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Summary

Based on the two-scale convergence homogenization method, the limiting equations modelling

the behaviour of a three-dimensional magneto-electro-elastic (MEE) composite made of period-

ically perforated microstructure are rigorously established. The homogenized problem is consid-

ered for the particular case of porous materials consisting of identical parallel empty cylinders

periodically distributed in a transversely isotropic MEE and homogeneous medium. For these

composites, universal relationships involving the MEE effective properties were derived without

imposing any restrictions about their global behaviour. For the particular case of transversely

isotropic (and tetragonal) effective behaviour, simple analytical expressions for the effective co-

efficients are explicitly given for two types of empty fibres periodical distribution (square and

hexagonal arrays). An analytical formula to estimate the specific volume fraction where the

magnetoelectric effective coefficient attains its minimum value is given. These relationships and

formulae are used to check the accuracy of a numerical homogenization scheme based on Fourier

transform technique. Comparisons with others micromechanical models are also included.
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62 J. BRAVO-CASTILLERO et al.

1. Introduction

Composites made of piezoelectric and piezomagnetic (or piezoelectric and magnetostrictive or

pyroelectric and pyromagnetic) materials exhibit a coupling effect between mechanical, electric,

magnetic fields and thermal interactions. This is known as the magnetoelectric (ME) effect (1). Its

magnitude depends on the physical and geometrical properties of the components of the composite

(2). Predicting global properties of magneto-electro-elastic (MEE) composites in order to obtain

new materials with enhanced ME effects is of great interest in the electronic industry. A detailed

study of some technical applications, such as power harvesting, current transform, phase filters,

magnetic field sensors and filters, using the ME effect, can be found in (3). The techniques devoted

to determine the global properties of composite materials are called homogenization methods. Dur-

ing the past few years, several homogenization models have been applied to study MEE composites.

Based on micromechanical analysis, analytical expressions for effective properties of two-phase

continuous cylindrical fibres and layers were explicitly obtained (4 to 6). In (7, 8), micromechanical

methodologies were applied to determine the effective behaviour of MEE composites with ellip-

soidal inclusions. Universal relations between the thermo-magneto-electro-elastic effective proper-

ties of two-phase fibrous composites were obtained (9). In (10 to 14), based on the homogenization

theory of multiscale asymptotic analysis, the effective behaviour of laminated, fibrous and particu-

late MEE multiphase composites was considered.

In view of the great opportunities offered for MEE composites to design more efficient sensors

and actuators for smart and intelligent structures, several works have been recently dedicated to

the dynamic investigation of composite hollow cylinders and spheres (15 to 19). There are also

several works dedicated to predict, both theoretically and experimentally, the effective properties of

porous piezoelectric ceramics (14, 20 to 26). In (27), based on the generalized Eshelby’s tensor, the

dependence of effective properties of MEE composites on the ellipsoidal void volume fraction and

orientation is shown. An early theoretical investigation about the influence of voids in the global

behaviour of MEE composites can be found in (28).

In this work, based on the periodic homogenization technique, the limiting equations modelling

the behaviour of three-dimensional (3D) MEE perforated periodic structures are mathematically

established. The local problems and the corresponding effective coefficients are explicitly given.

The general homogenization theory is applied to the case of a transversely isotropic MEE matrix

with cylindrical holes periodically distributed. No restrictions are supposed for the global behaviour.

From the specific local problems and effective coefficients, the procedure to obtain universal rela-

tions is described. These relations for anti-plane problems appear to be new. They are an extension

of recent results reported in (14), where the case of piezoelectric matrix with a transversely isotropic

effective behaviour was studied. Also, here, the effect of the dielectric permittivity and the magnetic

permeability of the free space is taken into account. An application of the universal relations to de-

rive analytical expressions for effective coefficients is shown. These expressions are very simple

and of very easy computational implementation.

This article is structured in four sections. Section 2 is devoted to the statement of the problem and

to the mathematical homogenization of 3D perforated MEE structures with rapidly oscillating and

periodic material coefficients. The convergence results of the homogenization process are presented

based on the two-scale homogenization technique. The general local problems and the homoge-

nized coefficients are derived. Also, a theorem providing strong convergence to the solution of the

original problem is given. The main objective of section 3 is the derivation of universal relations

for homogeneous and transversely isotropic MEE materials with cylindrical empty fibres (or MEE

3-1 longitudinally porous materials) without restrictions about their global behaviour. The general
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UNIVERSAL RELATIONS AND EFFECTIVE COEFFICIENTS 63

free boundary local problems and effective coefficients are specified for these kinds of media. In the

particular case of a transversely isotropic effective behaviour, Benveniste-type universal relations

are derived from the so-called plane local problems. In addition, from the anti-plane local prob-

lems, some links between their solutions are found, which allows obtaining universal relationships

between the involved effective coefficients. Eventually, a computational scheme based on Fourier

transforms is presented to solve numerically periodic boundary value problems for MEE compos-

ite materials with an arbitrary geometry of the constituents. Numerical examples are included in

order to illustrate the meaning of the found relationships to control numerical codes. Section 5 is

dedicated to some concluding comments.

2. Statement of the problem and homogenization

The plan is as follows. In section 2.1, we precisely describe the geometry of the perforated do-

main. In section 2.2, we recall the classical equilibrium equations of magnetoelectroelasticity.

In section 2.3, we introduce the two-scale convergence and give its main properties. The limiting

homogeneous model is then derived.

2.1 Geometry of the structure

Let � be a domain (connected bounded subset) in R
3 with Lipschitz boundary @�. Let Y = [0; 1[3

be the elementary cell with a hole S̄ ⊂ Y ; hence, Y ∗ = Y\S̄ represents, in each cell, the domain

occupied by the material; the quantity |Y ∗| is the volume of the material in each cell Y . We denote

by " > 0 the size of each microstructure (statically, this must be " = a=L where a is the microscale

and L is the macroscale (size of body)), which is intended to go to zero. The set of holes is obtained

by "-periodicity S" = ".S̄ + k/ ∩ �, k ∈ Z
3. The perforated domain �" is obtained by removing

the holes from the initial domain �" = �\S̄" (we assume that �" is connected and that the holes

do not intersect its boundary), see Fig. 1. The equilibrium equations are posed on the perforated

domain �".

Fig. 1 Description of a perforated periodic domain and the reference cell
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64 J. BRAVO-CASTILLERO et al.

2.2 Constitutive laws and equilibrium equations of MEE perforated structures

The elastic displacement field1 u" = .u"i / : �̄" → R
3, the electric potential '" : �̄" → R and the

magnetic potential  " : �̄" → R, which solve the following equilibrium equations

−div� ".u"; '";  "/ = f; div D".u"; '";  "/ = 0; div B".u"; '";  "/ = 0 in �", (2.1)

with Dirichlet boundary conditions on @�, .u"; '";  "/ = .0; 0; 0/, and Neumann conditions on

the hole boundaries @S"

� ".u"; '";  "/ · n" = 0; D".u"; '";  "/ · n" = 0; B".u"; '";  "/ · n" = 0 on @S",

where f ∈ L2.�"/, �
" = .� "i j /, D" = .D"

i /, B" = .B"i /, .div � "/i = @ j�
"
i j , div D" = .@i D"

i /,

div B" = .@i B"i /, @i = @=@xi with x = .xi / ∈ � and n" is the outer unit normal to @S". The stress

tensor � " = .� "i j /, the electric displacement D" = .D"
i / and the magnetic displacement B" = .B"i /

are related to the linearized strain, defined as skl.u
"/ = 1

2
.@ku"l + @lu

"
k/; and to the gradients of the

electric .@k'
"/ and magnetic .@k 

"/ potentials through the constitutive laws in �",

� "i j .u
"; '";  "/ = c"i jklskl.u

"/+ e"ki j@k'
" + q"ki j@k 

";

D"
i .u

"; '";  "/ = −e"iklskl.u
"/+ �"ik@k'

" + �"ik@k 
"; (2.2)

B"i .u
"; '";  "/ = −q"iklskl.u

"/+ �"ik@k'
" + �"ik@k 

";

for 1 6 i; j; k; l 6 3, with

c"i jkl = ci jkl.x; x="/; e"ki j = eki j .x; x="/; q"ki j = qki j .x; x="/;

�"ik = �ik.x; x="/; �"ik = �ik.x; x="/; �"ik = �ik.x; x="/:

We note that the functions c"i jkl , e"ki j , q"ki j , �
"
ik , �"ik and �"ik are "Y -periodic.

