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Summary

In this paper we first summarize the basic constitutive equations for (nonlinear) magnetoelastic
solids capable of large deformations. Equivalent formulations are given using either the
magnetic induction vector or the magnetic field vector as the independent magnetic variable
in addition to the deformation gradient. The constitutive equations are then specialized to
incompressible, isotropic magnetoelastic materials in order to determine universal relations.
A universal relation, in this context, is an equation that relates the components of the stress
tensor and the components of the magnetic field and/or the components of the magnetic
induction that holds independently of the specific choice of constitutive law for the considered
class or subclass of materials. As has been shown previously for the case in which the magnetic
induction is the independent magnetic variable, in the general case there exists only one
possible universal relation. We show that this is also the case if the magnetic field is taken as the
independent variable and that the universal relations resulting from the two cases are equivalent.
A number of special cases are found for certain specializations of the constitutive equations.
These include some connections between the deformation, the magnetic field and magnetic
induction that do not involve the components of the stress tensor. Universal relations are then
examined for some representative homogeneous and inhomogeneous universal solutions.

1. Introduction

Recently, a number of applications of magneto-sensitive (MS) elastomers have been developed
and commercialized. Such materials are capable of large magnetoelastic deformations and change
their mechanical response rapidly and significantly on the application of a magnetic field. For a
discussion of industrial applications we refer to, for example, the papers by Farshad and Le Roux
(1) and Jolly et al. (2). Because of the increasing potential for use of these materials, there is now
demand for the development of reliable constitutive equations that can be used in the analysis and
solution of representative boundary-value problems and in commercial finite element software.
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436 R. BUSTAMANTE et al.

Important early publications on the theory of magnetoelasticity are the book of Brown (3), the
monographs of Truesdell and Toupin (4) and Hutter and van de Ven (5), and the review article by
Pao (6). Recently, several alternative formulations of constitutive equations capable of describing
the highly nonlinear magnetoelastic interactions have been examined. These are mostly based on
the use of a free energy, which is treated as a function of a magnetic field vector (the magnetic
field, magnetic induction or magnetization) and the deformation gradient tensor. Also, solutions of
a number of representative boundary-value problems for nonlinear magnetoelastic solids have been
obtained. Selected references are the papers (7 to 12). Valuable background material on electromag-
netic fields and their interactions with deformable continua can also be found in (13, 14).

For a particular deformation or class of deformations, a universal relation is an equation that
relates stress and strain components that holds independently of the specific choice of constitutive
law for the considered class of materials. Such relations therefore provide guidelines for the ex-
perimenter in the design of tests and loading conditions necessary for practical evaluation of the
material response. In this paper we extend the previous brief discussion (8) of universal relations
in nonlinear magnetoelasticity. For corresponding discussion of universal relations in a purely elas-
tic context, we refer to the review articles by Saccomandi (15, 16) and citations therein. A parallel
treatment of universal relations for nonlinear electroelastic solids has been provided recently in (17).

In this paper we derive the only independent universal relation possible for an isotropic material
in the general case by using either the magnetic field or the magnetic induction field as the inde-
pendent magnetic variable. Additional universal relations are derived for some cases in which the
constitutive law is specialized. The constitutive equations discussed by Dorfmann and Ogden (7)
are based on a modified (or total) free-energy function. In addition to the deformation gradient, it
depends on the magnetic induction vector. The corresponding equations obtained by replacing the
magnetic induction vector by the magnetic field are also used. When the Lagrangian form of either
of these two vectors is used as the independent magnetic variable the resulting equations have a
particularly simple structure, but we point out that if, instead, the magnetization vector is used as
the independent magnetic variable then the structure is somewhat less simple.

The structure of the paper is as follows. In section 2 we define the main kinematic quantities
necessary to describe large deformations. This is followed by a summary of the magnetic balance
equations in both the current and the reference configurations. This section concludes with a review
of the corresponding mechanical balance equations and the boundary conditions for the (total) stress
and the magnetic field vectors. In section 3 the constitutive equations based on either the magnetic
induction or the magnetic field vector as an independent variable are summarized. The correspond-
ing equations obtained by taking the magnetization as an independent variable are also discussed
briefly. The constitutive equations are then specialized to the case of an isotropic magnetoelastic ma-
terial. In section 4 the only universal relation for a general isotropic magnetoelastic solid is derived
using first the magnetic induction and then the magnetic field as the independent variable and the
equivalence of the two formulations is demonstrated in a simple way. Several additional universal
relations, valid for special cases of the constitutive equation, are derived in section 4.1. Examination
of the implications of the universal relations for a number of specific deformations is the subject of
section 5. Some concluding remarks are provided in section 6.

