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Universal quantum control through deep reinforcement
learning
Murphy Yuezhen Niu 1,2, Sergio Boixo 2, Vadim N. Smelyanskiy2 and Hartmut Neven2

Emerging reinforcement learning techniques using deep neural networks have shown great promise in control optimization. They
harness non-local regularities of noisy control trajectories and facilitate transfer learning between tasks. To leverage these powerful
capabilities for quantum control optimization, we propose a new control framework to simultaneously optimize the speed and
fidelity of quantum computation against both leakage and stochastic control errors. For a broad family of two-qubit unitary gates
that are important for quantum simulation of many-electron systems, we improve the control robustness by adding control noise
into training environments for reinforcement learning agents trained with trusted-region-policy-optimization. The agent control
solutions demonstrate a two-order-of-magnitude reduction in average-gate-error over baseline stochastic-gradient-descent
solutions and up to a one-order-of-magnitude reduction in gate time from optimal gate synthesis counterparts. These significant
improvements in both fidelity and runtime are achieved by combining new physical understandings and state-of-the-art machine
learning techniques. Our results open a venue for wider applications in quantum simulation, quantum chemistry and quantum
supremacy tests using near-term quantum devices.
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INTRODUCTION
Designed to exert the full computational force of Nature, quantum
computers utilize the laws of quantum mechanics to explore the
exponential computational space in superposition. A critical step
that connects theory to experiment is the careful design of
quantum controls to translate each quantum algorithm into a set
of analog-control signals that accurately steer the quantum
computer around the Hilbert space. The precise choice of these
controls ultimately governs the fidelity and speed of each
quantum operation.
The fidelity and runtime of quantum gates are crucial measures

of quantum gate performance that determine the computational
capacity of both near- and long-term quantum devices. Higher
gate fidelities lower the resource overhead for fault-tolerant error
correction, while shorter runtimes directly extend the limit on
quantum circuit depth that is set by the onset of uncorrectable
errors caused by noise and dissipation.1

Another key component that determines the practical applica-
tions of near-term quantum devices is the universality of the
quantum gates realizable by analog controls. For pre-fault-tolerant
quantum computers, quantum operations are not limited to a
finite gate set otherwise necessary for achieving fault tolerance.
Consequently, implementing a high-fidelity and fast quantum
gate with one control-pulse sequence instead of a deep circuit
through optimal gate synthesis can greatly reduce the resource
overhead and expand the feasible computational tasks. As
recently demonstrated in refs. 2,3 replacing the standard universal
gate set with unrestricted unitary gates reduces the required
circuit depth for the near-term experimental demonstration of
quantum supremacy by one-order of-magnitude. This improves
the quantum computer’s computational capacity.

However, a universal control framework that facilitates optimi-
zation over major experimental non-idealities under systematic
constraints has been lacking, which prevents us from fully
leveraging the flexibility of quantum control schemes. On the
one hand, quantum computing systems with an ever-growing
number of qubits are facing aggravating amounts of stochastic
control errors and information leakage. On the other hand, the
specific form of system Hamiltonian is limited by the underlying
physics of the computing platform and thus unable to directly
induce any desired quantum dynamical evolution on demand.
Overcoming these challenges is key to reaping the speedups
promised by quantum computers.2,4,5

Stochastic control errors can severely perturb the actual control
outcomes if they are not well accounted for during control
optimizations. But in most cases, the exact model of experimental
control errors is unavailable. Traditional methods for improving
the control robustness against control errors have centered
around closed-loop feedback optimizations,6–9 which necessitates
frequent measurements of the quantum system. Since existing
experimental measurements are relatively slow and can degrade
subsequent gate fidelities, such closed-loop optimization has yet
to become practical for near-term devices. The majority of open-
loop control optimizations10,11 address robustness through
analysis of the control-noise spectrum and control curvature
given by the control Hessian, which quickly becomes computa-
tionally exorbitant as system size increases.
Undesirable couplings between a quantum computing system

and its environment also become inevitable when the system is
sufficiently large, which induces information leakage. Such
leakage errors prevent the implementation of fast and high-
fidelity quantum gates in many platforms, such as superconduct-
ing qubits. There are two kinds of leakage errors: coherent
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leakage, which is deterministic and reversible, that is caused by
direct couplings between the qubit subspace and higher energy
subspaces; and incoherent leakage, which is caused by either non-
adiabatic transitions during modulation of system Hamiltonians
(the non-adiabatic transition away from the qubit subspace results
from the coherent quantum evolution of the full system, but in the
context of the current study such transition is effectively
incoherent because the return transition does not have time to
occur) or by photon loss to the environment. Coherent leakage
can be further divided into resonant and off-resonant compo-
nents, depending on whether the frequency components of the
control are close to the energy gap separating the qubit subspace
from a higher energy subspace (resonant) or not (off-resonant).
The high-dimensional control landscapes of multi-qubit-system