The fourth-order elasticity tensor c" = .c"i jkl/ is symmetric, uniformly positive, defined in �"
and satisfies

c"i jkl = c"j ikl = c"kli j = c"i jlk; ci jkl.x; y/ ∈ L∞.�; Cper.Y //;

∃�c > 0 independent of " : c"i jkl X i j Xkl > �c X i j X i j ; ∀X i j = X j i ∈ R
3;

where, as usual, y = x=" is the local or fast variable and Cper.Y / denotes the space of Y -periodic

continuous functions.

The third-order piezoelectric coupling tensor e" = .e"ikl/ satisfies the following properties

e"ikl = e"ilk; eikl.x; y/ ∈ L∞.�; Cper.Y //:

The second-order electric permittivity tensor �" = .�"i j / is symmetric, uniformly positive, defined

in �" and satisfies

�"i j = �"j i ; �i j .x; y/ ∈ L∞.�; Cper.Y //;

∃�� > 0 independent of " : �"i j X i X j > �� X i X i ; ∀X i ∈ R:

1 Throughout this paper, Latin indices and exponents take their values in the set 1, 2, 3, Greek indices and exponents (except
") take their values in the set 1, 2 and the summation convention with respect to repeated indices and exponents is used.
Boldface letters represent vector-valued functions or spaces.
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UNIVERSAL RELATIONS AND EFFECTIVE COEFFICIENTS 65

The second-order magnetic permeability tensor �" = .�"i j / is symmetric, uniformly positive,

defined in " and satisfies

�"i j = �"j i ; �i j .x; y/ ∈ L∞.�; Cper.Y //;

∃�� > 0 independent of " : �"i j X i X j > ��X i X i ; ∀X i ∈ R:

The third-order piezomagnetic coupling tensor q" = .q"ikl/ satisfies the following properties

q"ikl = q"ilk; q"ikl.x; y/ ∈ L∞.�; Cper.Y //:

The second-order ME coupling tensor �" = .�"i j / satisfies

�"i j = �"j i ; �"i j .x; y/ ∈ L∞.�; Cper.Y //:

2.3 Two-scale convergence

Under classical regularity assumptions, problem (2.1) has a unique solution .u"; '";  "/ in

H1.�"/× H1.�"/× H1.�"/, which satisfies the uniform a priori estimate

∥u"∥2
H1.�"/

+ ∥'"∥2
H1.�"/

+ ∥ "∥2
H1.�"/

6 C; (2.3)

with a constant C , which depends upon � and Y ∗, but which is independent of ". This is a conse-

quence of the Korn and Poincaré inequalities for perforated domains (29). The aim of this section

was to study the convergence of the sequence u"; '";  " when " goes to zero.

We now have sufficient estimates to state the first convergence result. The proof of the homog-

enization process will be carried out by using the two-scale convergence introduced by Nguetseng

(30) and developed by Allaire (31). The basic definition and properties of this concept follow.

THEOREM 2.1. A sequence of functions .v"/ bounded in L2.�/ two-scale converges to a limit

v.x; y/ belonging to L2.�× Y /, v"
2
*v , if

lim
"→0

∫

�

v".x; t/9.x; x="/ dx =

∫

�

∫

Y

v.x; y/9.x; y/ dx dy;

for any test function 9.x; y/, Y -periodic in the second variable, satisfying

lim
"→0

∫

�

|9.x; x="/|2 dx =

∫

�

∫

Y

|9.x; y/|2 dx dy: (2.4)

(i) From each bounded sequence .v"/ in L2.�/, one can extract a subsequence, which two-scale

converges.

(ii) Let .v"/ be a bounded sequence in L2.�/, which converges weakly to v in L2.�/. Then, v"
2
*v

and there exists a function v̆ ∈ L2.�; H1
per.Y // such that, up to a subsequence, ∇v"

2
*∇v.x/+

∇y v̆.x; y/,

where the subscript y represents derivation with respect to the second variable y and the subscript

per stands for Y -periodic functions in the last variable.
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66 J. BRAVO-CASTILLERO et al.

We denote by
∼: the extension by zero in the holes �\�" of functions defined on �". By adding

the relatively compact property and elementary properties of two-scale convergence, these imply

the following result.

LEMMA 2.2. (29; 32)

1. There exists u.x/ ∈ H1
0.�/, '.x/ ∈ H1

0 .�/ and  .x/ ∈ H1
0 .�/ such that, the three sequences

.
∼

u"/", .
∼

'"/" and .
∼

 "/" two-scale converge to �.y/u.x/, �.y/'.x/ and �.y/ .x/, respectively.

2. There exists ŭ.x; y/ ∈ L2[�; H1
per.Y

∗/=R], '̆.x; y/ ∈ L2[�; H1
per.Y

∗/=R] and  ̆.x; y/ ∈

L2[�; H1
per.Y

∗/=R] such that,

∼
∇ u".x/

2
*�.y/[∇x u.x/+ ∇y ŭ.x; y/];

∼
∇ '".x/

2
*�.y/[∇x'.x/+ ∇y '̆.x; y/];

∼
∇  ".x/

2
*�.y/[∇x .x/+ ∇y ̆.x; y/]:

3. We have
∼
s .u"/

2
*�.y/[sx .u.x// + sy.ŭ.x; y//], where � is the characteristic function of Y ∗

extended by "-periodicity to R
3, and the index x or y means that the derivatives are with respect

to that variable.

We remark that .u; ';  / and .ŭ; '̆;  ̆/ can be interpreted with the following first terms in the

asymptotic expansions: u".x/ = u.x/+ "ŭ.x; y/+ · · · , '".x/ = '.x/+ "'̆.x; y/+ · · · ,  ".x/ =

 .x/+ " ̆.x; y/+ · · · . Due to the linearity of the original problem, and assuming the regularity in

variation of the coefficients, the macroscopic response can be decoupled from the microscopic one;

it is straightforward to show that the correctors .ŭ; '̆;  ̆/ can be written as linear combinations of

the form

ŭ.x; y/= srt;x .u.x//w
rt .y/+ @m;x'.x/g

m.y/+ @n;x .x/f
n.y/;

'̆.x; y/= srt;x .u.x//�
r t .y/+ @m;x'.x/�

m.y/+ @n;x .x/�
n.y/; (2.5)

 ̆.x; y/= srt;x .u.x//�
r t .y/+ @m;x'.x/�

m.y/+ @n;x .x/
n.y/;

where the local (basis) functions .wr t ; � rt ; �r t /, .gm; �m; �m/ and .fm; �m; m/ solve local micro-

scopic problems posed in the elementary cell Y or more precisely in Y ∗. These local problems are

given below in Lemma 2.3.

2.4 Local problems and evaluation of homogenized coefficients

We are now able to identify that the basis functions appearing in the correctors .ŭ; '̆;  ̆/ are periodic

solutions to the following problems similar to (2.1) but with homogeneous Neumann conditions on

the hole boundary @S of the elementary cell Y .