2. Governing equations and boundary conditions

Consider a magnetoelastic solid occupying the reference configuration B0. Let a material point in
B0 be identified by its position vector X relative to an arbitrarily chosen origin. When the body is
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UNIVERSAL RELATIONS IN NONLINEAR MAGNETOELASTICITY 437

deformed the point X occupies a new position x = χχχ(X), where χχχ is the deformation mapping. We
denote the resulting deformed configuration by B. The deformation gradient relative to B0, which
is denoted by F, and its determinant, denoted J , are given by

F = Gradχχχ, J = det F > 0, (2.1)

respectively, where Grad is the gradient operator with respect to X. The left and right Cauchy–Green
deformation tensors, denoted here by b and c, respectively, are defined by b = FFT and c = FTF,
where T signifies the transpose.

A magnetoelastic material can be deformed by the application of a magnetic field alone (with-
out applied mechanical loads), resulting in the phenomenon of magnetostriction, by the action of
mechanical loads alone or by the combined action of mechanical loads and a magnetic field.

In the current configuration B we denote by H and B, respectively, the magnetic field vector
and the magnetic induction vector. These are fundamental quantities which, in the absence of time
dependence and distributed currents, satisfy the specializations

curlH = 0, divB = 0 (2.2)

of Maxwell’s equations both within material and in vacuo, where curl and div are the curl and
divergence operators with respect to x.

In the absence of material the two fields are related by B = µ0H, where µ0 is the magnetic
permeability in vacuo, but inside material an additional vector field, the magnetization M, may be
defined by the difference

M = µ−1
0 B − H. (2.3)

Equation (2.3) describes the third vector field when one vector is selected as independent and the
other is given by a constitutive relation.

Equations (2.2) and (2.3) are expressed in Eulerian form. Corresponding Lagrangian forms, de-
noted by Hl and Bl , are defined by pull-back operations from B to B0 to give

Hl = FTH, Bl = JF−1B. (2.4)

For derivations of these connections we refer to, for example, (7, 11, 13, 18). The vectors Hl and Bl

satisfy the field equations

CurlHl = 0, DivBl = 0, (2.5)

where, respectively, Curl and Div are the curl and divergence operators with respect to X.
A Lagrangian form of M, denoted by Ml , may be defined similarly to (2.4)1 by

Ml = FTM, (2.6)

which enables a Lagrangian form of (2.3) to be obtained, namely

Ml = µ−1
0 J−1cBl − Hl . (2.7)

Turning now to the mechanical balance equations, we denote by ρ0 and ρ the mass density of the
material in B0 and B, respectively. The conservation of mass equation is then written

Jρ = ρ0, (2.8)

with J as defined in (2.1).
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438 R. BUSTAMANTE et al.

In the absence of mechanical body forces the equilibrium equation may be written in Eulerian
form as

divτττ = 0, (2.9)

where τττ is the total (Cauchy) stress tensor, which incorporates the effect of the magnetic body
forces. According to the balance of angular momentum, τττ is symmetric. For details of different
stress tensors and magnetic body forces we refer to, for example, (5, 7, 10, 11).

The corresponding Lagrangian form of (2.9) is

DivT = 0, (2.10)

in which T is the total nominal stress tensor, analogous to that used in elasticity theory (see, for
example, Ogden (19)) and obtained from τττ by the operation

T = JF−1τττ . (2.11)

To the governing equations for H, B, τττ or Hl , Bl , T are appended boundary conditions. In the
case of the Eulerian fields, these are

n × [H] = 0, n · [B] = 0, [τττ ]n = 0, (2.12)

where the square brackets indicate a discontinuity across a bounding surface of the body or interface
and n is the unit normal to the surface, defined in the usual sense as the outward pointing normal at
the body boundary. In the expression [τττ ]n the traction τττn on the boundary includes the contribution
from the Maxwell stress exterior to the body and any applied mechanical traction. For corresponding
Lagrangian forms of (2.12), see, for example, (7).

3. Constitutive equations

The mechanical and magnetic properties of the considered magnetoelastic material are described
in terms of constitutive equations, the forms of which depend on the choice of the independent
magnetic variable. In this section we summarize the different forms of the constitutive laws for the
different choices of independent magnetic variable, first in the general case and then for the isotropic
specialization.

3.1 General forms of the constitutive laws

3.1.1 Use of Bl as the independent magnetic variable. Following Dorfmann and Ogden (7), we
first take the variables F and Bl to be independent and introduce a free energy function per unit
mass, written � = �(F, Bl). For an unconstrained material, the total stress tensor is then given by

τττ = ρF
∂�

∂F
+ τττm, (3.1)

where τττm is defined by

τττm = µ−1
0

[
B ⊗ B − 1

2 (B · B)I
]
, (3.2)

with B = J−1FBl and where I is the identity tensor. In vacuum, � ≡ 0 and the stress τττ reduces to
the Maxwell stress τττm with B = µ0H.
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UNIVERSAL RELATIONS IN NONLINEAR MAGNETOELASTICITY 439

In terms of � we also have

µ−1
0 B − H = M = −ρ JF−T ∂�

∂Bl
. (3.3)

The structure of the constitutive laws and the governing equations can be simplified by introduc-
ing the total energy function, which, following (7), is defined by

� = �(F, Bl) = ρ0� + 1
2 µ−1

0 J−1Bl · (cBl) (3.4)

per unit reference volume. This yields the simple Lagrangian forms

T = ∂�

∂F
, Hl = ∂�

∂Bl
(3.5)

of the required constitutive equations. The corresponding Eulerian forms are

τττ = J−1F
∂�

∂F
, H = F−T ∂�

∂Bl
. (3.6)

Note that these equations do not involve the magnetization vector, which, if needed, can be calcu-
lated from either (2.7) in Lagrangian form or (2.3) in Eulerian form.

