UPRE for any PKE by using only garbled circuits

(GC) and therefore need no additional assumptions.

4. By using our general constructions and known instantiations of tools above, we can obtain multi-hop (relaxed)

UPRE schemes from IO, or generic standard assumptions.

The third contribution is notable since we introduce a new design idea and use only weak assumptions. We explain

more details (tools, security levels, and so on) of these contributions below.

For UPRE, we can consider a natural analog of security against chosen plaintext attacks (CPA) for PRE

(PRE-CPA), where adversaries execute CPA attacks with oracles that give re-encryption keys and re-encrypted

ciphertexts. However, we do not focus on the definition of CPA-security for UPRE (UPRE-CPA) because Cohen

introduced a better security notion called security against honest re-encryption attacks (HRA) for PRE [Coh19]2.

Thus, we define security against honest re-encryption attacks for UPRE (UPRE-HRA), which implies UPRE-CPA,

instead of CPA-security. We also define security against corrupted-delegator re-encryption attacks (CRA) to

consider the setting of migration of encryption system explained in Section 1.1. That is, even if a delegator is

corrupted, once a ciphertext is re-encrypted for an honest delegatee, then the delegator cannot obtain information

about a plaintext from the re-encrypted ciphertext.34 See Section 3 for details.

We present three general constructions of UPRE. One is UPRE for some class of PKE based on PIO. PIO was

introduced by Canetti, Lin, Tessaro, and Vaikuntanathan [CLTV15]. Another is relaxed UPRE for any PKE based

on GC. The other is constant-hop and CRA-secure relaxed UPRE for any PKE based on GC. We emphasize that our

relaxed UPRE is based on generic standard assumptions without relying on heavy tools. We look closer at what

kind of (relaxed) UPRE is achieved below.

Our UPRE scheme based on PIO is a unidirectional multi-hop UPRE scheme. The required properties for PKE

schemes depend on the security level of PIO. If we assume additional properties on PKE, then we can achieve

UPRE from sub-exponentially secure IO (sub-exp IO) and sub-exponentially secure OWF (sub-exp OWF). Most

well-known CPA-secure PKE schemes such as ElGamal, Goldwasser-Micali PKE schemes satisfy the additional

properties (See Section 4.1 for details). However, if we use any PKE, we need PIO with the strongest security for

specific circuits (refer to [CLTV15]). If we use the exponential DDH assumption, we can achieve UPRE from any

PKE and polynomially secure IO. The advantage of the scheme based on PIO is that it is a multi-hop UPRE scheme

and conceptually simple. See Section 4 for more details.

1A.k.a. “heavy hammers”.

2Derler, Krenn, Lorünser, Ramacher, Slamanig, and Striecks also proposed a similar security notion in the forward secret setting as

(fs)-RIND-CPA [DKL+18].

3Note that the corrupted delegator does not have a ciphertext to be re-encrypted here.

4Davidson, Deo, Lee, and Martin [DDLM19] independently introduced a stronger notion called strong post-compromised security in

the standard PRE setting. Note that our work appeared before their publication. Our work appeared on September 7th in 2018 while their

work [DDLM19] did on April 5th in 2019. (See the submission dates on Cryptology ePrint Archive.)

2

Our relaxed UPRE scheme based on garbled circuits (GC) is a unidirectional multi-hop relaxed UPRE scheme

for any PKE scheme. This is a significant contribution since GC exist if one-way functions exist (a very weak

cryptographic assumption). This relaxed UPRE scheme satisfies HRA-security. However, some meta information

(all garbled circuits from the first delegator to the last delegatee) is directly preserved in all re-encrypted ciphertexts.

Therefore, the number of hops cannot be hidden in the scheme based on GC. In particular, when a delegator is

corrupted, we do not know how to prove that a re-encrypted ciphertext does not reveal information about the

plaintext.

Our last UPRE scheme is a unidirectional constant-hop relaxed UPRE scheme for any PKE scheme based on

GC. This scheme satisfies CRA-security unlike the multi-hop scheme above, but it can re-encrypt only constant

times since its re-encryption procedure incurs polynomial blow-up.

In the GC-based schemes, we must use a slightly modified decryption algorithm (i.e., we achieve relaxed UPRE)

though we can use the original delegatee decryption key as it is. While this is a small disadvantage of the GC-based

constructions, we would like to emphasize that these are the first constructions of relaxed UPRE, achieved by the

standard assumptions.

1.3 Technical Overview

In this section, we give a high-level overview of our UPRE schemes and techniques. To achieve the re-encryption

mechanism, we use a circuit with a hard-wired secret key of a delegator PKE scheme to generate a re-encryption

key. This is because UPRE supports general PKE schemes and we need to decrypt ciphertexts once to re-encrypt

them. However, such a circuit should not be directly revealed to a proxy to guarantee security. Therefore, we must

hide information about the secret-key in a re-encryption key. That is, to use CPA security of the delegator PKE

scheme, we must erase information about the secret key embedded in a re-encryption key in security proofs. This is

the most notable issue to prove the security of UPRE. When we succeed in erasing secret keys from re-encryption

keys in our reductions, we can directly use the CPA-security of delegators to prove the security of a UPRE scheme.

Based on IO IO is a promising tool to hide information about delegator secret keys since IO is a kind of compiler

that outputs a functionally equivalent program that does not reveal information about the original program. We

define a re-encryption circuit Cre, in which a delegator secret key sk f and a delegatee public key pkt are hard-wired

in and which takes a delegator ciphertext ct f as an input. The re-encryption circuit decrypts ct f by using sk f ,

obtains a plaintext m, and generates a ciphertext of m under pkt. We can hide information about sk f by using PIO

(note that Cre is a randomized circuit). That is, a re-encryption key from delegator f to delegatee t is piO(Cre)
where piO is a PIO algorithm. A re-encrypted ciphertext is a fresh ciphertext under pkt. Thus, we can achieve

multi-hop UPRE. This construction is similar to the FHE scheme based on PIO presented by Canetti et al. [CLTV15].

However, we cannot directly use the result by Canetti et al. since the setting of unidirectional multi-hop UPRE is

different from that of FHE.

The security proof proceeds as follows. To erase sk f , we use a dummy re-encryption circuit that does not run

the decryption algorithm of Σ f with sk f and just outputs a dummy ciphertext under pkt (does not need plaintext m).

We expect that adversaries cannot distinguish this change. This intuition is not false. However, to formally prove it,

we cannot directly use the standard CPA-security of PKE since an obfuscated circuit of the re-encryption circuit

generates ciphertexts under hard-wired pkt. It means that we cannot use a target ciphertext of the CPA-security

game and the common “punctured programming” approach unless the scheme has a kind of “puncturable” property

for its secret key [CHN+18]. Therefore, we use trapdoor encryption introduced by Canetti et al. [CLTV15].

In trapdoor encryption, there are two modes for key generation. One is the standard key generation, and the

other one is the trapdoor key generation, which does not output a secret key for decryption. The two modes are

computationally indistinguishable. Ciphertexts under a trapdoor key are computationally/statistically/perfectly

indistinguishable (See Section 4.1 for more details). Thus, we proceed as follows. First, we change the hard-wired

public key pkt into a trapdoor key tkt. Second, we use the security of PIO. The indistinguishability under tkt is

used to satisfy the condition of PIO.

We can consider the relationships among keys as a directed acyclic graph (DAG). Each vertex is a user who has

a key pair, and each edge means that a re-encryption key was generated between two vertices. To prove ciphertext

indistinguishability under a target public-key, we repeat the two processes above from the farthest vertex connected

to the target vertex to the target vertex. We gradually erase information about secret keys of vertices connected to

the target vertex. At the final step, information about the target secret key is also deleted, and we can use security

under the target public-key of the delegator’s PKE scheme. Those processes are the notable differences from the

3

security proof of FHE based on PIO by Canetti et al. [CLTV15]. The point is that one vertex can be connected to

multiple vertices in the multi -hop (U)PRE setting.

Types of indistinguishability under trapdoor keys affect what kind of PIO can be used. The weakest

indistinguishability under a trapdoor key, which is equivalent to the standard IND-CPA security, requires stronger

security of PIO. If we use perfect indistinguishability under a trapdoor key, which is achieved by re-randomizable

PKE schemes such as ElGamal PKE scheme, then we can use weaker PIO for circuits that are implied by sub-exp

IO for circuits and sub-exp OWF. Finally, we can use doubly-probabilistic IO introduced by Agrikola, Couteau, and

Hofheinz [ACH20] instead of PIO to achieve UPRE for IND-CPA PKE. Agrikola et al. prove that we can achieve

doubly-probabilistic IO by using polynomially secure IO and the exponential DDH assumption.

Based on GC The most challenging task in this work is achieving a relaxed UPRE scheme without obfuscation.

Surprisingly, we can achieve a relaxed UPRE scheme for any CPA-secure PKE scheme by using GC in combination

with a secret sharing scheme. The idea is that a proxy and a delegatee are different entities and can separately use

shares of a decryption key. We generate shares of a decryption key, and use a garbled circuit where one of the

shares is hardwired to hide information about the decryption key.

Our re-encryption mechanism proceeds in the following two steps. First, we generate shares (s1, s2) of a

delegator secret key sk f by a secret sharing scheme. We encrypt share s1 by using pkt and obtain c̃tt ← Enc(pkt, s1).

A re-encryption key from f to t is rk f→t := (s2, c̃tt). Roughly speaking, s1 is hidden by the CPA-security of

PKE, and s2 does not reveal information about sk f by the privacy property of secret sharing. We define a circuit

Cre
de where s2 and the delegator ciphertext ct f are hard-wired. The circuit Cre

de takes as input s1, reconstructs

sk f from (s1, s2), and computes Dec f (sk f , ct f). Now, we garble Cre
de[s2, ct f] and obtain a garbled circuit C̃re

de

and labels
{

labelsi,b

}
i∈[|s1|]b∈{0,1} . We set a re-encrypted ciphertext to rct := (c̃tt, C̃re

de,
{

labelsi,b

}
) (we omit

{i ∈ [|s1|], b ∈ {0, 1}} if it is clear from the context). The delegatee t can evaluate the garbled circuit and obtain

decrypted value since the delegatee can obtain s1 from c̃tt. However, this does not work since sending
{

labelsi,b

}

breaks the security of GC and sk f is revealed.

Before we move to the second step, we introduce the notion of weak batch encryption, which is a non-

succinct variant of batch encryption [BLSV18] and easily constructed from standard CPA-secure PKE. A batch

key pair (p̂k, ŝk) is generated from a choice string s ∈ {0, 1}λ. We can encrypt a pair of vector messages

({mi,0}i∈[λ], {mi,1}i∈[λ]) by using p̂k. We can obtain {mi,s[i]}i∈[λ] from a batch ciphertext and ŝk. A batch public-

key p̂k does not reveal any information about s. Adversaries cannot obtain any information about {mi,1−s[i]}i∈[λ]

from a batch ciphertext even if ŝk is given. By using 2λ pairs of a public-key and secret-key of PKE, we can achieve

weak batch encryption (we select a key pair based on each bit of s). Note that we can recycle p̂k for many vectors of

messages. See Section 5.1 for details.

Now, we move to the second step. To send only {labelsi,s1[i]
]}i∈|s1|

to the delegatee t, we use weak batch

encryption. That is, we let s1 be choice bits of a batch key pair and
{

labelsi,b

}
be messages of batch encryption.

To achieve a re-encryption mechanism with this idea, at the re-encryption key generation phase, we generate a

batch key pair (p̂k, ŝk) ← BatchGen(s1). Moreover, we encrypt the batch secret-key ŝk under pkt. That is, we

set rk f→t := (p̂k, s2, Enc(pkt, ŝk)). At the re-encryption phase, we generate not only the garbled circuit C̃re
de of

Cre
de[s2, ct f] and

{
labelsi,b

}
i,b

but also the batch ciphertext ĉt← BatchEnc(p̂k, ({labelsi,0}i, {labelsi,1}i)). That

is, a re-encrypted ciphertext is rct := (c̃tt, ĉt, C̃re
de), where c̃tt ← Enc(pkt, ŝk).

The delegatee t can obtain the plaintext m as follows. It obtains ŝk← Dect(skt, c̃tt) by its secret key skt, recover

selected messages {labelsi,s1[i]
}i ← BatchDec(ŝk, ĉt), and m′ ← Eval(C̃re

de, {labelsi,s1[i]
}i). By the functionality

of GC, it holds that m′ = Cre
de[s2, ct f](s1) = m. Thus, this construction works as relaxed UPRE for any PKE

scheme if there exists GC.

Intuitively, the re-encryption key rk f→t does not reveal information about sk f since the CPA-security of PKE

and the receiver privacy of weak batch encryption hides information about s1. Adversaries cannot obtain any

information about sk f from the other share s2 by the privacy property of the secret sharing scheme. That is, we can

erase information about sk f and can use the CPA-security of pk f . Here, the choice s1 is fixed at the re-encryption

key generation phase and recycled in many re-encryption phases. However, this is not an issue since the security of

weak batch encryption holds for many batch ciphertexts under the same batch key pair.

We explain only the single-hop case. However, we can easily extend the idea above to a multi-hop construction.

See Section 5 for the detail. We note that the secret sharing mechanism was used in previous (non-universal) PRE

schemes [CWYD10, HKK+12]. (The technique is called token-controlled technique in some papers.) However,

4

using garbled circuits and batch encryption is new in the PRE setting.

In the construction above, a delegator might obtain information about the plaintext since the re-encrypted

ciphertext includes ct f in the garbled circuit and the delegator has sk f . We have no way to prove that the construction

above satisfies CRA-security. This is a problem when we use a relaxed UPRE scheme for migration of encryption

systems explained in Section 1.1. However, we can easily solve this problem by encrypting a garbled circuit under

the delegatee’s public key since we can hide ct f by using the security of the delegatee’s PKE scheme. Yet, this

extension incurs polynomial blow-up of ciphertext size. Thus, we can apply the re-encryption procedure only

constant times.

Summary of Our Results. We give a summary of our concrete instantiations in Table 1.

Table 1: Summary of our UPRE schemes. In “Type” column, rUPRE means relaxed UPRE. In “#Hop” column,

const/multi means constant/multi-hop, respectively. In “Security” column, HRA and CRA means security against

honest-re-encryption/corrupted-delegator-re-encryption attacks, respectively. In “Supported PKE” column, 0-hiding

trapdoor means trapdoor encryption that satisfies 0-hiding security (see Section 4.1).

Instantiation Type #Hop Security Supported PKE Assumptions

Ours in Sec. 4 + [CLTV15] UPRE multi HRA & CRA 0-hiding trapdoor sub-exp IO and OWF

Ours in Sec. 4 + [CLTV15] UPRE multi HRA & CRA any IND-CPA di-PIO and OWF

Ours in Sec. 4 + [ACH20] UPRE multi HRA & CRA any IND-CPA IO and exponential DDH

Ours in Sec. 5 rUPRE multi HRA any IND-CPA PKE

Ours in Sec. 6 rUPRE const HRA & CRA any IND-CPA PKE

1.4 Related Work

Encryption switching protocol (ESP), which was introduced by Couteau, Peters, and Pointcheval [CPP16], is a

related notion. It is an interactive two-party computation that enables us to transform a ciphertext of a PKE scheme

into a ciphertext of another PKE scheme and vice versa. It has a similar functionality to that of UPRE. However,

they are incomparable in the following sense. In an ESP, parties must interactively communicate each other though

there does not exists a proxy (and no re-encryption key). UPRE does not need interactive communication. Moreover,

the proposed ESPs are not universal, that is, the protocols work only for specific PKE schemes. Thus, the purpose

of ESPs is different from that of UPRE and they are incomparable.

There is a universal methodology to construct a new cryptographic system from existing signature schemes.

Hohenberger, Koppula, and Waters introduce the notion of universal signature aggregator (USA) [HKW15], which

enables us to aggregate signatures under different secret keys of different signature schemes. Standard aggregate

signatures enable us to compress multiple signatures under different secret keys of the same scheme into one

compact signature that is verified by a set of multiple verification keys [BGLS03]. Thus, USA is a generalization of

aggregate signatures. Hohenberger et al. [HKW15] constructed selectively (resp. adaptively) secure USA scheme

from sub-exp IO, sub-exp OWF, and additive homomorphic encryption (resp. IO, OWF, homomorphic encryption,

and universal samplers) in the standard (resp. random oracle) model.

Reconfigurable cryptography was introduced by Hesse, Hofheinz, and Rupp [HHR16]. It makes updating PKI

easier by using long-term keys, short-term keys, and common reference strings. Reconfigurable encryption can

update keys, but cannot update ciphertexts.

There is a long series of works on proxy re-encryption. After the introduction of proxy cryptography by Blaze,

Bleumer, and Strauss [BBS98], improved constructions [ID03, AFGH05], CCA-secure constructions [CH07, LV08,

DWLC08, SC09, HKK+12], key-private constructions [ABH09, ABPW13, NX15], obfuscation-based definition

and constructions [HRsV11, CCV12, CCL+14] have been proposed. Note that this is not an exhaustive list.

Organization. The main body of this paper consists of the following parts. In Section 2, we provide preliminaries

and basic definitions. In Section 3, we introduce the syntax and security definitions of UPRE. In Section 4, we

present our UPRE scheme based on PIO and prove its security. In Section 5, we present our relaxed UPRE scheme

based on GC, and prove its security. In Section 6, we present our CRA-secure relaxed UPRE scheme based on GC,

and prove its security.

5

2 Preliminaries

We define some notations and introduce cryptographic primitives in this section.

2.1 Notations and Basic Concepts

In this paper, x ← X denotes selecting an element from a finite set X uniformly at random, and y← A(x) denotes

assigning to y the output of a probabilistic or deterministic algorithm A on an input x. When we explicitly show

that A uses randomness r, we write y← A(x; r). For strings x and y, x‖y denotes the concatenation of x and y.

Let [ℓ] denote the set of integers {1, · · · , ℓ}, λ denote a security parameter, and y := z denote that y is set, defined,

or substituted by z. PPT stands for probabilistic polynomial time.

• A function f : N → R is a negligible function if for any constant c, there exists λ0 ∈ N such that for any

λ > λ0, f (λ) < λ−c. We write f (λ) ≤ negl(λ) to denote f (λ) being a negligible function.

• If X (b) = {X
(b)
λ }λ∈N for b ∈ {0, 1} are two ensembles of random variables indexed by λ ∈ N, we say that

X (0) and X (1) are computationally indistinguishable if for any PPT distinguisher D, there exists a negligible

function negl(λ), such that

∆ := |Pr[D(X
(0)
λ) = 1]− Pr[D(X

(1)
λ) = 1]| ≤ negl(λ).