quantum control problems in the presence of leakage and control
errors are poorly understood due to the lack of appropriate
analytic tools and the prohibitive computational cost of numerical
approaches. Despite this lack of precise knowledge of control
landscape, unsupervised machine learning techniques are able to
obtain high-quality and scalable solutions to similar high-
dimensional continuous-variable optimization in real-world pro-
blems. Notably, reinforcement learning (RL) stands out for its
usefulness in the absence of labeled data because of its stability
against sample noise and its effectiveness in the face of
uncertainty and the stochastic nature of underlying physical
systems. In RL, a software agent takes sequential actions aiming to
maximize a reward function, or a negative cost function, that
embodies the target problem. Successful training of an RL agent
depends on balancing exploration of unknown territory with
exploitation of existing knowledge.
Deep RL techniques12–14 have revolutionized unsupervised

machine learning through novel algorithm designs that provide
scalable, data efficient, and robust performance with theoretical
guarantees. Further empowered by advanced optimization
techniques using deep neural networks, they are able to solve
difficult high-dimensional optimization problems that are beyond
the reach of classical RL techniques in benchmark tasks such as
simulated robotic locomotion and Atari games.12–14 Although Q-
learning, a classical RL technique, has been applied to quantum
control problems recently,15,16 these studies have yet to include
practical leakage or control errors.
The difficulty of control optimization increases when the

information leakage is taken into account: instead of 2n-
dimensional Hilbert space for an n-qubit system, we have 22n

degrees of freedom to describe an open quantum system with
non-zero environmental interaction. This quadratic increase in the
dimensionality of the underlying quantum dynamics add addi-
tional complexity to the control landscape17 and thus additional
difficulty in optimizing the controls. We will show that deep RL
techniques are capable of solving harder quantum control
problems than previously attempted while also minimizing
leakage. The key to leveraging these advanced RL methods is to
find an analytic cost function that captures the quantum
optimization problem’s complete objective.
A comprehensive and computable leakage bound for the given

control scheme is one missing piece of a universal control cost
function for control optimization of an arbitrary target unitary
gate. Although there are experimental proposals for evaluating
the gate-independent leakage,18,19 an analytic leakage bound is
needed to enable open-loop control optimization without
requiring real-time feedback from measurements. Lack of an
explicit leakage bound also limits the generality and universality of
existing quantum control solutions. For example,20–27 study
quantum controls over independent single-qubit Hamiltonians,
but only for closed systems without leakage. To minimize resonant
leakage errors, ref. 28 turns off independent controls over the
single-qubit Pauli Z couplings, and refs 1,29–31 turn off single-qubit
Pauli X and Y couplings. These hard constraints, however, could

impair the controllable quantum gates’ universality, or its
controllability: a time-dependent evolution without controls
overall independent single-qubit Hamiltonians is no longer
sufficient to implement an arbitrary unitary gate.20–22 Moreover,
introducing hard constraints makes the optimization problem
non-convex, which can substantially increase the optimization
difficulty.32

We propose a control framework, called Universal control cost
Function Optimization (UFO), towards overcoming these funda-
mental challenges in quantum control by connecting deeper
physical knowledge of the underlying quantum dynamics with
state-of-the-art RL techniques. Instead of resorting from experi-
mental randomized benchmarking for leakage quantification,18,19

we derive an analytic leakage bound for a Hamiltonian control
trajectory to account for both on- and off-resonant leakage errors.
Our leakage bound is based on a perturbation theory within the
time-dependent Schrieffer-Wolff transformation (TSWT) formal-
ism33 and on a generalized adiabatic theorem, see Supp. B. The
use of TSWT is a higher-order generalization of the derivative
canceling method for adiabatic gates,34 where unwanted leakage
errors are suppressed to any desired order by adding control
Hamiltonians proportional to associated orders of time-derivatives
of the dominant system Hamiltonian. We relax hard constraints in
control optimization to soft ones in the form of adjustable penalty
terms of the cost function, offering more flexibility to an RL agent’s
control policy while minimizing the meaningful errors from
practical non-idealities. Our generic cost function enables a joint
optimization over the accumulated leakage errors, violations of
control boundary conditions, total gate time, and gate fidelity.
Such a framework facilitates time-dependent controls overall
independent single-qubit Hamiltonians and two-qubit Hamilto-
nians, thus achieving full controllability.20–22