3.1.2 Use of Hl as an independent variable. If, instead of Bl , we use Hl as the independent
magnetic variable, then the analogues of equations (3.5) and (3.6) are, respectively,

T = ∂�∗

∂F
, Bl = −∂�∗

∂Hl
(3.7)

and

τττ = J−1F
∂�∗

∂F
, B = −J−1F

∂�∗

∂Hl
, (3.8)

where �∗ = �∗(F, Hl) is the counterpart of �. Under suitable invertibility conditions � and �∗
can be related via the Legendre transformation

�∗(F, Hl) = �(F, Bl) − Hl · Bl . (3.9)

3.1.3 Use of Ml as an independent variable. A third option is to use Ml as the independent
magnetic variable. However, this does not lead to quite such a clean structure. The Legendre trans-
formation

�∗∗(F, Ml) = ρ0�(F, Bl) + Bl · Ml , (3.10)

for example, yields

T = ∂�∗∗

∂F
+ JF−1τττm, Bl = ∂�∗∗

∂Ml
, (3.11)

where τττm is given by (3.2) and cannot in general be expressed as a function of F and Ml alone. We
point out that (3.10) and (3.11) correct the formulae given in (7, equation (5.4) and the following
line).

Because of the simpler structures we restrict attention in what follows to the formulations in
sections 3.1.1 and 3.1.2. Furthermore, it is convenient for our purposes to work in terms of the
Eulerian formulation and to consider only incompressible materials.
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440 R. BUSTAMANTE et al.

3.1.4 Incompressible materials. The incompressibility constraint

det F ≡ 1 (3.12)

is now adopted and equations (3.6) are therefore amended to

τττ = F
∂�

∂F
− pI, H = F−T ∂�

∂Bl
, (3.13)

where I is again the identity tensor, p is a Lagrange multiplier associated with the constraint (3.12)
and � is specialized accordingly.

Similarly, equations (3.8) become

τττ = F
∂�∗

∂F
− p∗I, B = −F

∂�∗

∂Hl
, (3.14)

where, instead of p, we have used p∗ for the Lagrange multiplier since, in general, it will not
equal p.

3.2 Isotropic magnetoelastic materials

The application of a magnetic field introduces a preferred direction in the material and the math-
ematical form of the constitutive law is therefore similar in structure to that for a transversely
isotropic elastic solid. Working in terms of the formulation based on � and following the standard
analysis for transversely isotropic elastic solids (see, for example, (20, 21)), we define an isotropic
magnetoelastic material as one for which the total energy function � is an isotropic function of the
two tensors c and Bl ⊗ Bl . For an incompressible material, the form of � reduces to dependence
on five independent invariants, denoted by I1, I2, I4, I5, I6. These are the principal invariants of c,
given by

I1 = trc, I2 = 1
2 [(trc)2 − tr(c2)], (3.15)

where tr denotes the trace of a second-order tensor, and the invariants involving Bl , which are
defined as

I4 = |Bl |2, I5 = (cBl) · Bl , I6 = (c2Bl) · Bl . (3.16)

From (3.13) and the definitions of the invariants in (3.15) and (3.16) the explicit forms of τττ and
H are obtained as

τττ = 2�1b + 2�2(I1b − b2) − pI + 2�5B ⊗ B + 2�6(B ⊗ bB + bB ⊗ B) (3.17)

and

H = 2(�4b−1B + �5B + �6bB), (3.18)

respectively, where the subscripts 1, 2, 4, 5, 6 signify partial differentiation with respect to I1, I2,
I4, I5, I6, respectively, and b = FFT is the left Cauchy–Green deformation tensor.

Alternatively, if the magnetic field Hl is the independent variable, the invariants defined by (3.16)
need to be replaced by invariants involving Hl . For these we use the notation K4, K5, K6, defined
by

K4 = |Hl |2, K5 = (cHl) · Hl , K6 = (c2Hl) · Hl . (3.19)
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UNIVERSAL RELATIONS IN NONLINEAR MAGNETOELASTICITY 441

Use of the energy function �∗ = �∗(I1, I2, K4, K5, K6) in (3.14) enables τττ and B to be written
as

τττ = 2�∗
1b + 2�∗

2(I1b − b2) − p∗I + 2�∗
5bH ⊗ bH + 2�∗

6(bH ⊗ b2H + b2H ⊗ bH) (3.20)

and

B = −2(�∗
4bH + �∗

5b2H + �∗
6b3H), (3.21)

respectively, where �∗
i is defined as ∂�∗/∂ Ii for i = 1, 2, and ∂�∗/∂Ki for i = 4, 5, 6.