We write X (0) c
≈δ X

(1) and X (0) c
≈ X (1) to denote that the advantage ∆ is bounded by δ and δ is negligible,

respectively and call the former δ-indistinguishability.

• The statistical distance between X (0) and X (1) over a countable set S is defined as ∆s(X (0),X (1)) :=
1
2 ∑α∈S |Pr[X

(0)
λ = α] − Pr[X

(1)
λ = α]|. We say that X (0) and X (1) are statistically indistinguishable

(denoted by X (0) s
≈ X (1)) if ∆s(X (0),X (1)) ≤ negl(λ). We also say that X (0) is ǫ-close to X (1) if

∆s(X (0),X (1)) = ǫ. If ǫ = 0 (perfectly indistinguishable), we write X (0)
p
≈ X (1).

2.2 Basic Cryptographic Tools

Definition 2.1 (Public-key Encryption). LetM be a message space. A PKE scheme forM is a tuple of algorithms

(KeyGen, Enc, Dec) where:

• KeyGen(1λ) takes as input the security parameter and outputs a public key pk and secret key sk.

• Enc(pk, m) takes as input pk and a message m ∈ M and outputs a ciphertext ct.

• Dec(sk, ct) takes as input sk and ct, and outputs some m′ ∈ M, or ⊥.

Correctness: For any m ∈ M and (sk, pk)← KeyGen(1λ), we have that Dec(sk, Enc(pk, m)) = m.

CPA-security: We define the experiment Expt
pke
A (1λ, b) between an adversary A and challenger as follows.

1. The challenger runs (sk, pk)← KeyGen(1λ), and gives pk to A.

2. The following process can be repeated polynomially many times.

• A sends two messages m∗0 , m∗1 as the challenge messages to the challenger.

• The challenger generates ciphertext ct∗ ← Enc(pk, m∗b) and sends ct∗ to A.

3. At some point, A outputs a guess b′ for b. The experiment outputs b′.

We say PKE is CPA-secure if, for any PPT adversary A, it holds that

Adv
pke
A (λ) := |Pr[Expt

pke
A (1λ, 0) = 1]− Pr[Expt

pke
A (1λ, 1) = 1]| ≤ negl(λ).

Note that we can achieve the CPA-security above by using the standard CPA-security of PKE, where A sends

the challenge messages only once (with polynomial security loss) by using the standard hybrid argument.

6

Definition 2.2 (Pseudorandom functions). For sets D and R, let {FK(·) : D → R | K ∈ {0, 1}λ} be a family

of polynomially computable functions. We say that F is pseudorandom if for any PPT adversary A, it holds that

Adv
prf
F,A(λ) := |Pr[AFK(·)(1λ) = 1 | K← {0, 1}λ]− Pr[AR(·)(1λ) = 1 | R← FU]| ≤ negl(λ) ,

where FU is the set of all functions from D toR.

Theorem 2.3 ([GGM86]). If one-way functions exist, then for all efficiently computable functions n(λ) and m(λ),

there exists a pseudorandom function that maps n(λ) bits to m(λ) bits (i.e.,D := {0, 1}n(λ) andR := {0, 1}m(λ)).

Definition 2.4 (Puncturable pseudorandom function). For sets D andR, a puncturable pseudorandom function

PPRF consists of a tuple of algorithms (F, Punc) that satisfies the following two conditions.

Functionality preserving under puncturing: For all polynomial size subset {xi}i∈[k] of D, and for all x ∈

D \ {xi}i∈[k], we have Pr[FK(x) = FK∗(x) : K← {0, 1}λ, K∗ ← Punc(K, {xi}i∈[k])] = 1.

Pseudorandomness at punctured points: For all polynomial size subset {xi}i∈[k] of D, and any PPT adversary

A, it holds that

Pr[A(K∗, {FK(xi)}i∈[k]) = 1]− Pr[A(K∗,U k) = 1] ≤ negl(λ) ,

where K← {0, 1}λ, K∗ ← Punc(K, {xi}i∈[k]), and U denotes the uniform distribution overR.

Theorem 2.5 ([GGM86, BW13, BGI14, KPTZ13]). If one-way functions exist, then for all efficiently computable

functions n(λ) and m(λ), there exists a puncturable pseudorandom function that maps n(λ) bits to m(λ) bits (i.e.,

D := {0, 1}n(λ) andR := {0, 1}m(λ)).

Definition 2.6 (Garbling Scheme (Garbled Circuit)). A grabling scheme GC is a two tuple (Grbl, Eval) of PPT

algorithms.

• The garbling algorithm Grbl, given a security parameter 1λ and a circuit C with n-bit input, outputs a garbled

circuit C̃, together with 2n labels {labelsk,b}k∈[n],b∈{0,1} .

• The evaluation algorithm Eval, given a garbled circuit C̃ and n labels {labelsk}k∈[n], outputs y.

Correctness: We require Eval(C̃, {labelsk,xk
}k∈[n]) = C(x) for every λ ∈ N, a circuit C with n-bit input, and

x ∈ {0, 1}n, where (C̃, {labelsk,b}k∈[n],b∈{0,1})← Grbl(1λ, C) and xk is the k-th bit of x for every k ∈ [n].

Security: Let Sim be a PPT algorithm. We define the following game Expt
gc
A (1

λ, β) between a challenger and an

adversary A as follows.

1. The challenger sends the security parameter 1λ to A.

2. A sends a circuit C with n-bit input and an input x ∈ {0, 1}n to the challenger.

• If β = 0, then the challenger computes (C̃, {labelsk,b}k∈[n],b∈{0,1}) ← Grbl(1λ, C) and returns

(C̃, {labelsk,xk
}k∈[n]) to A.

• If β = 1, then it computes (C̃, {labelsk}k∈[n])← Sim(1λ, 1|C|, C(x)), and returns (C̃, {labelsk}k∈[n])
to A.

3. A outputs β′ ∈ {0, 1}.

We say that a garbling scheme is selectively secure if there exists PPT Sim such that for any PPT A, we have

|Pr[Expt
gc
A (1

λ, 0) = 1]− Pr[Expt
gc
A (1

λ, 1) = 1]| ≤ negl(λ).

Definition 2.7 (Secret Sharing). A t-out-of-n secret sharing scheme over message spaceM is a pair of algorithms

(Share, Reconstruct) where:

7

• Share(1λ, m) takes as input the security parameter and a message m ∈ M, and outputs an n-tuple of shares

(s1, . . . , sn).

• Reconstruct(si1 , . . . , sit) takes as input t shares (si1 , . . . , sit) where ik ∈ [n] and k ∈ [t] outputs a meesage

m′ ∈ M or ⊥.

Correctness: For any m ∈ M and (i1, . . . , it) ⊆ [n] of size t, we have that

Pr[Reconstruct(si1 , . . . , sit) = m | (s1, . . . , sn)← Share(m)] = 1.

Security: For any m, m′ ∈ M, S ⊆ [n] such that |S| < t, we have that

{
{si}i∈S | (s1, . . . , sn)← Share(m)

} s
≈

{{
s′i
}

i∈S
| (s′1, . . . , s′n)← Share(m′)

}
.

2.3 (Probabilistic) Indistinguishability Obfuscation

Definition 2.8 (Indistinguishability Obfuscator). A PPT algorithm iO is an IO for a circuit class {Cλ}λ∈N if it

satisfies the following two conditions.

Functionality: For any security parameter λ ∈ N, circuit C ∈ Cλ, and input x, we have that

Pr[C′(x) = C(x) | C′ ← iO(C)] = 1 .

Indistinguishability: For any PPT distinguisher D and for any pair of circuits C0, C1 ∈ Cλ such that for any

input x, C0(x) = C1(x) and |C0| = |C1|, it holds that

|Pr [D(iO(C0)) = 1]− Pr [D(iO(C1)) = 1] | ≤ negl(λ) .

We further say that iO is sub-exponentially secure if for any PPT D the above advantage is smaller than

2−λǫ
for some 0 < ǫ < 1.

Next, we consider a family of sets of randomized polynomial-size circuits, C := {Cλ}λ∈N
. A circuit sampler

for C is a distribution ensemble Samp := {Sampλ}λ∈N
, where the distribution of Sampλ is (C0, C1, z) with

C0, C1 ∈ Cλ such that C0 and C1 take inputs of the same length, and z ∈ {0, 1}poly(λ). A class S of samplers for C
is a set of circuit samplers for C.

Definition 2.9 (PIO for a Class of Samplers [CLTV15]). A PPT algorithm piO is a probabilistic indistinguisha-

bility obfuscator for a class of samplers S over the randomized circuit family C = {Cλ}λ∈N
if it satisfies the

following.

Alternative Correctness [DHRW16]: For any λ ∈ N, any C ∈ Cλ, any Ĉ ← piO(C) and any individual input

x, the distribution of Ĉ(x) and C(x) are identical.

Security with respect to S: We define the following experiments Expt
pio
D (1λ, b) between a challenger and a

distinguisher D as follows.

1. The challenger samples (C0, C1, z)← Sampλ.

2. The challenger computes Ĉb ← piO(Cb) and sends (1λ, C0, C1, Ĉb, z) to D.

3. D outputs a guess b′ ∈ {0, 1}. The experiment outputs b′.

We say that piO is secure PIO for S if for any sampler Samp = {Sampλ}λ∈N
∈ S , and for any PPT D, it

holds that

|Pr[Expt
pio
D (1λ, 0) = 1]− Pr[Expt

pio
D (1λ, 1) = 1]| ≤ negl(λ).

As noted by Dodis et al. [DHRW16], the PIO construction by Canetti et al. [CLTV15] can be easily modified to

satisfy the alternative correctness above, so we use it. Canetti et al. [CLTV15] introduced a few types of samplers.

We review static-input X-indistinguishable and dynamic-input indistinguishable samplers.

8

Definition 2.10 (Static-input X-Indistinguishable-Samplers). Let X(λ) be a function bounded by 2λ. The class

SX-ind of static-input X-IND-samplers for a circuit family C contains all circuit samplers Samp = {Sampλ}λ∈N

for C satisfying the following. For any λ ∈ N, there exists a set X = Xλ ⊆ {0, 1}∗ of size at most X(λ) such that

the following two conditions hold.

X differing inputs: For any input x′ /∈ X , for any random coin r, it holds that

Pr[C0(x′; r) = C1(x′; r) | (C0, C1, z)← Sampλ] > 1− negl(λ).

X-indistinguishability: For any PPT A, Advsi-ind
A,Samp(λ) ≤ negl(λ) · X−1 holds, where Advsi-ind

A,Samp(λ) is defined

as below.

Advsi-ind
A,Samp(λ) := |Pr[Expsi-ind

A,Samp(1
λ, 0) = 1]− Pr[Expsi-ind

A,Samp(1
λ, 1) = 1]|,

where experiments Expsi-ind
A,Samp(1

λ, b) between a challenger and an adversary A are as follows.

1. The adversary A sends x to the challenger.

2. The challenger samples (C0, C1, z)← Sampλ.

3. The challenger computes y← Cb(x) and sends (C0, C1, z, y) to A.

4. A outputs a guess b′ ∈ {0, 1}. The experiment outputs b′.

Definition 2.11 (X-IND PIO for Randomized Circuits). Let X(λ) be any function bounded by 2λ. A PPT

algorithm piO (X-piO) is an X-PIO for randomized circuits if it is a PIO for the class of X-IND samplers SX-ind

over C that includes all randomized circuits of size at most λ.

Theorem 2.12 ([CLTV15, DHRW16]). If there exists sub-exponentially secure IO for circuits and sub-exponentially

secure puncturable PRF, then there exists an X-IND PIO with alternative correctness for randomized circuits.

Definition 2.13 (Dynamic-input Indistinguishable Sampler). We define the experiments Expdi-ind
A,Samp(1

λ, b) be-

tween a challenger and an adversary A as follows.

1. The challenger samples (C0, C1, z)← Sampλ and sends it to A.

2. The adversary A outputs x and sends it to the challenger.

3. The challenger computes y← Cb(x) and sends (C0, C1, z, y) to A.

4. A outputs a guess b′ ∈ {0, 1}. The experiment outputs b′.

The class Sdi-ind of dynamic-input indistinguishable sampler for a circuit family C contains all circuit samplers

Samp = {Sampλ}λ∈N
for C satisfies the following. If for any PPT A, it holds that

Advdi-ind
A,Samp(λ) := |Pr[Expdi-ind

A,Samp(1
λ, 0) = 1]− Pr[Expdi-ind

A,Samp(1
λ, 1) = 1]| ≤ negl(λ).

Definition 2.14 (Dynamic-input PIO for Randomized Circuits). A PPT algorithm piO (di-piO) is a dynamic-

input PIO for randomized circuits if it is a PIO for the class of dynamic-input indistinguishable samplers Sdi-ind

over C that includes all randomized circuits of size at most λ.

Canetti et al. [CLTV15] wrote that a construction of dynamic-input PIO for specific classes of samplers is

possible as in the case of differing-input obfuscation [BGI+12] for specific circuits.

3 Definition of Universal Proxy Re-Encryption

In this section, we present the definitions of universal proxy re-encryption (UPRE). In particular, we present the

definition of UPRE for PKE and its security notions. A UPRE scheme enables us to convert ciphertexts of a PKE

scheme Σ f into ciphertexts of a (possibly) different PKE scheme Σt. A UPRE scheme does not need a setup for a

system. That is, it can use existing PKE schemes with different parameters. UPRE can be seen as a generalization

proxy re-encryption [BBS98]. Therefore, we borrow many terms of proxy re-encryption [AFGH05, CH07].

9

Notations. We consider multiple PKE schemes and key pairs, so we assume that every known PKE scheme is

named by a number in [N] (say, 1 is for Goldwasser-Micali PKE, 2 is for ElGamal PKE etc). We also put a number

in [U] for a generated key pair. When we write (pki, ski) ← Genσi
(1λ), we mean that i-th key pair is generated

by PKE scheme Σσi
= (Genσi

, Encσi
, Decσi

) where σi ∈ [N]. In this paper, when we emphasize which user is a

delegator or delegatee, we denote delegator and delegatee key pairs by (pk f , sk f) and (pkt, skt), respectively (f and

t mean “from” and “to”, respectively). That is, a ciphertext under pk f will be converted into a ciphertext pkt. We

assume that in the description of Σσi
, ciphertext space Cσi

and message spaceMσi
are also included. When we use

Σσi
as an input for algorithms of UPRE, we interpret it as a description of algorithms (rather than Turing machines

or circuits). Note that the length of such descriptions is polynomial since algorithms of PKE should be PPT.

3.1 Unidirectional UPRE

Definition 3.1 (Universal Proxy Re-Encryption for PKE: Syntax). A universal re-encryption scheme UPRE

consists of two PPT algorithms (ReKeyGen, ReEnc).

• ReKeyGen(1λ, Σσf
, Σσt , sk f , pkt) takes the security parameter, a pair of PKE scheme (Σσf

, Σσt), a secret-key

sk f of Σσf
, and a public-key pkt of Σσt and outputs a re-encryption key rk f→t for ciphertexts under pk f . The

security parameter is often omitted.

• ReEnc(Σσf
, Σσt , rk f→t, ct f) takes a pair of PKE schemes (Σσf

, Σσt), a re-encryption key rk f→t, and a

ciphertext ct f under pk f of Σσf
, and outputs a re-encrypted ciphertext ctt under pkt.

Definition 3.2 (Relaxed Universal Proxy Re-Encryption for PKE: Syntax). A relaxed universal re-encryption

scheme UPRE consists of two PPT and one deterministic polynomial-time algorithms (ReKeyGen, ReEnc, mDec).

• ReKeyGen(1λ, Σσf
, Σσt , sk f , pkt) is the same as in Definition 3.1.

• ReEnc(Σσf
, Σσt , rk f→t, ct f) takes a pair of PKE schemes (Σσf

, Σσt), a re-encryption key rk f→t, and a

ciphertext ct f under pk f of Σσf
, and outputs a re-encrypted ciphertext rct. We implicitly assume that rct

includes index ℓ which indicates how many times ReEnc was applied so far. When we write rct(ℓ), it means

that rct(ℓ) was obtained by applying ReEnc ℓ times.

• mDec(Σσt , skt, rct(ℓ), ℓ) is a deterministic algorithm and takes a PKE scheme Σσt , a secret key skt, a

re-encrypted ciphertext rct(ℓ) under rk f→t, and index ℓ and outputs a message m. When ℓ = 1, we omit the

index.

The difference between UPRE and relaxed UPRE is that we can use the decryption algorithm of Σσt as it is in

UPRE. In relaxed UPRE, we need use a modified decryption algorithm though what we need for decryption is the

original secret key skt. Note that re-encrypted ciphertext space Cσf→σt potentially depends on Cσf
and Cσt and

possibly rct /∈ Cσt happens.

Hereafter, we focus only on the relaxed notion since we can easily replace mDec(Σσt , skt, rct(ℓ), ℓ) with

Dec(skt, ctt).

On Message Space. For simplicity, we consider messages in Mσ1
∩ · · · ∩MσN

where N is the number of

considered PKE scheme in security games (described later). We can consider {0, 1}ℓ as a message space where ℓ is

a polynomial of a security parameter and UPRE for such a message space by considering bit-by-bit encryption for

all PKE scheme. However, this is cumbersome. Thus, hereafter, we consider messages in the intersection of all

message spaces though we do not explicitly mention.

Bidirectional UPRE. We can consider bidirectional UPRE, where a re-encryption key generated from key pairs

(pk f , sk f) and (pkt, skt) can convert ciphertexts under pk f (resp. pkt) into ciphertexts that can be decrypted by skt

(resp. sk f). Although unidirectional UPRE can support the functionality of bidirectional UPRE by generating two

re-encryption keys rk f→t and rkt→ f , it is not clear whether security is preserved. We focus on unidirectional UPRE

in this study.

10

Functionality and Security. We introduce the correctness and a security notion of UPRE that we call security

against honest re-encryption attacks (HRA) for UPRE. Correctness is easy to understand.

This HRA for UPRE is based on security against HRA of PRE introduced by Cohen [Coh19]. Roughly speaking,

in the setting of HRA, adversaries are allowed to obtain an honestly encrypted ciphertext via an honest encryption

oracle and can convert it into a re-encrypted ciphertext under a key of a corrupted user via a re-encryption oracle.

