
Summary A general theory of allometric scaling that pre-
dicts how the proportions of vascular plants and the character-
istics of plant communities change or scale with plant size is
outlined. The theory rests, in part, on the assumptions of (1)
minimal energy dissipation in the transport of fluid through
space-filling, fractal-like, branching vascular networks; and
(2) the absence of scaling with plant size in the anatomical and
physiological attributes of leaves and xylem. The theory shows
how the scaling of metabolism with plant size is central to the
scaling of whole-plant form and function. It is shown how
allometric constraints influence plant populations and, poten-
tially, processes in plant evolution. Rapidly accumulating evi-
dence in support of the general allometric model is reviewed
and new evidence is presented. Current work supports the no-
tion that scaling of how plants utilize space and resources is
central to the development of a general synthetic and quantita-
tive theory of plant form, function, ecology and diversity.

Keywords: diversity, energy dissipation, evolution, fractal
networks, metabolism, space-filling.

Introduction: modeling plant structure and function

A central problem in biology is the identification of general
principles governing the evolution of form, function and di-
versity across different levels of biological organization
(Levin 1992). The problem is made more complex because the
size of vascular plants spans more than 12 orders of magni-
tude. A Sequoia, for example, spans a large part of this size
range as it develops from seedling to adult tree. Yet despite
great variation in size, all vascular plants share essentially the
same anatomical and physiological design.

Numerous studies have examined the anatomical and physi-
ological implications of size in plants differing in growth
form, taxonomic group and environmental setting (e.g.,
Shinozaki et al. 1964, Yoda et al. 1965, Whittaker and Wood-
well 1968, Shidei and Kira 1977, Cannell 1982, Niklas
1994b). Nevertheless, few mechanistic models attempt to link
whole-plant architecture, vascular anatomy and the physiol-
ogy of sap flow and other processes, either among parts of a
single plant or among plants differing in size (see Tyree and

Ewers 1991, Niklas 1994b, Dewar et al. 1998). Furthermore, it
is still unclear how anatomical structure and physiological
processes can be scaled up to predict larger scale ecological
and ecosystem patterns (Levin 1992, Ehlerlinger and Field
1993).

This paper focuses on the scaling of plant attributes with
plant size. It is argued that size provides a mechanistic window
by which to interrelate numerous organismal, community and
ecosystem properties. The influence of the size of an organism
on organismal traits (allometry) has long been of interest (e.g.,
Huxley 1932, Thompson 1942), but has lacked a firm theoreti-
cal foundation (West et al. 1997). Here I review several recent
publications outlining how the scaling of metabolic rate deter-
mines how many aspects of plant form, function and diversity
scale with plant size (West et al. 1997, 1999a, 1999b, Enquist
et al. 1999, 2000, Enquist and Niklas 2001, 2002, Niklas and
Enquist 2001). The reviewed work shows how allometric scal-
ing provides: (1) a viewpoint that highlights the general
“rules” guiding the evolution of plant form and function; and
(2) a mechanistic theoretical framework linking physiological
and life-history traits of individual plants with higher-level at-
tributes of plant populations and communities across diverse
ecosystems. In addition to presenting new material, this paper
shows how a focus on allometry, and in particular the scaling
of metabolism, integrates many anatomical and physiological
features of plants and synthesizes several major themes of bo-
tanical and plant functional research.

Traditional whole-plant modeling themes in botany

To study scaling within and across vascular plants, it is neces-
sary to assess the general features that may have guided the
evolution of plant form. As set forth below, there appear to be
four major research themes that have motivated empirical and
theoretical studies of the evolution of whole-plant form and
function.

Pipe-model

The first major theme stems from Leonardo da Vinci’s obser-
vation on tree construction (see Richter 1970, Zimmermann
1983) that “all the branches of a tree at every stage of its
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height, when put together, are equal in thickness to the trunk
below them.” The assumption that branch architecture directly
reflects hydraulic architecture leads to the pipe-model, accord-
ing to which a unit of leaf area is supplied by a given unit area
of conducting tissue (see Huber 1928, Shinozaki et al. 1964).
The pipe-model has been used as a basis for understanding the
structural and functional design of trees (see Waring et al.
1982, Berninger et al. 1997). Although several authors have
highlighted problems with its assumptions and predictions
(see Tyree and Ewers 1991), the pipe-model is still the most
widely cited model of whole-plant structure and function
(Grace 1997).