4. Universal relations

To derive universal relations for an incompressible magnetoelastic solid we consider the constitu-
tive laws summarized in the previous section. First, using (3.17), it is convenient to introduce the
notation

γ1 = 2(�1 + �2 I1), γ2 = −2�2, γ4 = 2�4, γ5 = 2�5, γ6 = 2�6, (4.1)

and to rewrite (3.17) in the more compact form

τττ = −pI + γ1b + γ2b2 + γ5B ⊗ B + γ6(B ⊗ bB + bB ⊗ B). (4.2)

Following Dorfmann et al. (8) and the parallel development for electroelastic solids by Bustamante
and Ogden (17), we form the antisymmetric tensor

τττb − bτττ = γ5(B ⊗ bB − bB ⊗ B) + γ6(B ⊗ b2B − b2B ⊗ B), (4.3)

noting that this vanishes when B is an eigenvector of b.
Next, we recall that for any antisymmetric second-order tensor an associated axial vector can be

defined. For example, for the tensor u⊗ v−v⊗ u, where u and v are two vectors, the axial vector is
v × u. More generally, if W is an antisymmetric second-order tensor, we denote by (W)× its axial
vector.

Therefore, the axial vector corresponding to the expression in (4.3) has the form

(τττb − bτττ)× = (γ5bB + γ6b2B) × B, (4.4)

from which the universal relation

(τττb − bτττ)× · B = 0 (4.5)

follows immediately. This is identical to the universal relation found in (8).
For the alternative formulation (3.20) we use the notation

γ ∗
1 = 2(�∗

1 + �∗
2 I1), γ ∗

2 = −2�∗
2, γ ∗

4 = 2�∗
4, γ ∗

5 = 2�∗
5, γ ∗

6 = 2�∗
6, (4.6)

to rewrite τττ as

τττ = −pI + γ ∗
1 b + γ ∗

2 b2 + γ ∗
5 (bH ⊗ bH) + γ ∗

6 (bH ⊗ b2H + b2H ⊗ bH), (4.7)

from which we obtain

τττb − bτττ = γ ∗
5 (bH ⊗ b2H − b2H ⊗ bH) + γ ∗

6 (bH ⊗ b3H − b3H ⊗ bH), (4.8)
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similarly to (4.4), and hence the axial vector

(τττb − bτττ)× = (γ5b2H + γ6b3H) × bH. (4.9)

We then obtain the universal relation

(τττb − bτττ)× · (bH) = 0. (4.10)

Equivalence of the two relations (4.5) and (4.10) can be shown as follows. Using the definitions
of γ4, γ5 and γ6 and the constitutive equation (3.18) we have

H = γ4b−1B + γ5B + γ6bB, (4.11)

from which we obtain

B ⊗ bH − bH ⊗ B = γ5(B ⊗ bB − bB ⊗ B) + γ6(B ⊗ b2B − b2B ⊗ B), (4.12)

which is equal to the right-hand side of (4.3).
Similarly, the constitutive equation (3.21) can be rewritten as

B = −γ ∗
4 bH − γ ∗

5 b2H − γ ∗
6 b3H, (4.13)

which leads to

B ⊗ bH − bH ⊗ B = γ ∗
5 (bH ⊗ b2H − b2H ⊗ bH) + γ ∗

6 (bH ⊗ b3H − b3H ⊗ bH). (4.14)

This is equal to the right-hand side of (4.8).
It follows immediately that

τττb − bτττ = B ⊗ bH − bH ⊗ B, (4.15)

from which the expressions for the universal relations given by equations (4.5) and (4.10) follow.
These two universal relations are therefore equivalent. This is consistent with the finding by
Dorfmann et al. (8) that only one general universal relation exists for the considered class of
magnetoelastic solids.

4.1 Special cases

The special cases considered in this subsection are based on the energy � and the corresponding
constitutive laws given by (3.17) and (3.18). Similar cases can be considered starting from the
alternative formulation based on �∗, but we omit the details here.

Case 1: � = �(I1, I2, I4, I5). This is the case where � does not depend on I6, so that γ6 = 0.
Equation (4.3) reduces to

τττb − bτττ = γ5(B ⊗ bB − bB ⊗ B), (4.16)

from which we obtain the two universal relations

(τττb − bτττ)× · B = 0, (τττb − bτττ)× · (bB) = 0. (4.17)

Similarly, from the corresponding specialization of (4.11), we obtain

(H × b−1B) · B = 0, (4.18)

which does not involve the stress τττ . This can be regarded as an additional universal relation.
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Case 2: � = �(I1, I2, I4, I6). We consider the special case for which � is independent of I5. From
(4.3) we obtain

τττb − bτττ = γ6(B ⊗ b2B − b2B ⊗ B), (4.19)

and the corresponding axial vector

(τττb − bτττ)× = γ6(b2B) × B. (4.20)

Two universal relations follow, namely

(τττb − bτττ)× · B = 0, (τττb − bτττ)× · (b2B) = 0, (4.21)

which is consistent with the findings of Pucci and Saccomandi (22).
For this special case, the magnetic field H is given by (4.11) with γ5 = 0 and we obtain another

universal relation not involving the stress, namely

(H × b−1B) · (bB) = 0. (4.22)

Case 3: � = �(I1, I2, I5, I6). Here, � is independent of I4, which implies that the constitutive
equation (4.11) yields universal relation

(H × B) · (bB) = 0. (4.23)

No additional relation is found involving the stress components as (4.2) does not involve γ4.

