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Abstract—We consider an agent interacting with an
unmodeled environment. At each time, the agent makes
an observation, takes an action, and incurs a cost. Its
actions can influence future observations and costs.
The goal is to minimize the long-term average cost.
We propose a novel algorithm we call the active LZ
algorithm for optimal control based on ideas from the
Lempel-Ziv scheme for universal data compression and
prediction. We establish that, under the active LZ
algorithm, if there exists an integer K such that the
future is conditionally independent of the past given a
window ofK consecutive actions and observations, then
the average cost converges to the optimum. Experimen-
tal results involving the game of Rock-Paper-Scissors
illustrate merits of the algorithm.

Index Terms—Lempel-Ziv, context tree, optimal con-
trol, reinforcement learning, dynamic programming,
value iteration.

I. Introduction

CONSIDER an agent that, at each integer time t,
makes an observation Xt from a finite observa-

tion space X, and takes an action At selected from a
finite action space A. The agent incurs a bounded cost
g(Xt, At, Xt+1) ∈ [−gmax, gmax]. The goal is to minimize
the long-term average cost

lim sup
T→∞

E
[

1
T

T∑
t=1

g(Xt, At, Xt+1)

]
.

Here, the expectation is over the randomness in the Xt

process1, and, at each time t, the action At is selected
as a function of the prior observations Xt and the prior
actions At−1.

We will propose a general action-selection strategy
called the active LZ algorithm. In addition to the new
strategy, a primary contribution of this paper is a theoret-
ical guarantee that this strategy attains optimal average
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1For a sequence such as {Xt}, Xts denotes the vector (Xs, . . . , Xt).
We also use the notation Xt = Xt1.

cost under weak assumptions about the environment. The
main assumption is that there exists an integer K such
that the future is conditionally independent of the past
given a window of K consecutive actions and observations.
In other words,

Pr (Xt = xt| Ft−1) = P
(
xt
∣∣Xt−1

t−K , A
t−1
t−K

)
, (1)

where P is a transition kernel and Ft is the σ-algebra
generated by (Xt, At). We are particularly interested in
situations where neither P nor even K are known to
the agent. That is, where there is a finite but unknown
dependence on history.

Consider the following examples, which fall into the
above formalism.

Example 1 (Rock-Paper-Scissors). Rock-Paper-Scissors
is a two-person, zero-sum matrix game that has a rich
history as a reinforcement learning problem. The two
players play a series of games indexed by the integer t. Each
player must generate an action—rock, paper, or scissors—
for each game. He then observes his opponent’s hand and
incurs a cost of −1, 1, or 0, depending on whether the
pair of hands results in a win, loss, or draw. The game is
played repeatedly and the player’s objective is to minimize
the average cost.

Define Xt to be the opponent’s choice of action in game
t, and At−1 to be the player’s choice of action in game t.
The action and observation spaces for this game are

A , X , {rock, paper, scissors}.

Identifying these with the integers {1, 2, 3}, the cost func-
tion is

g(xt, at, xt+1) ,

 0 1 −1
−1 0 1
1 −1 0


xt+1,at

.

Assuming that the opponent uses a mixed strategy that
depends only on information from the last K − 1 games,
such a strategy defines a transition kernel P over the
opponent’s play Xt in game t of the form (1). (Note that
such a P has special structure in that, for example, it
has no dependence on the player’s action At−1 in game
t, since this is unknown to the opponent until after game t
is played.) Then, the problem of finding the optimal strategy
against an unknown, finite-memory opponent falls within
our framework.

Example 2 (Joint Source-Channel Coding with a Fixed
Decoder). Let S and Y be finite source and channel al-
phabets, respectively. Consider a sequence of symbols {St}
from the source alphabet S which are to be encoded for
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transmission across a channel. Let Yt ∈ Y represent the
choice of encoding at time t, and let Ŷt ∈ Y be the symbol
received after corruption by the channel. We will assume
that this channel has a finite memory of order M . In other
words, the distribution of Ŷt is a function of Y tt−M+1. For
all times t, let d : YL → S be some fixed decoder that
decodes the symbol at time t based on the most recent L
symbols received Ŷ tt−L+1. Given a single letter distortion
measure ρ : S × S → R, define the expected distortion at
time t by

g(st, ytt−L−M+2)

, E
[
ρ
(
d(Ŷ tt−L+1), st

) ∣∣∣ Y tt−L−M+2 = ytt−L+M+2

]
.

The optimization problem is to find a sequence of functions
{µt}, where each function µt : Xt → A specifies an
encoder at time t, so as to minimize the long-term average
distortion

lim sup
T→∞

Eµ

[
1
T

T∑
t=1

g(St, Y tt−L−M+2)

]
.

Assume that the source is Markov of order N , but that both
the transition probabilities for the source and the order N
are unknown. Setting K = max(L+M − 1, N), define the
observation at time t to be the vector Xt = (St, Y t−1

t−L−M+2)
and the action at time t to be At = Yt. Then, optimal
coding problem at hand falls within our framework (cf. [1]
and references therein).

With knowledge of the kernel P (or even just the
order of the kernel, K), solving for the average cost
optimal policy in either of the examples above via dynamic
programming methods is relatively straightforward. This
paper develops an algorithm that, without knowledge of
the kernel or its order, achieves average cost optimality.
The active LZ algorithm we develop consists of two broad
components. The first is an efficient data structure, a
context tree on the joint process (Xt, At−1), to store
information relevant to predicting the observation at time
t+1, Xt+1, given the history available up to time t and the
action selected at time t, At. Our prediction methodology
borrows heavily from the Lempel-Ziv algorithm for data
compression [2]. The second component of our algorithm is
a dynamic programming scheme that, given the probabilis-
tic model determined by the context tree, selects actions
so as to minimize costs over a suitably long horizon.
Absent knowledge of the order of the kernel, K, the two
tasks above—building a context tree in order to estimate
the kernel, and selecting actions that minimize long-term
costs—must be done continually in tandem which creates
an important tension between ‘exploration’ and ‘exploita-
tion’. In particular, on the one hand, the algorithm must
select actions in a manner that builds an accurate context
tree. On the other hand, the desire to minimize costs
naturally restricts this selection. By carefully balancing
these two tensions our algorithm achieves an average cost
equal to that of an optimal policy with full knowledge of
the kernel P .

Related problems have been considered in the liter-
ature. Kearns and Singh [3] present an algorithm for
reinforcement learning in a Markov decision process. This
algorithm can be applied in our context when K is known,
and asymptotic optimality is guaranteed. More recently,
Even-Dar et al. [4] present an algorithm for optimal control
of partially observable Markov decision processes, a more
general setting than what we consider here, and are able
to establish theoretical bounds on convergence time. The
algorithm there, however, seems difficult and unrealistic to
implement in contrast with what we present here. Further,
it relies on knowledge of a constant related to the amount
of time a ‘homing’ policy requires to achieve equilibrium.
This constant may be challenging to estimate.

Work by de Farias and Megiddo [5] considers an optimal
control framework where the dynamics of the environment
are not known and one wishes to select the best of a finite
set of ‘experts’. In contrast, our problem can be thought
of as competing with the set of all possible strategies. The
prediction problem for loss functions with memory and a
Markov-modulated source considered by Merhav et al. [6]
is essentially a Markov decision problem as the authors
point out; again, in this case, knowing the structure of the
loss function implicitly gives the order of the underlying
Markov process.

The active LZ algorithm is inspired by the Lempel-Ziv
algorithm. This algorithm has been extended to address
many problems, such as prediction [7], [8] and filtering
[6]. In almost all cases, however, future observations are
not influenced by actions taken by the algorithm. This is
in contrast to the active LZ algorithm, which proactively
anticipates the effect of actions on future observations. An
exception is the work of Vitter and Krishnan [9], which
considers cache pre-fetching and can be viewed as a special
case of our formulation.