We use the UFO cost function as a reward for a continuous-
variable policy-gradient RL agent, which is trained by trusted-
region policy optimization,12 to find highest-reward/minimum-
cost analog controls for a variety of two-qubit unitary gates. We
find that applying second-order gradient methods to a policy is
superior to simpler approaches like direct gradient descent or
differential evolution of the control scheme. We suspect this lies in
its ability to leverage non-local features of control trajectories (as
demonstrated for example in ref. 17), which becomes crucial when
the control landscape is high-dimensional and packed with a
combinatorially large number of imperfect saddle points or local
optima with vanishing gradients,35 which is often the case for
open quantum systems.16 Moreover, the calculation of control
Hessians is replaced with a model-free second-order method with
neural networks to further speed up the optimization process. In
comparison, direct gradient descent methods are known to be
incapable of rapidly escaping such high-dimensional saddle
points.35

We verify the quality and the robustness of our control scheme
by evaluating the average fidelity of the noise-optimized control
solution under different control-noise model parameters. We
compare the performance of our RL-optimized control solution
with the optimal gate synthesis. The latter provides the minimum
number of required gates from a finite universal gate set for
realizing the same unitary transformation. Our RL control solutions
achieve up to a one-order-of-magnitude of improvement in gate
time over the optimal gate synthesis approach based on the best
known experimental gate parameters in superconducting qubits;
an order of-magnitude reduction infidelity variance over solutions
from both the noise-free RL counterpart and a baseline stochastic
gradient descent (SGD) method, and around two orders of-
magnitude reduction in average infidelity over control solutions
from the SGD method.
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RESULTS
Google’s superconducting-qubit architecture that allows tunable
qubit-qubit coupling36 is called the gmon architecture. To the
lowest order of approximation, the system Hamiltonian of gmon
qubits consists of one-body and nearest-neighbor-two-body terms
represented by bosonic creation and annihilation operators, âyj
and âj , and bosonic number operator n̂j , for the j-th bosonic
mode. In the rotating-wave approximation (RWA), with a constant
rotation rate chosen as the harmonic frequency of the Josephson
junction resonator (see Supp. A), the two-qubit gmon Hamiltonian
takes the form:

ĤRWAðtÞ ¼ η
2

P2
j¼1

n̂jðn̂j � 1Þ þ gðtÞðây2â1 þ ây1â2Þ þ
P2
j¼1

δjðtÞn̂j

þP2
j¼1

ifjðtÞ âje�iφjðtÞ � âyj e
iφjðtÞ

� �
;

(1)

where the time-independent parameter η represents the anhar-
monicity of the Josephson junction, and the seven time-
dependent control parameters are: (1) amplitude fj(t) and (2)
phase φj(t) of the microwave control pulse; (3) qubit detuning δj(t),
and (4) tunable capacitive coupling or g-pulse g(t). The computa-
tional subspace is spanned by the two lowest energy levels of
each bosonic mode: H2 ¼ Spanfj0ij; j1jig, where |n〉j represents a
Fock state with n excitations in the j-th mode.
An effective control cost function is crucial to efficient control

optimization and to guaranteeing the full controllability over the
quantum system. We propose a control cost function that includes
leakage errors, control constraints, total runtime, and gate
infidelity as soft penalty terms that are readily optimizable using
RL techniques without compromising system controllability. We
illustrate the design of a UFO cost function in the tunable gmon
superconducting-qubit architecture.36

A unitary gate is realizable through the control of the time-
dependent Hamiltonian defined in Eq. (1) according to

UðTÞ ¼ T exp �i
R T
0ĤRWAðtÞdt

� �h i
, with T denoting the time-

ordering operator. The inaccuracy of the controlled two-qubit
unitary gate U(T) with respect to a target unitary gate Utarget is
measured by the gate infidelity: 1� F½UðTÞ� ¼ 1� ð1=16Þ
TrðUyðTÞUtargetÞ
�� ��2,20–23 which vanishes only when U(T)= Utarget

up to a global phase. This definition of control inaccuracy is widely
used in quantum control optimization1,16,20–22,29,30,34 for its
modest computational overhead during iterative optimizations.
Additionally, diamond distance and average gate infidelity are
alternative measures for control inaccuracy. The former provides a
better measure of the coherent error but is harder to calculate,
and the later can be measured through randomized benchmark-
ing.36 As shown in ref. 37,38 the gate infidelity is related to diamond
distance and average gate infidelity. To reduce computational
overhead, we choose gate infidelity as the first part of our UFO
cost function to penalize the control inaccuracy.
The second part is a penalty term on the accumulated leakage

errors derived in Supp. B.2. The last two terms of the control cost
function penalize the total runtime T and violation of control
boundary conditions. Boundary conditions are chosen to facilitate
convenient gate concatenations: microwave pulses and the g-
pulse should vanish at both boundaries such that the computa-
tional bases and the Fock bases coincide. This is enforced by
adding