In PRE-CPA security, adversaries cannot obtain such a re-encrypted ciphertext because it is not allowed to obtain a

re-encryption key query from an honest user to a corrupted user via the re-encryption key oracle to prevent trivial

attacks5. Cohen observes that PRE-CPA security is not sufficient for many applications of PRE. Therefore, we

define HRA-security for UPRE (in fact, we also define a selective variant).

First, we consider single-hop UPRE, where if a ciphertext is converted into another ciphertext, then we cannot

convert the re-encrypted one anymore.

Definition 3.3 (UPRE for PKE: Single-Hop Correctness). A relaxed UPRE scheme UPRE for PKE is correct if

for all pairs of PKE schemes (Σσf
, Σσt), (pk f , sk f)← Genσf

(1λ f), (pkt, skt)← Genσt(1
λt), m ∈ Mσf

∩Mσt ,

ct f ← Encσf
(pk f , m), it holds that

Pr[mDec(Σσt , skt, ReEnc(Σ′, ReKeyGen(Σ′, sk f , pkt), ct f)) = m] = 1,

where Σ′ := (Σσf
, Σσt). In the case of UPRE, mDec(Σσt , ·, ·) = Decσt(·, ·).

Before we present the definition of the HRA security for UPRE, we give an informal explanation about it.

Readers who are familiar with PRE-HRA security [Coh19] may be able to skip explanations below and jump into

the formal definition. Readers who are familiar with PRE-CPA security [ABH09, Coh19] may be able to skip

explanations below except “Honest encryption and re-encryption query” part.

Challenge query: We consider a natural extension of the CPA security of PKE. The adversary selects a target

public-key pki∗ indexed by i∗ and tries to distinguish whether a target ciphertext cti∗ is an encryption of m0 or m1

that it selects. This will be modeled by the challenge oracle Ocha.

Key query: The adversary can be given public keys pki or key pairs (pki, ski) by specifying a user and a PKE

scheme at the setup phase since we consider multiple keys and schemes. When a secret key is given, it means its

owner is corrupted.

Re-encryption key query: The most notable feature is that the adversary is given re-encryption keys by the

re-encryption key oracle Orekey. If the adversary specifies existing indices of keys, say (i, j), then it is given a

corresponding re-encryption key from i to j. Here, we must restrict queries for some indices to prevent trivial

attacks. If j is a corrupted user and i is the target user (queried to Ocha), then the adversary trivially wins the

security game by converting the target ciphertext and decrypting with the corrupted key skj. Therefore, such queries

must be prohibited.

Honest encryption and re-encryption query: If the adversary specifies keys and a ciphertext to the re-encryption

oracle Oreenc, then it is given a re-encrypted ciphertext generated from queried values. One might think this oracle

is redundant since it is simulatable by Orekey. However, there is a subtle issue here since a re-encryption key query

with a corrupted delegatee is prohibited as explained above. As Cohen observed [Coh19] in the setting of PRE,

simply prohibiting such a query is not sufficient and considering re-encryption queries is meaningful.

Re-encrypted ciphertexts may leak information about a delegator key pair and help to attack a delegator

ciphertext. As Cohen observed [Coh19], if a re-encryption key is Enc(pkt, sk f) and it is included in a re-encrypted

ciphertext, then the delegatee easily breaks security. This is unsatisfactory when we consider applications of

PRE and UPRE. However, in the setting of PRE, such a construction is secure under the standard CPA-security

model since it prohibits queries (i, j) (resp. (i, j, cti)) to the re-encryption key generation (resp. re-encryption)

oracle [Coh19]. Thus, we introduce the notion of derivative and the honest encryption oracle Oenc in UPRE as

Cohen did.

We say that a (re-encrypted) ciphertext is a derivative if it is the target ciphertext generated by the challenge

oracle or a re-encrypted ciphertext from the target ciphertext. This is managed by a set Drv. The honest encryption

oracle allows the adversary to obtain a re-encrypted ciphertext under a corrupted key from honest encryption. The

re-encryption oracle does not accept queries whose delegatee is a corrupted user j and ciphertext is a derivative to

prevent trivial attacks. Moreover, the re-encryption oracle does not accept ciphertexts that are not generated via the

honest encryption oracle.

5Of course, a re-encryption query from an honest user to a corrupted user is also prohibited in PRE-CPA security.

11

Definition 3.4 (Derivative). We say that a (re-encrypted) ciphertext is a derivative when the (re-encrypted) ciphertext

is a target ciphertext itself or obtained from a target ciphertext given by Ocha by applying re-encryption.

Definition 3.5 (UPRE for PKE: Single-Hop selective HRA Security). We define the experiment Exp
upre-hra
A (1λ, b)

between an adversary A and a challenger. The experiment consists of three phases.

Phase 1 (Setup): This is the setup phase. All security parameters are chosen by the challenger.

• The challenger initializes #Keys := 0, HList := ∅, CList := ∅, #CT := 0, KeyCTList := ∅, Drv := ∅.

Note that we assume that all indices are recorded with keys and corresponding schemes though we do not

explicitly write for simplicity.

• For an honest key query (i, σi, λi) from A, if the challenger already received (i, ∗, ∗) before, it outputs ⊥.

Otherwise, the challenger generates uncorrupted keys (pki, ski)← Genσi
(1λi), sends (Σσi

, pki) to A, and

sets HList := HList∪ i and #Keys := #Keys + 1. If λi < λ, then the challenger ignores the query.6

• For a corrupted key query (i, σi, λi) from A, if the challenger already received (i, ∗, ∗) before, it outputs ⊥.

Otherwise, the challenger generates corrupted keys (pki, ski)← Genσi
(1λi), sends (Σσi

, pki, ski) to A, and

sets CList := CList∪ i and #Keys := #Keys + 1.

LetMU be the intersection of all message spaces defined by pki1
, . . . , pki#Keys

. At the end of Phase 1, we assume

that the list ((1, σ1), . . . , (#Keys, σ#Keys)) is broadcasted and all entities know it.

Phase 2 (Oracle query): This is the oracle query phase.

Oenc(i, m): For an honest encryption query (i, m) where i ≤ #Keys, the challenger generates cti ← Encσi
(pki, m),

sets #CT := #CT + 1, records (cti, Σσi
, i, #CT) in KeyCTList, and gives (cti, #CT) to A.

Orekey(i, j): For a re-encryption key query (i, j) where i, j ≤ #Keys, the challenger outputs ⊥ if i = j or

i ∈ HList∧ j ∈ CList. Otherwise, the challenger generates rki→j ← ReKeyGen(Σσi
, Σσj

, ski, pkj) and gives

rki→j to A.

Oreenc(i, j, k): For a re-encryption query (i, j, k) where i, j ≤ #Keys and k ≤ #CT, the challenger does the

following.

1. If j ∈ CList∧ k ∈ Drv, then returns ⊥.

2. If there is no value (∗, ∗, i, k) in KeyCTList, returns ⊥.

3. Otherwise, retrieves rki→j for (i, j) (if it does not exists, generates rki→j ← ReKeyGen(Σσi
, Σσj

, ski, pkj)

and stores it), generates rct← ReEnc(Σσi
, Σσj

, rki→j, cti) from cti in KeyCTList, sets #CT := #CT+ 1,

records (rct, Σσj
, j, #CT) in KeyCTList, and gives (rct, #CT) to A.

Ocha(i
∗, m0, m1): This oracle is invoked only once. For a challenge query (i∗, m0, m1) where i∗ ∈ HList and

m0, m1,∈ MU (defined at the end of Phase 1), the challenger generates ct∗ ← Encσi∗
(pki∗ , mb), gives it to

A, and sets #CT := #CT + 1, Drv := Drv ∪ {#CT}, KeyCTList := KeyCTList∪
{
(ct∗, Σσi∗

, i∗, #CT)
}

.

Phase 3 (Decision) : This is the decision phase. A outputs a guess b′ for b. The experiment outputs b′.
We say the UPRE is single-hop UPRE-HRA secure if, for any σi ∈ [N], for any PPT A, it holds that

Adv
upre-hra
A (λ) := |Pr[Exp

upre-hra
A (1λ, 0) = 1]− Pr[Exp

upre-hra
A (1λ, 1) = 1]| ≤ negl(λ).

Discussion on Definition 3.5. (1) On security parameter: We can simply set ∀i λi := λ. Some λj may be longer

than other λi (say, λj = poly(λi)). (2) On adaptive corruption: The adversary is not allowed to adaptively corrupt

users during the experiment. This is because, in general, it is difficult to achieve security against adaptive corruption.

In particular, in our setting,Orekey cannot decide whether it should return ⊥ or a valid re-encryption key if j may be

corrupted later. This static security is standard in the PRE setting [AFGH05, CH07, LV08, ABH09]. One exception

is the work by Fuchsbauer, Kamath, Klein, and Pietrzak [FKKP19]. We do not know whether the techniques by

Fuchbauer et al. are applicable to the UPRE setting. This is an interesting future work. The honest and corrupted

key generation queries could be moved to the oracle query phase, but it does not incur a significant difference. Thus,

we select a simpler model as most works on re-encryption did [AFGH05, LV08, ABH09, Coh19].

6If we prefer longer security parameters, then we can change the condition to λi < cλ for some constant c > 1.

12

Knowledgeable readers might think a UPRE definition based on the PRE definition by Chow et al.[CWYD10]

is better than the definition above. In the PRE setting, the defition by Chow et al. might be stronger than that by

Cohen. However, the relationship between them is not formally studied. Thus, which definition is better or not is

out of scope of this paper.

3.2 Unidirectional Multi-Hop UPRE

In this section, we introduce multi-hop UPRE, which is an extension of single-hop UPRE, where a re-encrypted

ciphertext rct generated by rk f→t could be re-encrypted many times. Let L = L(λ) be the maximum number of

hops that a UPRE scheme can support.

Definition 3.6 (UPRE for PKE: L-hop Correctness). A multi-hop UPRE scheme mUPRE for PKE is L-hop

correct if for all PKE schemes (Σσ0 , Σσ1
, . . . , ΣσL

) that satisfy correctness and σi−1 6= σi for all i ∈ [L],

(pki, ski)← Genσi
(1λi) (for all i = 0, . . . , L), m ∈ Mσ0 ∩ · · · ∩MσL

, ct0 ← Encσ0(pk0, m), it holds that

Pr[mDec(Σσj
, skj, rct(j), j) = m] = 1

where rct(j) ← ReEnc(Σ′j, ReKeyGen(Σ′j, skj−1, pkj), rct(j−1)), rct(0) = ct0, Σ′j := (Σσj−1
, Σσj

) and j ∈ [1, L].

The reason why mDec is indexed by j is that the decryption procedure for j-times re-encrypted ciphertexts

might be different. See Section 5 as a concrete example.

The security notion of multi-hop UPRE is similar to that of single-hop one, but slightly more complex since we

consider many intermediate keys from a delegator to a delegatee. In particular, we use a directed acyclic graph

(DAG) to reflect the relationships among keys. A user is modeled as a vertex in a graph and if there exists a

re-encryption key from vertex (user) i to vertex (user) j, then a directed edge (i, j) is assigned between the vertices

(note that edge (i, j) is not equal to (j, i) since we consider DAGs). That is, a DAG G = (V, E) denotes that V is a

set of users and E is a set of index pairs whose re-encryption key was issued. We do not consider cyclic graphs in

this study since it incurs an issue of circular security in our constructions7.

We introduce the notion of admissible edges to exclude trivial attacks by using oracles. Roughly speaking,

an admissible edge means that ciphertexts under a target public key will not be converted into ciphertexts under

corrupted public keys in CList. We denote by i j there exists a path from vertex i to vertex j in G.

Definition 3.7 (Admissible edge). We say that (i, j) is an admissible edge with respect to G = (V, E) if, in

E ∪ (i, j), there does not exist a path from any vertex i∗ ∈ HList (honest user set fixed at the setup phase) to

j∗ ∈ CList such that the path includes edge (i, j) as an intermediate edge (this includes the case j = j∗). That is, no

i∗ ∈ HList, j∗ ∈ CList such that a path i∗ j∗ exists in G′ = (V, E ∪ (i, j)).

We also introduce the notion of the selective-graph model as a weaker attack model. In the selective-graph

model, the adversary must commit a graph G∗ = (V∗, E∗) at the beginning of an experiment. To formally define

this model, we define a deviating pair with respect to G∗ and G.

Definition 3.8 (deviating pair). We say that (i, j) is a deviating pair with respect to G∗ = (V∗, E∗) and G = (V, E)
in the selective-graph model if i ∈ V∗ ∧ j ∈ V or j ∈ V∗ ∧ i ∈ V.

In the selective-graph model, the adversary must select i∗ ∈ V∗ as the target vertex that will be queried to

Ocha. Moreover, the adversary is not given re-encryption keys and re-encrypted ciphertexts fromOrekey andOreenc,

respectively, if queried (i, j) is a deviating pair. That is, the structure of DAG that is connected to the target vertex

must be determined at the beginning of the game. We focus on security in the selective-graph model in this study

since it is what our schemes achieve. For admissible edges in the selective-graph model, we consider i∗ ∈ V∗h
(defined below) instead of i∗ ∈ HList (i.e., replacing HList with V∗h in Definition 3.7).

Definition 3.9 (UPRE for PKE: Multi-Hop selective-graph HRA Security). We define the experiment Exp
upre-msg-hra
A (1λ, b)

between an adversary A and a challenger. The experiment consists of three phases.

Phase 1 (Setup): This is the setup phase. All security parameters are chosen by the challenger.

7The circular security issue arises in constructions that use general PKE schemes. If there exists a cycle, we have no way to use the

CPA-security of a PKE scheme in the cycle since the information of each secret key in the cycle is in a re-encryption key in the cycle. This does

not happen in concrete constructions based on some hard problems such as the DDH.

13

• The challenger initializes #Keys := 0, HList := ∅, CList := ∅, #CT := 0, KeyCTList := ∅, Drv :=
∅, V := ∅, E := ∅.

• At the beginning of this phase, A must commit a graph G∗ = (V∗ = (V∗h , V∗c), E∗). We assume

that V∗ = {1, . . . , |V∗|} by using appropriate renaming. If there is an edge (i, j) ∈ E∗ such that

i ∈ V∗h ∧ j ∈ V∗c , then the game aborts. The challenger generates keys (pki, ski) ← Genσi
(1λi) for all

i ∈ V∗ and sends {pki}i∈V∗
h

,
{
(pkj, skj)

}
j∈V∗c

to A. We assume that A selects (σi, λi) for all i ∈ V∗

as the key generation queries below (if λi < λ for i ∈ V∗h , then the game aborts). The challenger also

generates rki→j ← ReKeyGen(Σσi
, Σσj

, ski, pkj) for all (i, j) ∈ E∗ and sends them to A. The challenger

sets HList := HList∪V∗h , CList := CList∪V∗c , and #Keys := #Keys + |V∗|.

• For the i-th honest key generation query (σi, λi) from A, if λi < λ, the challenger outputs ⊥. Otherwise,

the challenger generates uncorrupted keys (pki, ski) ← Genσi
(1λi), sends (Σσi

, pki) to A, and sets

HList := HList∪ i, #Keys := #Keys + 1, and V := V ∪ {i}.

• For the j-th corrupted key generation query (j, σj, λj) from A, the challenger generates corrupted keys

(pki, ski) ← Genσi
(1λi), sends (Σσi

, pki, ski) to A, and sets CList := CList ∪ i, #Keys := #Keys + 1, and

V := V ∪ {i}.

• The challenger maintains graph G := (V, E) during the experiment. Note that we assume that all keys and

schemes are recorded with vertices and edges though we do not explicitly write for simplicity.

Phase 2 (Oracle query): This is the oracle query phase.

Oenc(i, m): For an honest encryption query (i, m) where i ≤ #Keys, the challenger generates cti ← Encσi
(pki, m),

sets #CT := #CT + 1, record (cti, Σσi
, i, #CT) in KeyCTList, and gives (cti, #CT) to A.

Orekey(i, j): For a re-encryption key query (i, j) where i, j ≤ #Keys, the challenger does the following.

1. If i ∈ V∗ or j ∈ V∗ or i = j, then output ⊥.

2. Otherwise, the challenger generates rki→j ← ReKeyGen(Σσi
, Σσj

, ski, pkj) and updates E := E∪ (i, j)
and gives rki→j to A.

Oreenc(i, j, k): For a re-encryption query (i, j, k) where i, j ≤ #Keys and k ≤ #CT, the challenger does the

following.

1. If (A) (i, j) is a deviating pair with respect to G∗ and G, or (B) (i, j) is not an admissible edge with

respect to G∗ = (V∗, E∗) and k ∈ Drv, then returns ⊥.

2. If there is no (∗, ∗, i, k) in KeyCTList, then outputs ⊥.

3. Otherwise, generates rki→j ← ReKeyGen(Σσi
, Σσj

, ski, pkj) and rctj ← ReEnc(Σσi
, Σσj

, rki→j, rcti)

from rcti in KeyCTList, sets #CT := #CT + 1, records (rctj, Σσj
, j, #CT) in KeyCTList, and gives

(#CT, rctj) to A. If k ∈ Drv, then also sets Drv := Drv ∪ {#CT}.

Ocha(i
∗, m0, m1): This oracle is invoked only once. For a challenge query (i∗, m0, m1) where i∗ ∈ V∗h and

m0, m1,∈ MU (same as defined in Definition 3.5), the challenger generates ct∗ ← Encσi∗ (pki∗ , mb)
and gives it to A. The challenger also sets #CT := #CT + 1, Drv := Drv ∪ {#CT}, KeyCTList :=
KeyCTList∪

{
(ct∗, Σσi∗

, i∗, #CT)
}

.

Phase 3 (Decision) : This is the decision phase. A outputs a guess b′ for b. The experiment outputs b′.
We say the UPRE is multi-hop selective-graph UPRE-HRA secure if, for any PPT A, it holds that

Adv
upre-msg-hra
A (λ) := |Pr[Exp

upre-msg-hra
A (1λ, 0) = 1]− Pr[Exp

upre-msg-hra
A (1λ, 1) = 1]| ≤ negl(λ).

UPRE-CPA Security. We can easily consider the CPA-security of UPRE. We can obtain the security experiment

of the CPA-security if we employ the following items in the experiment of the HRA security.

1. The honest encryption oracle Oenc is not used.

2. Neither the set Drv nor number #CT is used.

3. The condition that Oreenc outputs ⊥ for a query (i, j) such that i ∈ HList ∧ j ∈ CList (or (i, j) is not an

admissible edge) is used instead of the first and second conditions of Oreenc in the experiment of the HRA

security.