Case 4: � = �(I1, I4, I5, I6). When � is independent of I2, no additional universal relation can be
obtained by starting from (4.3). However, consideration of the antisymmetric tensor

τττB ⊗ B − B ⊗ τττB = γ1(bB ⊗ B − B ⊗ bB) + γ6(B · B)(bB ⊗ B − B ⊗ bB), (4.24)

leads to the corresponding axial vector

(τττB ⊗ B − B ⊗ τττB)× = τττB × B = [γ1 + γ6(B · B)](bB × B), (4.25)

and hence to the universal relation

(τττB × B) · (bB) = 0. (4.26)

Case 5: � = �(I2, I4, I5, I6). This case is similar to Case 4. For convenience, we write the reduced
form of the total stress tensor τττ as

τττ = −pI + γ̃2(I1b − b2) + γ5B ⊗ B + γ6(B ⊗ bB + bB ⊗ B), (4.27)

where we have defined γ̃2 = 2�2. Then, by first forming the expression τττb − bτττ , we obtain
the universal relation shown previously in (4.5). An additional universal relation can be found by
considering the expression τττbB ⊗ bB − bB ⊗ τττbB. On use of the Cayley–Hamilton theorem in the
form

b3 − I1b2 + I2b − I = 0, (4.28)

we obtain the axial vector

τττbB × bB = [γ5(B · bB) + γ6B · (b2B) − γ̃2](B × bB), (4.29)

from which follows the additional universal relation

(τττbB × bB) · B = 0. (4.30)
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5. Applications

5.1 Homogeneous deformation in a uniform field

Consider a slab of uniform thickness bounded by two faces normal to the X3 direction and un-
bounded in the X1 and X2 directions, where (X1, X2, X3) are rectangular Cartesian coordinates of
the point X in the reference configuration B0. The universal relation given by (4.5) has been applied
to a similar geometry subject to triaxial stretch and a single simple shear in (8). We also recall that
the boundary-value problems for the separate special cases of pure homogeneous deformation and
simple shear with an applied magnetic field normal to the top and bottom faces of the slab was
examined in (9).

Here we assume that the slab is subjected to a uniform magnetic field and stretched along the
three coordinate axes with stretch ratios µ1, µ2, µ3, and then sheared with shears κ1 and κ2 in the
two in-plane directions. The combined triaxial stretch and shear deformation is given by

x1 = µ1 X1 + κ1µ3 X3, x2 = µ2 X2 + κ2µ3 X3, x3 = µ3 X3, (5.1)

where (x1, x2, x3) are the rectangular Cartesian coordinates in the deformed configuration of the
material point initially located at X, and µ1, µ2, µ3 and κ1, κ2 are constants. For this homogeneous
deformation and uniform applied magnetic field all strain components are constant and the field
equations (2.2) and (2.9) are satisfied automatically.

The matrix of the Cartesian components F of the deformation gradient tensor F is

F =
⎛
⎜⎝

µ1 0 κ1µ3

0 µ2 κ2µ3

0 0 µ3

⎞
⎟⎠. (5.2)

The components of the tensor b = FFT needed to evaluate the total stress components in (4.2) can
now be obtained, but they are not written explicitly here.

The uniform magnetic field vector B in the deformed configuration B, related through equation
(2.4)1 to its Lagrangian counterpart, has the Cartesian component matrix B = [B1, B2, B3]T. The
components of B ⊗ B and B ⊗ bB + bB ⊗ B can now be calculated for use in (4.2), but their
expressions are not given explicitly here.

The universal relation (4.5) is given in terms of the components by

[τ13κ1κ2µ
2
3 + τ23(µ

2
2 + µ2

3(κ
2
2 − 1)) + (τ33 − τ22)κ2µ

2
3 − τ12κ1µ

2
3]B1

+ [(τ11 − τ33)κ1µ
2
3 + τ12κ2µ

2
3 − τ13(µ

2
1 + µ2

3(κ
2
1 − 1)) − τ23κ1κ2µ

2
3]B2

+ [τ12(µ
2
1 − µ2

2 + µ2
3(κ

2
1 − κ2

2 )) + µ2
3((τ22 − τ11)κ1κ2 + τ23κ1 − τ13κ2)]B3 = 0, (5.3)

where the stress components are τi j with subscripts i and j assuming the values 1, 2, 3.
For illustration, consider the special case of simple shear in the x1 direction only (κ2 ≡ 0). Sup-

pose further that the applied magnetic field vector is oriented along the x2 direction with components
(0, B2, 0), B2 �= 0. Then, (5.3) reduces to the universal relation