P
t2f0;Tg½g2ðtÞ þ f 2ðtÞ� to the control cost function. Such

boundary constraints also help to minimize the errors caused by
deviations from the RWA arising from the fast-oscillating nature of
the non-RWA terms; see Supp. A for details. We thus obtain the full

UFO cost function:

Cðχ; β; γ; κÞ ¼ χ½1� F½UðTÞ�� þ βLtot þ μ
X

t2f0;Tg
g2ðtÞ þ f 2ðtÞ� �þ κT

(2)

where χ penalizes the gate infidelity, β penalizes leakage errors, μ
penalizes violation of the boundary constraints, and κ penalizes
the total runtime. These hyper-parameters are optimized to
achieve satisfactory control outcomes. To apply to quantum
computing platforms other than gmon qubits, each term of the
UFO cost function can be modified to best describe the
optimization target based on the platform’s underlying physics.

Leakage error bound
To identify different sources of leakage errors, we decompose Eq.

(1) into three parts: ĤRWAðtÞ ¼ Ĥ0 þ Ĥ1ðtÞ þ Ĥ2ðtÞ, where Ĥ0 ¼

ðη=2ÞP
2

j¼1
n̂jðn̂j � 1Þ accounts for the large constant-energy gaps

separating the qubit subspace from higher energy subspaces. It
also determines the minimum energy gap Δ, separating the qubit
subspace from the nearest higher energy subspace. Henceforth,
we set the Planck constant h = 1 for the convenience of
discussion, and the energy scale is measured in units of MHz. The
block-diagonal Hamiltonian

Ĥ1ðtÞ ¼
P2
j¼1

δjðtÞn̂j þ if1ðtÞ j0i1h1j1e�iφ1ðtÞ � j1i1h0j1eiφ1ðtÞ
� �� I2

þif2ðtÞI1 � j0i2h1j2e�iφ2ðtÞ � j12ih0j2eiφ2ðtÞ
� �

þgðtÞ j11ij0i2h12jh0j1 þ j0i1j1i2h0j2h1j1ð Þ
þ2gðtÞ j2i1j1i2h2j2h1j1 þ j1i1j2i2h1j2h2j1ð Þ

(3)

accounts for the coupling within the qubit subspace Ω0 = Span{|
00〉, |10i〉, |01〉, |11〉} and within the first excited energy subspace
Ω1 = Span{|20〉, |21〉, |12〉, |02〉}, and the block-off-diagonal
Ĥ2ðtÞ ¼ ĤRWAðtÞ � Ĥ0 � Ĥ1ðtÞ accounts for the couplings between
different energy subspaces. Ĥ2ðtÞ is the culprit behind leakage
errors. But, because Ĥ1ðtÞ and Ĥ2ðtÞ both derive from microwave
pulses and the g-pulse, one cannot turn off Ĥ2ðtÞ without turning
off control over the single-qubit Pauli X and Y unitaries from Ĥ1ðtÞ
that are crucial for obtaining full controllability of the qubit
system. In order to suppress and evaluate coherent leakage errors
induced by Ĥ2ðtÞ, we adopt a rotated basis given by the TSWT
framework, under the assumption that inter-subspace and intra-
subspace couplings are much smaller than the energy gap
separating different subspaces:
jfjðtÞj � jδjðtÞj � jgðtÞj � ε � η � Δ, see Supp. B. The effective
block-off-diagonal Hamiltonian ĤodðtÞ after the TSWT can thus be
suppressed to any chosen order by applying the correct order of
TSWT.
There are two independent sources of leakage errors for TSWT-

based quantum control that dominate in superconducting-qubit
gate controls. The first is the direct coupling leakage caused by the
non-zero block-off-diagonal Hamiltonian after the second-order
TSWT. The second is the leakage caused by unwanted excitations
due to fast modulation of the system Hamiltonian. We derive in
Supp. B the following bound for the coherent leakage errors at
time T:

Ltot ¼
Ĥodð0Þ

		 		
Δð0Þ þ ĤodðTÞ

		 		
ΔðTÞ þ

ZT

0

1

Δ2ðtÞ
d2ĤodðtÞ

dt2

�����

�����

�����

�����dt; (4)

where ĤodðtÞ is of magnitude O ε3

Δ2

� �
after the second-order TSWT.
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In addition to the coherent leakage errors bounded by (4), there
also exist incoherent leakage errors due to the violation of
adiabaticity from the time-dependent nature of our control
quantum dynamics in the off-resonant regime. We derive a
generalized adiabatic theorem to bound the non-adiabatic
leakage error in Supp. B.2. We show there that such non-
adiabatic leakage is not dominant in the off-resonant frequency
regime, i.e., (4) accounts for the dominant leakage errors in both
the resonant and off-resonant regimes.