14

3.3 Security against Corrupted-Delegator Re-Encryption Attacks

Re-encrypted ciphertexts of relaxed UPRE schemes might include values that leak information about a plaintext to

a delegator (that is, an entity that has a secret key for the original ciphertext). This is an important issue to use

UPRE in migration of encryption systems explained in Section 1.1. We will see a concrete example in Section 5.

To capture attacks on re-encrypted ciphertext by corrupted delegator, we define a new security notion for UPRE

(and PRE), security against corrupted-delegator re-encryption attacks (CRA). We write the definition of the UPRE

case. The PRE case is similarly defined as PRE-CRA security. We can also similarly define a single-hop variant.

Definition 3.10 (Selective-graph UPRE-CRA security). The experiment Exp
upre-msg-cra
A (1λ, b) of this security

notion is the same as that of multi-hop selective-graph UPRE-HRA security except that the challenge oracle Ocha is

modified as follows.

Ocha(ic, i∗, m0, m1): This oracle is invoked only once. For a challenge query (ic, i∗, m0, m1)where ic ∈ V∗c ∧ i∗ ∈
V∗h and m0, m1,∈ MU (same as defined in Definition 3.5), the challenger does the following.

1. Generates ctic ← Encσic
(pkic , mb).

2. Generates rkic→i∗ = ReKeyGen(Σσic
, Σσi∗

, skic , pki∗).

3. Generates rct∗ ← ReEnc(Σσic
, Σσi∗

, rkic→i∗ , ctic) and gives (rct∗, rkic→i∗) to A.

The challenger also sets #CT := #CT+ 1, Drv := Drv∪{#CT}, KeyCTList := KeyCTList∪
{
(ct∗, Σσi∗

, i∗, #CT)
}

.

We say the UPRE is multi-hop selective-graph UPRE-CRA secure if, for any PPT A, it holds that

Adv
upre-msg-cra
A (λ) := |Pr[Exp

upre-msg-cra
A (1λ, 0) = 1]− Pr[Exp

upre-msg-cra
A (1λ, 1) = 1]| ≤ negl(λ).

This definition means that adversaries that have secret key skic cannot break the security of the re-encrypted

ciphertext rct∗ generated from the ciphertext ctic under pkic if they are not given the original ciphertext ctic (even if

re-encryption key rkic→i∗ is given). The fact that ctic is not given to A guarantees that A cannot trivially break the

security.

3.4 On Re-Encryption Simulatability

Cohen introduced the notion of re-encryption simulatability for PRE to prove PRE-HRA security in a modular

way [Coh19]. He proved that if a PRE scheme is PRE-CPA secure and satisfies re-encryption simulatability8, then

the scheme is PRE-HRA secure. See Definition A.1 in Appendix A for the definition.

The re-encryption simulatability is sufficient to prove PRE-HRA security (if a PRE is PRE-CPA secure scheme)

and useful. Thus, one might think it is better to use re-encryption simulatability for UPRE. However, it is a slightly

stronger security notion. Our relaxed UPRE schemes in Sections 5 and 6 are UPRE-HRA secure, yet does not satisfy

re-encryption simulatability. Thus, we do not use re-encryption simulatability to prove UPRE-HRA security in this

study9. See Appendix A.1 for the reason why our schemes in Sections 5 and 6 does not satisfies re-encryption

simulatability.

3.5 UPRE for More Advanced Encryption

We give the basic definitions of UPRE for PKE in Sections 3.1 and 3.2. We can consider more definitions for

advanced encryption since UPRE is a general concept.

CCA-security. First, we can consider CCA-security of UPRE for PKE. The definition of CCA-security of UPRE

for PKE could be defined in a similar way to that of PRE [CH07, LV08, HKK+12] though it will be more complex.

We leave giving a formal definition of CCA-security and concrete constructions as an open problem since they

are not in the scope of this paper. The focus of this study is that we initiate the study of UPRE, present the basic

definition, and construct concrete schemes from well-known cryptographic assumptions.

8Note that Cohen does not use key-privacy of PRE [ABH09] to prove PRE-HRA security.

9For our UPRE scheme in Section 4, we might be able to use re-encryption simulatability to prove UPRE-HRA security since Our UPRE

scheme in Section 4 satisfies re-encryption simulatability for UPRE defined in Appendix A. Moreover, we define a weaker variant of re-encryption

simulatability for UPRE (and PRE) that still implies HRA security in Appendix A.2. However, such a definition is not simple, and proofs are not

simplified. Proving such a weak re-encryption simulatability takes almost the same efforts to prove HRA security directly. Thus, we do not use

re-encryption simulatability in the main body.

15

Beyond PKE. We can also consider not only UPRE for PKE but also UPRE for identity-based encryption (IBE),

attribute-based encryption (ABE), and functional encryption (FE). Moreover, we can even consider UPRE from a

primitive to another primitive such as from IBE to FE. It is easier to consider UPRE between the same primitive

since additional inputs to encryption algorithms such as an attribute in a delegator ciphertext can be recycled in a

re-encrypted ciphertext. Defining UPRE between different primitives is much challenging since we have issues

about how to set such additional inputs at re-encryption phase and define security between different primitives. We

leave these as open problems since they are not in the scope of this paper.

4 Multi-Hop Construction based on Indistinguishability Obfuscation

In this section, we present a UPRE scheme for PKE based on PIO as the first step. To prove the security of our

UPRE scheme by using sub-exponentially secure IO, we need to assume that PKE schemes are (0-hiding) trapdoor

encryption (explained in Section 4.1). Several well-known CPA-secure PKE schemes could be transformed into

(0-hiding) trapdoor encryption [ElG85, Pai99, GM84, DJ01]. If we use a stronger obfuscation, called dynamic-input

PIO for randomized circuits [CLTV15], then we can use any standard CPA-secure PKE scheme. There is a

possibility to construct dynamic-input PIO for specific dynamic-input indistinguishable samplers [CLTV15].

We can describe our UPRE scheme based on PIO in a unified way by the language of trapdoor encryption as

Canetti et al. did [CLTV15].

4.1 Trapdoor Encryption

Before we proceed to present our UPRE scheme and prove the security, we present the notion of trapdoor encryption.

Definition 4.1 (Trapdoor Encryption [CLTV15]). We say that Σ = (Gen, Enc, Dec, TrapGen) with message

spaceM is a trapdoor encryption scheme if (Gen, Enc, Dec) with message spaceM is a CPA-secure PKE scheme

and the trapdoor key generation algorithm TrapGen satisfies the following.

Trapdoor Public Key Indistinguishability: It holds that

{
pk | (pk, sk)← Gen(1λ)

}
λ∈N

c
≈

{
tpk | tpk← TrapGen(1λ)

}
λ∈N

.

Computational/Statistical/δ-Hiding: We define ensembles of random variables, viewtpke(b), which are all view

from an adversary A during experiments between A and challenger defined as follows.

1. The challenger runs tpk← TrapGen(1λ) and gives tpk to A.

2. A sends two messages m0, m1 ∈ M as the challenge messages to the challenger.

3. The challenger generates ciphertext ct∗ ← Enc(tpk, mb) and sends ct∗ to A.

4. We set viewtpke(b) := (tpk, m0, m1, ct∗).

We say Σ is computational/statistical/δ-hiding if, for any PPT/unbounded/PPT adversary A, it holds that

viewtpke(0)
x
≈ viewtpke(1),

where
x
≈ is

c
≈ /

s
≈ /

c
≈δ, respectively.

In particular, 0-hiding is important for our constructions. It is easy to see that a standard CPA-secure PKE is

trapdoor encryption with computational-hiding [CLTV15].

Theorem 4.2 ([CLTV15]). All IND-CPA secure PKE schemes are computational-hiding trapdoor encryption.

Remark 4.3. The reason why we need trapdoor encryption is that we must hard-wire an encryption key in a

re-encryption circuit to be obfuscated. In the security proof of the construction in Section 4, we need to change the

behavior of the re-encryption circuit, so we cannot directly use the standard IND-CPA security. When we change

the circuit behavior, we need to rely on the security of PIO defined in Definition 2.9. For the high-level overview,

see Section 1.3.

Computational and δ-hiding properties are used to guarantee indistinguishability of samplers defined Defini-

tions 2.10 and 2.13.

16

Definition 4.4 (δ-Rerandomizable Encryption [CLTV15]). We say that Σ = (Gen, Enc, Dec, reRand) is a δ-

rerandomizable encryption scheme if (Gen, Enc, Dec) is a CPA-secure PKE scheme and the additional algorithm

reRand satisfies the following.

δ-Rerandomizability: We define the following experiments Exptrerand
A (1λ, b) between a challenger and an

adversary A as follows.

1. The challenger chooses a bit b← {0, 1}, generates (pk, sk)← Gen(1λ), and sends pk to A.

2. A sends m ∈ M whereM is the message space of Σ to the challenger.

3. The challenger generates ct0 ← Enc(pk, m) and ct1 ← Enc(pk, m).

4. If b = 0, the challenger computes ĉt ← reRand(pk, c0). Otherwise, the challenger computes

ĉt← reRand(pk, c1).

5. The challenger returns (ct0, ct1, ĉt) to A.

6. A outputs a guess b′ ∈ {0, 1}. The experiment outputs b′.

We say that reRand is δ-rerandomizable if for any PPT A, it holds that

|Pr[Exptrerand
A (1λ, 0) = 1]− Pr[Exptrerand

A (1λ, 1) = 1]| ≤ δ(λ).

Re-randomizable encryption can be transformed into trapdoor encryption [CLTV15]. This transformation

only changes the format of public-keys. It does not change the format of ciphertexts at all. Therefore, decryption

procedure in the transformed scheme is completely the same as the original one. This is important for construction

of UPRE based on PIO since we would like to use a PKE scheme as it is. We review the theorem and construction

by Canetti et al. [CLTV15].

Theorem 4.5 ([CLTV15]). If there exists δ-rerandomizable encryption, then Σ = (Gen, Enc, Dec, TrapGen)
described below is δ-hiding trapdoor encryption scheme whose message space is {0, 1}.

Let Σ′ = (Gen′, Enc′, Dec′, reRand) be a δ-rerandomizable encryption scheme.

Gen(1λ): generates (pk′, sk′) ← Gen′(1λ) and ctb ← Enc′(pk′, b) for b = 0, 1 and outputs (pk, sk) :=
((pk′, ct0, ct1), sk′).

Enc(pk, b): parses pk = (pk′, ct0, ct1) and outputs ct← reRand(pk′, ctb).

Dec(sk, ct): outputs b′ ← Dec′(sk′, ct).

TrapGen(1λ): generates (pk′, sk′) ← Gen′(1λ) and ctb ← Enc′(pk′, 0) for b = 0, 1 and outputs tpk :=
(pk′, ct0, ct1).

Theorem 4.6 ([CLTV15]). Goldwasser-Micali [GM84], ElGamal [ElG85], Paillier [Pai99], and Damgård-Jurik

PKE [DJ01] schemes can be transformed into 0-hiding trapdoor encryption schemes by the transformation described

in Theorem 4.5 in Section 4.1.

4.2 Our Multi-Hop Scheme from PIO

Now, we present our UPRE scheme based on PIO. In fact, the scheme is a modification of fully homomorphic

encryption scheme from PIO and trapdoor encryption by Canetti et al. [CLTV15]. The scheme is simple and easy to

understand. Hereafter, we overload the notation Σσi
= (Genσi

, Encσi
, Decσi

) by Σi = (Geni, Enci, Deci) for ease

of notation. Our scheme UPREpio is as follows.

• ReKeyGen(Σ f , Σt, sk f , pkt):

– Define a probabilistic circuit C
pio
re described in Figure 1.

– Output rk f→t := piO(Cpio
re).

• ReEnc(Σ f , Σt, rk f→t, ct f):

– Parse rk f→t = piO(Cpio
re).

– Output rct := piO(Cpio
re)(ct f).

17

Re-Encryption Function C
pio
re [Σ f , Σt, sk f , pkt](ct f)

Hardwired: Σ f , Σt , sk f , pkt .

Input: A ciphertext ct f ∈ C f .

Padding: This circuit is padded to size padT := padT(λ, λ f , λt), which is determined in analysis (we may omit λ f and λt).

1. Compute m← Dec f (sk f , ct f).

2. Generate and return ctt ← Enct(pkt , m).

Figure 1: The description of C
pio
re

Dummy Re-Encryption Function dC
pio
re [Σt, tpkt](ct f)

Hardwired: Σt , tpkt .

Input: A ciphertext ct f ∈ C f .

Padding: This circuit is padded to size padT := padT(λ, λ f , λt), which is determined in analysis (we may omit λ f and λt).

1. Generate and return ctt ← Enct(tpkt , 0ℓt).

Figure 2: The description of dC
pio
re

Correctness. From the definition of C
pio
re , for ct f ← Enc f (pk f , m), it holds that C

pio
re (ct f) = Enct(pkt, m) = ctt.

From the alternative correctness of piO (See Definition 2.9) and the correctness of Σ f , it holds that

rct = piO(Cpio
re)(ct f)

p
≈ ctt.

Therefore, it holds that

Dec(Σj, skj, ReEnc(Σ′j, ReKeyGen(Σ′j, skj−1, pkj), rctj−1)) = Dec(Σj−1, skj−1, rctj−1),

where Σ′j = (Σj−1, Σj) and the correctness holds. Note that a re-encrypted ciphertext under delegatee public-key

pkj is exactly in Cj.

Padding Parameter. To use PIO, we need pad the size of circuits to be obfuscated. We set padT(λ, λ f , λt) :=

max{|Cpio
re |, |dC

pio
re |}, which is polynomial of (λ, λ f , λt) since an input of C

pio
re , dC

pio
re is ciphertext under pk f

generated by Gen f (1
λ f) and all hard wired values are keys of Σ f , Σt. We can think λ f and λt are polynomials in λ,

so we may omit λ f and λt hereafter.

4.3 Security Proof

Theorem 4.7 (UPRE-HRA security). If there exists PIO for the class of sampler SΣi ,Σj defined below and both Σ f

and Σt are trapdoor encryption schemes, then UPREpio is selective-graph UPRE-HRA secure. More specifically, if

either of the following two conditions holds, then UPREpio is multi-hop selective-graph UPRE-HRA secure.

(a) piO is a PIO for the class of dynamic-input sampler SΣi ,Σj and both Σ f and Σt are IND-CPA secure PKE

schemes.

(b) piO is a PIO for the class of X-IND sampler SΣi ,Σj and both Σ f and Σt are 0-hiding trapdoor encryption

schemes.

Before we proceed to prove Theorem 4.7, we define the class of sampler SΣi ,Σj defined by trapdoor encryption

schemes Σi, Σj as follows.

Sampler SampSK: The distribution SampSK samples a trapdoor public key tpkj ← TrapGenj(1
λj) and outputs

circuits C0 := C
pio
re [Σi, Σj, ski, tpkj] and C1 := dC

pio
re [Σj, tpkj], and z := tpkj, where SK =

{
skλi

}
is a

sequence of strings of length ρi(λi) and sk := skλi
.

18

Class SΣi ,Σj : Let SΣ f ,Σt be the class of samplers with distribution SampSK for all sequence of strings SK of length

ρj(λj).

Now, we proceed to prove Theorem 4.7.

Proof. We define a sequence of hybrid experiments Hybx
A(b). We emphasize differences among hybrid experiments

by using red underlines. Hereafter, Hybx
A(b) ≈ Hyb

y
A(b) denotes |Pr[Hybx

A(b) = 1]− Pr[Hyb
y
A(b) = 1]| ≤

negl(λ).

Hyb0
A(b): The first experiment is the original security experiment for b, Exp

upre-msg-hra
A (1λ, b). That is, it holds

that Hyb0
A(b) = Exp

upre-msg-hra
A (1λ, b). Note that, in the successive experiments, we can easily simulate all

keys in G since vertices in V are not connected to the target vertex in G∗ and simulators can generate keys for

them by itself.

Hyb0′

A(b): This experiment is the same as Hyb0
A(b) except that we guess the target vertex i∗ that will be queried to

challenge oracle Ocha and abort if the guess is incorrect. The guess is correct with probability 1/|V∗h |, so

Pr[Hyb0′

A(b) = 1] = 1
|V∗

h
|
· Pr[Hyb0

A(b) = 1].

Hyb1
A(b): This experiment is the same as Hyb0′

A except that

1. we record not only (rcti, Σi, i, #CT) but also m in KeyCTList for encryption query (i, m) and

2. for re-encryption query (i′, j, k) such that (i′, j) is not an admissible edge with respect to G∗ =
(V∗, E∗) and k /∈ Drv, the re-encrypted ciphertext is differently generated as follows. First, we

retrieve (rcti′ , Σσi′
, i′, k, m) from KeyCTList (if there is not such an entry, just outputs ⊥). Then,

we compute rctj ← Encj(pkj, m) instead of rki′→j ← ReKeyGen(Σi′ , Σj, ski′ , pkj) and rct ←

ReEnc(Σi′ , Σj, rki′→j, rcti′).

That is, we do not need ski′ to generate rctj. By the alternative correctness of piO in Definition 2.9, this

perfectly simulates Hyb0′

A(b) since an output of C
pio
re for input rcti′ = Enci′(pki′ , m) is just a fresh ciphertext

of m under pkj.

Process for removing ski∗ of the target vertex: Now, we focus on vertices in V∗ connected via admissible edges.

To use the security of Σi∗ , we need remove information about ski∗ from all re-encryption keys in G∗ = (V∗, E∗)
possibly connected to i∗. Let Q be the total number of admissible edges connected to target vertex i∗. We

call the following procedure a depth-search from vertex i: We seek a vertex that is connected i and does not

have an outgoing edge in a forward direction. If there is a vertex i′ (possibly i′ = i) that has two or more than

two edges during the search, then we select a vertex i′1 that is numbered by the smallest number and set a flag

such that the vertex is already searched to i′1 . We scan G∗ = (V∗, E∗) by the depth-search as follows.

First, we do a depth-search from i∗ and find a vertex j such that j does not have an outgoing edge.

Repeat the following process.

1. (Backward scan process) Go back to a vertex i′ that has two or more than two edges. If there is no

such a vertex, then we end. If an edge was scanned by this backward scan, then we set a “scanned”

flag to the edge.

2. Do the depth-search from i′.

During the backward scan process above, we repeat the hybrid transitions Hyb
2,v
A and Hyb

3,v
A below whenever

we move on a edge where v = 1, . . . , Q. We let Dlist be the list of vertices whose public key is replaced with

a dummy key tpk. We initialize Dlist := ∅ and maintain Dlist during the repeated processes below.