κ1µ
2
3(τ11 − τ33) = τ13[µ2

1 + µ2
3(κ

2
1 − 1)], (5.4)

which is independent of B2 and for µ1 = µ3 = 1 reduces to the well-known universal relation
τ11 − τ33 = κ1τ13 in the purely elastic case.
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Another special case is obtained by considering a triaxial stretch with no shear (κ1 = κ2 ≡ 0) for
which we obtain from (5.1) the universal relation

τ23(µ
2
2 − µ2

3) B1 + τ13(µ
2
3 − µ2

1) B2 + τ12(µ
2
1 − µ2

2) B3 = 0. (5.5)

We conclude this section by considering the special case of the energy function �, as outlined
in section 4.1, for which � is independent of I6, so that γ6 = 0. This furnishes the additional
universal relation (4.17)2. To obtain an explicit expression for the universal relation (4.17)2 requires
computation of the vector bB in addition to (τττb − bτττ)×, the components of the latter being the
coefficients of B1, B2 and B3 in (5.3). From the components of the left Cauchy–Green tensor b
corresponding to the deformation (5.1) and the components of the magnetic field B, the vector bB
is found to have the form

[(µ2
1 + κ2

1µ2
3)B1 + κ1κ2µ

2
3 B2 + κ1µ

2
3 B3]i1 + [κ1κ2µ

2
3 B1 + (µ2

2 + κ2
2µ2

3)B2 + κ2µ
2
3 B3]i2

+ [κ1µ
2
3 B1 + κ2µ

2
3 B2 + µ2

3 B3]i3, (5.6)

where i1, i2, i3 are the unit base vectors in the x1, x2, x3 directions. The universal relation in (4.17)2
is obtained by taking the scalar product of the axial vector (τττb − bτττ)× with bB, which yields

[−τ12κ1µ
2
2µ

2
3 + τ23(µ

2
1(µ

2
2 − µ2

3) + µ2
3(κ

2
1µ2

2 + κ2
2µ2

1)) + (τ33 − τ22)κ2µ
2
1µ

2
3]B1

+ [τ13(µ
2
2(µ

2
3 − µ2

1) − µ2
3(κ

2
1µ2

2 + κ2
2µ2

3)) + τ12κ2µ
2
1µ

2
3 + (τ11 − τ33)κ1µ

2
2µ

2
3]B2

+ [−τ13κ2µ
2
1µ

2
3 + τ12µ

2
3(µ

2
1 − µ2

2) + τ23κ1µ
2
2µ

2
3]B3 = 0. (5.7)

If we now assume, for simplicity, that κ2 = 0 and B1 = B3 ≡ 0, then this universal relation reduces
to the same form as that given by (5.4).

For this example, the two universal relations given by (4.17)1 and (4.17)2 assume the forms
shown in (5.3) and (5.7), respectively. If we eliminate B2 from these equations and set κ2 = 0 (with
µ2 �= 0), the resulting equation simplifies to

(τ23 B1 − τ12 B3)(−µ4
2 + µ2

2µ
2
3 + µ2

2κ
2
1µ2

3 + µ2
2µ

2
1 − µ2

3µ
2
1) = 0. (5.8)

Since this condition must be satisfied for all deformations, we deduce the connection

τ23 B1 − τ12 B3 = 0, (5.9)

which can also be obtained directly from the component form of τττ . Similarly, if we eliminate B1
from (5.3) and (5.7) and take κ1 = 0 (with κ2 �= 0), we obtain the connection

τ12 B3 − τ13 B2 = 0. (5.10)

5.2 Extension and torsion of a circular cylinder

Consider an infinitely long solid circular cylinder whose reference geometry is described by

0 � R � B, 0 � 	 � 2π, −∞ � Z �∞ (5.11)

in terms of cylindrical polar coordinates (R,	, Z). Combined torsion and axial extension is defined
by

r = λ−1/2
z R, θ = 	 + λzτ Z , z = λz Z , (5.12)
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where τ is the (angular) torsional twist per unit deformed length, λz is the axial stretch (constant) and
(r, θ, z) are cylindrical polar coordinates in the deformed configuration. For details of the solution
of this boundary-value problem in the context of magnetoelasticity, we refer to (7).