Hydraulic architecture

A somewhat related theme stems from research integrating the
anatomy and physiology of whole-plant vascular systems.
Central questions guiding this research are: (1) how plants are
able to transport water and nutrients to such impressive
heights; and (2) why plants tend to reach similar heights within
a local environment (see Zimmermann 1983, Ryan and Yoder
1997). The objective has been to understand the physical and
selective processes governing the flow of fluid in the vascular
system and how they have influenced the evolution of xylem
anatomy (e.g., Huber 1932, Huber and Schmidt 1936, Zim-
mermann and Brown 1971, Zimmermann 1978a, 1978b,
1983, Tyree et al. 1983, Tyree 1988, Niklas 1984, 1985, Tyree
and Ewers 1991, Sperry et al. 1993, Comstock and Sperry
2000). Some studies have considered functional explanations
for differences in anatomy and physiology or the presence of
architectures such as those of vines and hemiepiphytes, in
plants living in unique environments such as deserts or
swamps (e.g., Zimmermann 1983, Carlquist 1988, Patino et al.
1995, Tyree and Ewers 1996).

Resistance-capacitance

A third major research focus has involved detailed modeling
of fluid flow along a water potential gradient from the soil
through the plant to the atmosphere. These resistance–capaci-
tance models use Ohm’s law to show how anatomical, physio-
logical and physical attributes of plants and their environment
influence the water potential gradient and the rate of fluid
transport throughout the individual (e.g., van de Honert 1948,
Jones 1978, Smith et al. 1987, Tyree and Sperry 1988, see also
Jones 1992, Schulte and Costa 1996). This approach tends to
ignore the complex dynamics of fluid flow through micro-
capillary vascular tubes and chooses instead to characterize
bulk flow by analogies to electrical circuits.

Plant architecture and form

The fourth major theme involves the application of mathemat-
ical and biomechanical principles to understand the evolution
of plant architecture. For example, although there is an enor-
mous diversity of vascular plants, most can be classified as
sharing a limited number of branched architectural forms
(Halle et al. 1978). Whole-plant branching patterns can be
characterized by mathematical rules reflected in phyllotaxic
schemes, Fibonacci series and fractal geometry (Honda 1971,

Leopold 1971, Mandelbrot 1977, Aono and Tosiyasu 1984,
see also Rashevsky 1973, Farnsworth and Niklas 1995). Sev-
eral investigators have highlighted the fractal-like nature of
plant architecture (Mandelbrot 1977, Aono and Tosiyasu
1984, Morse et al. 1985, Farnsworth and Niklas 1995) and
measured the fractal dimensions of plant structures (e.g.,
Morse et al. 1985, Tatsumi et al. 1989, Fitter and Strickland
1992, Bernston and Stoll 1997, Nielsen et al. 1997, Eshel
1998). Other work has focused on whether the architectural
design of plants is optimized to intercept sunlight, water or nu-
trients (Horn 1971, Whitney 1976, Borchert and Slade 1981,
Givnish 1982, 1987, Niklas and Kerchner 1984, Ellison and
Niklas 1988, Morgan and Cannell 1988, Niklas 1988, 1994b,
1997) to resist buckling as a result of wind and gravity (Green-
hill 1881, McMahon 1973, King and Loucks 1976, McMahon
and Kronauer 1976, Niklas 1994a, 1997b) or to obey other
biomechanical principles (Niklas 1992). However, there have
been few attempts to relate the self-similarity of plant anatomy
and form at different scales to their function, or to explore the
ecological ramifications of these relationships.