Hyb
2,v
A (b): This experiment is the same as Hyb

3,(v−1)
A (b) except that for honest key generation query (j, Σj), the

challenger generates tpkj ← TrapGenj(1
λj) and for all (i, j) ∈ E∗ such that i ∈ V∗h , the challenger uses

tpkj to generate rki→j = piO(Cpio
re [Σi, Σj, ski, tpkj]) instead of pkj and rki→j = piO(Cpio

re [Σi, Σj, ski, pkj]).

At this point, honest vertex j does not have any non-scanned edge in a forward direction. We renew

Dlist := Dlist ∪ {j}. In Lemma 4.8, we prove that Hyb
3,v−1
A (b)

c
≈ Hyb

2,v
A (b) holds due to the trapdoor

public key indistinguishability property in Definition 4.1. Apparently, it holds that Hyb
3,0
A (b) = Hyb1

A(b).

19

Hyb
3,v
A (b): This experiment is the same as Hyb

2,v
A (b) except that for all (i, j) ∈ E∗ such that i ∈ V∗h , the

challenger generates uses dC
pio
re instead of C

pio
re . That is, rki→j = piO(dC

pio
re [Σj, tpkj]) instead of rki→j =

piO(Cpio
re [Σi, Σj, ski, tpkj]). In Lemma 4.9, we prove that Hyb

2,v
A (b)

c
≈ Hyb

3,v
A (b) holds due to the security

of PIO with respect to SΣi ,Σj . The sampler SampSK generates the following distributions.

(C0 = hybCre[Σi, Σj, ski, tpkj], C1 = dCpio
re [Σj, tpkj], z = tpkj)← SampSK.

In Hyb
3,Q
A (b), ski∗ is neither written in any re-encryption key nor used to generate a re-encrypted ciphertext.

Thus, we can use the security of Σi∗ . In Lemma 4.10, we prove that Hyb
3,Q
A (0)

c
≈ Hyb

3,Q
A (1) holds due to the

computational/statistical/δ-hiding security of Σi∗ . Therefore, it holds that Hyb0
A(0)

c
≈ Hyb0

A(1) by Lemmata 4.8

to 4.10 since Q and |V∗h | are polynomials.

Lemma 4.8. If Σj is a trapdoor encryption scheme, then it holds Hyb
3,v−1
A (b)

c
≈ Hyb

2,v
A (b).

Proof. We construct B for the trapdoor public key indistinguishability property of Σj. First, B is given a target

key ekj (ekj = pkj or ekj = tpkj). To use A, B generates key pairs (pki′ , ski′) for all i′ ∈ HList \ (Dlist ∪ {j})

and i′ ∈ CList. Note that Dlist ⊆ V∗h by definition. For all i′ ∈ Dlist, B generates tpki′ ← TrapGeni′(1
λi′). For

honest key generation query (j, Σj), B sets ekj as the public-key of vertex j. For all (i, j) ∈ E∗ such that i ∈ V∗h , B

generates rki→j = piO(Cpio
re [Σi, Σj, ski, ekj]). If ekj = pkj, then the view is totally the same as Hyb

3,v−1
A (b). If

ekj = tpkj, then the view is totally the same as Hyb
2,v
A (b). Therefore, if A can distinguish two experiments, B can

break the trapdoor key indistinguishability property of Σj.

Lemma 4.9. If piO is a PIO for the sampler SΣi ,Σj , then it holds that Hyb
2,v
A (b)

c
≈ Hyb

3,v
A (b).

Proof. We construct a distinguisher D of PIO. To use A of UPRE, D generates key pairs (pki′ , ski′) for all

i′ ∈ HList \Dlist and i′ ∈ CList. For all i′ ∈ Dlist, D generates tpki′ ← TrapGeni′(1
λi′). At this point, we do

not need ski′ for i′ ∈ Dlist. Therefore, B can simulate all oracles. However, to use A, B simulates Orekey in a

slightly different way. The simulation for (i, j) ∈ E∗ such that (i, j) is an admissible edge is different. When B
simulates a re-encryption key for such (i, j) ∈ E∗ at the beginning of the game, B uses the challenger of PIO.

The challenger samples (C0, C1, z) ← Sampski where C0 = C
pio
re [Σi, Σj, ski, tpkj], C1 = dC

pio
re [Σj, tpkj], and

z = tpkj and generates Ĉ (obfuscated circuit of C0 or C1). When B is given Ĉ from the challenger of PIO, B

sends rki→j := Ĉ to A. This completes the simulation. If B is given Ĉ = piO(Cpio
re [Σi, Σj, ski, tpkj]), then the

view is totally the same as Hyb
2,v
A (b). If B is given Ĉ = piO(dC

pio
re [Σj, tpkj]), then the view is totally the same

as Hyb
3,v
A (b). Therefore, if A can distinguish two experiments, B can break the security of PIO for sampler

Sampski .

Lemma 4.10. If Σi∗ is a trapdoor encryption scheme, then it holds Hyb
3,Q
A (0)

c
≈ Hyb

3,Q
A (1).

Proof. We construct B for (computational/statistical/δ-) hiding of Σi∗ . First, B is given a target key pki∗ . To use A,

B generates all keys except for vertex i∗. When (i∗, Σi∗) is queried as an uncorrupted key generation query, B sets

pki∗ as the public-key for user i∗. At this point, B does not need ski∗ since it is neither written in any re-encryption

key nor used in Oreenc. For the challenge query (i∗, m0, m1) to Ocha, B passes (m0, m1) to its challenger of Σi∗ .

When B receives ct∗i∗ , then passes it toA as the target ciphertext. If ct∗i∗ ← Enci∗(pki∗ , m0), then the view is totally

the same as Hyb
3,Q
A (0). If ct∗i∗ ← Enci∗(pki∗ , m1), then the view is totally the same as Hyb

3,Q
A (1). Therefore, if A

can distinguish two experiments, B can break the hiding property of Σi∗ .

CRA security of UPREpio. The distribution of re-encrypted ciphertexts of UPREpio is perfectly the same as that

of delegatees. Thus, the CRA-security of UPREpio immediately follows from the UPRE-HRA security of UPREpio

since a secret key of a delagtor never helps breaking the security of a delegatee’s scheme and a re-encryption key

does not inculde the information about the delegatee’s secret key.

20

4.4 Instantiation of UPRE scheme based on PIO

Instantiation by 0-hiding trapdoor encryption and IO. To instantiate by sub-exponentially secure IO and OWF,

we should prove that SΣi ,Σj is a static-input X-indistinguishable sampler for X := Ci if Σi and Σj are δ-hiding

trapdoor encryption schemes.

We let γ(λ) := log |Ci| := log X(padT(λ)) and set δ := negl(λ) · 2−γ(λ). It is easy to see that X differing

inputs holds sinceX = Ci is the whole domain of circuits C0 = C
pio
re [Σi, Σj, ski, tpkj] and C1 = dC

pio
re [Σj, tpkj]. It is

also easy to see that X-indistinguishability holds since outputs of C
pio
re [Σi, Σj, ski, tpkj](cti) and dC

pio
re [Σj, tpkj](cti)

are Encj(tpkj, m) and Encj(tpkj, 0ℓj), respectively and these are negl(λ) · 2−γ(λ)-indistinguishable due to the

δ-hiding property. This means the outputs of C0 and C1 are negl(λ) · X−1-indistinguishable since X(padT(λ)) =

2γ(λ). This parameter setting of δ is achievable by 0-hiding trapdoor encryption, which is instantiated by well-known

IND-CPA PKE schemes such as ElGamal PKE (see Section 4.1). Note that as observed in Theorem 4.5, the message

space of this instantiation is {0, 1}.

Corollary 4.11. If there exists sub-exponentially secure IO and sub-exponentially secure OWF, then UPREpio is a

multi-hop selectively UPRE-HRA secure UPRE scheme for 0-hiding trapdoor encryption schemes.

Instantiation by IND-CPA PKE and dynamic-input PIO. If we can use a dynamic-input PIO (see Definitions 2.9

and 2.13 for the definition), then we can set δ = negl(λ) in the analysis above and it is achievable by standard

IND-CPA PKE schemes (that is, trapdoor encryption with computational hiding). A dynamic-input PIO for the class

of sampler SΣi ,Σj might exist (no impossibility result on PIO for a specific class) though it is not proved [CLTV15].

The PIO construction by Canetti et al. [CLTV15] is a candidate of dynamic-input PIO for the class of sampler

SΣi ,Σj .

Conjecture 4.12. A dynamic-input PIO for the class of sampler SΣi ,Σj exists.

Corollary 4.13. If there exists dynamic-input PIO for the class of sampler SΣi ,Σj where Σi, Σj are IND-CPA PKE

schemes, then UPREpio is a multi-hop selectively UPRE-HRA secure UPRE scheme for any IND-CPA PKE scheme.

Instantiation by IND-CPA PKE, doubly-probabilistic IO, and exponential DDH Agrikola, Couteau, and

Hofheinz [ACH20] introduced the notion of doubly-probabilistic IO (DPIO), which is an extended notion of PIO.

They prove that in most applications of PIO (fully homomorphic encryption, spooky encryption, function secret

sharing etc.) we can replace PIO with DPIO. They also prove that we can achieve DPIO by using polynomially

secure IO and exponential DDH assumption. It is easy to see that we can replace the PIO in UPREpio with DPIO.10

Therefore, we can obtain the following theorem.

Theorem 4.14. If there exists polynomially secure IO and exponential DDH assumption is true, then UPREpio is a

multi-hop selectively UPRE-HRA secure UPRE scheme for IND-CPA encryption schemes.

We can prove this theorem by combining the proof techniques of Theorem 4.7 and that of fully homomorphic

encryption based on DPIO by Agrikola et al. [ACH20]. We omit the detail in this manuscript.

5 Multi-Hop Construction based on Garbled Circuits

In this section, we provide a UPRE scheme using garbled circuits. The main idea of the construction provided here

is that the re-encryptor delegates decryption to the target node via garbled circuits. To achieve UPRE, we use weak

batch encryption schemes, which are constructed from standard IND-CPA secure PKE schemes.

5.1 Weak Batch Encryption

Definition 5.1 (Weak Batch Encryption). LetM be a message space. A weak batch encryption scheme is a tuple

of algorithms (BatchGen, BatchEnc, BatchDec) where

• BatchGen(1λ, s) takes as input the security parameter and selection bits s ∈ {0, 1}λ, and outputs a pair

(p̂k, ŝk) of public and secret keys.

10This is because the design idea of UPREpio is based on fully homomorphic encryption scheme based on PIO and Agrikola et al. achieve

fully homomorphic encryption from DPIO.

21

• BatchEnc(p̂k, {(mi,0, mi,1)}i∈[λ]) takes as input a public key p̂k and λ-pairs of messages {(mi,0, mi,1)}i∈[λ]

where mi,b ∈ M, and outputs a ciphertext ĉt.

• BatchDec(ŝk, ĉt) takes as input a secret key ŝk and a ciphertext message ĉt, and outputs
{

m′i
}

i∈[λ], or ⊥.

Correctness: For any λ, s ∈ {0, 1}λ, mi,b ∈ M, we have that

Pr

∀i m′i = mi,s[i]

∣∣∣∣∣∣∣

(p̂k, ŝk) ← BatchGen(1λ, s),
ĉt ← BatchEnc(p̂k, {(mi,0, mi,1)}i∈[λ]),{

m′i
}

i∈[λ] ← BatchDec(ŝk, ĉt)

 > 1− negl(λ),

where s[i] denotes i-th bit of s.

Receiver Privacy: We require that public keys p̂k are independent of the selection bits s ∈ {0, 1}λ used to generate

p̂k. That is, for all s1, s2 it holds that

p̂k1 ≡ p̂k2

where (p̂k1, ŝk1) ← BatchGen(1λ, s1) and (p̂k2, ŝk2) ← BatchGen(1λ, s2) and ≡ means the statistical

distance is equal to 0.

Sender Privacy against Semi-Honest Receiver: We define the experiment Exp
wbe-cpa
A (1λ, β) between an adver-

sary A and challenger as follows.

1. A chooses s ∈ {0, 1}λ and sends it to the challenger.

2. The challenger computes (p̂k, ŝk)← BatchGen(1λ, s) and sends p̂k to A.

3. A sends {(mi,0, mi,1)}i∈[λ] to the challenger and:

• If β = 0, the challenger computes ĉt∗ ← BatchEnc(p̂k, {(mi,0, mi,1)}).

• Else if β = 1, the challenger computes ĉt∗ ← BatchEnc(p̂k,
{
(mi,s[i], mi,s[i])

}
).

4. The challenger sends (ŝk, ĉt∗) to A.

5. A outputs a guess β′ for β. The experiment outputs β′.

We say (BatchGen, BatchEnc, BatchDec) is WBE-CPA secure against semi-honest receiver if for any PPT

adversary A, it holds that

Adv
wbe-cpa
A (λ) := |Pr[Exp

wbe-cpa
A (1λ, 0) = 1]− Pr[Exp

wbe-cpa
A (1λ, 1) = 1]| ≤ negl(λ).

We can consider a multi-challenge variant. That is, A can send {(m
(j)
i,0 , m

(j)
i,1)}i∈[λ] and obtain many target

ciphertexts after (p̂k, ŝk) is given for j = 1, . . . , poly(λ).

IND-CPA Security: The experiment Exp
ind-cpa
A (1λ, β) is the same as Exp

wbe-cpa
A (1λ, β) above except that

1. A is not given ŝk.

2. If β = 1, then ĉt∗ ← BatchEnc(p̂k, {(0, 0)}) where 0 is a fixed special message (considered as all

zero) that does not depend on β.

If Pr[Exp
ind-cpa
A (1λ, 0) = 1]− Pr[Exp

ind-cpa
A (1λ, 1) = 1] is negligible, then the weak batch encryption is

IND-CPA secure.

The difference between weak batch encryption and batch encryption proposed by Brakerski, Lombardi, Segev,

and Vaikuntanathan [BLSV18] is that there is no efficiency requirement on the size of the batch public-key p̂k.

Thus, it is easy to achieve weak batch encryption.

Theorem 5.2 (Weak Batch Encryption from IND-CPA PKE). If there exists IND-CPA secure PKE, then there

exists weak batch encryption.

Proof. Let Σ = (Gen, Enc, Dec) be an IND-CPA secure PKE scheme.

22

BatchGen(1λ, s): It generates (pki,b, ski,b) ← Gen(1λ) for all i ∈ [λ] and b ∈ {0, 1} and outputs p̂k :=
{

pki,b

}
i∈[λ],b∈{0,1} and ŝk :=

{
ski,s[i]

}
i∈[λ]

.

BatchEnc(p̂k, {(mi,0, mi,1)}i∈[λ]): It generates cti,b ← Enc(pki,b, mi,b) for all i ∈ [λ] and b ∈ {0, 1}. It outputs

ĉt :=
{

cti,b

}
i∈[λ],b∈{0,1} .

BatchDec(ŝk, ĉt): It parses ŝk = (sk1, . . . , skλ) and ĉt =
{

cti,b

}
i∈[λ],b∈{0,1} . It computes m′i ← Dec(ski, cti,b)

for b ∈ {0, 1} and sets mi := m′i,b if m′i,b 6= ⊥. It outputs {mi}i∈[λ].

The receiver privacy trivially holds since p̂k does not include any information about s. The sender privacy

follows from the IND-CPA security of Σ and the standard hybrid argument because {ski,1−s[i]}i∈[λ] are never used.

Moreover, it is easy to see that the scheme satisfies the multi-challenge version by the standard hybrid argument.

The IND-CPA security trivially holds.

5.2 Our Multi-Hop Scheme from GC

Our scheme UPREgc is based on a garbling scheme (Garble, Eval), a weak batch-encryption scheme (BatchGen,
BatchEnc, BatchDec) and a 2-player secret-sharing scheme (Share, Reconstruct). As in Section 4, we overload

the notation Σσi
= (Genσi

, Encσi
, Decσi

) by Σi = (Geni, Enci, Deci) for ease of notation. Moreover, we sometimes

write labels instead of {labelsk,b}k∈[n],b∈{0,1} if it is clear from the context for ease of notation. We also denote by

labelss labels selected by s, that is, {labelsi,si
}i∈[λ]. Moreover, l̃abels basically denotes selected labels output by

BatchDec.

• ReKeyGen(1λ, Σ f , Σt, sk f , pkt):

– Compute (s1, s2)← Share(sk f)

– (p̂k, ŝk)← BatchGen(1λ, s1)

– Compute c̃tt ← Enct(pkt, ŝk)

– Output rk f→t := (p̂k, s2, c̃tt).

• ReEnc(Σ f , Σt, rk f→t, ct f):

– Parse rk f→t = (p̂k, s2, c̃tt).

– If ct f is in the ciphertext space of Σ f (1st level), set C ← P[s2, ct f]; Else if (level i > 1), parse

ct f = (ĉt′, c̃t f , C̃i−1, . . . , C̃1) and set C← Q[s2, ĉt′, c̃t f]

– Compute (C̃i, labels)← Garble(C).

– Compute ĉt← BatchEnc(p̂k, labels)

– Output (ĉt, c̃tt, C̃i, . . . , C̃1)

• mDec(Σt, skt, rct, i): Parse rct = (ĉt, c̃tt, C̃i, . . . , C̃1).

– Compute ŝk′ ← Dec(skt, c̃tt).

– Compute l̃abelsi ← BatchDec(ŝk′, ĉt)

– For j = i, . . . , 2 do: Compute l̃abelsj−1 ← Eval(C̃j, l̃abelsj).

– Compute and output m′ ← Eval(C̃1, l̃abels1).

23

First Level Re-Encryption Circuit P[s2, ct f](s1)

Hardwired: s2, ct f .

Input: A share s1.

• Compute sk′f ← Reconstruct(s1, s2).

• Compute and output m′ ← Dec f (sk
′
f , ct f).

Figure 3: The description of the first level re-encryption circuit P

Higher Level Re-Encryption Circuit Q[s2, ĉt′, c̃t f](s1)

Hardwired: s2, ĉt′, c̃t f .

Input: A share s1.

• Compute sk′f ← Reconstruct(s1, s2).

• Compute ŝk′ ← Dec(sk′f , c̃t f).

• Compute and output l̃abels← BatchDec(ŝk′, ĉt′).

Figure 4: The description of the higher level re-encryption circuit Q

Correctness. We now turn to the correctness of (ReKeyGen, ReEnc, mDec). We will show correctness via

induction.