The Lempel-Ziv algorithm and its extensions revolve
around a context tree data structure that is constructed as
observations are made. This data structure is simple and
elegant from an implementational point of view. The use
of this data structure in reinforcement learning represents
a departure from representations of state and belief state
commonly used in the reinforcement learning literature.
Such data structures have proved useful in representing ex-
perience in algorithms for engineering applications ranging
from compression to prediction to denoising. Understand-
ing whether and how some of this value can be extended
to reinforcement learning is the motivation for this paper.

The remainder of this paper is organized as follows.
In Section II, we formulate our problem precisely. In
Section III, we present our algorithm and provide compu-
tational results in the context of the rock-paper-scissors
example. Our main result, as stated in Theorem 2 in
Section IV, is that the algorithm is asymptotically optimal.
Section V concludes.
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II. Problem Formulation
Recall that we are endowed with finite action and

observation spaces A and X, respectively, and we have

Pr (Xt = xt| Ft−1) = P
(
xt
∣∣Xt−1

t−K , A
t−1
t−K

)
,

where P is a stochastic transition kernel. A policy µ is
a sequence of mappings {µt}, where for each time t the
map µt : Xt × At−1 → A determines which action shall
be chosen at time t given the history of observations and
actions observed up to time t. In other words, under policy
µ, actions will evolve according to the rule

At = µt(Xt, At−1).

We will call a policy µ stationary if

µt(Xt, At−1) = µ(Xt
t−K+1, A

t−1
t−K+1), for all t ≥ K,

for some function µ : XK × AK−1 → A. Such a policy
selects actions in a manner that depends only one the
current observation Xt and the observations and actions
over the most recent K time steps. It is clear that for
a fixed stationary policy µ, the observations and actions
for time t ≥ K evolve according to a Markov chain on
the finite state space XK × AK−1. Given an initial state
(xK , aK−1), we can define the average cost associated with
the stationary policy µ by

λµ(xK , aK−1)

, lim
T→∞

Eµ

[
1
T

T∑
t=1

g(Xt, At, Xt+1)

∣∣∣∣∣ xK , aK−1

]
.

Here, the expectation is conditioned on the initial state
(XK , AK−1) = (xK , aK−1). Since the underlying state-
space, XK ×AK−1, is finite, the above limit always exists
[10, Proposition 4.1.2]. Since there are finitely many sta-
tionary policies, we can define the optimal average cost
over stationary policies by

λ∗(xK , aK−1) , min
µ

λµ(xK , aK−1),

where the minimum is taken over the set of all stationary
policies. Again, because of the finiteness of the underlying
state space, λ∗ is also the optimal average cost that can
be achieved using any policy, stationary or not. In other
words,
λ∗(xK , aK−1)

= inf
ν

lim sup
T→∞

Eν

[
1
T

T∑
t=1

g(Xt, At, Xt+1)

∣∣∣∣∣ xK , aK−1

]
,

(2)
where the infimum is taken over the set of all policies [10,
Proposition 4.1.7].

We next make an assumption that will enable us to
streamline our analysis in subsequent sections.

Assumption 1. The optimal average cost is independent
of the initial state. That is, there exists a constant λ∗ so
that

λ∗(xK , aK−1) = λ∗, ∀ (xK , aK−1) ∈ XK × AK−1.

The above assumption is benign and is satisfied for any
strictly positive kernel P , for example. More generally,
such an assumption holds for the class of problems sat-
isfying a ‘weak accessibility’ condition (see Bertsekas [10]
for a discussion of the structural properties of average cost
Markov decision problems). In the context of our problem,
it is difficult to design controllers that achieve optimal
average cost in the absence of such an assumption. In
particular, if there exist policies under which the chain has
multiple recurrent classes, then the optimal average cost
may well depend on the initial state and actions taken very
early on might play a critical role in achieving this perfor-
mance. We note that in such cases the assumption above
(and our subsequent analysis) is valid for the recurrent
class our controller eventually enters.

If the transition kernel P (and, thereby, K) were known,
dynamic programming is a means to finding a stationary
policy that achieves average cost λ∗. One approach would
be to find a solution J : XK×AK−1 → R to the discounted
Bellman equation

J(xK , aK−1)

= min
aK

∑
xK+1

P (xK+1|xK , aK)

×
[
g(xk, ak, xK+1) + αJ(xK+1

2 , aK2 )
]
,

(3)

for all (xK , aK−1) ∈ XK × AK−1. Here, α ∈ (0, 1) is
a discount factor. If the discount factor alpha is chosen
to be sufficiently close to 1, a solution J∗α (known as
the cost-to-go function) to the Bellman equation can
be used to define an optimal stationary policy for the
original, average-cost problem (2). In particular, for all
(xK , aK−1) ∈ XK ×AK−1, define the set A∗α(xK , aK−1) of
α-discounted optimal actions to be the set of minimizers
to the optimization program

min
aK

∑
xK+1

P (xK+1|xK , aK)

×
[
g(xK , aK , xK+1) + αJ∗α(xK+1

2 , aK2 )
]
.

(4)

At a give time t, A∗α(Xt
t−K+1, A

t−1
t−K+1) is the set of actions

obtained acting greedily with respect to J∗α. These actions
seek to minimize the expected value of the immediate cost
g(Xt, At, Xt+1) at the current time, plus a continuation
cost, which quantifies the impact of the current decision
on all future costs, and is captured by J∗α.

If α is sufficiently close to 1, and µ∗ is a policy such that
for t ≥ K,

µ∗t (Xt, At−1) ∈ A∗α(Xt
t−K+1, A

t−1
t−K+1), (5)

then, µ∗ will achieve the optimal average cost λ∗. Such a
policy µ∗ is sometimes called a Blackwell optimal policy
[10].

We return to our example of the game of Rock-Paper-
Scissors, to illustrate the above approach.

Example 1 (Rock-Paper-Scissors). Given knowledge of
the opponent’s (finite-memory) strategy and, thus the tran-
sition kernel P , the Bellman equation (3) can be solved
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for the optimal cost-to-go function J∗α. Then, an optimal
policy for the player would be, for each game t + 1, to
select an action At according to (4)–(5). This action is
a function of the entire history of game play only through
the sequence (Xt

t−K+1, A
t−1
t−K+1) of recent game play. The

action is selected by optimally accounting for both the
expected immediate cost g(Xt, At, Xt+1) of the game at
hand, and the impact of the choice of action towards all
future games (through the cost-to-go function J∗α).

III. A Universal Scheme

Direct solution of the Bellman equation (3) requires
knowledge of the transition kernel P . Algorithm 1, the ac-
tive LZ algorithm, is a method that requires no knowledge
of P , or even of K. Instead, it simultaneously estimates a
probabilistic model for the evolution of the system and
develops an optimal control for that model, along the
course of a single system trajectory. At a high-level, the
two critical components of the active LZ algorithm are the
estimates P̂ and Ĵ . P̂ is our estimate of the true kernel P .
This estimate is computed using variable length contexts
to dynamically build higher order models of the underlying
process, in a manner reminiscent of the Lempel-Ziv scheme
used for universal prediction. Ĵ is the estimate to the
optimal cost-to-go function J∗α that is the solution to the
Bellman equation (3). It is computed in a fashion similar to
the value iteration approach to solving the Bellman equa-
tion equation (see [10]). Given the estimates P̂ and Ĵ , the
algorithm randomizes to strike a balance selecting actions
so as to improve the quality of the estimates (exploration)
and acting greedily with respect to the estimates so as to
minimize the costs incurred (exploitation).