Plant allometry

Largely missing from studies of plant structure and function is
an explicit consideration of the role plant size plays in the
structural and functional characteristics of the vascular sys-
tem, and in mediating the relationship between biomechanical
constraints and resource requirements of individual plants
across environments differing in resource availability (see
Niklas 1994a). Here it is argued that allometry provides a
powerful framework for integrating numerous studies of plant
form and function—including the four whole-plant modeling
themes mentioned above. Since Huxley (1932) defined the
allometric equation, many structural and functional variables
of organisms (Y) have been shown to scale as power functions
of body mass, M (or with other measures of size such as
length, l, or diameter, D) (see Appendix 1 for summary of
symbols used):

Y Y M b= 0 , (1)

where Y0 is a constant that varies with the type of variable and
the kind of organism, and b is the allometric exponent. Zoo-
logical research has shown that the value of b often takes the
form of a quarter-power (e.g., 1/4, 3/4, 3/8, 1/12) (Peters 1983,
Calder 1984, Schmidt-Nielsen 1984). It is unclear whether
such canonical allometric relationships also characterize
plants.

Although allometry has traditionally been an important
component of comparative research in zoology, its application
in botanical and plant physiological research has been limited
(Reiss 1989). This is unfortunate, because plant size has long
been cited as a fundamental feature influencing plant form and
function (Sinnott 1921, Murray 1927, Pearsall 1927, Barton-
Wright 1932, Turrell 1961). For example, Barton-Wright
(1932) states at the beginning of his book, Recent Advances in
Botany, “Although (the principle) of similarity has been ex-
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tensively applied by zoologists, it has received but scant atten-
tion at the hands of botanists. Physiological interchange in
plants is conducted through limiting surfaces, both external
and internal... such interchange will be proportional to the area
of surface involved...” Barton-Wright's quote still holds true
today. The lack of allometric integration within botany ap-
pears to be associated with: (1) a historical lack of allometric
investigations such that there is no basis on which to build; (2)
the difficulty of measuring total mass or other plant dimen-
sions, especially for large individuals; and (3) the confinement
of allometric studies mainly to curve-fitting exercises lacking
theoretical explanation. In the absence of a compelling expla-
nation of why so many organismic characters tend to scale
with specific allometric relationships, or why one would ex-
pect deviations, there has been a strong tendency to treat such
relationships as idiosyncratic phenomena (Peters 1983, Niklas
1994b).

Most studies in botany fail to consider that growth, alloca-
tion, diversity and scaling between cells, individuals and eco-
systems are fundamentally allometric in nature (Reiss 1989,
Niklas 1994b, Enquist et al. 2000, Niklas and Enquist 2001).
Applications of allometry to plant biology have consisted pri-
marily of the application of biomechanical principles to the
scaling of structural and functional features of plants of vary-
ing size (McMahon 1973, Niklas 1992, Niklas 1994b, but see
Thomas 1996a, 1996b), or of the development of correlative
relationships among size-related variables for application to
agriculture, forestry and ecosystem ecology (e.g., Shidei and
Kira 1977, Cannell 1982, Waring et al. 1982). Few investiga-
tors have applied allometry to more mechanistic studies of re-
source uptake, plant form, evolution and ecology (see Niklas
1994b), or focused on allometry as a means of highlighting
general organizing principles in botanical research.

A general model for the origin of allometric scaling laws
in biology

West, Brown and Enquist have recently presented a general
model, hereafter referred to as the WBE model, for the origin
of allometric scaling laws in biology (West et al. 1997, 1999b,
Brown et al. 2000, Enquist et al. 2000). The WBE model pro-
poses that, in both plants and animals, evolution by natural se-
lection has resulted in optimal fractal-like vascular networks.
These networks minimize total hydrodynamic resistance yet
maximize whole-organism resource use by maximizing the
scaling of surfaces where resources are exchanged with the en-
vironment (e.g., root area, leaf area, lung and gut surfaces).
The scaling of physiological rates and times must match the
ability of vascular networks to obtain and deliver resources.
Thus, allometric scaling relationships simply reflect the physi-
cal and biological constraints of transporting resources from
exchange surface areas through optimal vascular networks to
metabolizing tissues. As a result of these general principles,
organisms exhibit a common set of quarter-power scaling rela-
tionships with body mass. Consequently, the WBE model pro-
vides a quantitative basis for a general framework that is capa-
ble of predicting how allometric scaling relationships at the

level of the individual influence pattern and process at larger
ecological and ecosystem scales (Enquist et al. 1998).