We will first show correctness for level 1 ciphertexts. Let thus rct = (ĉt, c̃tt, C̃1) be a level 1 ciphertext,

where (C̃1, labels) ← Garble(P[s2, ct f]), ĉt = BatchEnc(p̂k, labels) and c̃tt = Enct(pkt, ŝk). Consider the

computation of mDec(Σt, skt, rct). By the correctness of Σt it holds that ŝk′ = Dec(skt, c̃tt) = ŝk. Next, by

the correctness of the batch public key encryption (BatchGen, BatchEnc, BatchDec) it holds that that l̃abels =
BatchDec(ŝk, ĉt) = labelss1

. Thus, by the correctness of the garbling scheme (Garble, Eval) it holds that

Eval(C̃1, l̃abels) = Eval(C̃1, labelss1
) = P[s2, ct f](s1). By the definition of P, P[s2, ct f](s1) computes sk f ←

Reconstruct(s1, s2) and outputs m′ ← Dec f (sk
′
f , ct f). Thus, by the correctness of (Share, Reconstruct) it holds

that sk′f = sk f and finally by the correctness of Σ f we get that m′ = m.

Now assume that decryption is correct for level (i − 1) ciphertexts and consider a ciphertext rct =
(ĉt, c̃tt, C̃i, . . . , C̃1) at level i > 1. As before, it holds that (C̃i, labels) ← Garble(Q[s2, ĉt′, c̃t f]), ĉt =

BatchEnc(p̂k, labels) and c̃tt = Enct(pkt, ŝk). Again consider the computation of mDec(Σt, skt, rct). By

the correctness of Σt it holds that ŝk′ = Dec(skt, c̃tt) = ŝk. Next, by the correctness of the batch public key

encryption scheme (BatchGen, BatchEnc, BatchDec) it holds that that l̃abels = BatchDec(ŝk, ĉt) = labelss1
.

Thus, by the correctness of the garbling scheme (Garble, Eval) it holds that Eval(C̃i, l̃abelsi) = Eval(C̃i, l̃abelss1
) =

Q[s2, ĉt′, c̃t f](s1).

Notice now that we can substitute Q[s2, ĉt′, c̃t f](s1) by

• Compute sk′f ← Reconstruct(s1, s2).

• Compute ŝk← Dec(sk f , c̃t f).

• Compute l̃abels← BatchDec(ŝk, ĉt′).

By the correctness of (Share, Reconstruct) it holds that sk′f = Reconstruct(s1, s2) = sk f . By inspection we

see that the remaining steps of the computation are identical to the decryption of a level (i− 1) ciphertext. The

induction hypothesis provides that decryption is correct for level (i− 1) ciphertexts and we are done.

5.3 Security Proof

Theorem 5.3 (UPRE-HRA security). Assume that gc = (Garble, Eval) is a selectively secure garbling scheme,

(Share, Reconstruct) is a 2-out-of-2 secret sharing scheme and (BatchGen, BatchEnc, BatchDec) is a weak batch

24

encryption scheme in the sense of Definition 5.1, and both Σ f and Σt are IND-CPA secure PKE, then UPREgc is

selective-graph UPRE-HRA secure.

Proof. We define a sequence of hybrid experiments Hybx
A(b). We emphasize differences among hybrid experiments

by using red underlines. Hereafter, Hybx
A(b) ≈ Hyb

y
A(b) denotes |Pr[Hybx

A(b) = 1]− Pr[Hyb
y
A(b) = 1]| ≤

negl(λ). We say that a ciphertext ct is a level i re-encryption, if ct is of the form ct = (ĉt, c̃tt, C̃i, . . . , C̃1), i.e. ct

is the result of i re-encryptions.

Hyb0
A(b): The first experiment is the original security experiment for b, Exp

upre-msg-hra
A (1λ, b). That is, it holds

that Hyb0
A(b) = Exp

upre-msg-hra
A (1λ, b). Note that in the successive experiments, we can easily simulate

all keys in G = (V, E) since vertices in V are not connected to the target vertex in G∗ and simulators can

generate keys for them by itself.

Hyb0′

A(b): This experiment is the same as Hyb0
A(b) except that we guess the target vertex i∗ that will be queried to

challenge oracle Ocha and abort if the guess is incorrect. The guess is correct with probability 1/|V∗h |, so

Pr[Hyb0′

A(b) = 1] = 1
|V∗

h
|
· Pr[Hyb0

A(b) = 1].

Hyb1
A(b): In this hybrid we record not only (rcti, Σi, i, #CT) but also m in KeyCTList for encryption query (i, m).

Moreover, for each re-encryption query, store the value l̃abels = labelss1
.

The modification between Hyb0′

A(b) and Hyb1
A(b) is merely syntactic, thus it holds that Pr[Hyb0′

A(b) = 1] =

Pr[Hyb1
A(b) = 1].

We will now replace re-encrypted ciphertexts by simulated re-encrypted ciphertexts. For re-encryption query

(î, j, k) such that (î, j) is not an admissible edge with respect to G∗ = (V∗, E∗) and k /∈ Drv, the re-encrypted

ciphertext is differently generated by a modified re-encryption procedure. We can assume î is honest since we do

not need guarantee anything if î is not honest. The goal of the processes below is erasing secret keys of honest

vertices queried by re-encryption queries. Note that î = i∗ is possible due to the restriction k /∈ Drv though (î, j) is

not admissible. We repeat the processes below for u = 1, . . . , Qreenc where Qreenc is the total number of tuples

(î, j, k) such that (î, j) is not an admissible edge with respect to G∗ = (V∗, E∗) and k /∈ Drv. Without loss of

generality, we can assume that each î is different for each such re-encryption query.11 The changes in experiments

below are for re-encryption query for u-th tuple (î, j, k) such that (î, j) is not an admissible edge with respect to

G∗ = (V∗, E∗) and k /∈ Drv.

Hyb
1,u,1
A (b): This is the same as Hyb

1,(u−1),3
A except that: Retrieve s1 of î,

• Parse rk
î→j

= (p̂k, s2, c̃tj).

• If ct f is in the ciphertext space of Σ f , set C← P[s2, ct
î
]; Else if, parse ct f = (ĉt′, c̃t f , C̃i−1, . . . , C̃1)

and set C← Q[s2, ĉt′, c̃t
î
].

• Compute (C̃ι, labels)← Garble(C).

• Compute labels∗ ←
{
(labelsi,s1[i]

, labelsi,s1[i])

}
i∈[λ]

• Compute ĉt← BatchEnc(p̂k, labels∗).

• Output (ĉt, c̃tj, C̃ι, . . . , C̃1).

That is, we compute ĉt via BatchEnc(p̂k, labels∗) instead of BatchEnc(p̂k, labels).

Hyb
1,u,2
A (b): This is the same as Hyb

1,u,1
A except that: Retrieve s1 of î,

• Parse rk
î→j

= (p̂k, s2, c̃tj).

• If ct f is in the ciphertext space of Σ f , set C← P[s2, ct
î
]; Else if, parse ct f = (ĉt′, c̃t f , C̃i−1, . . . , C̃1)

and set C← Q[s2, ĉt′, c̃t
î
].

11If there exists (î, j1, k1) and (î, j2, k2) such that (î, j1) and (î, j2) are not admissible and k1, k2 /∈ Drv, then we can use the same simulation

process described in hybrid experiments for those queries.

25

• Compute (C̃ι, l̃abels)← GCSim(C(s1)).

• Compute labels∗ ← (l̃abels, l̃abels).

• Compute ĉt← BatchEnc(p̂k, labels∗).

• Output (ĉt, c̃tj, C̃ι, . . . , C̃1).

Hyb
1,u,3
A (b): This is the same as Hyb

1,u,2
A (b) except that: Retrieve m and labels l̃abels

′
(corresponding to ĉt′),

• Parse rk
î→j

= (p̂k, s2, c̃tj).

• If ct f is in the ciphertext space of Σ f , set compute (C̃ι, l̃abels)← GCSim(m); Else if, parse ct f =

(ĉt′, c̃t f , C̃i−1, . . . , C̃1) and compute (C̃ι, l̃abels)← GCSim(l̃abels
′
).

• Compute labels∗ ← (l̃abels, l̃abels).

• Compute ĉt← BatchEnc(p̂k, labels∗).

• Output (ĉt, c̃tj, C̃ι, . . . , C̃1).

For syntactic convention, we let Hyb
1,0,3
A (b) := Hyb1

A(b). Moreover, notice that at hybrid Hyb
1,Qreenc,3
A (b) all

re-encryption queries are simulated with garbled circuits and their labels that do not depends on secret keys (or

more specifically, without values that depend on secret keys). That is, we do not explicitly use ski∗ to compute

re-encrypted ciphertexts as above. However, in p̂k and s2, information about ski∗ still remains. We will handles

these issues in the following process.

Process for removing ski∗ of the target vertex. Now, we focus on vertices in V∗ connected via admissible edges.

To use the security of Σi∗ , we need remove information about ski∗ from all re-encryption keys in G∗ = (V∗, E∗)
possibly connected to i∗. Let Q be the total number of admissible edges connected to target vertex i∗. We call the

following procedure a depth-search from vertex i: We seek a vertex that is connected to i and does not have an

outgoing edge in a forward direction. If there is a vertex i′ (possibly i′ = i) that has two or more than two edges

during the search, then we select a vertex i′1 that is not searched yet and is numbered by the smallest number, and set

a flag such that the vertex is already searched to i′1. We scan G∗ = (V∗, E∗) by the depth-search as follows.

First, we do a depth-search from i∗ and find a vertex j such that j does not have an outgoing edge.

Repeat the following process.

1. (Backward scan process) Go back to the vertex i′ that has two or more than two edges. If there is no

such a vertex, then we end. If an edge was scanned by this backward scan, then we set a “scanned” flag

to the edge.

2. Do the depth-search from i′.

During the backward scan process above, we repeat the hybrid transitions Hyb
2,v,1
A , Hyb

2,v,2
A , and Hyb

2,v,3
A below

whenever we move on a edge where v = 1, . . . , Q. We let Dlist be the list of vertices whose re-encryption

key consists of a simulated and dummy values. That is, if j ∈ Dlist, then rki→j = (p̂k, s2, Enc(pkj, 0n)) where

(p̂k, ŝk)← BatchGen(0n) and (s1, s2)← Share(0n) for any i. We initialize Dlist := ∅ and maintain Dlist during

the repeated processes below.

In the following hybrids we modify the key-generation for honest vertices. That is, all changes in the experiments

are in the computation of rki→j.

Hyb
2,v,1
A (b) : At this point, we are at vertex i and edge (i, j) was just scanned.

• Compute (s1, s2)← Share(ski)

• Compute (p̂k, ŝk)← BatchGen(s1).

• Compute c̃tj ← Encj(pkj, 0n)

• Output rki→j := (p̂k, s2, c̃tj).

26

That is, we compute c̃tj ← Encj(pkj, 0n) instead of c̃tj ← Encj(pkj, (s1, ŝk)).

Hyb
2,v,2
A (b) :

• Compute (s1, s2)← Share(ski)

• Compute (p̂k, ŝk)← BatchGen(0n).

• Compute c̃tj ← Encj(pkj, 0n)

• Output rki→j := (p̂k, s2, c̃tj).

Hyb
2,v,3
A (b) :

• Compute (s1, s2)← Share(0n)

• Compute (p̂k, ŝk)← BatchGen(0n).

• Compute c̃tj ← Encj(pkj, 0n)

• Output rki→j := (p̂k, s2, c̃tj) and renew Dlist := Dlist∪ {j}.

For syntactic convention, we let Hyb
2,0,3
A (b) := Hyb

1,Qreenc,3
A (b).

Now, we prove indistinguishability of hybrid games. First notice that by correctness of (Share, Reconstruct)

and (BatchGen, BatchEnc, BatchDec) the modification between Hyb
1,u,2
A (b) and Hyb

1,u,3
A (b) is merely syntactic

and the following lemma holds.

Lemma 5.4. It holds that Hyb
1,u,2
A (b) = Hyb

1,u,3
A (b).

Proof. This immediately holds since m and l̃abels
′
are outputs of C(s1) when C = P and C = Q, respectively.

Indistinguishability of Hyb
1,(u−1),3
A (b) and Hyb

1,u,1
A (b)is shown in Lemma 5.5, whereas indistinguishability of

Hyb
1,u,1
A (b) and Hyb

1,u,2
A (b)is shown in Lemma 5.6.

Lemma 5.5. If (BatchGen, BatchEnc, BatchDec) is WBE-CPA secure, then it holds that Hyb
1,u,1
A (b) ≈ Hyb

1,(u−1),3
A (b).

Proof of Lemma 5.5. We will construct a reductionBwhich breaks the sender privacy of (BatchGen, BatchEnc, BatchDec).
The reduction B answers re-encryption queries as follows. From the first to (u− 1)-th re-encryption queries are

handled as in Hyb
1,u,1
A (b). From the (u + 1)-th to Qreenc-th re-encryption queries are handled as in Hyb

1,(u−1),3
A (b).

B can simulate all oracles since B can generate secret keys by itself. For the u-th query (î, j, k) such that

(î, j) is not an admissible edge with respect to G∗ and k /∈ Drv, B embeds its own challenge. That is, B
sends s1 and labels to the experiment and obtains (p̂k, ŝk, ĉt). It then uses these values in its own simulation.

Clearly, if ĉt = BatchEnc(p̂k, labels), then this query is handled as in Hyb
1,(u−1),3
A (b). On the other hand, if

ĉt = BatchEnc(p̂k, labels∗), then the query is handled as in Hyb
1,u,1
A (b).

Lemma 5.6. If gc = (Garble, Eval) is a selectively secure garbling scheme, then it holds that Hyb
1,u,2
A (b) ≈

Hyb
1,u,1
A (b).

Proof of Lemma 5.6. We will construct a reduction B which breaks the security of (Garble, Eval). As in the proof

of Lemma 5.5, from the first to (u − 1)-th re-encryption queries are handled as in Hyb
1,u,2
A (b) and from the

(u + 1)-th to Qreenc-th re-encryption queries are handled as in Hyb
1,u,1
A (b). B can simulate all oracles since B can

generate secret keys by itself. B will embed its challenge in the u-th re-encryption query (î, j, k) such that (î, j) is

not an admissible edge with respect to G∗ and k /∈ Drv. That is, B sends (C, s1) to the experiment and obtains

(C̃, l̃abels). It then uses these values in its own simulation. Clearly, if (C̃, labels) = Grbl(C) and l̃abels = labelss1
,

then this query is handled as in Hyb
1,u,1
A (b). On the other hand, if (C̃, l̃abels) = GCSim(C(s1)), then the query is

handled as in Hyb
1,u,2
A (b).

Lemma 5.7. If Σj is CPA-secure, then it holds that Hyb
2,(v−1),3
A

c
≈ Hyb

2,v,1
A .

27

Proof. First, at this point, honest vertex j does not have any not-scanned edge. That is, we never use skj for

simulation at this point. We can construct an adversary B that is given pkj. B sends (ŝk, 0n) as a challenge message

pair and receive a target ciphertext c̃t
∗
j . B uses c̃t

∗
j as a part of rki→j. Thus, the lemma immediately follows from

the CPA-security of Σj.

Lemma 5.8. It holds that Hyb
2,v,2
A (b) ≡ Hyb

2,v,1
A (b)

Proof. This follows from the fact that the distribution of p̂k is independent of s1

Lemma 5.9. If (Share, Reconstruct) is 2-out-of-2 secrete sharing scheme, then it holds that Hyb
2,v,2
A (b)

s
≈

Hyb
2,v,3
A (b).

Proof. This immediately follows from the security of (Share, Reconstruct) since s1 is not used anywhere at this

point.

In Hyb
2,Q,3
A (b), ski∗ is neither written in any re-encryption key nor used to generate a re-encrypted ciphertext.

Thus, we can use the security of Σi∗ . As in Lemma 4.10, we can prove that Hyb
2,Q,3
A (0)

c
≈ Hyb

2,Q,3
A (1) holds

due to the CPA-security of Σi∗ . Therefore, it holds that Hyb0
A(0)

c
≈ Hyb0

A(1) since Qreenc, Q and |V∗h | are

polynomials.

6 Constant-Hop Construction Secure against CRA

In this section, we present constant-hop and CRA-secure UPRE schemes for PKE based on GC. The design is almost

the same as that of the scheme in Section 5 except that we encrypt the garbled circuit C̃ by using the delegatee’s

public key to hide information about the delegator’s ciphertext.

6.1 Our Constant-Hop Scheme from GC

Our scheme UPREcra is based on a on a garbling scheme (Garble, Eval), a weak batch encryption scheme

(BatchGen, BatchEnc, BatchDec) and a 2-player secret-sharing scheme (Share, Reconstruct). As in Section 4,

we overload the notation Σσi
= (Genσi

, Encσi
, Decσi

) by Σi = (Geni, Enci, Deci) for ease of notation.

• ReKeyGen(1λ, Σ f , Σt, sk f , pkt):

– Compute (s1, s2)← Share(sk f)

– (p̂k, ŝk)← BatchGen(1λ, s1)

– Compute c̃tt ← Enct(pkt, ŝk)

– Output rk f→t := (p̂k, s2, c̃tt).

• ReEnc(Σ f , Σt, rk f→t, ct f):

– Parse rk f→t = (p̂k, s2, c̃tt).

– Parse ct f = (ĉt′, c̃t f , c̃t
′
f).

– If this is the first re-encryption (1st level), set C ← P[s2, ct f]; Else if (level i > 1), set C ←

Q[s2, ĉt′, c̃t f , c̃t
′
f]

– Compute (C̃, labels)← Garble(C).

– Compute ĉt← BatchEnc(p̂k, labels).

– Compute c̃t
′
t ← Enct(pkt, C̃).

– Output (ĉt, c̃tt, c̃t
′
t).

• mDec(Σt, skt, rct, i): Parse rct = (ĉt, c̃tt, c̃t
′
t).

28

– Compute ŝk′ ← Dec(skt, c̃tt).

– Compute l̃abelsi ← BatchDec(ŝk′, ĉt).

– Compute C̃i := C̃← Dect(skt, c̃t
′
t).

– For j = i, . . . , 2 do: Compute (C̃j−1, l̃abelsj−1)← Eval(C̃j, l̃abelsj).

– Compute and output m′ ← Eval(C̃1, l̃abels1).

First Level Re-Encryption Circuit P[s2, ct f](s1)

Hardwired: s2, ct f .

Input: A share s1.

• Compute sk′f ← Reconstruct(s1, s2).

• Compute and output m′ ← Dec f (sk
′
f , ct f).

Figure 5: The description of the first level re-encryption circuit P

Higher Level Re-Encryption Circuit Q[s2, ĉt′, c̃t f , c̃t
′
f](s1)

Hardwired: s2, ĉt′ , c̃t f , c̃t
′
f .