Deep trusted-region reinforcement learning
The control space for the two-qubit quantum gate is parametrized
at each time step t by a real valued vector ~uðtÞ ¼
ff1; f2;φ1;φ2; δ1; δ2; gg specifying 7 amplitudes of the controllable
system Hamiltonian. Our use of policy NN is based on a piecewise
constant (PWC) representation of control trajectory, which
contains around one thousand time steps for each gate-control
sequence. Such PWC encoding was previously considered
disadvantageous39 for the following reasons: (1) the lack of
analytic form of gradient expression can lower the accuracy of the
control optimization given the same computational resources; (2)
PWC control may introduce unwanted high-frequency compo-
nents that are detrimental for causing leakage errors. We show
with this work that these limitations are largely obviated in reality:
(1) the input to experimental quantum control DACs are also PWC
signals with time step limited by sample rate and control
amplitude accuracy limited by transfer function uncertainties,1

analytic control function therefore has to be truncated during
experimental implementations and suffers from discretization
errors not accounted by its original control optimization; (2)
control filter design can be easily integrated into the PWC control
optimization to guarantee a desired frequency bandwidth of the
control-pulse sequence (see Supp. C); and (3) PWC representation
can be directly transferred to close-loop system calibration and
control optimization to interface directly with control DACs.
Our RL agent is comprised of two neural networks (NNs): one

maps a given state containing the information about the
simulated unitary gate U(ti) at the current step ti to the mean
and variance of the Gaussian distribution of the proposed control
actions ~u tiþ1ð Þ: for the next step (the policy NN); the other NN
takes the simulated unitary gate U(ti) as input to output the
predicted reward associated with the current unitary (the value
function NN).12 Notice the salient difference from the on-policy RL
utilized in this work differ from previously studied off-policy RL in
previous work15,16 is that the control trajectory (embedded in
policy NN) is represented independently from the control cost
(value function NN). Off-policy RL, such as Q learning,13 on the
other hand, uses a single NN to represent both the control
trajectory and the associated reward.
Both the policy and value function NN are fully connected three

layers NNs of dimension 64, 32, and 32. Intuitively, the first NN, the
policy NN encodes the analytic and non-local feature of control
solutions. Such encoding, which is traditionally captured by a
carefully chosen analytic function,40 is now represented by a
model-independent NN without any prior knowledge of the target
cost function. The value function NN encodes the projected future
interactions with a stochastic environment and the associated
control cost, which is used to adjust the learning rate of the policy
NN’s gradient descent.
Both of the RL agent’s NNs interact with a training environment

that evaluates the quantum dynamics under the RL agent’s
proposed control action and returns the updated unitary gate and
the corresponding control cost (as reward); see Fig. 1. Optimiza-
tion consists of many episodes, each of which contains all the time
steps of a complete quantum-control trajectory. The duration of
such a sampled control trajectory is determined by the minimum
of a predefined runtime upper bound and the time it takes to

meet a termination condition. In our case, the termination
condition is measured by a satisfactory value of the UFO cost
function. After sampling a batch of 20,000 episodes, the policy NN
is updated to maximize the expected discounted future reward
based on the proposed policy variation within the trusted region,
and the value function NN is updated to fit the expected
discounted future reward based on the newly added samples. A
detailed algorithm is presented in refs. 12,41 We found that the
control robustness against control errors is significantly improved
by simulating experimentally relevant Gaussian fluctuations in the
control amplitudes using a stochastic RL training environment.
Our discovery differs from recent results in the sampling-based
method for obtaining control robustness in that we specifically
include optimization over leakage errors in the presence of control
fluctuations.
We verified the quality and robustness of our control scheme by

evaluating the average fidelity of the noise-optimized control
solution under different control-noise model parameters in the
next section. There, we compare the performance of our RL-
optimized control solution with that of the optimal gate synthesis.
The latter provides the minimum number of required gates from a
finite universal gate set to realize the same unitary transformation.
Our RL control solutions achieve: (1) up to a one-order-of-
magnitude of improvement in gate time over the optimal gate
synthesis approach based on the best known experimental gate
parameters in superconducting qubits; (2) a two-orders-of-
magnitude reduction infidelity standard deviation over solutions
from both the noise-free RL counterpart and a baseline stochastic
gradient descent (SGD) method; and (3) around two-orders-of-

Un+1 = exp[i t(Hn+1 + Hn+1)]Un

Hn+1

control cost, new state

value NN

policy NN

state

action

environment

discounted future reward

agent

Un

Un+1

Fig. 1 Overview of the RL implementation: at the iteration time step
n+ 1, the policy NN proposes a control action in the form of the
system Hamiltonian Ĥnþ1, the training environmenttakes the
proposed action and evaluates the Schrödinger equation under a
noisy implementation Ĥnþ1 þ δĤnþ1 for time duration 4t to obtain a
new unitary gate Unþ1 and calculates the associated cost function,
both of which are fed into an RL agent. The policy NN and value NN
of the RL agent are updated jointly based on the trajectory of the
simulated unitary gate, controlaction and associated control cost
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magnitude reduction in average infidelity over control solutions
from the SGD method.