The active LZ algorithm takes as inputs a discount
factor α ∈ (0, 1), sufficiently close to 1, and a sequence
of exploration probabilities {γt}. The algorithm proceeds
as follows: time is parsed into intervals, or ‘phrases’, with
the property that if the cth phrase covers the time intervals
τc ≤ t ≤ τc+1 − 1, then the observation/action sequence
(Xτc+1−1

τc , A
τc+1−2
τc ) will not have occurred as the prefix of

any other phrase before time τc.
At any point in time t, if the current phrase started at

time τc, the sequence (Xt
τc , A

t−1
τc ) defines a context which

is used to estimate transition probabilities and cost-to-
go function values. To be precise, given a sequence of
observations and actions (x`, a`−1), we say the context at
time t is (x`, a`−1) if (Xt

τc , A
t−1
τc ) = (x`, a`−1). For each

x`+1 ∈ X and a` ∈ A, the algorithm maintains an estimate
P̂ (x`+1|x`, a`) of the probability of observing Xt+1 = x`+1
at the next time step, given the choice of action At = a`
and the current context (Xt

τc , A
t−1
τc ) = (x`, a`−1). This

transition probability is initialized to be uniform, and
subsequently updated using an empirical estimator based
on counts for various realizations of Xt+1 at prior visits
to the context in question. If N(x`+1, a`) is the number of
times the context (x`+1, a`) has been visited prior to time

t, then the estimate

P̂ (x`+1|x`, a`) = N(x`+1, a`) + 1/2∑
x′ N

(
(x`, x′), a`

)
+ |X|/2

(6)

is used. This empirical estimator is akin to the update
of a Dirichlet-1/2 prior with a multinomial likelihood and
is similar to that considered by Krichevsky and Trofimov
[11].

Similarly, at each point in time t, given the context
(Xt

τc , A
t−1
τc ) = (x`, a`−1) ∈ X` × A`−1, for each x`+1 ∈ X

and a` ∈ A, the quantity Ĵ(x`+1, a`) is an estimate of
the cost-to-go if the action At = a` is selected and then
observation Xt+1 = x`+1 is subsequently realized. This
estimate is initialized to be zero, and subsequently refined
by iterating the dynamic programming operator from
(3) backwards over outcomes that have been previously
realized in the system trajectory, using P̂ to estimate the
probability of each possible outcome (line 16).

At each time t, an action At is selected either with the
intent to explore or to exploit. In the former case, the
action is selected uniformly at random from among all the
possibilities (line 9). This allows the action space to be
fully explored and will prove critical in ensuring the quality
of the estimates P̂ and Ĵ . In the latter case, the impact of
each possible action on all future costs is estimated using
the transition probability estimates P̂ and the cost-to-go
estimates Ĵ , and the minimizing action is taken acting
greedily with respect to P̂ and Ĵ (line 10). A sequence
{γt} controls the relative frequency of actions taken to
explore versus exploit; over time, as the system becomes
well-understood, actions are increasingly chosen to exploit
rather than explore.

Note that the active LZ algorithm can be implemented
easily using a tree-like data structure. Nodes at depth `
correspond to contexts of the form (x`, a`−1) that have
already been visited. Each such node can link to at most
|X||A| child nodes of the form (x`+1, a`) at depth ` + 1.
Each node (x`+1, a`) maintains a count N(x`+1, a`) of how
many times it has been seen as a context and maintains a
cost-to-go estimate Ĵ(x`+1, a`). The probability estimates
P̂ need not be separately stored, since they are readily
constructed from the context counts N according to (6).
Each phrase interval amounts to traversing a path from the
root to a leaf, and adding an additional leaf. After each
such path is traversed, the algorithm moves backwards
along the path (lines 11–19) and updates only the counts
and cost-to-go estimates along that path. Note that such
an implementation has linear complexity, and requires a
bounded amount of computation and storage per unit time
(or symbol).

We will shortly establish that the active LZ algo-
rithm achieves the optimal long-term average cost. Before
launching into our analysis, however, we next consider
employing the active LZ algorithm in the context of our
running example of the game of Rock-Paper-Scissors. We
have already seen how a player in this game can minimize
his long-term average cost if he knows the opponent’s
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Algorithm 1 The active LZ algorithm, a Lempel-Ziv inspired algorithm for learning.
Input: a discount factor α ∈ (0, 1) and a sequence of exploration probabilities {γt}
1: c← 1 {the index of the current phrase}
2: τc ← 1 {start time of the cth phrase}
3: N(·)← 0 {initialize context counts}
4: P̂ (·)← 1/|X| {initialize estimated transition probabilities}
5: Ĵ(·)← 0 {initialize estimated cost-to-go values}
6: for each time t do
7: observe Xt

8: if N(Xt
τc , A

t−1
τc ) > 0 then {are in a context that we have seen before?}

9: with probability γt, pick At uniformly over A {explore independent of history}
10: with remaining probability, 1− γt, pick At greedily according to P̂ , Ĵ :

At ∈ argmin
at

∑
xt+1

P̂
(
xt+1|Xt

τc , (A
t−1
τc , at)

) [
g(Xt, at, xt+1) + αĴ

(
(Xt

τc , xt+1), (At−1
τc , at)

)]
{exploit by picking an action greedily}

11: else {we are in a context not seen before}
12: pick At uniformly over A
13: for s with τc ≤ s ≤ t, in decreasing order do {traverse backward through the current context}
14: update context count: N(Xs

τc , A
s−1
τc )← N(Xs

τc , A
s−1
τc ) + 1

15: update probability estimates: for all xs ∈ X

P̂ (xs|Xs−1
τc , As−1

τc )←
N
(
(Xs−1

τc , xs), As−1
τc

)
+ 1/2∑

x′ N
(
(Xs−1

τc , x′), As−1
τc

)
+ |X|/2

16: update cost-to-go estimate:

Ĵ(Xs
τc , A

s−1
τc )← min

as

∑
xs+1

P̂
(
xs+1|Xs

τc , (A
s−1
τc , as)

) [
g(Xs, as, xs+1) + αĴ

(
(Xs

τc , xs+1), (As−1
τc , as)

)]
17: end for
18: c← c+ 1, τc ← t+ 1 {start the next phrase}
19: end if
20: end for

finite-memory strategy. Armed with the active LZ algo-
rithm, we can now accomplish the same task without
knowledge of the opponent’s strategy. In particular, as long
as the opponent plays using some finite-memory strategy,
the active LZ algorithm will achieve the same long-term
average cost as an optimal response to this strategy.

Example 1 (Rock-Paper-Scissors). The active LZ al-
gorithm begins with a simple model of the opponent—it
assumes that the opponent selects actions uniformly at
random in every time step, as per line 4. The algorithm
thus does not factor in play in future time steps in making
decisions initially, as per line 5. As the algorithm proceeds,
it refines its estimates of the opponent’s behavior. For game
t + 1, the current context (Xt

τc , A
t−1
τc ) specifies a recent

history of the game. Given this recent history, algorithm
can make a prediction of the opponent’s next play according
to P̂ , and an estimate of the cost-to-go according to Ĵ .
These estimates are refined as play proceeds and more
opponent behavior is observed. If these estimates converge
to their corresponding true values, the algorithm makes
decisions (line 10) that correspond to the optimal decisions
that would be made if the true transition kernel and cost-

to-go function were known, as in (4)–(5).

A. Numerical Experiments with Rock-Paper-Scissors
Before proceeding with our analysis that establishes

the average cost optimality of the active LZ algorithm,
we demonstrate its performance on a simple numerical
example of the Rock-Paper-Scissors game. The example
will highlight the importance of making decisions that
optimize long-term costs.

Consider a simple opponent that plays as follows. If,
in the previous game, the opponent played rock against
scissors, the opponent will play rock again deterministi-
cally. Otherwise, the opponent will pick a play uniformly
at random. It is easy to see that an optimal strategy
against such an opponent is to consistently play scissors
until (rock, scissors) occurs, play paper for one game, and
then repeat. Such a strategy incurs an optimal average
cost of −0.25.