Input: A share s1.

• Compute sk′f ← Reconstruct(s1, s2).

• Compute ŝk′ ← Dec(sk′f , c̃t f).

• Compute and output C̃← Dec f (sk
′
f , c̃t

′
f) and l̃abels← BatchDec(ŝk′ , ĉt′).

Figure 6: The description of the higher level re-encryption circuit Q

Efficiency. Encrypted garbled circuit c̃t
′
f ← Enc(pk f , C̃) is hard-wired in Q[s2, ĉt′, c̃t f , c̃t

′
f] and Q is garbled.

That is, garbled circuits are nested. This incurs polynomial blow-up. Thus, we can apply the re-encryption algorithm

only constant time.

Correctness. The correctness follows by a similar argument to that of UPREgc in Section 5.2.

We will first show correctness for level 1 ciphertexts. Let thus rct = (ĉt, c̃tt, c̃t
′
t) be a level 1 ciphertext, where

c̃t
′
t ← Enct(pkt, C̃1) and (C̃1, labels)← Garble(P[s2, ct f]), ĉt = BatchEnc(p̂k, labels) and c̃tt = Enct(pkt, ŝk).

Consider the computation of mDec(Σt, skt, rct). By the correctness of Σt it holds that ŝk′ = Dec(skt, c̃tt) = ŝk and

C̃1 = Dec(skt, c̃t
′
t). Next, by the correctness of the batch public key encryption (BatchGen, BatchEnc, BatchDec)

it holds that that l̃abels = BatchDec(ŝk, ĉt) = labelss1
. Thus, by the correctness of the garbling scheme

(Garble, Eval) it holds that Eval(C̃1, l̃abels) = Eval(C̃1, labelss1
) = P[s2, ct f](s1). By the definition of P,

P[s2, ct f](s1) computes sk f ← Reconstruct(s1, s2) and outputs m′ ← Dec f (sk
′
f , ct f). Thus, by the correctness

of (Share, Reconstruct) it holds that sk′f = sk f and finally by the correctness of Σ f we get that m′ = m.

Now we consider a ciphertext rct = (ĉt, c̃tt, c̃t
′
t) at level i > 1. As before, it holds that c̃t

′
t ← Enc(pkt, C̃i),

(C̃i, labels) ← Garble(Q[s2, ĉt′, c̃t f , c̃t
′
f]), ĉt = BatchEnc(p̂k, labels) and c̃tt = Enct(pkt, ŝk). Again consider

the computation of mDec(Σt, skt, rct). By the correctness of Σt it holds that ŝk′ = Dec(skt, c̃tt) = ŝk and C̃i =

Dec(skt, c̃t
′
t). Next, by the correctness of the batch public key encryption scheme (BatchGen, BatchEnc, BatchDec)

it holds that that l̃abels = BatchDec(ŝk, ĉt) = labelss1
. Thus, by the correctness of the garbling scheme

(Garble, Eval) it holds that Eval(C̃i, l̃abelsi) = Eval(C̃i, l̃abelss1
) = Q[s2, ĉt′, c̃t f , c̃t

′
f](s1).

Notice now that we can substitute Q[s2, ĉt′, c̃t f , c̃t
′
f](s1) by

• Compute sk′f ← Reconstruct(s1, s2).

29

• Compute ŝk← Dec(sk f , c̃t f).

• Compute C̃i−1 ← Dec(sk f , c̃t
′
f) and l̃abels← BatchDec(ŝk, ĉt′).

By the correctness of (Share, Reconstruct) it holds that sk′f = Reconstruct(s1, s2) = sk f . By inspection we

see that the remaining steps of the computation are evaluating garbled circuits again and again until i = 2. By

combining with the level 1 case, the correctness follows.

6.2 Security Proof

Theorem 6.1 (UPRE-CRA security). Assume that gc = (Garble, Eval) is a selectively secure garbling scheme,

(Share, Reconstruct) is a 2-out-of-2 secret sharing scheme and (BatchGen, BatchEnc, BatchDec) is a weak batch

encryption scheme in the sense of Definition 5.1, and both Σ f and Σt are IND-CPA secure PKE, then UPREcra is

selective-graph UPRE-CRA secure.

Proof. The proof is basically the same as that of Theorem 5.3 in Section 5 except that we need three more hybrids

in addition to the hybrids in Theorem 5.3. Note that we can also guess ic with probability 1/|V∗c |. Thus, we write

only the new hybrids. In Hyb
2,Q,3
A (b), ski∗ is never used.

Hyb
3,1
A (b): This experiment is the same as Hyb

2,Q,3
A (b) except that for all (i−1, i∗) such that i−1 ∈ V∗c

((i−1, i∗) ∈ E∗), ciphertext c̃ti∗ in the re-encryption key rki−1→i∗ is generated by Enci∗(pki∗ , 0ℓi∗) in-

stead of Enci∗(pki∗ , ŝk). We can prove that Hyb
3,1
A (b)

c
≈ Hyb

2,Q,3
A (b) hold due to the CPA-security of Σi∗ in

a similar way to Lemma 5.7.

Hyb
3,2
A (b): This experiment is the same as Hyb

3,1
A (b) except that for the challenge query (ic, i∗, m0, m1) to

Ocha, ĉti∗ in the target ciphertext rcti∗ is generated by Enci∗(pki∗ , 0ℓj) instead of Enci∗(pki∗ , C̃) where

(C̃, labels) ← Garble(P[s2, ctc]). Note that we can easily simulate rki−1→i∗ for i−1 ∈ V∗c since ski−1
is

revealed. We prove that Hyb
3,2
A (b)

c
≈ Hyb

3,1
A (b) hold due to the CPA-security of Σi∗ in Lemma 6.3.

Hyb
3,3
A (b): This experiment is the same as Hyb

3,2
A (b) except that for the challenge query (ic, i∗, m0, m1) toOcha, ĉt

in the target ciphertext rcti∗ is generated by BatchEnc(p̂k, (0, 0)) instead of BatchEnc(p̂k, labels). Note that

we do not use ŝk for the re-encryption key from ic to i∗ anywhere in this game since i∗ ∈ V∗h . We prove that

Hyb
3,3
A (b)

c
≈ Hyb

3,2
A (b) hold due to the standard CPA-security of the weak batch encryption in Lemma 6.4.

In Hyb
3,3
A (b), rcti∗ = (BatchEnc(p̂k, (0, 0)), Enci∗(pki∗ , 0ℓj), Enci∗(pki∗ , 0ℓj)). Thus, it is easy to see that

the advantage of A is just 1
2 since there is no information about b in these hybrids. Thus, Hyb

3,2
A (0) =

Hyb
3,2
A (1) = 1

2 and the theorem follows.

Lemma 6.2. If Σi∗ is IND-CPA secure PKE, then it holds that Hyb
3,1
A (b)

c
≈ Hyb

2,Q,3
A (b).

Proof. We can prove in a similar way to the proof of Lemma 5.7, so we omit this.

Lemma 6.3. If Σi∗ is IND-CPA secure PKE, then it holds that Hyb
3,2
A (b)

c
≈ Hyb

3,1
A (b).

Proof. We construct an adversary B of Σi∗ , which is given pki∗ as a target public key. To use A of UPRE, B
generates key pairs (pki′ , ski′) for all i′ ∈ HList \ {i∗}. B sets pki∗ as a public-key of user i∗. In experiments

Hyb
2,Q,3
A (b), ski∗ is not used anywhere by the definition of the experiments. When (i∗, j) is queried to Orekey such

that (i∗, j) ∈ E∗, B can generate a re-encryption key without ski∗ . When (i∗, j, k) is queried to Oreenc such that

j ∈ CList∧ k /∈ Drv and (cti, Σi, i, #CT, m) ∈ KeyCTList, B can generate a re-encrypted ciphertext without ski∗

as we see in the proof of Theorem 5.3. When (ic, i∗, m0, m1) is queried to the challenge oracle Ocha, then B passes

(C̃, 0ℓi∗) where (C̃, labels)← Garble(P[s2, ctc]) and ctc ← Encc(pkc, mb) to the challenger of IND-CPA game of

Σi∗ and receives a target ciphertext ĉt
∗
i∗ . B returns (BatchEnc(p̂k, labels), Enci∗(pki∗ , 0ℓi∗), ĉt

∗
i∗) to A. If A can

distinguish two experiments, then B can break the security of Σi∗ since the case ĉt
∗
i∗ = Enci∗(pki∗ , C̃) and the case

ĉt
∗
i∗ = Enci∗(pki∗ , 0ℓi∗) perfectly simulate Hyb

3,1
A (b) and Hyb

3,2
A (b), respectively.

30

Lemma 6.4. If (BatchGen, BatchEnc, BatchDec) satisfies the IND-CPA security, then it holds that Hyb
3,2
A (b)

c
≈

Hyb
3,3
A (b).

Proof. At this point, ŝk is never used since it was erased at Hyb
3,1
A (b) and i∗ ∈ V∗h . In addition, skic is known

(since ic ∈ V∗c). We construct an adversary B of IND-CPA security of the weak batch encryption.

B generates keys for all users. Here, ic ∈ V∗c is corrupted, so B has skic . When (i∗, j) is queried to Orekey such

that (i∗, j) ∈ E∗, B can generate a re-encryption key without ski∗ as we see in the proof of Theorem 5.3. When

(i∗, j, k) is queried to Oreenc such that j ∈ CList∧ k /∈ Drv and (cti, Σi, i, #CT, m) ∈ KeyCTList, B can generate

a re-encrypted ciphertext without ski∗ as we see in the proof of Theorem 5.3.

For the re-encryption key from ic to i∗, B can use skic to generate (s1, s2) ← Share(skc). B sends s1 to

the challenger of the IND-CPA game, receives a public key p̂k of the weak batch encryption scheme, and sets

rkic→i∗ := (p̂k, s2, Enci∗(pki∗ , 0ℓi∗)). When (ic, i∗, m0, m1) is queried to the challenge oracle Ocha, then B passes

labels where (C̃, labels)← Garble(P[s2, ctc]) and receives ĉt from the challenger of IND-CPA game of the weak

batch encryption. B returns (ĉt, Enci∗(pki∗ , 0ℓi∗), Enci∗(pki∗ , 0ℓi∗)) to A. If A can distinguish two experiments,

then B can break the IND-CPA security of the weak batch encryption since the case ĉt = BatchEnc(p̂k, labels)

and the case ĉt = BatchEnc(p̂k, (0, 0)) perfectly simulate Hyb
3,2
A (b) and Hyb

3,3
A (b), respectively.

31

References

[ABH09] Giuseppe Ateniese, Karyn Benson, and Susan Hohenberger. Key-private proxy re-encryption. In Marc

Fischlin, editor, CT-RSA 2009, volume 5473 of LNCS, pages 279–294. Springer, Heidelberg, April

2009. (Cited on page 5, 11, 12, 15, 35.)

[ABPW13] Yoshinori Aono, Xavier Boyen, Le Trieu Phong, and Lihua Wang. Key-private proxy re-encryption

under LWE. In Goutam Paul and Serge Vaudenay, editors, INDOCRYPT 2013, volume 8250 of LNCS,

pages 1–18. Springer, Heidelberg, December 2013. (Cited on page 5.)

[ACH20] Thomas Agrikola, Geoffroy Couteau, and Dennis Hofheinz. The usefulness of sparsifiable inputs:

How to avoid subexponential iO. In Aggelos Kiayias, Markulf Kohlweiss, Petros Wallden, and Vassilis

Zikas, editors, PKC 2020, Part I, volume 12110 of LNCS, pages 187–219. Springer, Heidelberg, May

2020. (Cited on page 4, 5, 21.)

[AFGH05] Giuseppe Ateniese, Kevin Fu, Matthew Green, and Susan Hohenberger. Improved proxy re-encryption

schemes with applications to secure distributed storage. In NDSS 2005. The Internet Society, February

2005. (Cited on page 1, 5, 9, 12.)

[BBS98] Matt Blaze, Gerrit Bleumer, and Martin Strauss. Divertible protocols and atomic proxy cryptography. In

Kaisa Nyberg, editor, EUROCRYPT’98, volume 1403 of LNCS, pages 127–144. Springer, Heidelberg,

May / June 1998. (Cited on page 1, 5, 9.)

[BGI+12] Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit Sahai, Salil P. Vadhan, and

Ke Yang. On the (im)possibility of obfuscating programs. Journal of the ACM, 59(2):6, 2012. (Cited

on page 2, 9.)

[BGI14] Elette Boyle, Shafi Goldwasser, and Ioana Ivan. Functional signatures and pseudorandom functions.

In Hugo Krawczyk, editor, PKC 2014, volume 8383 of LNCS, pages 501–519. Springer, Heidelberg,

March 2014. (Cited on page 7.)

[BGLS03] Dan Boneh, Craig Gentry, Ben Lynn, and Hovav Shacham. Aggregate and verifiably encrypted

signatures from bilinear maps. In Eli Biham, editor, EUROCRYPT 2003, volume 2656 of LNCS, pages

416–432. Springer, Heidelberg, May 2003. (Cited on page 5.)

[BLSV18] Zvika Brakerski, Alex Lombardi, Gil Segev, and Vinod Vaikuntanathan. Anonymous IBE, leakage

resilience and circular security from new assumptions. In Jesper Buus Nielsen and Vincent Rijmen,

editors, EUROCRYPT 2018, Part I, volume 10820 of LNCS, pages 535–564. Springer, Heidelberg,

April / May 2018. (Cited on page 4, 22.)

[BW13] Dan Boneh and Brent Waters. Constrained pseudorandom functions and their applications. In Kazue

Sako and Palash Sarkar, editors, ASIACRYPT 2013, Part II, volume 8270 of LNCS, pages 280–300.

Springer, Heidelberg, December 2013. (Cited on page 7.)

[CCL+14] Nishanth Chandran, Melissa Chase, Feng-Hao Liu, Ryo Nishimaki, and Keita Xagawa. Re-encryption,

functional re-encryption, and multi-hop re-encryption: A framework for achieving obfuscation-based

security and instantiations from lattices. In Hugo Krawczyk, editor, PKC 2014, volume 8383 of LNCS,

pages 95–112. Springer, Heidelberg, March 2014. (Cited on page 5.)

[CCV12] Nishanth Chandran, Melissa Chase, and Vinod Vaikuntanathan. Functional re-encryption and collusion-

resistant obfuscation. In Ronald Cramer, editor, TCC 2012, volume 7194 of LNCS, pages 404–421.

Springer, Heidelberg, March 2012. (Cited on page 5.)

[CH07] Ran Canetti and Susan Hohenberger. Chosen-ciphertext secure proxy re-encryption. In Peng Ning,

Sabrina De Capitani di Vimercati, and Paul F. Syverson, editors, ACM CCS 2007, pages 185–194.

ACM Press, October 2007. (Cited on page 5, 9, 12, 15.)

[CHN+18] Aloni Cohen, Justin Holmgren, Ryo Nishimaki, Vinod Vaikuntanathan, and Daniel Wichs. Wa-

termarking cryptographic capabilities. SIAM J. Computing, 47(6):2157–2202, 2018. (Cited on

page 3.)

32

[CLT13] Jean-Sébastien Coron, Tancrède Lepoint, and Mehdi Tibouchi. Practical multilinear maps over the

integers. In Ran Canetti and Juan A. Garay, editors, CRYPTO 2013, Part I, volume 8042 of LNCS,

pages 476–493. Springer, Heidelberg, August 2013. (Cited on page 2.)

[CLTV15] Ran Canetti, Huijia Lin, Stefano Tessaro, and Vinod Vaikuntanathan. Obfuscation of probabilistic

circuits and applications. In Yevgeniy Dodis and Jesper Buus Nielsen, editors, TCC 2015, Part II,

volume 9015 of LNCS, pages 468–497. Springer, Heidelberg, March 2015. (Cited on page 2, 3, 4, 5, 8,

9, 16, 17, 21.)

[Coh17] Aloni Cohen. What about bob? The inadequacy of CPA security for proxy reencryption. Cryptology

ePrint Archive, Report 2017/785, 2017. http://eprint.iacr.org/2017/785. (Cited on page 35.)

[Coh19] Aloni Cohen. What about bob? The inadequacy of CPA security for proxy reencryption. In Dongdai

Lin and Kazue Sako, editors, PKC 2019, Part II, volume 11443 of LNCS, pages 287–316. Springer,

Heidelberg, April 2019. (Cited on page 2, 11, 12, 15, 35.)

[CPP16] Geoffroy Couteau, Thomas Peters, and David Pointcheval. Encryption switching protocols. In Matthew

Robshaw and Jonathan Katz, editors, CRYPTO 2016, Part I, volume 9814 of LNCS, pages 308–338.

Springer, Heidelberg, August 2016. (Cited on page 5.)

[CWYD10] Sherman S. M. Chow, Jian Weng, Yanjiang Yang, and Robert H. Deng. Efficient unidirectional proxy

re-encryption. In Daniel J. Bernstein and Tanja Lange, editors, AFRICACRYPT 10, volume 6055 of

LNCS, pages 316–332. Springer, Heidelberg, May 2010. (Cited on page 4, 13.)

[DDLM19] Alex Davidson, Amit Deo, Ela Lee, and Keith Martin. Strong post-compromise secure proxy re-

encryption. In Julian Jang-Jaccard and Fuchun Guo, editors, ACISP 19, volume 11547 of LNCS, pages

58–77. Springer, Heidelberg, July 2019. (Cited on page 2.)

[DHRW16] Yevgeniy Dodis, Shai Halevi, Ron D. Rothblum, and Daniel Wichs. Spooky encryption and its

applications. In Matthew Robshaw and Jonathan Katz, editors, CRYPTO 2016, Part III, volume 9816

of LNCS, pages 93–122. Springer, Heidelberg, August 2016. (Cited on page 8, 9.)

[DJ01] Ivan Damgård and Mats Jurik. A generalisation, a simplification and some applications of Paillier’s

probabilistic public-key system. In Kwangjo Kim, editor, PKC 2001, volume 1992 of LNCS, pages

119–136. Springer, Heidelberg, February 2001. (Cited on page 16, 17.)

[DKL+18] David Derler, Stephan Krenn, Thomas Lorünser, Sebastian Ramacher, Daniel Slamanig, and Christoph

Striecks. Revisiting proxy re-encryption: Forward secrecy, improved security, and applications. In

Michel Abdalla and Ricardo Dahab, editors, PKC 2018, Part I, volume 10769 of LNCS, pages 219–250.