Two-qubit gate-control optimization
We now apply the UFO framework to find fast and high-fidelity
two-qubit gate controls that are robust against control errors. We
define gate-control robustness under a given control-noise model
as a bounded deviation of the average gate fidelity FðE;UtargetÞ
from an ideal average gate fidelity Fideal:

FðE;UtargetÞ � Fideal
�� ��<ε0; for ε0>0; (5)

where the average gate fidelity

FðE;UtargetÞ ¼
Z

dψ ψh jUy
targetE ψj i ψh jUtarget ψj i (6)

embodies the quality of the gate-control quantum channel by
averaging over the whole state space under a uniform Haar
measure,42 with the trace-preserving quantum operation E
accounting for the noisy implementation of a target unitary
Utarget; see Supp. D for detail. The average gate infidelity is defined
accordingly as 1� FðE;UÞ.
Such a robustness criterion can be validated for a given control

scheme using a number of computational steps that is linear in
the total degrees of freedom of control parameters. However, it
differs from the canonical definition in optimal control theory,10,11

where the number of computational steps for the analysis of
robustness using control Hessians scales cubically with the control
parameters’ total degrees of freedom. For special cases, such as
closed-system single-qubit control, there exist analytic expressions
for the control Hessian.10,11 But in the current work we choose a
more practical definition of robustness that is scalable to multi-
qubit control problems.
Traditional quantum-control trajectory optimization depends on

complete knowledge of the underlying physical model. In
contrast, the success and robustness of RL persist with incomplete
and potentially flawed modeling. It is often the case in
experiments that the exact control error model is unknown.
Given partial information about the control error model, can we
leverage RL optimization to find robust control solutions against
not just one but a set of control error models? In our case, we
deployed RL agents, trained by trust-region policy optimization12

in the OpenAI platform,43 to find near-optimal control solutions to
the UFO cost function described in Eq. (2). We incorporated a
pertinent control-noise model for gmon superconducting-qubit
Hamiltonian36 into a stochastic training environment. At each time
step, amplitude fluctuations sampled from a zero-mean Gaussian
distribution with 1 MHz standard deviation, which amounts to
around 5% control parameter uncertainty, were added to
Hamiltonian parameters that are known to be prone to fluctua-
tion: qubit anharmonicity, qubit detuning amplitudes, microwave
control amplitudes, and qubit g-pulse amplitude. See Supp. A for
the details. Harnessing the sample-noise resilience of RL
optimization, we expected the optimized control to be robust
against a family of control-noise models despite being trained
under a single model. This was indeed proven to be the case as
evidenced by our numerical simulations, see Fig. 4.

Nðα; α; γÞ ¼ exp iðασx
1σ

x
2 þ ασy

1σ
y
2 þ γσz

1σ
z
2Þ

�
(7)

In gmon superconducting qubits, the energy gap that separates
the qubit subspace from the nearest higher energy subspace is Δ
(s) ≈ 200 MHz. We apply control frequency filters (Supp. C) to
piecewise constant analog-control signals such that the band-
width of the proposed Hamiltonian modulation is limited to
10MHz. Given that our off-diagonal Hamiltonian after the second-
order TSWT is of order 100 KHz (Supp. B.1), the first leakage-bound

term in Eq. (4),
R 1
0

1
Δ2ðsÞ

1
T

d2ĤodðsÞ
ds2

���
���

���
���ds, is of order 10−4, which is close

to the fault-tolerant threshold for leakage error of the near-term
surface code.44 Although the gmon Hamiltonian is fully con-
trollable under our UFO paradigm, we targeted a family of two-
qubit gates parametrized by