We will compare the performance of the active LZ
algorithm against this opponent versus the performance
of an algorithm (which we call ‘predictive LZ’) based on
the Lempel-Ziv predictor of Martinian [12]. Here, we use
the Lempel-Ziv algorithm to predict the opponent’s most
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likely next play based on his history, and play the best
response. Since Lempel-Ziv offers both strong theoretical
guarantees and impressive practical performance for the
closely related problems of compression and prediction, we
would expect this algorithm would be effective at detecting
and exploiting non-random behavior of the opponent.
Note, however, such an algorithm is myopic in that it is
always optimizing one-step costs and does not factor in
the effect of its actions on the opponent’s future play.

In Figure 1, we can see the relative performance of
the two algorithms. The predictive LZ algorithm is able
to make some modest improvements but gets stuck at a
fixed level of performance that is well below optimum.
The active LZ algorithm, on the other hand is able to
make consistent improvements. The time required for
convergence to the optimal cost does, however, appear to
be substantial.

IV. Analysis
We now proceed to analyze the active LZ algorithm. In

particular, our main theorem, Theorem 2, will show that
the average cost incurred upon employing the active LZ
algorithm will equal the optimal average cost, starting at
any state.

A. Preliminaries
We begin with some notation. Recall that, for each c ≥

1, τc is the starting time of the cth phrase, with τ1 = 1.
Define c(t) to be index of the current phrase at time t, so
that

c(t) , sup {c ≥ 1 : τc ≤ t}.

At time t, the current context will be (Xt
τc(t)

, At−1
τc(t)

). We
define the length of the context at time t to be d(t) ,
t− τc(t) + 1.

The active LZ algorithm maintains context counts N ,
probability estimates P̂ , and cost-to-go estimates Ĵ . All
of these evolve over time. In order to highlight this
dependence, we denote by Nt, P̂t, and Ĵt, respectively,
the context counts, probability estimates, and cost-to-go
function estimates at time t.

Given two probability distributions p and q over X,
define TV(p, q) to be the total variation distance

TV(p, q) , 1
2

∑
x

|p(x)− q(x)| .

B. A Dynamic Programming Lemma
Our analysis rests on a dynamic programming lemma.

This lemma provides conditions on the accuracy of the
probability estimates P̂t at time t that, if satisfied, guaran-
tee that actions generated by acting greedily with respect
to P̂t and Ĵt are optimal. It relies heavily on the fact
that the optimal cost-to-go function can be computed by a
value iteration procedure that is very similar to the update
for Ĵt employed in the active LZ algorithm.

Lemma 1. Under the active LZ algorithm, there exist
constants K̄ ≥ 1 and ε̄ ∈ (0, 1) so that the following holds:
Suppose that, at any time t ≥ K, when the current context
is (Xt

τc(t)
, At−1

τc(t)
) = (xs, as−1), we have

(i) The length s = d(t) of the current context is at least
K.

(ii) For all ` with s ≤ ` ≤ s+ K̄ and all (x`s+1, a
`−1
s ), the

context (x`, a`−1) has been visited at least once prior
to time t.

(iii) For all ` with s ≤ ` ≤ s + K̄ and all (x`s+1, a
`
s), the

distribution P̂t(·|x`, a`) satisfies

TV
(
P̂t(·|x`, a`), P (·|x``−K+1, a

`
`−K+1)

)
≤ ε̄.

Then, the action selected by acting greedily with respect
to P̂t and Ĵt at time t (as in line 10 of the active LZ
algorithm) is α-discounted optimal. That is, such an action
is contained in the set of actions A∗α(Xt

t−K+1, A
t−1
t−K+1).

Proof: First, note that there exists a constant ε > 0
so that if P̃ : XK × AK → [0, 1] and J̃ : XK × AK−1 → R
are two arbitrary functions with

‖P̃ (·|xK , aK)− P (·|xK , aK)‖1 < ε, ∀ xK , aK , (7)

|J̃(xK , aK−1)− J∗α(xK , aK−1)| < ε, ∀ xK , aK−1, (8)

then acting greedily with respect to (P̃ , J̃) results in
actions that are also optimal with respect to (P, J∗α)—that
is, an optimal policy. The existence of such an ε follows
from the finiteness of the observation and action spaces.

Now, suppose that, at time t, the hypotheses of the
lemma hold for some (ε̄, K̄), and that the current context
is (xs, as−1), with s = d(t). If we can demonstrate that,
for every as ∈ A,∑
xs+1

∣∣∣P̂t(xs+1|xs, as)− P (xs+1|xss−K+1, a
s
s−K+1)

∣∣∣ < ε,

(9)
and

max
xs+1,as

∣∣∣Ĵt(xs+1, as)− J∗α(xs+1
s−K+2, a

s
s−K+2)

∣∣∣ < ε, (10)

then, by the discussion above, the conclusion of the lemma
holds. (9) is immediate from our hypotheses if ε̄ < ε/2.

It remains to establish (10). In order to do so, fix a
choice of xs+1 and as. To simplify notation in what follows,
we will suppress the dependence of certain probabilities,
costs, and value functions on (xs+1, as). In particular, for
all xs+2 and as+1, define

P̂t(xs+2|as+1) , P̂t(xs+2|xs+1, as+1),

P (xs+2|as+1) , P (xs+2|xs+1
s−K+2, a

s+1
s−K+2).

These are, respectively, estimated and true transition
probabilities. Define

gt(as+1, xs+2) , g(xs, as+1, xs+2)

to be the current cost, and define the value functions

Ĵt(xs+2, as+1) , Ĵt(xs+2, as+1),
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Fig. 1. Performance of the active LZ algorithm on Rock-Paper-Scissors relative to the predictive LZ algorithm and the optimal policy.

J∗α(xs+2, as+1) , J∗α(xs+2
s−K+3, a

s+1
s−K+3).

Then, using the fact that J∗α solves the Bellman equation
(3) and the recursive definition of Ĵt (line 16 in the active
LZ algorithm), we have

|Ĵt(xs+1, as)− J∗α(xs+1
s−K+2, a

s
s−K+2)|

=

∣∣∣∣∣min
as+1

∑
xs+2

P̂t(xs+2|as+1)

×
[
gt(as+1, xs+2) + αĴt(xs+2, as+1)

]
−min
as+1

∑
xs+2

P (xs+2|as+1)

×
[
gt(as+1, xs+2) + αJ∗α(xs+2, as+1)

]∣∣∣∣∣.
Observe that, for any v, w : A → R,∣∣∣min

a
v(a)−min

a
w(a)

∣∣∣ ≤ max
a
|v(a)− w(a)|.

Then,

|Ĵt(xs+1, as)− J∗α(xs+1
s−K+2, a

s
s−K+2)|

≤ max
as+1

∣∣∣∣∣∑
xs+2

P̂t(xs+2|as+1)

×
[
gt(as+1, xs+2) + αĴt(xs+2, as+1)

]
−
∑
xs+2

P (xs+2|as+1)

× [gt(as+1, xs+2) + αJ∗α(xs+2, as+1)]

∣∣∣∣∣,

It follows that

|Ĵt(xs+1, as)− J∗α(xs+1
s−K+2, a

s
s−K+2)|

≤ 2gmaxε̄

+ αmax
as+1

∣∣∣∣∣∑
xs+2

[
P̂t(xs+2|as+1)Ĵt(xs+2, as+1)

− P (xs+2|as+1)J∗α(xs+2, as+1)
]∣∣∣∣∣

≤ 2gmaxε̄

+ αmax
as+1

∣∣∣∣∣∑
xs+2

Ĵt(xs+2, as+1)

×
[
P̂t(xs+2|as+1)− P (xs+2|as+1)

]∣∣∣∣∣
+

∣∣∣∣∣∑
xs+2

P (xs+2|as+1)

×
[
J∗α(xs+2, as+1)− Ĵt(xs+2, as+1)

]∣∣∣∣∣
Using the fact that |Ĵt| < gmax/(1−α), since it represents
a discounted sum,

|Ĵt(xs+1, as)− J∗α(xs+1
s−K+2, a

s
s−K+2)|

≤ 2gmaxε̄

(
1 + α

1− α

)
+ α max

as+1,xs+2

∣∣∣J∗α(xs+2, as+1)− Ĵt(xs+2, as+1)
∣∣∣ .