LEMMA 2.3. (Local functions in Y ). There exist unique Y -periodic basis functions (up to additive

constants)

.wrt ; � rt ; �r t / ∈ H1
per.Y

∗=R/× H1
per.Y

∗=R/× H1
per.Y

∗=R/;
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UNIVERSAL RELATIONS AND EFFECTIVE COEFFICIENTS 67

.gm; �m; �m/ ∈ H1
per.Y

∗=R/× H1
per.Y

∗=R/× H1
per.Y

∗=R/;

.fm; �m; m/ ∈ H1
per.Y

∗=R/× H1
per.Y

∗=R/× H1
per.Y

∗=R/;

which are weak solutions of the local (microscopic) problems posed in the elementary cell Y ∗:

The six triplets .wr t ; � r t ; �rt / are solutions to problems:

− @i�i j .w
r t ; � rt ; �rt /= @i ci jr t ; −@i Di .w

r t ; � rt ; �r t / = −@i eir t ;

−@i Bi .w
r t ; � rt ; �rt /= −@i qir t in Y ∗, (2.6)

with �.wrt ; � r t ; �rt / · n = 0, D.wrt ; � rt ; �r t / · n = 0 and B.wr t ; � rt ; �r t / · n = 0 on @S, where n

is the outer unit normal to @S.

The three triplets .gm; �m; �m/ are solutions to problems:

− @i�i j .g
m; �m; �m/= @i emi j ; −@i Di .g

m; �m; �m/ = −@i�im;

−@i Bi .g
m; �m; �m/= −@i�im in Y ∗, (2.7)

with �.gm; �m; �m/ · n = 0, D.gm; �m; �m/ · n = 0 and B.gm; �m; �m/ · n = 0 on @S.

The three triplets .fm; �m; m/ are solutions to problems:

− @i�i j .f
m; �m; m/= @i qi jm; −@i Di .f

m; �m; m/ = −@i�im;

−@i Bi .f
m; �m; m/= −@i�im in Y ∗, (2.8)

with �.fm; �m; m/ · n = 0, D.fm; �m; m/ · n = 0 and B.fm; �m; m/ · n = 0 on @S.

Since the data ci jr t , eir t , qir t , �im , �im and �im are discontinuous functions, the derivative on

the right-hand side of previous problems must be understood in the distributional sense. We note

also that, although the initial problem models an insulator (no free electric or magnetic charges),

the local problems (2.6)–(2.8) contain fictitious volume electric and magnetic charges.

2.5 The homogenized problem posed in �

The limit MEE field .u; ';  / solves the same problem as (2.1) but with another definition of the

homogeneous stress, electric, magnetic displacement tensors �̄ , D̄ and B̄:

−div �̄ .u; ';  / = � f; div D̄.u; ';  / = 0; div B̄.u; ';  / = 0 in �, (2.9)

with the homogeneous boundary condition u = 0, ' = 0 and  = 0 on @�. The quantity

� = |Y ∗|=|Y | represents the proportion of the material volume in each elementary cell Y . The

new constitutive law is of the same kind as (2.2) and is given by

�̄ .u; ';  /= c̄i jklskl.u/+ ēki j@k' + q̄ki j@k ;

D̄i .u; ';  /= −ēiklskl.u/+ �̄ik@k' + �̄ik@k ; (2.10)

B̄i .u; ';  /= −q̄iklskl.u/+ �̄ik@k' + �̄ik@k ;
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68 J. BRAVO-CASTILLERO et al.

where the effective tensors c̄, ē, q̄ , �̄ , �̄ can be calculated from the solutions of the local problems

using the following formulas:

ci jr t =
⟨

ci jkl [skl;y.w
rt /+ �rt

kl ] + eki j@k;y�
rt + qki j@k;y�

rt
⟩

;

eir t =
⟨

eikl [skl;y.w
r t /+ �rt

kl ] − �ik@k;y�
r t − �ik@k;y�

r t
⟩

;

emi j =
⟨

ci jklskl;y.g
m/+ esi j [@s;y.�

m/+ �m
s ] + qsi j@s;y�

m
⟩

;

q ir t =
⟨

qikl [skl;y.w
r t /+ �rt

kl ] − �ik@k;y�
rt − �ik@k;y�

r t
⟩

;

qmi j =
⟨

ci jklskl;y.f
m/+ esi j@s;y.�

m/+ qsi j [@s;y
m + �m

s ]
⟩

; (2.11)

� im =
⟨

�is[@s;y�
m + �m

s ] − eiklskl;y.g
m/+ �is@s;y�

m
⟩

;

�im =
⟨

�is[@s;y�
m + �m

s ] − qiklskl;y.g
m/+ �is@s;y�

m
⟩

;

�im =
⟨

�is[@s;y
m + �m

s ] − eiklskl;y.f
m/+ �is@s;y�

m
⟩

;

�im =
⟨

�ik[@k;y
m + �m

k ] − qiklskl;y.f
m/+ �ik@k;y�

m
⟩

;

where, for a function g ∈ L1.Y /, we set ⟨g⟩ = |Y |−1
∫

Y g.y/ dy and �kl
i j = 1

2
.�i

j�
k
l + �i

k�
j
l /. Note

that two definitions for the piezoelectric (e), piezomagnetic (q) and ME (�) effective tensors are

given.

The complex procedure of evaluation of the homogenized tensors is detailed in (13), and we

justify rigorously the limiting equations modelling the homogenized problem.

2.6 Correctors

The following theorem complements the two-scale convergence result by providing strong conver-

gence, which is very useful from a theoretical and numerical point of view. It is based on the remark

that sy.ŭ.x; y//, ∇y.'̆.x; y// and ∇y. ̆.x; y// are admissible test functions in the sense (2.4).

THEOREM 2.4. The following convergence holds when " goes to zero:

u".x/− u.x/− "ŭ.x; x="/ → 0 in H1.�/,

'" − '.x/− "'̆.x; x="/ → 0 in H1.�/,

 ".x/− ' .x/− " ̆.x; x="/ → 0 in H1.�/.

3. Effective properties for MEE 3-1 longitudinally porous materials

In this section, the general local problems (2.6)–(2.8) and the corresponding formulae for effective

coefficients (2.11) will be applied to a class of unidirectional empty fibres periodically distributed in

a transversely isotropic and homogeneous MEE matrix. The global behaviour of this heterogeneous

medium is of any MEE global symmetry. New relationships involving the 18 effective properties
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UNIVERSAL RELATIONS AND EFFECTIVE COEFFICIENTS 69

are derived from the stated anti-plane shear MEE problems, which are truly unrelated to the ge-

ometry of the cross section of the empty fibres. These relations are an extension of recent results

reported in (14) where the case of transversely isotropic effective behaviour was studied. More-

over, an application to obtain analytical and simple formulae for effective coefficients is given. The

long-fibre limits of the Mori–Tanaka formulae are obtained. Finally, an efficient numerical homog-

enization scheme based on Fourier transform techniques is presented for MEE composite materials

with general anisotropy and arbitrarily complex periodic microstructure.

3.1 Local problems and effective properties

Porous materials consisting of identical parallel empty cylinders, periodically distributed in a trans-

versely isotropic linear MEE and homogeneous medium, are studied here. The cross section of the

empty fibres is assumed smooth enough. This is an example of a two-dimensional homogenization

problem. The material properties of the matrix are piecewise constant functions on any orthogo-

nal plane to the axis of the empty fibres (y3). The local problems (2.6)–(2.8) can be formulated as

classical free boundary value problems on the periodic cell as follows:

Local Problems Lrt
1 : Find the Y -periodic functions wr t .y1; y2/, �

rt .y1; y2/ and �rt .y1; y2/ of zero

average on Y , such that

@�;y�i�.w
r t ; � rt ; �rt / = 0; @�;y D�.w

r t ; � r t ; �rt / = 0

and @�;y B�.w
r t ; � rt ; �rt / = 0 in Y ∗, (3.1)

�i�.w
rt ; � rt ; �r t /n� = −ci�rt n�; Di .w

r t ; � r t ; �rt /n� = −e�r t n�

and Bi .w
r t ; � rt ; �r t /n� = −q�r t n� on @S,

where @�;y = @=@y� and n� are the components of the outward unit normal vector to the hole bound-

ary @S. �i� , D� and B� are, respectively, the i�-components of the stress tensor, the �-components of

the electric displacement vector and the �-components of the magnetic induction vector associated

with the corresponding local functions.