Nðα; α; γÞ ¼ exp½iðασx
1σ

x
2 þ ασy

1σ
y
2 þ γσz

1σ
z
2Þ�; (8)

where σk
j for k ∈ {x, y, z} is the jth qubit’s Pauli matrix. Optimal gate

synthesis45 provides the optimal decomposition of such unitary
transformation into a minimum number of arbitrary single-qubit
rotations and CZ gates, yields a depth-seven circuit containing
three two-qubit gates and five single-qubit gates, see Fig. 2. This
gate family includes the SWAP, ISWAP, CNOT, and CZ gate, the
fermionic SWAP gate, and Given’s rotation up to single-qubit
rotations. Both the fermionic swap gate and Given’s rotations are
used for realizing Jordan-Wigner transformations in fermionic
Hamiltonian simulation.46–48 Identifying continuous controls that
outperform their optimal gate synthesis counterparts for this
family of gates thus has far-reaching applications across quantum
chemistry and quantum simulation. The UFO cost function’s
parameters were optimized through a grid search and turned out
to be χ= β= 10, μ= 0.2, κ= 0.1, values that are applicable to all
target gates.
We compared the overall runtime of our noise-optimized

control obtained by the RL agent with its optimal gate synthesis
counterpart. Based on state-of-the-art experimental implementa-
tions, we set the gate time for each single-qubit gate to 20 ns and
CNOT to 45 ns. Optimal gate synthesis in Fig. 2 thus has a 215 ns
runtime.
The gate times of our noise-optimized control schemes for

three different values of γ are shown in Fig. 3. There, different data
points for the same γ are obtained by the same RL agent with an
adaptive step size in α to guarantee a constant upper bound on
the total optimization time: target gate α will be increased by one
step α= α + 0.1, either when the agent obtains a control solution
with a low enough overall cost, or when the optimization time for
a given α exceeds a predefined value. We discovered that it takes
significantly less time for an RL agent to learn a new target unitary
gate, based on the successful learning of a nearby target, than to
learn a new target gate afresh, which provides heuristic evidence
for the transfer learning facilitated by RL using a deep NN. The use
of an adaptive step size can be replaced by parallel RL agents,
each dedicated to a fixed target unitary gate, but that was not the
focus of the current study.
Figure 3 shows that an RL optimization provides a one-order-of-

magnitude runtime improvement for the two-qubit gate family
parametrized by Nðα; α; π=2Þ with α ∈ [1.2, 1.7] over the optimal
gate synthesis. Such significant improvement originates from the
decomposition of this two qubit unitary right at the center of this
region with α= γ= π/2 into a direct product of single-qubit
unitaries. This demonstrates the hardware efficiency of our control
optimization of finding the underlying unitary relations to
automatically reduce gate time. In particular, the target unitary
gate can be rewritten as Nðα; α; π=2Þ ¼ �exp iðασx

1σ
x
2 þ ασy

1σ
y
2Þ

� �
exp �i π2 σ

z
1

� �
exp �i π2 σ

z
2

� �
whose two-qubit entangling part is

directly realizable through a time evolution under the gmon
Hamiltonian defined in Eq. (1) without detuning or microwave
controls: δj(t) = fj(t) = 0 with j ∈ {1, 2}. Our RL control optimization
is thus able to detect such an inherent regularity, which relates a
given system Hamiltonian to the family of target unitary gates that
are efficiently implementable. Isolated peaks in the gate time plot

Rz(2 / 2)

Ry( / 2 2 ) Rz(2 / 2)

Rz( / 2)

Rz( / 2)

Fig. 2 Optimal gate synthesis for realizing unitary gate Nðα; α; γÞ
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in Fig. 3 are potentially due to control singularities, which suggests
the need for further studies into the hardness of the analog-
control landscape in the presence of leakage and control errors.
We verified the robustness of the noise-optimized control

solution ĤRWAðtÞ from RL by evaluating its average fidelity
FðE;UtargetÞ and the standard deviation of the control gate
fidelities F½UðĤRWAðtÞÞ� under different control-noise instances
δĤRWAðtÞ sampled from the same Gaussian distribution N(0, σnoise):

σfidelity ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EδĤRWAðtÞ�Nð0;σnoiseÞ F½UðĤRWAðtÞ þ δĤRWAðtÞÞ� � Fave

� �2q
;

(9)

Fave ¼ EδĤRWAðtÞ�Nð0;σnoiseÞF½UðĤRWAðtÞ þ δĤRWAðtÞÞ�: (10)

We consider a Gaussian family of stochastic control error
models: the amplitude fluctuations of control parameters are
described by zero-mean Gaussian distributions with a standard
deviation σnoise ranging from 0.1 to 3.5 MHz. The gate-control
performance under the noise model with 1 MHz standard
deviation is a reasonable indicator for experimental implementa-
tions. Nevertheless, the exact value of the standard deviation is
hard to determine and can drift over time. The blue curve in Fig. 4
represents the average fidelity of the noise-optimized control by
RL, which stays within the range of [99.5%, 98%] under the given
noise model parameter range, satisfying our control robustness
definition with ε0= 0.007 at σnoise= 1 MHz.
In Fig. 4, we compare noise-optimized control with a noise-free