We can repeat this same analysis on the |J∗α(xs+2, as+1)−
Ĵt(xs+2, as+1)| term. Continuing this K̄ times, we reach



IEEE TRANSACTIONS ON INFORMATION THEORY 8

the expression

|Ĵt(xs+1, as)− J∗α(xs+1
s−K+2, a

s
s−K+2)|

≤ 2gmaxε̄

(
1 + α

1− α

) K̄−1∑
`=0

α` + αK̄gmax

1− α

≤ 2gmaxε̄

1− α

(
1 + α

1− α

)
+ αK̄gmax

1− α
.

(11)

It is clear that we can pick ε̄ sufficiently small and K̄
sufficiently large so that ε̄ < ε/2 and the right hand size of
(11) is less than ε. Such a choice will ensure that (9)–(10)
hold, and hence the requirements of the lemma.

Lemma 1 provides sufficient conditions to guarantee
when the active LZ algorithm can be expected to select the
correct action given a current context of (xs, as−1). The
sufficient conditions are a requirement the length of the
current context, and on the context counts and probability
estimates over all contexts (up to a certain length) that
have (xs, as−1) as a prefix.

We would like to characterize when these conditions
hold. Motivated by Lemma 1, we define the following
events for ease of exposition:

Definition 1 (ε̄-One-Step Inaccuracy). Define I ε̄t to be the
event that, at time t, at least one of the following holds:
(i) TV

(
P̂t(·|Xt

τc(t)
, Atτc(t)), P (·|Xt

t−K+1, A
t
t−K+1)

)
> ε̄.

(ii) The current context (Xt
τc(t)

, At−1
τc(t)

) has never been
visited prior to time t.

If the event I ε̄t holds, then at time t the algorithm either
possesses an estimate of the next-step transition prob-
ability P̂t(·|Xt

τc(t)
, Atτc(t)) that is more than ε̄ inaccurate

relative to the true transition probabilities, under the total
variation metric, or else these probabilities have never been
updated from their initial values.

Definition 2 (ε̄, K̄-Inaccuracy). Define Bε̄,K̄t to be the
event that, at time t ≥ K, either
(i) The length d(t) of the current context is less than K.
(ii) There exist ` and (x`, a`) such that

(a) d(t) ≤ ` ≤ d(t) + K̄.
(b) (x`, a`) contains the current context (Xt

τc(t)
, At−1

τc(t)
)

as a prefix, that is,

xd(t) = Xt
τc(t)

, ad(t)−1 = At−1
τc(t)

.

(c) The estimated transition probabilities P̂t(·|x`, a`)
are more than ε̄ inaccurate, under the total variation
metric, and/or the context (x`, a`−1) has never been
visited prior to time t.

From Lemma 1, it follows that if the event Bε̄,K̄t does
not hold, then the algorithm has sufficiently accurate
probability estimates in order to make an optimal decision
at time t.

Our analysis of the active LZ algorithm proceeds in two
broad steps:
1) In Section IV-C, we establish that ε̄-one-step inaccu-

racy occurs a vanishing fraction of the time. Next,

we show that this, in fact, suffices to establish that
ε̄, K̄-inaccuracy also occurs a vanishing fraction of
the time. By Lemma 1, this implies that, when the
algorithm chooses to exploit, the selected action is
sub-optimal only a vanishing fraction of the time.

2) In Section IV-D, by further controlling the explo-
ration rate appropriately, we can use these results
to conclude that the algorithm attains the optimal
average cost.

C. Approximating Transition Probabilities

We digress briefly, to discuss a result from the the-
ory of universal prediction: given an arbitrary sequence
{yt}, with yt ∈ Y for some finite alphabet Y, consider
the problem of making sequential probability assignments
Qt−1(·) over Y, given the entire sequence observed up to
and including time t− 1, yt−1, so as to minimize the cost
function

∑T
t=1− logQt−1(yt), for some horizon T . It has

been shown by Krichevsky and Trofimov [11] that the
assignment

Qt(y) ,
Nt(y) + 1/2
t+ |Y|/2

, (12)

where Nt(y) is the number of occurrences of the symbol y
up to time t, achieves:

Lemma 2.

−
T∑
t=1

logQt−1(yt)− min
q∈M(Y)

[
−

T∑
t=1

log q(yt)

]

≤ |Y|
2

log T +O(1),

where the minimization in taken over the set M(Y) of all
probability distributions on Y.

Lemma 2 provides a bound on the performance of the
sequential probability assignment (12) versus the perfor-
mance of the best constant probability assignment, made
with knowledge of the full sequence yT . Notice that (12)
is precisely the one-step transition probability estimate
employed at each context by the active LZ algorithm
(line 15).

Returning to our original setting, define pmin to be
the smallest element of the set of non-zero transition
probabilities{

P (xK+1|xK , aK) : P (xK+1|xK , aK) > 0
}
.

The proof of the following lemma essentially involves
invoking Lemma 2 at each context encountered by the
algorithm, the use of a combinatorial lemma (Ziv’s in-
equality), and the use of the Azuma-Hoeffding inequality
(see, for example, [13]). Part of the proof is motivated by
results on Lempel-Ziv based prediction obtained by Feder
et al. [14].
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Lemma 3. For arbitrary ε′ > 0,

Pr

(
1
T

T∑
t=K

IIε̄t ≥
K1

2ε̄2
log log T

log T
+ ε′

2ε̄2

)

≤ exp
(
− Tε′2

8 log2 ((2T + |X|)/pmin)

)
,

where K1 is a constant that depends only on |X| and |A|.

Proof: See Appendix A.
Lemma 3 controls the fraction of the time that the

active LZ algorithm is ε̄-one-step inaccurate. In particular,
Lemma 3 is sufficient to establish that this fraction of time
goes to 0 (via a use of the first Borel-Cantelli lemma) and
also gives us a rate of convergence.

It turns out that if the exploration rate γt decays
sufficiently slowly, this suffices to ensure that the fraction
of time the algorithm is ε̄, K̄-inaccurate goes to 0 as well.
To see this, suppose that the current context at time t
is (Xt

τc(t)
, At−1

τc(t)
) = (xs, as−1), and that the algorithm is

ε̄, K̄-inaccurate (i.e., the event Bε̄,K̄t holds). Then, one of
two things must be the case:
• The current context length s is less than K. We

will demonstrate that this happens only a vanishing
fraction of the time.

• There exists (x`, a`), with s ≤ ` ≤ s + K̄, so
that either the estimated transition probability dis-
tribution P̂t(·|x`, a`) is ε̄ inaccurate under the total
variation metric, or the context (x`, a`−1) has never
been visited in the past. The probability that the
realized sequence of future observations and actions
(Xt+`−s

t+1 , At+`−st ) will indeed correspond to (x`s+1, a
`
s)

is at least

p`−smin

t+`−s∏
m=t

γm,

where pmin is the smallest non-zero transition prob-
ability. Thus, with this minimum probability, a ε̄-
one-step inaccurate time will occur before the time
t + K̄. Then, if the exploration probabilities {γm}
decays sufficiently slowly, would be impossible for
the fraction of ε̄-one-step inaccurate times to go to
0 without the fraction of ε̄, K̄-inaccurate times also
going to 0.

By making these arguments precise we can prove the
following lemma. The lemma states that the fraction of
time we are at a context wherein the assumptions of
Lemma 1 are not satisfied goes to 0 almost surely.