Local Problems Lm
2 : Find the Y -periodic functions gm.y1; y2/, �

m.y1; y2/ and �m.y1; y2/ of zero

average on Y , such that

@�;y�i�.g
m; �m; �m/ = 0; @�;y D�.g

m; �m; �m/ = 0

and @�;y B�.g
m; �m; �m/ = 0 in Y ∗, (3.2)

�i�.g
m; �m; �m/n� = −emi�n�; D�.g

m; �m; �m/n� = ��mn�

and B�.g
m; �m; �m/n� = ��mn� on @S.

Local Problems Lm
3 : Find the Y -periodic functions fm.y1; y2/, �

m.y1; y2/ and m.y1; y2/ of zero

average on Y , such that

@�;y�i�.f
m; �m; m/ = 0; @�;y D�.f

m; �m; m/ = 0

and @�;y B�.f
m; �m; m/ = 0 in Y ∗, (3.3)
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70 J. BRAVO-CASTILLERO et al.

�i�.f
m; �m; m/n� = −qmi�n�; D�.f

m; �m; m/n� = ��mn�

and B�.f
m; �m; m/n� = ��mn� on @S.

From now on, the matrix is a homogeneous MEE material with 6-mm symmetry. Then, (2.2) can

be written explicitly in terms of 17 independent parameters (k, m, l, n, p, q , r , e, t , u, q ′, r ′, e′, �, �,

v andw), which are given by five elastic constants 2k = c1111 +c1122, 2m = 2c1212 = c1111 −c1122,

l = c1133 = c2233, n = c3333 and p = c1313 = c2323; three piezoelectric constants q = e311 = e322,

r = e333 and e = e113 = e223; two dielectric permittivity constants t = �11 = �22 and u = �33;

three piezomagnetic constants q ′ = q311 = q322, r ′ = q333 and e′ = q113 = q223; two ME

constants � = �11 = �22 and � = �33 and two magnetic permeability constants v = �11 = �22

and w = �33. This is the extended Hill’s notation (see, for instance, (10)). The non-zero terms in

these constitutive relations become:

�11 + �22 = 2k.s11 + s22/+ 2ls33 + 2q@3' + 2q ′@3 ;

�33 = l.s11 + s22/+ ns33 + r@3' + r ′@3 ; �11 − �22 = 2m.s11 − s22/;

�23 = 2ps23 + e@2' + e′@2 ; �13 = 2ps13 + e@1' + e′@1 ; �12 = 2ms12;

D1 = −2es12 + t@1' + �@1 ; D2 = −2es23 + t@2' + �@2 ;

D3 = −q.s11 + s22/− rs33 + u@3' + �@3 ;

B1 = −2e′s12 + �@1' + v@1 ; B2 = −2e′s23 + �@2' + v@2 ;

B3 = −q.s11 + s22/− r ′s33 + �@3' + w@3 :

In the subsequent analysis, no restrictions to a particular global behaviour will be assumed. The

non-vanishing components of ci�rt , e�r t , q�r t ; emi�; ��m , ��m and qmi�; ��m , ��m lead, respectively,

to the non-homogeneous free boundary problems (3.1); (3.2) and (3.3) that have a non-zero solu-

tion. These are six similar uncoupled elastic plane strain problems (L
pp
1 , L12

1 , L3
2 and L3

3) and six

coupled anti-plane strain and potential systems (L13
1 , L23

1 , L�2 and L�3 ). Consequently, the only local

functions different to zero are w
pp
� , w12

� , g3
� , f 3

� , w13
3 , � 13, �13, w23

3 , � 23, �23, g�3 , �� , �� , f �3 , ��

and  � .

3.2 Universal relations involving effective coefficients from L
pp
1 , L12

1 , L3
2 and L3

3

The following non-zero effective properties (2.11) can be derived from the local problems L
pp
1 , L12

1 ,

L3
2 and L3

3:

c1111 = .k + m/� + .k + m/
⟨

@1;yw
11
1

⟩

∗
+ .k − m/

⟨

@2;yw
11
2

⟩

∗
; (3.4)

c1122 = .k − m/� + .k − m/
⟨

@1;yw
11
1

⟩

∗
+ .k + m/

⟨

@2;yw
11
2

⟩

∗

= .k − m/� + .k + m/
⟨

@1;yw
22
1

⟩

∗
+ .k − m/

⟨

@2;yw
22
2

⟩

∗
; (3.5)
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c1133 = l� + l
⟨

@�;yw
11
�

⟩

∗
= l� + .k + m/

⟨

@1;yw
33
1

⟩

∗
+ .k − m/

⟨

@2;yw
33
2

⟩

∗
; (3.6)

c2222 = .k + m/� + .k − m/
⟨

@1;yw
22
1

⟩

∗
+ .k + m/

⟨

@2;yw
22
2

⟩

∗
; (3.7)

c2233 = l� + l
⟨

@�;yw
22
�

⟩

∗
= l� + .k − m/

⟨

@1;yw
33
1

⟩

∗
+ .k + m/

⟨

@2;yw
33
2

⟩

∗
; (3.8)

c3333 = n� + l
⟨

@�;yw
33
�

⟩

∗
; (3.9)

c1211 = m
⟨

@2;yw
11
1 + @1;yw

11
2

⟩

∗
= .k + m/

⟨

@1;yw
12
1

⟩

∗
+ .k − m/

⟨

@2;yw
12
2

⟩

∗
; (3.10)

c1222 = m
⟨

@2;yw
22
1 + @1;yw

22
2

⟩

∗
= .k − m/

⟨

@1;yw
12
1

⟩

∗
+ .k + m/

⟨

@2;yw
12
2

⟩

∗
; (3.11)

c1233 = m
⟨

@2;yw
33
1 + @1;yw

33
2

⟩

∗
= l

⟨

@1;yw
12
1 + @2;yw

12
2

⟩

∗
; (3.12)

c1212 = m� + m
⟨

@2;yw
12
1 + @1;yw

12
2

⟩

∗
; (3.13)

e311 = q� + q
⟨

@�;yw
11
�

⟩

∗
= q� + .k + m/

⟨

@1;y g3
1

⟩

∗
+ .k − m/

⟨

@2;y g3
2

⟩

∗
; (3.14)

e322 = q� + q
⟨

@�;yw
22
�

⟩

∗
= q� + .k − m/

⟨

@1;y g3
1

⟩

∗
+ .k + m/

⟨

@2;y g3
2

⟩

∗
; (3.15)

e333 = r� + q
⟨

@�;yw
33
�

⟩

∗
= r� + l

⟨

@�;y g3
�

⟩

∗
; (3.16)

e312 = q
⟨

@�;yw
12
�

⟩

∗
= m

⟨

@2;y g3
1 + @1;y g3

2

⟩

∗
; (3.17)

q311 = q ′� + q ′
⟨

@�;yw
11
�

⟩

∗
= q ′� + .k + m/

⟨

@1;y f 3
1

⟩

∗
+ .k − m/

⟨

@2;y f 3
2

⟩

∗
; (3.18)

q322 = q ′� + q ′
⟨

@�;yw
22
�

⟩

∗
= q ′� + .k − m/

⟨

@1;y f 3
1

⟩

∗
+ .k + m/

⟨

@2;y f 3
2

⟩

∗
; (3.19)

q333 = r ′� + q ′
⟨

@�;yw
33
�

⟩

∗
= r ′� + l

⟨

@�;y f 3
�

⟩

∗
; (3.20)

q312 = q ′
⟨

@�;yw
12
�

⟩

∗
= m

⟨

@2;y f 3
1 + @1;y f 3

2

⟩

∗
; (3.21)

�33 = ⟨u⟩ − q
⟨

@�;y g3
�

⟩

∗
; �33 = ⟨w⟩ − q ′

⟨

@�;y f 3
�

⟩

∗
; (3.22)

�33 = �� − q
⟨

@�;y f 3
�

⟩

∗
= �� − q ′

⟨

@�;y g3
�

⟩

∗
; (3.23)
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where ⟨g⟩∗ = |Y |−1
∫

Y ∗ g.y/ dy. Moreover, ⟨u⟩ = u� + �0.1 − �/ and ⟨w⟩ = w� + �0.1 − �/

are averages of the corresponding property taking into account the known constants of free space

for the dielectric permittivity �0 = 8:85 × 10−12C2=N m2 and for the magnetic permeability �0 =

4� × 10−7N A−2. The empty fibre area fraction is denoted by 1 − � .