Springer, Heidelberg, March 2018. (Cited on page 2.)

[DWLC08] Robert H. Deng, Jian Weng, Shengli Liu, and Kefei Chen. Chosen-ciphertext secure proxy re-encryption

without pairings. In Matthew K. Franklin, Lucas Chi Kwong Hui, and Duncan S. Wong, editors, CANS

08, volume 5339 of LNCS, pages 1–17. Springer, Heidelberg, December 2008. (Cited on page 5.)

[ElG85] Taher ElGamal. A public key cryptosystem and a signature scheme based on discrete logarithms. IEEE

Transactions on Information Theory, 31:469–472, 1985. (Cited on page 1, 16, 17.)

[FKKP19] Georg Fuchsbauer, Chethan Kamath, Karen Klein, and Krzysztof Pietrzak. Adaptively secure proxy

re-encryption. In Dongdai Lin and Kazue Sako, editors, PKC 2019, Part II, volume 11443 of LNCS,

pages 317–346. Springer, Heidelberg, April 2019. (Cited on page 12.)

[GGH13] Sanjam Garg, Craig Gentry, and Shai Halevi. Candidate multilinear maps from ideal lattices. In

Thomas Johansson and Phong Q. Nguyen, editors, EUROCRYPT 2013, volume 7881 of LNCS, pages

1–17. Springer, Heidelberg, May 2013. (Cited on page 2.)

[GGH15] Craig Gentry, Sergey Gorbunov, and Shai Halevi. Graph-induced multilinear maps from lattices. In

Yevgeniy Dodis and Jesper Buus Nielsen, editors, TCC 2015, Part II, volume 9015 of LNCS, pages

498–527. Springer, Heidelberg, March 2015. (Cited on page 2.)

33

http://eprint.iacr.org/2017/785

[GGH+16] Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai, and Brent Waters. Candidate

indistinguishability obfuscation and functional encryption for all circuits. SIAM J. Comput., 45(3):882–

929, 2016. (Cited on page 2.)

[GGM86] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct random functions. J. ACM,

33(4):792–807, 1986. (Cited on page 7.)

[GM84] Shafi Goldwasser and Silvio Micali. Probabilistic encryption. Journal of Computer and System

Sciences, 28(2):270–299, 1984. (Cited on page 1, 16, 17.)

[GSL19] Sivanarayana Gaddam, Rohit Sinha, and Atul Luykx. Applying proxy-re-encryption to payments. Real

World Crypto 2019, 2019. https://rwc.iacr.org/2019/slides/Applying_PRE_Payments.pdf. (Cited on

page 1.)

[HHR16] Julia Hesse, Dennis Hofheinz, and Andy Rupp. Reconfigurable cryptography: A flexible approach to

long-term security. In Eyal Kushilevitz and Tal Malkin, editors, TCC 2016-A, Part I, volume 9562 of

LNCS, pages 416–445. Springer, Heidelberg, January 2016. (Cited on page 5.)

[HKK+12] Goichiro Hanaoka, Yutaka Kawai, Noboru Kunihiro, Takahiro Matsuda, Jian Weng, Rui Zhang, and

Yunlei Zhao. Generic construction of chosen ciphertext secure proxy re-encryption. In Orr Dunkelman,

editor, CT-RSA 2012, volume 7178 of LNCS, pages 349–364. Springer, Heidelberg, February / March

2012. (Cited on page 1, 4, 5, 15.)

[HKW15] Susan Hohenberger, Venkata Koppula, and Brent Waters. Universal signature aggregators. In Elisabeth

Oswald and Marc Fischlin, editors, EUROCRYPT 2015, Part II, volume 9057 of LNCS, pages 3–34.

Springer, Heidelberg, April 2015. (Cited on page 5.)

[HRsV11] Susan Hohenberger, Guy N. Rothblum, abhi shelat, and Vinod Vaikuntanathan. Securely obfuscating

re-encryption. Journal of Cryptology, 24(4):694–719, October 2011. (Cited on page 5.)

[ID03] Anca Ivan and Yevgeniy Dodis. Proxy cryptography revisited. In NDSS 2003. The Internet Society,

February 2003. (Cited on page 1, 5.)

[Jak99] Markus Jakobsson. On quorum controlled asymmetric proxy re-encryption. In Hideki Imai and

Yuliang Zheng, editors, PKC’99, volume 1560 of LNCS, pages 112–121. Springer, Heidelberg, March

1999. (Cited on page 1.)

[KPTZ13] Aggelos Kiayias, Stavros Papadopoulos, Nikos Triandopoulos, and Thomas Zacharias. Delegatable

pseudorandom functions and applications. In Ahmad-Reza Sadeghi, Virgil D. Gligor, and Moti Yung,

editors, ACM CCS 2013, pages 669–684. ACM Press, November 2013. (Cited on page 7.)

[LV08] Benoît Libert and Damien Vergnaud. Unidirectional chosen-ciphertext secure proxy re-encryption.

In Ronald Cramer, editor, PKC 2008, volume 4939 of LNCS, pages 360–379. Springer, Heidelberg,

March 2008. (Cited on page 5, 12, 15.)

[NX15] Ryo Nishimaki and Keita Xagawa. Key-private proxy re-encryption from lattices, revisited. IEICE

Transactions, 98-A(1):100–116, 2015. (Cited on page 5.)

[Pai99] Pascal Paillier. Public-key cryptosystems based on composite degree residuosity classes. In Jacques

Stern, editor, EUROCRYPT’99, volume 1592 of LNCS, pages 223–238. Springer, Heidelberg, May

1999. (Cited on page 16, 17.)

[PRSV17] Yuriy Polyakov, Kurt Rohloff, Gyana Sahu, and Vinod Vaikuntanathan. Fast proxy re-encryption for

publish/subscribe systems. ACM Trans. Priv. Secur., 20(4):14:1–14:31, 2017. (Cited on page 1.)

[SC09] Jun Shao and Zhenfu Cao. CCA-secure proxy re-encryption without pairings. In Stanislaw Jarecki

and Gene Tsudik, editors, PKC 2009, volume 5443 of LNCS, pages 357–376. Springer, Heidelberg,

March 2009. (Cited on page 5.)

34

A Re-Encryption Simulatability

We review the notion of re-encryption simulatability of PRE by Cohen. For the syntax and standard CPA-security

of PRE, see previous works [Coh19, ABH09]. Roughly speaking, re-encryption simulatability means that a

re-encrypted ciphertext generated from rki→j and cti under pki can be simulated without rki→j if pki, pkj, cti,

and m are given where cti is an encryption of m under pki. Moreover, the simulated re-encrypted ciphertext is

statistically indistinguishable from the honestly generated re-encrypted ciphertext even if ski, skj, rki→j are given as

auxiliary information. The definition below is found in the paper by Choen [Coh19, Definition 7].

Definition A.1 (Re-Encryption Simulatability [Coh19]). A proxy re-encryption scheme is re-encryption simulat-

able if there exists a PPT algorithm ReEncSim such that for all m ∈ M

(ReEncSim(z), z)
s
≈ (ReEnc(rki→j, cti), z),

where pp← Setup(1λ), (pki, ski)← KeyGen(pp), (pkj, skj)← KeyGen(pp), rki→j ← ReKeyGen(skj, pki), cti ←

Enc(pki, m), z := (pp, pki, pkj, skj, cti, m).

Theorem A.2 ([Coh19]). If a PRE scheme is PRE-CPA secure and re-encryption simulatable, then it is PRE-HRA

secure.

We can consider re-encryption simulatability for UPRE as Definition A.3.

Definition A.3 (Re-encryption simulatability for UPRE). A UPRE scheme is re-encryption simulatable if there

exists a PPT algorithm ReEncSim such that for all m ∈ M

(ReEncSim(z), z)
s
≈ (ReEnc(rk f→t, ct f), z),

where (pk f , sk f)← Genσf
(1λ f), (pkt, skt)← Genσt(1

λt), rk f→t ← ReKeyGen(sk f , pkt), ct f ← Enc(pk f , m), z :=

(pk f , pkt, skt, ct f , m).

Remark A.4. Cohen updated his paper [Coh17] and revised the re-encryption simulatability [Coh19]. In the latest

definition, ReEncSim takes skj as an input too, and (ski, rki→j) are not given as auxiliary input as above.

A.1 Our Relaxed UPRE schemes are not Re-Encryption Simulatable

A re-encrypted ciphertext of UPREgc is rct = (ĉtt, c̃tt, C̃i, . . . , C̃1) where ĉtt ← BatchEnc(p̂k, labels), c̃tt ←
Enct(pkt, ŝk), (C̃i, labels) ← Garble(Ci), and C1 := P[s2, ct f] and Ci ← Q[s2, ĉt′, c̃t f] for i > 1. We can

simulate ct f since we have m. However, we do not know how to simulate C̃i in a statistically indistinguishable

way because a simulator ReEncSim does not have sk f in the re-encryption simulatability setting. Due to a similar

reason, UPREcra does not satisfy Definition A.3.

However, as we see in the proof of Theorem 5.3 (in particular, Lemmata 5.5 and 5.6), we can simulate C̃i

in a computationally indistinguishable way by using the security of GC and weak batch encryption. The point

is that sk f (delegator’s key) is not revealed to adversaries though skt (delegatee’s key) is revealed when we

consider honest re-encryption attacks. Moreover, in that case (delegatee’s key is corrupted), the re-encryption

key rk f→t = (p̂k, s2, c̃tt) is not given to adversaries. That is, we do not need s2 when delegator/delegatee are

honest/corrupted, respectively. Therefore, we can simulate the honest encryption oracle in a indistinguishable

way in the proof of Theorem 5.3 without re-encryption simulatability. We can observe a similar fact in the proof

of Theorem 6.1.

Based on the observation above, it seems that giving sk f and rk f→t to adversaries makes the re-encryption

simulatability stronger. Moreover, there is a possibility to weaken re-encryption simulatability, yet the weaker

simulatability still implies the HRA security. We introduce such a weaker simulatability in the next section.

A.2 Weak Re-Encryption Simulatability

We can consider a weak re-encryption simulatability for UPRE (and PRE).

Definition A.5 (Weak Re-encryption simulatability for UPRE). Let ReEncSim be a PPT simulator. We define

the following experiments Expw-re-sim
D (1λ, b) between a challenger and a distinguisher D as follows.

35

1. The challenger generates (pk f , sk f)← Gen f (1
λ f), (pkt, skt)← Gent(1λt), and sends (1λ f , pk f , 1λt , pkt, skt)

to D.

2. The challenger and D do the setup phase as in Definition 3.9 and set HList := HList ∪ { f } and CList :=
CList∪ {t}.

3. D has the re-encryption key oracle Orekey as in Definition 3.9.

4. D chooses a message m ∈ M f , generates a ciphertext ct f ← Enc f (pk f , m) and sends (m, ct f) to the

challenger.

5. If b = 0, the challenger computes rk f→t ← ReKeyGen(sk f , pkt) and ct∗ ← ReEnc(rk f→t, ct f) and returns

ct∗ to D. Otherwise, the challenger returns ct∗ ← ReEncSim(pk f , pkt, skt, ct f , m).

6. D outputs b′ ∈ {0, 1}. The experiment outputs b′.

We say that UPRE is weakly re-encryption simulatable if there exists a simulator ReEncSim, for any PPT D, it

holds that

|Pr[Expw-re-sim
D (1λ, 0) = 1]− Pr[Expw-re-sim

D (1λ, 1) = 1]| ≤ negl(λ).

The difference between the re-encryption simulatability and a weak one is that the indistinguishability is only

computational. Moreover, the distinguisher is given oracle access to the re-encryption key oracle Orekey. Note

that Orekey does not give rk f→t since f ∈ HList∧ t ∈ CList. This weak variant is sufficient to prove UPRE-HRA

security. That is, we can prove that if a UPRE scheme is UPRE-CPA secure and weakly re-encryption simulatable,

then it is UPRE-HRA secure.

Theorem A.6. If a UPRE scheme UPRE is multi-hop selective-graph UPRE-CPA secure and satisfies weak

re-encryption simulatability, then UPRE is multi-hop selective-graph UPRE-HRA secure.

Proof. We define hybrid games.

Hyb0
A(b): The first experiment is the original security experiment for b, Exp

upre-msg-hra
A (1λ, b). That is, it holds

that Hyb0
A(b) = Exp

upre-msg-hra
A (1λ, b). Note that in the successive experiments, we can easily simulate

all keys in G = (V, E) since vertices in V are not connected to the target vertex in G∗ and simulators can

generate keys for them by itself.

Hyb1
A(b): This experiment is the same as Hyb0

A(b) except that

1. we record not only (cti, Σi, i, #CT) but also m in KeyCTList for honest encryption query (i, m) and

2. for re-encryption query (i, j′, k) such that j′ ∈ CList∧ k /∈ Drv, the re-encrypted ciphertext is differently

generated as follows. First, we retrieve (cti, Σi, i, #CT = k, m) from KeyCTList (if there is no such an

entry, just outputs ⊥). Then, we compute the following value instead of computing rki→j′ .

(a) rct← ReEncSim(pki, pkj′ , skj′ , cti, m).

Finally, we set rct as a re-encrypted ciphertext for user j′ and send it to A.

Note that for (i, j′) such that i ∈ V∗h ∧ j′ ∈ V∗c , we do not need ski and rki→j′ since we just output ⊥ for

such (i, j′) ∈ E∗. The change above is for ciphertexts that A can decrypt. Here, A can obtain skj′ since

user j′ is corrupted. However, it is not an issue since a distinguisher is given skj′ as auxiliary input in the

weak re-encryption simulatability game. In Lemma A.7, we prove that Hyb1
A(b)

s
≈ Hyb0

A(b) holds due to

the weak re-encryption simulatability.

In Lemma A.8, we prove that Hyb1
A(0)

c
≈ Hyb1

A(1) holds due to the UPRE-CPA security of Σi∗ . Therefore, it

holds that Hyb0
A(0)

c
≈ Hyb0

A(1) by Lemmata A.7 and A.8

Lemma A.7. If UPRE is weakly re-encryption simulatable, then it holds Hyb0
A(b)

c
≈ Hyb1

A(b).

36

Proof. In fact, we use q′ intermediate hybrids to prove this where q′ is the number of uncorrupted key pki such

that re-encryption query (i, j′, k) is sent and i ∈ HList∧ j ∈ CList∧ k /∈ Drv. For each hybrid, we use the weak

re-encryption simulatability. Below, we write only the case for one pki for simplicity.

We construct a distinguisher D of the weak re-encryption simulatability. To use A of UPRE, D generates key

pairs (pki′ , ski′) for all i′ ∈ HList \ {i} and i′ ∈ CList \ {j′}. For pki, pkj′ , skj′ , we use keys (1λi , pki, 1
λj′ pkj′ , skj′)

from the challenger, which is given to D. The only issue is that we do not have ski and rki→j′ . First, we do not

need rki→j′ since i ∈ HList ∧ j′ ∈ CList. Second, for re-encryption keys (i, ĵ) such that ĵ ∈ HList, D passes the

query (i, ĵ) to the re-encryption key oracle Orekey in the weak re-encryption simulatability game, receives rki→ ĵ,

and returns it to A. This is possible since i, ĵ ∈ HList. Therefore, B can simulate all oracles.

However, to use A, D simulates Oreenc in a slightly different way. As we define Hyb1
A(b), the simulation

for query (i, j′, k) to Oreenc such that j′ ∈ CList ∧ k /∈ Drv and (cti, Σi, i, #CT, m) ∈ KeyCTList is different.

When D receives a re-encryption query for such (i, j′, k), D generates cti ← Enci(pki, m) and sends it to

the challenger of the weak re-encryption simulatability game. If D is given ct∗, then D returns ct∗ as a re-

encrypted ciphertext for (i, j′, k) Note that B does not need ski for this query. This completes the simulation. If

ct∗ = ReEnc(rki→j′ , cti) where rki→j′ ← ReKeyGen(ski, pkj′), then the view is totally the same as Hyb0
A(b).

If ct∗ ← ReEncSim(pki, pkj′ , skj′ , cti, m), then the view is totally the same as Hyb1
A(b). Therefore, if A can

distinguishes two experiment, D can break the weak re-encryption simulatability.

Lemma A.8. If UPRE is UPRE-CPA secure, then it holds Hyb1
A(0)

c
≈ Hyb1

A(1).

Proof. We construct an adversary B of UPRE-CPA, which is given oracle access to Orekey,Oreenc,Ocha and can

send hones/corrupted key queries. To use a distinguisher A of these two hybrids, B must simulate oracles of

the HRA security. Basically, B can easily simulate them by using its oracles except Oenc and Oreenc (note that

re-encryption key oracles in the CPA/HRA-security are the same). Moreover, it is easy to simulate Oenc since all

encryption keys are public. The only issue is the simulation of Oreenc in the case that re-encryption queries (i, j′, k)
such that j′ ∈ CList∧ k /∈ Drv are sent. This is already solved since we use ReEncSim in these hybrids. Thus, B
can simulate all oracles by using its oracles and ReEncSim.

When (i∗, m0, m1) is queried to the challenge oracle Ocha, then B passes (i∗, m0, m1) to the challenger of the

CPA game and receives a target ciphertext ct∗i∗ . B returns ct∗i∗ to A. If A can distinguish two experiments, then B

can break the CPA security since ct∗i∗ = Enci∗(pki∗ , m0) and ct∗i∗ = Enci∗(pki∗ , m1) perfectly simulate Hyb1
A(0)

and Hyb1
A(1), respectively.

37

	Introduction
	Background
	Our Contributions
	Technical Overview
	Related Work

	Preliminaries
	Notations and Basic Concepts
	Basic Cryptographic Tools
	(Probabilistic) Indistinguishability Obfuscation

	Definition of Universal Proxy Re-Encryption
	Unidirectional UPRE
	Unidirectional Multi-Hop UPRE
	Security against Corrupted-Delegator Re-Encryption Attacks
	On Re-Encryption Simulatability
	UPRE for More Advanced Encryption

	Multi-Hop Construction based on Indistinguishability Obfuscation
	Trapdoor Encryption
	Our Multi-Hop Scheme from PIO
	Security Proof
	Instantiation of UPRE scheme based on PIO

	Multi-Hop Construction based on Garbled Circuits
	Weak Batch Encryption
	Our Multi-Hop Scheme from GC
	Security Proof

	Constant-Hop Construction Secure against CRA
	Our Constant-Hop Scheme from GC
	Security Proof

	Re-Encryption Simulatability
	Our Relaxed UPRE schemes are not Re-Encryption Simulatable
	Weak Re-Encryption Simulatability