Lemma 4. Assume that

γt ≥ (a1/ log t)1/(a2K̄),

for arbitrary constants a1 > 0 and a2 > 1. Further assume
that {γt} is non-increasing. Then,

lim
T→∞

1
T

T∑
t=K

IBε̄,K̄t = 0, a.s.

Proof: First, we consider the instances of time where
the current context length is less than K. Note that

T∑
t=K

I{d(t)<K} ≤
c(T )∑
c=1

τc+1−1∑
t=τc

I{t−τc+1<K}

≤
c(T )∑
c=1

K = Kc(T ).

Applying Ziv’s inequality (Lemma 5),

lim
T→∞

1
T

T∑
t=K

I{d(t)<K} ≤ lim
T→∞

KC2

log T
= 0. (13)

Next, define Bt to be the event that an ε̄-one-step
inaccurate time occurs between t and t+K̄ inclusive, that
is

Bt ,
t+K̄⋃
s=t
I ε̄s.

It is easy to see that

1
T

T∑
t=K

IBt ≤
K̄ + 1
T

T+K̄∑
t=K

IIε̄t

≤ K̄ + 1
T

T∑
t=K

IIε̄t + (K̄ + 1)2

T
.

From Lemma 3, we immediately have, for arbitrary ε′ > 0,

Pr

(
1
T

T∑
t=K

IBt ≥
(K̄ + 1)K1

2ε̄2
log log T

log T

+ (K̄ + 1)ε′

2ε̄2

+ (K̄ + 1)2

T

)

≤ exp
(
− Tε′2

8 log2 ((2T + |X|)/pmin)

)
.

(14)

Define Ht to be the event that Bε̄,K̄t holds, but d(t) ≥ K.
The event Ht holds when, at time t, there exists some
context, up to K̄ levels below the current context, which
is ε̄-one-step inaccurate. Such a context will be visited with
probability at least

pK̄min

t+K̄∏
m=t

γm ≥ (pminγt+K̄)K̄+1,

in which case Bt holds. Consequently,

E[IBt |Ft] ≥ (pminγt+K̄)K̄+1IHt .

Since γt is non-increasing,

1
T

T∑
t=K

E[IBt |Ft] ≥
(pminγT+K̄−1)K̄+1

T

T∑
t=K

IHt (15)
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Now define, for i = 0, 1, . . . , K̄ − 1 and n ≥ 0, mar-
tingales M (i)

n adapted to G(i)
n = FK+nK̄+i, according to

M
(i)
0 = 0, and, for n > 0,

M (i)
n ,

n−1∑
j=0

IBK+jK̄+i
− E[IBK+jK̄+i

|G(i)
j ].

Since |M (i)
n −M (i)

n−1| ≤ 2, we have via the Azuma-Hoeffding
inequality, for arbitrary ε′′ > 0,

Pr
(
M (i)
n ≥ nε′′

)
≤ exp

(
−nε′′2/8

)
(16)

For each i, let ni(T ) be the largest integer such that
K + ni(T )K̄ + i ≤ T , so that

T∑
t=K

IBt − E[IBt |Ft] =
K̄−1∑
i=0

M
(i)
ni(T ).

Since ni(T ) ≤ T
K̄

, the union bound along with (16) then
implies that:

Pr

(
T∑
t=K

IBt − E[IBt |Ft] ≥ Tε′′
)

≤
K̄−1∑
i=0

Pr
(
M

(i)
ni(T ) ≥ Tε

′′/K̄
)

≤
K̄−1∑
i=0

exp
(
−T 2ε′′

2
/8K̄2ni(T )

)
≤ K̄ exp

(
−Tε′′2/8K̄

)
.

(17)

Now, define

κ(T ) ,
1

(pminγT+K̄−1)K̄+1

[
(K̄ + 1)K1

2ε̄2
log log T

log T

+ (K̄ + 1)ε′(T )
2ε̄2

+ (K̄ + 1)2

T
+ ε′′(T )

]
,

with
ε′(T ) ,

1
log T

, ε′′(T ) ,
1

log T
.

It follows from (14), (15), and (17) that

Pr

(
1
T

T∑
t=K

IHt ≥ κ(T )

)

≤ exp
(
− T

8 log4 ((2T + |X|)/pmin)

)
+ K̄ exp

(
− T

8K̄ log2 T

)
.

By the first Borel-Cantelli lemma,

Pr

(
1
T

T−1∑
t=K

IHt ≥ κ(T ), i.o.

)
= 0.

Note that the hypothesis on γt implies that κ(T ) → 0 as
T →∞. Then,

lim
T→∞

1
T

T−1∑
t=K

IHt = 1, a.s. (18)

Finally, note that

1
T

T∑
t=K

IBε̄,K̄t ≤ 1
T

T∑
t=K

I{d(t)<K} + 1
T

T∑
t=K

IHt .

The result then follows from (13) and (18).

D. Average Cost Optimality
Observe that if the active LZ algorithm chooses an

action that is non-optimal at time t, that is,

At /∈ A∗α(Xt
t−K+1, A

t−1
t−K+1),

then, either the event Bε̄,K̄t holds or the algorithm chose
to explore. Lemma 4 guarantees that the first possibility
happens a vanishing fraction of time. Further, if γt ↓ 0,
then the algorithm will explore a vanishing fraction of
time. Combining these observations give us the following
theorem.

Theorem 1. Assume that

γt ≥ (a1/ log t)1/(a2K̄),

for arbitrary constants a1 > 0 and a2 > 1. Further, assume
that γt ↓ 0. Then,

lim
T→∞

1
T

T∑
t=K

I{At /∈A∗α(Xt
t−K+1,A

t−1
t−K+1)} = 0, a.s.

Proof: Given a sequence of independent bounded
random variables {Zn}, with E[Zn]→ 0,

lim
N→∞

1
N

N∑
n=1

Zn = 0, a.s.

This follows, for example, from the Azuma-Hoeffding in-
equality followed by the first Borel-Cantelli lemma. This
immediately yields

lim
T→∞

1
T

T−1∑
t=k

I{exploration at time t} → 0, a.s., (19)

provided γt → 0 (note that the choice of exploration
at each time t is independent of all other events). Now
observe that{

At /∈ A∗α(Xt
t−K+1, A

t−1
t−K+1)

}
⊂ Bε̄,K̄t−1 ∪ {exploration at time t}.

Combining (19) with Lemma 4, the result follows.
Assumption 1 guarantees the optimal average cost is

λ∗, independent of the initial state of the Markov chain,
and that there exists a stationary policy that achieves the
optimal average cost λ∗. By the ergodicity theorem, under
such a optimal policy,

lim
T→∞

1
T

T∑
t=1

g(Xt, At, Xt+1) = λ∗, a.s. (20)
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On the other hand, Theorem 1 suggests that, under the
active LZ algorithm, the fraction of time at which non-
optimal decisions are made vanishes asymptotically. Com-
bining these facts yields our main result.

Theorem 2. Assume that

γt ≥ (a1/ log t)1/(a2K̄),

for arbitrary constants a1 > 0 and a2 > 1, and that γt ↓ 0.
Then, for α ∈ (0, 1) sufficiently close to 1,

lim
T→∞

1
T

T∑
t=1

g(Xt, At, Xt+1) = λ∗, a.s.,

under the active LZ algorithm. Hence, the active LZ al-
gorithm achieves an asymptotically optimal average cost
regardless of the underlying transition kernel.

Proof: Without loss of generality, assume that the cost
g(Xt, At, Xt+1) does not depend on Xt+1.

Fix ε > 0, and consider an interval of time Tε > K.
For each (xK , aK) ∈ XK × AK , define a coupled process
(X̃t(xk, ak), Ãt(xK , aK)) as follows. For every integer n,
set

X̃
(n−1)Tε+K
(n−1)Tε+1 (xK , aK) = xK1 ,

and
Ã

(n−1)Tε+K
(n−1)Tε+1 (xK , aK) = aK1 .