On the other hand, there exist the following useful links among the solutions of the local problems

L11
1 , L22

1 , L33
1 , L3

2 and L3
3 (see, for instance, (14, Section 4.3)):

w11
� + w22

� = 2.k= l/w33
� = 2.k=q/g3

� = 2.k=q ′/ f 3
� : (3.24)

From (3.4) to (3.24), it is straightforward to obtain the following relationships:

2k

l
=

c1111 + 2c1122 + c2222 − 4k�

c1133 + c2233 − 2l�
=

c1133 + c2233 − 2l�

c3333 − n�

=
e311 + e322 − 2q�

e333 − r�
=

q311 + q322 − 2q ′�

q333 − r ′�
; (3.25)

2k

q
=

c1111 + 2c1122 + c2222 − 4k�

e311 + e322 − 2q�
=

c1133 + c2233 − 2l�

e333 − r�

= −
e311 + e322 − 2q�

�33 − ⟨u⟩
= −

q311 + q322 − 2q ′�

�33 − ��
; (3.26)

2k

q ′
=

c1111 + 2c1122 + c2222 − 4k�

q311 + q322 − 2q ′�
=

c1133 + c2233 − 2l�

q333 − r ′�

= −
e311 + e322 − 2q�

�33 − ��
= −

q311 + q322 − 2q ′�

�33 − ⟨w⟩
; (3.27)

c1211 + c1222

2k
=

c3312

l
=

e312

q
=

q312

q ′
=

⟨

@�;yw
12
�

⟩

∗
: (3.28)

Expressions (3.25)–(3.28) are universal relations for monoclinic MEE empty fibre composites with

a 6-mm-class MEE matrix.

For the particular case of a transversely isotropic global behaviour, these formulae coincide with

the universal relations reported in (9; 33; 34) (see also (11, Appendix A)) for two-phase fibrous

composites as the elastic, piezoelectric, piezomagnetic and ME fibre properties are equal to zero.

According to the extended Hill’s notation and assuming transversely isotropic overall behaviour,

from (3.25) to (3.27), it is straightforward to obtain the following relationships:

k

l
=

k − k�

l − l�
=

l − l�

n − n�
=

q − q�

r − r�
=

q ′ − q ′�

r ′ − r ′�
; (3.29)

k

q
=

k − k�

q − q�
=

l − l�

r − r�
= −

q − q�

u − ⟨u⟩
= −

q ′ − q ′�

� − ��
; (3.30)

k

q ′
=

k − k�

q ′ − q ′�
=

l − l�

r ′ − r ′�
= −

q ′ − q ′�

w − ⟨w⟩
= −

q − q�

� − ��
: (3.31)
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From (3.29) to (3.31), it is clear that the knowledge of 1 of the 10 effective coefficients yields the

other 9 effective coefficients.

3.3 New universal relations involving effective coefficients from L13
1 , L1

2 and L1
3 (L23

1 , L2
2 and L2

3)

The next step is to describe the derivation of new universal relations involving solutions of the local

problems L13
1 , L1

2 and L1
3 (L23

1 , L2
2 and L2

3) without solving any local problem.

The problems L13
1 , L1

2 and L1
3 can be presented in a compact form as one problem L j , which

consists in finding the Y -periodic local functions U j .y/, 8 j .y/ and 9 j .y/, harmonic and of zero

average on Y , that satisfy the following free boundary conditions on @S:

AX j = −n1a j ; (3.32)

where

A =











p e e′

e −t −�

e′ −� −�











and X j =











@�;yU j n�

@�;y8 j n�

@�;y9 j n�











:

Thus, A is a symmetric matrix, X j is a column matrix involving the normal derivatives to @S of the

local functions and a j is the j th column of the matrix A. From (3.32), the next expression on @S

can be obtained:

X j = −n1e j ; (3.33)

where e j are the vectors of the standard orthonormal basis for the real 3D Euclidean space. As a

consequence of conditions (3.33), the following relations among the solutions of the local problems

L13
1 , L1

2 and L1
3 are obtained:

w13
3 = �1 =  1; � 13 = �1 = 0; �13 = �1 = 0; g1

3 = f 1
3 = 0: (3.34)

The problems L23
1 , L2

2 and L2
3 also can be analyzed as above with the particularity that the free

boundary condition (3.33) now follows as X j = −n2e j . Consequently, the following relations are

valid for the solutions of L23
1 , L2

2 and L2
3:

w23
3 = �2 =  2; � 23 = �2 = 0; �23 = �2 = 0; g2

3 = f 2
3 = 0: (3.35)

On the other hand, taking into account the material properties of the matrix, expanding (2.11), the

following formulae for effective properties can be derived:

c1313 = p� + p
⟨

@1;yw
13
3

⟩

∗
+ e

⟨

@1;y�
13
⟩

∗
+ e′

⟨

@1;y�
13
⟩

∗
; (3.36)

c2323 = p� + p
⟨

@2;yw
23
3

⟩

∗
+ e

⟨

@2;y�
23
⟩

∗
+ e′

⟨

@2;y�
23
⟩

∗
; (3.37)

c2313 = p
⟨

@2;yw
13
3

⟩

∗
= p

⟨

@1;yw
23
3

⟩

∗
; (3.38)

e113 = e� + e
⟨

@1;yw
13
3

⟩

∗
− t

⟨

@1;y�
13
⟩

∗
− �

⟨

@1;y�
13
⟩

∗
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= e� + p
⟨

@1;y g1
3

⟩

∗
+ e

⟨

@1;y�
1
⟩

∗
+ e′

⟨

@1;y�
1
⟩

∗
; (3.39)

e223 = e� + p
⟨

@2;yw
23
3

⟩

∗
− t

⟨

@2;y�
23
⟩

∗
− �

⟨

@2;y�
23
⟩

∗

= e� + p
⟨

@2;y g2
3

⟩

∗
+ e

⟨

@2;y�
2
⟩

∗
+ e′

⟨

@2;y�
2
⟩

∗
; (3.40)

e213 = p
⟨

@2;yw
13
3

⟩

∗
− t

⟨

@2;y�
13
⟩

∗
− �

⟨

@2;y�
13
⟩

∗

= p
⟨

@1;y g2
3

⟩

∗
+ e

⟨

@1;y�
2
⟩

∗
+ e′

⟨

@1;y�
2
⟩

∗
; (3.41)

e123 = p
⟨

@1;yw
23
3

⟩

∗
− t

⟨

@1;y�
23
⟩

∗
− �

⟨

@1;y�
23
⟩

∗

= p
⟨

@2;y g1
3

⟩

∗
+ e

⟨

@2;y�
1
⟩

∗
+ e′

⟨

@2;y�
1
⟩

∗
; (3.42)