The components of the deformation gradient F, referred to the two sets of cylindrical polar co-
ordinate axes, and those of the left Cauchy–Green tensor b = FFT are represented by the matrices
F and b, respectively, and given by

F =
⎛
⎜⎝

λ
−1/2
z 0 0

0 λ
−1/2
z λzκ

0 0 λz

⎞
⎟⎠, b =

⎛
⎜⎜⎝

λ−1
z 0 0

0 λ−1
z + λ2

zκ
2 λ2

zκ

0 λ2
zκ λ2

z

⎞
⎟⎟⎠, (5.13)

wherein the notation κ = τr has been adopted.
The corresponding matrix of b2 needed to evaluate the stress components has the component

form

b2 =

⎛
⎜⎜⎝

λ−2
z 0 0

0 (λ−1
z + λ2

zκ
2)2 + λ4

zκ
2 λ2

zκ(λ−1
z + λ2

zκ
2 + λ2

z )

0 λ2
zκ(λ−1

z + λ2
zκ

2 + λ2
z ) λ4

z (1 + κ2)

⎞
⎟⎟⎠. (5.14)

Depending on the selection of the independent magnetic field variable, the total stress tensor τττ is
given by (4.2) or (4.7). The consequences of using one or the other formulation have been discussed
in detail in (7) and will not be repeated here. The invariants I1, I2 are given by

I1 = 2λ−1
z + λ2

z (1 + κ2), I2 = 2λz + λ−2
z + λzκ

2. (5.15)

5.2.1 Axial magnetic field. Following the development by Dorfmann and Ogden (7), it is conve-
nient to select the formulation based on �∗, with the constitutive equations (4.7) and (4.13) for the
total stress τττ and the magnetic induction B, respectively.

Consider, for example, an axial magnetic field, which, in the deformed configuration, has com-
ponent Hz . From the field equation (2.2)1 we conclude that Hz is constant. In the reference config-
uration, the magnetic field is given by Hl = FTH, the only non-zero component of which is

Hl Z = λz Hz . (5.16)

From (3.19) the corresponding invariants are

K4 = H2
l Z , K5 = (1 + κ2)λ2

z K4, K6 = [κ2λz + (1 + κ2)2λ4
z ]K4. (5.17)

The non-zero components of the total stress τττ are obtained from (4.7). Thus,

τrr = −p + γ ∗
1 λ−1

z + γ ∗
2 λ−2

z ,

τθθ = −p + γ ∗
1 (λ−1

z + λ2
zκ

2) + γ ∗
2 (I1λ

2
zκ

2 + λ−2
z ) + γ ∗

5 κ2λ2
z K4

+ 2γ ∗
6 κ2λ2

z [λ−1
z + λ2

z (1 + κ2)]K4,

τzz = −p + γ ∗
1 λ2

z + γ ∗
2 λ4

z (1 + κ2) + γ ∗
5 λ2

z K4 + 2γ ∗
6 λ4

z (1 + κ2)K4,

τθ z = γ ∗
1 λ2

zκ + γ ∗
2 λzκ(1 + λ3

z + λ3
zκ

2) + γ ∗
5 κλ2

z K4 + γ ∗
6 κλz[1 + 2λ3

z (1 + κ2)]K4,

(5.18)
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and, from (4.13), the components of B are found to be Br = 0 and

Bθ = −{γ ∗
4 λ2

z + γ ∗
5 [λz + λ4

z (1 + κ2)] + γ ∗
6 [1 + λ3

z (1 + 2κ2) + λ6
z (1 + κ2)2]}κ Hz,

Bz = −{γ ∗
4 + γ ∗

5 λ2
z (1 + κ2) + γ ∗

6 [κ2 + λ3
z (1 + κ2)2]}λ3

z Hz .
(5.19)

It then follows from (4.9) that the components of the axial vector (τττb − bτττ)× are

[κλ2
z H2

z {γ ∗
6 [1 + λ3

z (1 + κ2)] + γ ∗
5 λz}, 0, 0], (5.20)

where use has been made of the components in (5.18) and (5.13)2.
The components of the vector bH are λ2

z Hz(0, κ, 1). Referring to (4.10) it follows that, for the
considered combination of deformation and magnetic field, the universal relation (4.10) is satisfied
identically. This example is included to illustrate that non-trivial universal relations do not always
arise. This can also be shown to be the situation if the formulation based on � is used with an
axial magnetic induction vector B. Equally, if one considers a circular cylindrical tube subject to a
cylindrically symmetric deformation in the presence of a circumferential magnetic field the general
universal relation is again satisfied trivially. We do not give the details for these cases.

5.3 Helical shear

In this section we consider the problem of helical shear for a right circular cylindrical tube with
internal and external radii A and B, respectively, in the reference configuration, the material being
confined within the annular region A � R � B. This deformation reveals a different type of
universal relation, one that is cubic rather than linear in the components of τττ . We summarize briefly
the relevant equations given by Dorfmann and Ogden (7). Helical shear is defined by the equations

r = R, θ = 	 + g(R), z = Z + w(R) (5.21)

and

0 < A � R � B, 0 � 	 � 2π, −∞ � Z �∞, (5.22)

where g(R) and w(R) are deformation functions to be determined by solution of the governing
equations together with the boundary conditions. In the context of elasticity theory a cubic univer-
sal relation was derived in (23) and examined from a more general perspective in (24). Here we
show that when the constitutive law is specialized this same universal relation holds in the present
situation with either an axial or a circumferential magnetic field.