For all other times t, the coupled processes will choose
actions according to an optimal stationary policy, that is

Ãt(xK , aK) ∈ A∗α
(
X̃t
t−K+1(xK , aK), Ãt−1

t−K+1(x
K , aK)

)
.

Without loss of generality, we will assume that the choice
of action is unique.

Now, for each n there will be exactly one (xK , aK) that
matches the original process (Xt, At) over times (n−1)Tε+
1 ≤ t ≤ (n− 1)Tε +K, that is,

(xK , aK) =
(
X

(n−1)Tε+K
(n−1)Tε+1 , A

(n−1)Tε+K
(n−1)Tε+1

)
.

For the process indexed by (xK , aK), for (n− 1)Tε +K <
t ≤ nTε, if(

X̃t−1
t−K(xK , aK), Ãt−1

t−K(xK , aK)
)

= (Xt−1
t−K , A

t−1
t−K),

then set X̃t(xK , aK) = Xt. Otherwise, allow X̃t(xK , aK)
to evolve independently according to the process transition
probabilities. Similarly, allow all other the processes to
evolve independently according to the proper transition
probabilities.

Define

Gn(xk, ak) ,
1
Tε

nTε∑
t=(n−1)Tε+1

g
(
X̃t(xK , aK), Ãt(xK , aK)

)
.

Note that each Gn(xK , aK) is the average cost under an
optimal policy. Therefore, because of (20), we can pick Tε
large enough so that for any n,

E
[

max
xK ,aK

∣∣Gn(xK , aK)− λ∗
∣∣] < ε. (21)

Define Zn to be the event that, within the nth interval,
the algorithm chooses a non-optimal action. That is,

Zn ,
{
∃ t, (n− 1)Tε < t ≤ nTε, At /∈ A∗α(Xt, At−1)

}
.

Set

EN = 1
N

N∑
n=1

IZn .

Then,∣∣∣∣∣ 1
NTε

NTε∑
t=1

(g(Xt, At)− λ∗)

∣∣∣∣∣
≤ max(|gmax − λ∗|, λ∗)EN

N

+

∣∣∣∣∣∣ 1
NTε

N∑
n=1

(1− IZn)
nTε∑

t=(n−1)Tε+1

(g(Xt, At)− λ∗)

∣∣∣∣∣∣ .
Note that, from Theorem 1, EN/N → 0 almost surely as
N →∞. Thus,

lim sup
N→∞

∣∣∣∣∣ 1
NTε

NTε∑
t=1

(g(Xt, At)− λ∗)

∣∣∣∣∣
≤ lim sup

N→∞

1
N

N∑
n=1

(1− IZn)

×

∣∣∣∣∣∣ 1
Tε

nTε∑
t=(n−1)Tε+1

(g(Xt, At)− λ∗)

∣∣∣∣∣∣ .
Notice that when IZn = 0, we have for some (xK , aK) that
X̃t(xK , aK) = Xt for all (n− 1)Tε < t ≤ nTε. Thus,

lim sup
N→∞

∣∣∣∣∣ 1
NTε

NTε∑
t=1

(g(Xt, At)− λ∗)

∣∣∣∣∣
≤ lim sup

N→∞

1
N

N∑
n=1

(1− IZn) max
xK ,aK

∣∣Gn(xK , aK)− λ∗
∣∣

≤ lim sup
N→∞

1
N

N∑
n=1

max
xK ,aK

∣∣Gn(xK , aK)− λ∗
∣∣ .

However, the variables

max
xK ,aK

∣∣Gn(xK , aK)− λ∗
∣∣

are independent and identically distributed as n varies.
Thus, by the Strong Law of Large Numbers and (21),

lim sup
T→∞

∣∣∣∣∣ 1T
T∑
t=1

(g(Xt, At)− λ∗)

∣∣∣∣∣ ≤ ε,
with probability 1. Since ε was arbitrary, the result follows.
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E. Choice of Discount Factor
Given a choice of α sufficiently close to 1, the optimal

α-discounted cost policy coincides with the average cost
optimal policy. Our presentation thus far has assumed
knowledge of such an α. For a given α, under the assump-
tions of Theorem 1, The active LZ algorithm is guaranteed
to take α-discounted optimal actions a fraction 1 of the
time which for an ad-hoc choice of α sufficiently close to 1
is likely to yield good performance. Nonetheless, one may
use a ‘doubling-trick’ in conjunction with the active LZ
algorithm to attain average cost optimality without knowl-
edge of α. In particular, consider the following algorithm
that uses the active LZ algorithm, with the choice of {γt}
as stipulated by Theorem 1, as a subroutine:

Algorithm 2 The active LZ with a doubling scheme.
1: for non-negative integers k do
2: for each time 2k ≤ t′ < 2k+1 do
3: Apply the active LZ algorithm (Algorithm 1) with

α = 1− βk, and time index t = t′ − 2k.
4: end for
5: end for

Here βk is a sequence that approaches 0 sufficiently
slowly. One can show that if βk = Ω(1/ log log k), then the
above scheme achieves average cost optimality. A rigorous
proof of this fact would require repetition of arguments we
have used to prove earlier results. As such, we only provide
a sketch that outlines the steps required to establish
average cost optimality:

We begin by noting that in the kth epoch of Algo-
rithm 2, one choice (so that Lemma 1 remains true) is to
let ε̄k, K̄k grow as α approaches 1 according to ε̄k = Ω(1)
and K̄k = Ω(1/βk) respectively. If βk = Ω(1/ log log k),
then for the kth epoch of Algorithm 2, Lemma 4 is easily
modified to show that with high probability the greedy
action is suboptimal over less than 2kκ(2k) time steps
where κ(2k) = O((log log 2k)3/ log 2k). The Borel-Cantelli
Lemma may then be used to establish that beyond some
finite epoch, over all subsequent epochs k, the greedy
action is suboptimal over at most 2kκ(2k) time steps.
Provided βk → 0, this suffices to show that the greedy
action is optimal a fraction 1 of the time. Provided one
decreases exploration probabilities sufficiently quickly, this
in turn suffices to establish average cost optimality.

F. On the Rate of Convergence
We limit our discussion to the rate at which the fraction

of time the active LZ algorithm takes sub-optimal actions
goes to zero; even assuming one selects optimal actions
at every point in time, the rate at which average costs
incurred converge to λ∗ are intimately related to the
structure of P which is a somewhat separate issue. Now the
proofs of Lemma 4 and Theorem 1 tell us that the fraction
of time the active LZ algorithm selects sub-optimal actions
goes to zero at a rate that is O((1/ log T )c) where c is some
constant less than 1. The proofs of Lemmas 3 and 4 reveal

that the determining factor of this rate is effectively the
rate at which the transition probability estimates provided
by P̂ converge to their true values. Thus while the rate at
which the fraction of sub-optimal action selections goes
to zero is slow, this rate isn’t surprising and is shared
with many Lempel-Ziv schemes used in prediction and
compression.

A natural direction for further research is to explore
the effect of replacing the LZ-based context tree data
structure by the context-tree weighting method of Willems
et al. [15]. It seems plausible to expect that such an
approach will yield algorithms with significantly improved
convergence rates, as is the case in data compression and
prediction.

V. Conclusion
We have presented and established the asymptotic op-

timality of a Lempel-Ziv inspired algorithm for learning.
The algorithm is a natural combination of ideas from
information theory and dynamic programming. We hope
that these ideas, in particular the use of a Lempel-Ziv tree
to model an unknown probability distribution, can find
other uses in reinforcement learning.

One interesting special case to consider is when the next
observation is Markovian given the past K observations
and only the latest action. In this case, a variation of
the active LZ algorithm that uses contexts of the form
(xs, a) could be used. Here, the resulting tree would have
exponentially fewer nodes and would be much quicker to
converge to the optimal policy.