q113 = e′� + e′
⟨

@1;yw
13
3

⟩

∗
− �

⟨

@1;y�
13
⟩

∗
− �

⟨

@1;y�
13
⟩

∗

= e′� + p
⟨

@1;y f 1
3

⟩

∗
+ e

⟨

@1;y�
1
⟩

∗
+ e′

⟨

@1;y
1
⟩

∗
; (3.43)

q223 = e′� + e′
⟨

@2;yw
23
3

⟩

∗
− �

⟨

@2;y�
23
⟩

∗
− �

⟨

@2;y�
23
⟩

∗

= e′� + p
⟨

@2;y f 2
3

⟩

∗
+ e

⟨

@2;y�
2
⟩

∗
+ e′

⟨

@2;y
2
⟩

∗
; (3.44)

q213 = e′
⟨

@2;yw
13
3

⟩

∗
− �

⟨

@2;y�
13
⟩

∗
− �

⟨

@2;y�
13
⟩

∗

= p
⟨

@1;y f 2
3

⟩

∗
+ e

⟨

@1;y�
2
⟩

∗
+ e′

⟨

@1;y
2
⟩

∗
; (3.45)

q123 = e′
⟨

@1;yw
23
3

⟩

∗
− �

⟨

@1;y�
23
⟩

∗
− �

⟨

@1;y�
23
⟩

∗

= p
⟨

@2;y f 1
3

⟩

∗
+ e

⟨

@2;y�
1
⟩

∗
+ e′

⟨

@2;y
1
⟩

∗
; (3.46)

�11 = ⟨t⟩ − e
⟨

@1;y g1
3

⟩

∗
+ t

⟨

@1;y�
1
⟩

∗
+ �

⟨

@1;y�
1
⟩

∗
; (3.47)

�22 = ⟨t⟩ − e
⟨

@2;y g2
3

⟩

∗
+ t

⟨

@2;y�
2
⟩

∗
+ �

⟨

@2;y�
2
⟩

∗
; (3.48)

�12 = t
⟨

@2;y�
1
⟩

∗
− e

⟨

@2;y g1
3

⟩

∗
+ �

⟨

@2;y�
1
⟩

∗

= t
⟨

@1;y�
2
⟩

∗
− e

⟨

@1;y g2
3

⟩

∗
+ �

⟨

@1;y�
2
⟩

∗
; (3.49)
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�11 = ⟨�⟩ + �
⟨

@1;y
1
⟩

∗
− e′

⟨

@1;y f 1
3

⟩

∗
+ �

⟨

@1;y�
1
⟩

∗
; (3.50)

�22 = ⟨�⟩ + �
⟨

@2;y
2
⟩

∗
− e′

⟨

@2;y f 2
3

⟩

∗
+ �

⟨

@2;y�
2
⟩

∗
; (3.51)

�12 = �
⟨

@2;y
1
⟩

∗
− e′

⟨

@2;y f 1
3

⟩

∗
+ �

⟨

@2;y�
1
⟩

∗

= �
⟨

@1;y
2
⟩

∗
− e′

⟨

@1;y f 2
3

⟩

∗
+ �

⟨

@1;y�
2
⟩

∗
; (3.52)

�11 = �� + �
⟨

@1;y�
1
⟩

∗
− e′

⟨

@1;y g1
3

⟩

∗
+ �

⟨

@1;y�
1
⟩

∗

= �� + �
⟨

@1;y
1
⟩

∗
− e

⟨

@1;y f 1
3

⟩

∗
+ t

⟨

@1;y�
1
⟩

∗
; (3.53)

�22 = �� + �
⟨

@2;y�
2
⟩

∗
− e′

⟨

@2;y g2
3

⟩

∗
+ �

⟨

@2;y�
2
⟩

∗

= �� + �
⟨

@2;y
2
⟩

∗
− e

⟨

@2;y f 2
3

⟩

∗
+ t

⟨

@2;y�
2
⟩

∗
; (3.54)

�12 = �
⟨

@2;y�
1
⟩

∗
− e′

⟨

@2;y g1
3

⟩

∗
+ �

⟨

@2;y�
1
⟩

∗

= �
⟨

@1;y�
2
⟩

∗
− e′

⟨

@1;y g2
3

⟩

∗
+ �

⟨

@1;y�
2
⟩

∗

= �
⟨

@1;y
2
⟩

∗
− e

⟨

@1;y f 2
3

⟩

∗
+ t

⟨

@1;y�
2
⟩

∗

= �
⟨

@2;y
1
⟩

∗
− e

⟨

@2;y f 1
3

⟩

∗
+ t

⟨

@2;y�
1
⟩

∗
: (3.55)

Substituting (3.34) and (3.35) into (3.36)–(3.55), the following new relations connecting the so-

called anti-plane effective coefficients are derived

c1313 − p�

p
=

e113 − e�

e
=

q113 − e′�

e′
=
�11 − ��

�
=
�11 − ⟨t⟩

t
=
�11 − ⟨�⟩

�

=
⟨

@1;yw
13
3

⟩

∗
; (3.56)

c2323 − p�

p
=

e223 − e�

e
=

q223 − e′�

e′
=
�22 − ��

�
=
�22 − ⟨t⟩

t
=
�22 − ⟨�⟩

�

=
⟨

@2;yw
23
3

⟩

∗
; (3.57)

c1323

p
=

e123

e
=

e213

e
=

q123

e′
=

q213

e′
=
�12

�
=
�12

t
=
�12

�
=

⟨

@2;yw
13
3

⟩

∗
; (3.58)

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/q
jm

a
m

/a
rtic

le
/6

5
/1

/6
1
/1

8
2
9
2
9
9
 b

y
 g

u
e
s
t o

n
 2

0
 A

u
g
u
s
t 2

0
2
2



76 J. BRAVO-CASTILLERO et al.

where ⟨t⟩ = t� + �0.1 − �/ and ⟨�⟩ = �� + �0.1 − �/ are averages of the corresponding property

taking into account the influence of the free space permittivity �0 and permeability �0.

Equations (3.56)–(3.58) are true for any shape of the empty fibre cross section. These relations

are an extension of recent results reported by (14) where the case of piezoelectric matrix with a

transversely isotropic effective behaviour was studied.

The problem of computing the anti-plane properties, of the 3-1 longitudinally porous MEE media

here considered, for a specific geometry of the empty fibre cross section can be reduced to the

calculation of
⟨

@1;yw
13
3

⟩

∗
,
⟨

@2;yw
23
3

⟩

∗
and

⟨

@1;yw
23
3

⟩

∗
. A brief description on the derivation of a

closed-form formula for
⟨

@1;yw
13
3

⟩

∗
in the case of a circular cross section of @S for two types of

periodic cells can be found in (14, Appendix B). In (35), an extension of this procedure for a general

parallelogram periodic cell is explained. Also, numerical results from finite element calculations of
⟨

@1;yw
13
3

⟩

∗
for different geometries of @S are shown in (14, Section 5). It can be noted that simpler

relations between effective coefficients can be derived in an obvious manner from (3.56) to (3.57).

They become

c1313

p
=

e113

e
=

q113

e′
=
�11

�
; (3.59)

c2323

p
=

e223

e
=

q223

e′
=
�22

�
; (3.60)

�11 = t
c1313

p
+ �0.1 − �/; (3.61)

�22 = t
c2323

p
+ �0.1 − �/; (3.62)

�11 = �
c1313

p
+ �0.1 − �/; (3.63)

�22 = �
c2323

p
+ �0.1 − �/: (3.64)

It can be observed from (3.61) to (3.64) that the influence of the free space properties could be more

noticeable for high values of the empty fibre area fraction 1 − � .