control solution obtained by an RL agent without a stochastic
environment, represented by the green curve marked by
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Fig. 4 Average fidelities of the optimized quantum control schemes vs the Gaussian control noise variance for the gate N (2.2, 2.2, π/2). The
blue line represents the performance of the noise-optimized control obtained by an RL agent trained under a noisy environment. The green
line marked by diamond shapes represents the performance of the control obtained by an RL agent with a noise-free environment. The red
dashed line represents the performance of the control trajectory obtained by SGD. Subplot a: zoomed in comparison of the average fidelities
of the noise-optimized and noise-free RL control solutions under different values of Gaussian control noise variance. Subplot b: comparison of
fidelity variances of three different control schemes under different control noise variances σnoise, where each data point is taken from 60
different control trajectories with control amplitude error at every time step sampled from the Gaussian distribution N(0, σnoise)
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diamonds, and with that obtained by a baseline SGD technique
using the Adam optimizer,49 represented by the red dashed lines.
For the gradient calculation in each SGD iteration, we utilize the
averaged gradient over a minibatch of 10 control trajectories. Each
one of these trajectories is added with a perturbation sampled
from a zero-mean Gaussian distribution with standard deviation
1 MHz to the original Hamiltonian control variables at the
concerned time step. We provide our SGD solver the same
amount of optimization wall time as the corresponding RL solvers,
which amounts to around 2000 random restarts per target gate.
The noise-optimized control solution manifests up to a one-

order-of-magnitude improvement in average gate infidelity over
the noise-free control solution using RL, and around two-orders-
of-magnitude improvement in average gate infidelity over SGD
baseline solutions. Moreover, the sampled fidelity standard
deviation of the noise-optimized RL solver is consistently two-
orders-of-magnitude lower than that of the two other methods
throughout the tested noise model parameter range. This result
validates the improved stability of our control solution obtained
by a policy-gradient trained RL agent against experimentally
relevant Gaussian control-noise models.
The major difference between the baseline SGD approach and

our on-policy RL is the model-dependence: SGD relies on the
calculation of the gradient of the control cost function while the
on-policy RL is model-independent and does not directly utilize
the physical models to calculate the gradient of its two neural
network. Instead, on-policy RL only requires the calculation of the
control cost function at each time step. Because the control cost
function is easier to compute than the gradient relevant to SGD,
on-policy RL possesses more potential than SGD towards scaling
up to many qubits. Our work demonstrates the advantageous
performance of RL method over SGD in two-qubit gate-control
optimization in face of realistic control errors including leakage
and stochastic control fluctuations. However, it remains an open
question whether an advantage persists when gradient estimation
is computationally inexpensive such that SGD or other gradient
based optimization also applies.

DISCUSSION
We proposed a quantum control framework, UFO, for fast and
high-fidelity quantum gate-control optimization. It was applied to
an open-loop control optimization through reinforcement learn-
ing, in which the control trajectory is encoded by a first neural
network (NN) and the control cost function is encoded by a
second NN. Robust control solutions were obtained by training
both NNs under a stochastic environment mimicking noisy control
actuation. We achieved up to one-order-of-magnitude reduction
in average gate infidelity over noise-free alternatives and up to a
one-order-of-magnitude reduction in gate time over the optimal
gate synthesis solution. These improvements are significant, given
that the highest gate fidelity in state-of-the-art superconducting-
qubit systems is around 99.5%, and that the total computation
runtime is limited by decoherence to several microseconds.
Our work opens a new direction for quantum analog-control

optimization using RL, where unpredictable control errors and
incomplete physical models of environmental interactions are
taken into account during the control optimization. Other
advanced machine learning techniques are also readily applicable
to our control framework. The success of deep RL in Alpha Go14

and robotic control12,13 suggests that our approach—once
generalized to closed-loop control optimization, where system
calibration and gate-control optimization are combined into a
unified procedure—could further improve the control robustness
against systematic and time-correlated errors. More work remains
to be done in investigating RL’s ability to find control solutions
that are robust to other experimental imperfections not yet

considered in this work, including the approximation errors of
RWA,50 the incomplete knowledge about the quantum computing
substrate, unwanted coupling with environmental defects,51 etc.
The anaolog control optimization shown in this work can also be
combined with gate sequence optimization, such as that
discussed in ref. 52 to further optimize the overall quantum circuit
fidelity and robustness in face of practical imperfections.

METHODS
Reinforcement learning
We use the trusted region policy-gradient method developed by John
Shulman et al.12 as reinforcement learning agent deployed in the OpenAI
baseline platform.42 The source code of the method can be found in
https://github.com/joschu/modular_rl. The optimization of the cost func-
tion parameters χ, β, γ, and κ are performed through grid search between
the range of [0,10] with grid step 0.1. The adaptive step size in transfer
learning the target unitary control optimization shown in Fig. 3 is δα= 0.1,
with maximum wall time per target restricted to 5 hours.
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