A number of further issues are under consideration. It
would be of great interest to develop theoretical bounds for
the rate of convergence. Also, it would be natural to extend
the analysis of our algorithms to systems with possibly
infinite dependence on history. One such extension would
be to mixing models, such as those considered by Jacquet
et al. [8]. Another would be to consider the the optimal
control of a partially observable Markov decision process.
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Appendix A
Proof of Lemma 3

An important device in the proof of Lemma 3 the
following combinatorial lemma. A proof can be found in
Cover and Thomas [16].

Lemma 5 (Ziv’s Inequality). The number of contexts seen
by time T , c(T ), satisfies

c(T ) ≤ C2T

log T
,

where C2 is a constant that depends only on |X| and |A|.

Without loss of generality, assume that Xt and At take
some fixed but arbitrary values of −K+2 ≤ t ≤ 0, so that
the expression P (Xt+1|Xt

t−K+1, A
t
t−K+1) is well-defined

for all t ≥ 1. We will use Lemma 2 to show:

Lemma 6.

−
T∑
t=1

log P̂t(Xt+1|Xt
τc(t)

, Atτc(t))

≤ −
T∑
t=1

logP (Xt+1|Xt
t−K+1, A

t
t−K+1)

+ K̄1T
log log T

log T
,

where K̄1 is a positive constant that depends only on |X|
and |A|.

Proof: Observe that the probability assignment made
by our algorithm is equivalent to using (12) at every
context. In particular, at every time t,

P̂t(Xt+1|Xt
τc(t)

, Atτc(t))

=
Nt(Xt+1

τc(t)
, Atτc(t)) + 1/2∑

xNt((Xt
τc(t)

, x), Atτc(t)) + |X|/2

For each (xj , aj), define TT (xj , aj) to be the set of times

TT (xj , aj) ,
{
t : 1 ≤ t ≤ T, (Xt

τc(t)
, Atτc(t)) = (xj , aj)

}
.

It follows from Lemma 2 that

−
∑

t∈TT (xj ,aj)

log P̂t(Xt+1|Xt
τc(t)

, Atτc(t))

≤ min
p∈M(X)

−
∑

t∈TT (xj ,aj)

log p(Xt+1)

+ |X|
2

log |TT (xj , aj)|+ C1.

Summing this expression over all distinct (xj , aj) that have

occurred up to time T ,

−
T∑
t=1

log P̂t(Xt+1|Xt
τc(t)

, Atτc(t))

≤
∑

(xj ,aj)

 min
p∈M(X)

−
∑

t∈T (xj ,aj)

log p(Xt+1)


+
∑

(xj ,aj)

[
|X|
2

log |TT (xj , aj)|+ C1

]

≤ −
T∑
t=1

logP (Xt+1|Xt
t−K+1, A

t
t−K+1)

+
∑

(xj ,aj)

[
|X|
2

log |TT (xj , aj)|+ C1

]
.

(22)

Now, c(T ) is the total number of distinct contexts that
have occurred up to time T . Note that this is also precisely
the number of distinct (xj , aj) with |TT (xj , aj)| > 0. Then,
by the concavity of log(·),

∑
(xj ,aj)

[
|X|
2

log |TT (xj , aj)|+ C1

]
≤ |X|c(T )

2
log T

c(T )
+ C1c(T ).

Applying Lemma 5,

∑
(xj ,aj)

[
|X|
2

log |TT (xj , aj)|+ C1

]
≤ C2|X|

2
T

log T
[log log T − logC2]

+ C1C2
T

log T
.

(23)

The lemma follows by combining (22) and (23).
For the remainder of this section, define ∆t to be the

Kullback-Leibler distance between the estimated and true
transition probabilities at time t, that is

∆t , D
(
P (·|Xt

t−K+1, A
t
t−K+1)

∥∥P̂t(·|Xt
τc(t)

, Atτc(t))
)
.

Lemma 7. For arbitrary ε′ > 0,

Pr

(
1
T

T∑
t=1

[
log

P̂t(Xt+1|Xt
τc(t)

, Atτc(t))
P (Xt+1|Xt

t−K+1, A
t
t−K+1)

+ ∆t

]

≥ ε′
)

≤ exp
(
− Tε′2

8 log2 ((2T + |X|)/pmin)

)
.

Proof: Define, for T ≥ 0, a process {MT } adapted to
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FT+1 as follows: set with M0 = 0, and, for T > 1,

MT ,
T∑
t=1

log
P̂t(Xt+1|Xt

τc(t)
, Atτc(t))

P (Xt+1|Xt
t−K+1, A

t
t−K+1)

−
T∑
t=1

E
[

log
P̂t(Xt+1|Xt

τc(t)
, Atτc(t))

P (Xt+1|Xt
t−K+1, A

t
t−K+1)

∣∣∣∣∣Ft
]

=
T∑
t=1

(
log

P̂t(Xt+1|Xt
τc(t)

, Atτc(t))
P (Xt+1|Xt

t−K+1, A
t
t−K+1)

+ ∆t

)
.

It is clear that MT is a martingale with E[MT ] = 0.
Further,

0 ≥ log P̂t(Xt+1|Xt
τc(t)

, Atτc(t)) ≥ log(1/(2t+ |X|)).

and

0 ≥ logP (Xt+1|Xt
t−K+1, A

t
t−K+1) ≥ log pmin,

so that

|MT −MT−1| ≤ 2 log
(

2T + |X|
pmin

)
.

An application of the Azuma-Hoeffding inequality then
yields, for arbitrary ε′ > 0,

Pr
(
MT

T
≥ ε′

)
≤ exp

(
− T 2ε′2

8
∑T
t=1 log2 ((2T + |X|)/pmin)

)

≤ exp
(
− Tε′2

8 log2 ((2T + |X|)/pmin)

)
.

We are now ready to prove Lemma 3.

Lemma 3. For arbitrary ε′ > 0,

Pr

(
1
T

T∑
t=K

IIε̄t ≥
K1

2ε̄2
log log T

log T
+ ε′

2ε̄2

)

≤ exp
(
− Tε′2

8 log2 ((2T + |X|)/pmin)

)
,

where K1 is a constant that depends only on |X| and |A|.

Proof: Define

Ξt , TV
(
P (·|Xt

t−K+1, A
t
t−K+1), P̂t(·|Xt

τc(t)
, Atτc(t))

)
.

We have

1
T

T∑
t=1

∆t ≥
2ε̄2

T

T∑
t=1

I{∆t≥2ε̄2}

≥ 2ε̄2

T

T∑
t=1

I{Ξt>ε̄}.

(24)

Here, the first inequality follows by the non-negativity of
Kullback-Leibler distance. The second inequality follows
from Pinsker’s inequality, which states that TV(·, ·) ≤√
D(·‖·)/2.

Now, let Ft be the event that the current context at
time t, (Xt

τc(t)
, At−1

τc(t)
) has never been visited in the past.

Observe that, by Lemma 5,
T∑
t=1

IFt = c(T ) ≤ C2T

log T
. (25)

Putting together (24) and (25) with the definition of the
event I ε̄t ,

1
T

T∑
t=K

IIε̄t ≤
1
T

T∑
t=1

(
I{Ξt>ε̄} + IFt

)
≤ 1

2ε̄2T

T∑
t=1

∆t + C2

log T
.

Then,

Pr

(
1
T

T∑
t=K

IIε̄t ≥
K̄1

2ε̄2
log log T

log T
+ ε′

2ε̄2
+ C2

log T

)

≤ Pr

(
1
T

T∑
t=1

∆t ≥ K̄1
log log T

log T
+ ε′

)
.

By Lemma 6 and Lemma 7, we have

Pr

(
1
T

T∑
t=1

∆t ≥ K̄1
log log T

log T
+ ε′

)

≤ exp
(
− Tε′2

8 log2 ((2T + |X|)/pmin)

)
.

This yields the desired result by defining the constant
K1 , K̄1 + C2/ log logK.
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