In Table 3 of (35, p. 81), the variations of the effective longitudinal shear moduli (c1323, c1313

and c2323) are shown for four different parallelogram periodic cells with the small angle equal to

�=6, �=4 (rhombic cell), �=3 (hexagonal cell) and �=2 (square cell). Furthermore, one can see

from relations (3.58) to (3.60) that the knowledge of the normalized elastic effective coefficients

yields to the other 15 anti-plane effective coefficients. For instance, in Table 1, the normalized

effective values (c1323=p, c1313=p and c2323=p) reported in Table 3 of (35) are summarized, with

the particularity that now these values are valid for the further involved normalized MEE anti-plane

effective coefficients in (3.58)–(3.60).

3.4 An application to obtain explicit formulae for effective coefficients

In this section, the derivation of analytical formulae for effective properties of 3-1 longitudinally

porous MEE materials is described. The cross section of the empty fibre is considered as a circle of
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Table 1 Normalized effective values of the MEE properties involved in relations (3.58)–(3.60)

for four different parallelogram periodic cells with the small angle, respectively, equal to �=6, �=4

(rhombic cell), �=3 (hexagonal cell) and �=2 (square cell)

�=6 �=4 �=6 �=4 �=6 �=4 �=3 �=2

1 − � (3.58) (3.58) (3.59) (3.59) (3.60) (3.60) (3.60) (3.60)

0:1 −0:00796 −0:00327 0.8030 0.8148 0.8306 0.8213 0.8182 0.8182

0:2 −0:02736 −0:0110 0.6098 0.6548 0.7046 0.6768 0.6667 0.6665

0:3 −0:05522 −0:02122 0.4127 0.5146 0.6040 0.5570 0.5384 0.5376

0:4 −0:09991 −0:03297 0.1691 0.3891 0.5152 0.4551 0.4284 0.4254

radius R. The periodic cells are assumed hexagonal or square. It is known that the global behaviour

for the case of a square cell belongs to the tetragonal symmetry 4 mm, whereas the other one has

hexagonal symmetry 6 mm. The relationships given by (3.29)–(3.31) and (3.59)–(3.64) are valid for

these two types of composites. The results which will be given here are a natural extension of those

reported in (14).

From expressions (3.30) and (3.31), the following relation can be obtained

q ′ − q ′�

q ′
=

q − q�

q
: (3.65)

Formula (36) from (14, p. 798) can be written as

q − q�

q
= −.1 − �/

k

m
K .a/; (3.66)

where K .a/ = 1
2
�=G+ 1

4
.1+�/G−2V T M−1Ṽ , � = 1−�R2= sin.�=a/ (with a = 2 or 3 for square

or hexagonal array, respectively), � = 1 + 2m=k and G = 1
2

+ .1 − �/=.� − 1/. The superscripts

T and −1 denote transpose vector and inverse matrix, respectively. The components of the infinite

order vectors V .vs/, Ṽ .ṽt / and matrix M.mts/ as a function of a can be found in (14, Appendix A).

However, truncating this product at a second order, one can obtain the following simple analytical

expression for K .a/

K .a/ =
�

2G
+

1 + �

4G2

.2a − 1/R4a.S2a/
2

1 + R4a−2[g.a/− r.a/− .2a − 1/R2.S2a/2=G]
; (3.67)

where

r.a/ = c2a−1
4a−1c2a+1

4a−1 R4a+2.S4a/
2; g.a/ = −.2a − 1/.R2c2a

4a S4a − c2a−1
4a−2T4a−1/;

with cl
k = k!= l!.k − l/! being the combinatory number and the type of periodicity is determined by

the lattice sums S and T (S4 = 3:1512120, S8 = 4:2557731 and T7 = 4:5155155 for a = 2 and

S6 = 5:8630316, S12 = 6:00096399 and T11 = 6:0301854 for a = 3).

From (3.65) and (3.66), the piezomagnetic effective coefficient q ′ is given by the formula

q ′ = q ′� − .1 − �/q ′.k=m/K .a/: (3.68)
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Combining the convenient fractions involved in (3.29)–(3.31) with (3.65) and (3.68), the following

analytical expressions for the effective properties can be obtained:

r ′ = r ′� − .1 − �/
q ′l

m
K .a/; (3.69)

� = �� + .1 − �/
q ′q

m
K .a/; (3.70)

w = ⟨w⟩ + .1 − �/
.q ′/2

m
K .a/; (3.71)

u = ⟨u⟩ + .1 − �/
q2

m
K .a/: (3.72)

The formula for the axial ME effective coefficient, �, (3.70), reveals the existence of the ME effect

in the composite even if none of the individual phases exhibit it.

The meaning of truncation at a second order is the following: the analytical solution of the local

problems using elements of the theory of complex functions (see, for instance, (14; 35)) involves the

solution of systems of infinite linear algebraic equations involving undetermined constants. These

systems require to be truncated. In the present work, if the system is reduced to one equation with

one unknown, we say that the corresponding effective properties are ‘first-order approximations’.

Furthermore, the infinite system can be truncated as a finite system of 2×2, then we call it ‘second-

order approximation’. For instance, if K .a/ = �=2G, then (3.68)–(3.72) are first-order approxima-

tions, and in this particular case, they coincide with the formulae of (4) (taking the fibre properties

equal to zero).

In a similar way, from formulae (35) and (38) of (14, p. 798), one can obtain

p=p = e=e = 1 − 2.1 − �/P.a/; (3.73)

where the truncated expression for the second-order approximation of P.a/ is

P.a/ =
{

2 − � − .2a − 1/R4a.S2a/
2
}−1

: (3.74)

Now, combining (3.73) with (3.59)–(3.63), we obtain the following simple expressions for the anti-

plane effective coefficients

p = p − 2p.1 − �/P.a/; (3.75)

e = e p=p; (3.76)

e′ = e′ p=p; (3.77)

� = � p=p; (3.78)

t = t p=p + �0.1 − �/; (3.79)

� = � p=p + �0.1 − �/; (3.80)
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with p = c1313 = c2323, e = e113 = e223, e′ = q113 = q2233, � = �11 = �22, t = �11 = �22 and

� = �11 = �22. Expressions (3.75)–(3.80) are first-order approximations as P.a/ = 1=.2 − �/.

On the other hand, the limit case of the Mori–Tanaka model given by (36, Equation (22)) can be

obtained from the first-order approximations (3.75) to (3.80) neglecting the influence of free space

permittivity and permeability. Indeed, after that, such limit case is

p

p
=

e

e
=

e′

e′
=
�

�
=

t

t
=
�

�
=

�

2 − �
: (3.81)

3.5 Two-scale homogenization with a numerical solution of the cell problem

The previous analytical formulae have been derived for the case of MEE periodically perforated

structure with a particular anisotropy of the matrix properties (transverse isotropy) and a simple

morphology of the holes (parallel empty cylinders). In the context of microstructural optimization

for the enhancement of the ME coupling coefficient, it is of great interest to be able to consider

more general situations in terms of anisotropic properties of the constituents as well as their mor-

phology and spatial distribution. In general, the problem is too complex to be solved analytically

and it is necessary to resort to a numerical approach. In this context, an attractive alternative to the

widely used finite element method is the fast Fourier transform (FFT) homogenization scheme. This

approach, originally proposed in (37) for elastic-type composites (uncoupled constitutive relation),

has been extended to deal with multifield coupling behaviours (38; 39). It relies on an efficient iter-

ative resolution of periodic coupled Lippmann–Schwinger equations. Besides, an attractive feature

of the method is the use of the digital image of the microstructure to perform the computations (no

additional meshing is required). This allows in practice to consider arbitrary shapes and spatial ar-

rangements of the constituents in the unit cell. In the present context of voided MEE materials, use

is made of a constrained minimization approach, which makes use of the augmented Lagrangian.

For further details, the reader is referred to (39) and references therein. The accuracy of the results

obtained with this numerical approach is illustrated in section 4.