The components of the deformation gradient F and the left and right Cauchy–Green tensors b
and c, referred to the relevant cylindrical polar coordinate axes, are represented by the matrices F,
b and c, which are given, respectively, by

F =
⎛
⎜⎝

1 0 0

κθ 1 0

κz 0 1

⎞
⎟⎠, b =

⎛
⎜⎝

1 κθ κz

κθ 1 + κ2
θ κθκz

κz κθκz 1 + κ2
z

⎞
⎟⎠, c =

⎛
⎜⎝

1 + κ2 κθ κz

κθ 1 0

κz 0 1

⎞
⎟⎠. (5.23)

Here and in what follows we use the notation

κθ = rg′(r), κz = w′(r), κ =
√

κ2
θ + κ2

z , (5.24)
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and we treat g and w as functions of r (= R) and set a = A, b = B. For further details of the
kinematics, we refer to (7).

Now, since H = F−THl , it follows that if we take the radial component of Hl to vanish and
write its other two components as Hl	, Hl Z then, for the considered deformation, H has compo-
nents

Hr = −H̄ , Hθ = Hl	, Hz = Hl Z , (5.25)

where, for convenience, we have defined H̄ = κθ Hl	 + κz Hl Z .
It follows that the principal invariants (3.15) and (3.19) are given by

I1 = I2 = 3 + κ2, K4 = H2
l	 + H2

l Z , K5 = K4, K6 = K4 + H̄2. (5.26)

The resulting components of τττ are calculated from (3.20) as

τrr = −p + 2(�∗
1 + 2�∗

2), (5.27)

τθθ = −p + 2�∗
1(1 + κ2

θ ) + 2�∗
2(2 + κ2) + 2�∗

5 H2
θ + 4�∗

6 Hθ (Hθ + κθ H̄), (5.28)

τzz = −p + 2�∗
1(1 + κ2

z ) + 2�∗
2(2 + κ2) + 2�∗

5 H2
z + 4�∗

6 Hz(Hz + κz H̄), (5.29)

τrθ = 2(�∗
1 + �∗

2)κθ + 2�∗
6 Hθ H̄ , (5.30)

τr z = 2(�∗
1 + �∗

2)κz + 2�∗
6 Hz H̄ , (5.31)

τθ z = 2�∗
1κθκz + 2�∗

5 Hθ Hz + 2�∗
6[(2 + κ2)Hθ Hz + K4κθκz], (5.32)

while the corresponding components of B are obtained from (3.21) as

Br = −2[�∗
5 + �∗

6(2 + κ2)]H̄ , (5.33)

Bθ = −2[(�∗
4 + �∗

5 + �∗
6)Hθ + {�∗

5 + (3 + κ2)�∗
6}κθ H̄ ], (5.34)

Bz = −2[(�∗
4 + �∗

5 + �∗
6)Hz + {�∗

5 + (3 + κ2)�∗
6}κz H̄ ]. (5.35)

Now, as discussed in (7), we must have Br = 0 to avoid a singularity on r = 0, and this requires
that either

�∗
5 + �∗

6(2 + κ2) = 0 (5.36)

or H̄ = 0. Here we consider the case in which H̄ �= 0, so that (5.36) must hold. This places
restrictions on the admissible class of constitutive laws (see (7) for details). Here, for illustration,
we consider a special case of this restriction for which �∗

5 = �∗
6 = 0, so that �∗ depends on the

magnetic field only through K4 and the components (5.27) to (5.35) specialize accordingly.
Most of the counterparts for �∗ of the special cases considered in section 4.1 for � are then

satisfied trivially, but it is easy to show from (5.28) to (5.32) that the nonlinear universal relation

τθ z(τ
2
rθ − τ 2

r z) = τrθ τr z(τθθ − τzz) (5.37)

holds. Thus, the universal relation (5.37) found for the purely (incompressible, isotropic) elastic
case (23) holds also for an incompressible isotropic magnetoelastic solid under the considered re-
strictions. There are several variants of this result that can be considered but the present one suffices
for illustration.

Examples of solutions for helical shear boundary-value problems are given in (7) and are not
examined further here.
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6. Closing remarks

In this paper we have shown that for the constitutive equations of an isotropic magnetoelastic solid
only one universal relation exists in the general case, while specialization of the constitutive law
allows additional universal relations, not included in the previous paper by Dorfmann et al. (8), to
be formulated. Such universal relations can in principle be used by the experimenter to determine
whether the particular class or subclass of materials can be described by a given model or if a
wider class of models needs to be considered. In this context it should be noted that exact analytical
solutions can be found only for particular geometries such as an infinite tube or a slab of infinite
extent in the two in-plane directions. If, on the other hand, we consider, for example, a tube of
finite length then the jump conditions given by (2.12) cannot all be satisfied on both the lateral and
end boundaries of the tube for the considered uniform axial field, so that edge effects are present
and an exact solution cannot be determined for the whole tube and its exterior. Numerical methods
must therefore be used to obtain the distribution of the magnetic field and magnetic induction,
inside and outside the body. A detailed description and application of numerical solutions to the
boundary-value problem for nonlinear magnetoelastic solids is under development and will form a
forthcoming publication.
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