4. Numerical examples

A numerical application of the analytical formulae derived in section 3.4 is now given together

with the results of the FFT-based numerical homogenization scheme. With this latter procedure, the

effective coefficients of interest have been determined by considering successively four electromag-

netic loadings, namely, @1', @3', @1 and @3 . The comparison between these two approaches is

shown in Figs 2 to 4. The composite considered is a 3-1 longitudinally porous piezoelectric material

with a square periodic distributions of empty fibres. The material properties used to calculate the

results shown were taken from (40, Table 3) and are as follows: (in G Pa) k = 229:5, m = 56:5,

l = 78, n = 269:5, p = 43:5; (in C/m2) e = 11:6, q = −4:4, r = 18:6; (in m/A) e′ = 550,

q ′ = 580:3, r ′ = 699:7; (in 10−10C2=N m2) t = 0:8, u = 0:93; (in 10−6N s2=C2) v = −590,

w = 157 and (in 10−12N s=V C) � = 3. A very good agreement can be observed, for all the

range of empty fibre area fractions, among the analytical and numerical results corresponding to the

piezoelectric, piezomagnetic, dielectric, magnetic and ME effective coefficients.

From Fig. 4, we can note the enhancement of the ME effective constant � with the empty fibre

area fraction. This is due to the interaction between the product piezoelectric-piezomagnetic prop-

erty (qq ′) with area of the hole (1−� ), which can be seen in (3.70). As a consequence, it is worth not-

ing that the perforated matrix exhibits a ME coefficient, which is three orders of magnitude higher
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Fig. 2 The normalized piezoelectric and piezomagnetic effective properties for a 3-1 longitudinally porous

MEE composite with a square periodic distribution of empty fibres. Comparisons among the results derived

from the analytical formulae (A) with those derived by the FFT numerical method (N)

than the matrix itself. As one can observe in Fig. 4, the dotted line (Li and Dunn (4)) and the dashed

(first order) are indistinguishable. This is because the first-order curve is obtained using (3.70) but

neglecting the second term of (3.67) in order to obtain � = ��+qq ′.1−�/�=..1−�/k +m/, which

is exactly the formula proposed by Li and Dunn in (4) replacing the fibre properties by zero. The

agreement between the first- and second-order approximations is excellent for small values of the

empty fibre area fraction 1−� . Consequently, after neglecting the first term in the above expression,

it is possible to estimate the specific fraction where the absolute minimum of � is attained by using

the expression

.1 − �/min ≈ ..m2 + km/
1
2 − m/=k: (4.1)

In the present numerical example, using (4.1), one obtain .1 − �/min ≈ 0:31, which is in correspon-

dence with Fig. 4.

Another example concerns the application of the universal relations derived in section 3.3. For

instance, the values appearing in the second row of Table 2 are the same as those reported in Table 2
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Fig. 3 The normalized (dielectric permittivity and magnetic permeability) effective properties for a 3-1 longi-

tudinally porous MEE composite with a square periodic distribution of empty fibres. Comparisons among the

results derived from the analytical formulae (A) with those derived by the FFT numerical method (N)

of (41, p. 4777). From these data and using the first relation of proportionality of (3.59), e = e p=p,

one can obtain the values of the piezoelectric coefficient listed in the third row. As we can observe,

the values on the second row compare well with those of the third row corresponding to results of

(41). A similar picture is shown for the dielectric effective coefficients from the subsequent rows,

where a better agreement is noted when the information involving the property of the free space for

dielectric permittivity is taken into account, 0.2 being the higher percentage error.

5. Conclusions

In this paper, we have rigorously established the limiting equation modelling the behaviour of MEE

periodically perforated structures: we have explicitly described the homogenized coefficients of the

elastic, dielectric, magnetic, piezoelectric, piezomagnetic and ME coupling tensors. Based on the

homogenization model, a class of unidirectional perforated composites formed by empty fibres pe-

riodically distributed in a homogeneous transversely isotropic MEE material was studied. Without

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/q
jm

a
m

/a
rtic

le
/6

5
/1

/6
1
/1

8
2
9
2
9
9
 b

y
 g

u
e
s
t o

n
 2

0
 A

u
g
u
s
t 2

0
2
2



82 J. BRAVO-CASTILLERO et al.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
−4.5

−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

0.5
x 10

−9

Empty−fibre area fraction

E
ff
e
c
ti
v
e
 m

a
g
n
e
to

e
le

c
tr

ic
 c

o
n
s
ta

n
t

 (Ref. (4))

 (First order)

 (Second order)

 (N)

Fig. 4 The ME effective coefficient � for a 3-1 longitudinally porous MEE composite with a square periodic

distribution of empty fibres. Comparisons between the present results (first and second order) with those of Li

and Dunn (4) and those derived from the FFT numerical method (N)

Table 2 Comparisons of effective piezoelectric and dielectric values reported in Table 2 on

p. 4792 of (41) with those obtained from (3.56)

1 − � 0 0.1 0.3 0.5 0.6 0.8 0.9

p (G Pa) 21.10 17.264 11.362 7.033 5.275 2.345 1.111

e = e p=p (C/m2) 12.30 10.064 6.623 4.099 3.075 1.367 0.647

e (41) 12.30 10.064 6.623 4.100 3.075 1.367 0.647

t = t p=p (nC2/Nm2) 8.107 6.633 4.365 2.702 2.028 0.901 0.427

t = t p=p + �0.1 − �/ 8.107 6.634 4.368 2.707 2.032 0.908 0.435

t (41) 8.107 6.636 4.372 2.710 2.035 0.910 0.436
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the solution of any local problem, universal relations for monoclinic MEE empty fibres composites

with a 6-mm-class MEE matrix were found. From the so-called plane local problems, the corre-

sponding universal relations are given by (3.25)–(3.28). From these expressions, the known univer-

sal relations (3.29)–(3.31) of Benveniste (9; 34) are obtained for the particular case of transversely

isotropic effective behaviour.

From the stated anti-plane shear MEE local problems, new relationships (3.58)–(3.60) involving

18 effective properties were derived. Based on these simple equations, the knowledge, for instance,

of the normalized elastic effective values (c1323=p, c1313=p and c2323=p) allows us to determine the

other 15 effective coefficients involved. Such relations are truly unrelated to the geometry of the

cross section of the empty fibres. The derived formulae involve the dielectric permittivity and the

magnetic permeability of free space, (3.61) and (3.64).

For the particular case of circular cross section of empty fibres and for two types of periodic

distribution (hexagonal and square arrays), new unified analytical formulae for the effective prop-

erties piezomagnetic (3.68)–(3.69) and (3.77), ME (3.70) and (3.78), and magnetic permeability

effective constant (3.71), were obtained. The formulae proposed by Li and Dunn (4) (considering

null fibre properties) coincide with the first-order approximation (3.68)–(3.72). The accuracy of this

approximation for small values (less than 0.4) of the empty fibre area fraction is illustrated in Fig. 4.

A simple formula (4.1) is given to estimate the specific empty fibre area fraction where the ME

effective coefficient reaches its minimum value. Also, very simple analytical expressions for the

anti-plane effective coefficients (3.75)–(3.80) were derived. The first-order approximation of these

formulae without the influence of the permittivity and permeability of free space corresponds with

the ‘long fibre’ limit of the Mori–Tanaka model given by formula (22) in (36). This result is given

by (3.81) which in a compact form is A = .�=[2 − � ]/A, with 1 − � being the area of the hole and

A the symmetric matrix defined in section 3.3.

The analytical formulae here proposed have been used to check the accuracy of a FFT-based

numerical scheme for general multifield coupling behaviours and the comparisons performed have

shown a very good agreement for the whole range of porosity values. Besides, our results offer a

theoretical fact for obtaining a high ME coefficient in a monolithic MEE material with holes. For

future prospects, the proposed numerical scheme is expected to be a useful tool for the study of the

enhancement of the ME coefficient in perforated structures by microstructural design.
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