The WBE model indicates that, despite the many idiosyn-
cratic differences observed among different kinds of organ-
isms, most, if not all, living systems appear to obey a common
set of design principles. The model is a zeroth-order model—it
invokes the minimum possible assumptions necessary to de-
rive the scaling relationships of interest. As such it provides a
basis to build more complex modes for biological scaling. It is
based on the fact that uptake of essential resources occurs
across surface areas in specialized vascular tissues and that
these materials are distributed throughout the body by means
of a hierarchical vascular network. The WBE model predicts
that these vascular systems are hierarchical branching net-
works that: (1) branch to supply or exploit resources within a
three-dimensional volume; (2) minimize the energy required
to distribute materials through this network; and (3) have ter-
minal network elements (e.g., the terminal branch or petiole
size, terminal vessels in the leaf, capillaries) that do not vary
with body size. As a result of these principles of functional de-
sign, organisms exhibit a common set of allometric scaling re-
lationships.

Two evolutionary challenges

Application of the WBE model to vascular plants is based on
the observation that two evolutionary challenges have influ-
enced the scaling of plant form and function. The earliest vas-
cular plants were small. From such humble beginnings, vascu-
lar plants have increased in size by about 12 orders of
magnitude (see Enquist et al. 2001). Several studies have doc-
umented how certain biotic and abiotic features can select for
increased plant size (e.g., Harper 1977). For example, in-
creases in plant size often lead to greater access to limited re-
sources and increases in reproductive output. Selection for an
increase in plant size, however, also brings about: (1) an in-
creased probability of mechanical failure as a result of buck-
ling from increased weight and wind throw (Niklas 1992); and
(2) an increase in vascular hydrodynamic resistance with in-
creasing transport distance between soil and leaves (see Ryan
and Yoder 1997). The functional solutions to these problems
will be shown to dictate how branch lengths and radii, and xy-
lem vessel radii scale with changes in plant size and branching
level.

Application to vascular plants

A detailed treatment of the WBE model, which has been ex-
tended to the specifics of vascular plants, is given in West et al.
(1999a) and Enquist et al. (2000). The general plant model
predicts that many characteristics of vascular plants will scale
with an allometric exponent, b (a quarter-power), if four basic
assumptions are upheld: (1) the whole-plant branching archi-
tecture is volume-filling; (2) within a species and during onto-
genetic development of an individual, the physical dimensions
and characteristics of the leaf (i.e., leaf size, photosynthesis
transpiration rates per unit leaf mass, number of vascular ele-
ments needed to supply an average leaf) are approximately in-
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variant with plant size; (3) biomechanical constraints are uni-
form; and (4) hydrodynamic resistance throughout the vascu-
lar network is minimized. The general plant model should also
apply, with only minor modification, to the specifics of trans-
port through phloem and roots (see Enquist and Niklas 2002,
Niklas and Enquist 2002 for how an extension of the WBE
allometric model is applied to patterns of biomass partitioning
among roots, shoots and leaves).

In addition, the general plant model assumes that the xylem
network system comprises multiple tubular vascular elements
(Figure 1). For simplicity, all xylem tubes are aligned in paral-
lel and run continuously from rootlet to leaf. Xylem tubes are
assumed to be of equal length. Their diameters are constant
within a branch segment but are allowed to vary between seg-
ments, thereby allowing for possible tapering of xylem tubes
from trunk to petiole. This variation is critical for circumvent-
ing the problem of hydrodynamic resistance increasing with
tube length. Thickness and structure of tube walls are ignored,
as are lateral connections between parallel tubes. Lastly, the
general plant model allows the ratio of conducting to non-con-
ducting tissue to vary with tree height, thereby avoiding a pos-
sible conflict between hydrodynamic and mechanical con-
straints. Based on these assumptions, the architecture of a tree
is a self-similar fractal with specific scaling exponents. It is
important to note that the branching rules outlined below can
be manifest in different architectures (strongly apical domi-
nant branching as in conifers versus a less apically dominant
branching shown in Figure 1). Nevertheless, the predicted
scaling properties do not depend on most details of the system
design, including the exact branching pattern, provided it has a
fractal-like structure. Together, these assumptions provide a
quantitative zeroth-order model of the entire plant network,
which makes testable predictions and can be used as a point of
departure for more detailed investigations.

The model can be described as a hierarchical branching net-
work running from the trunk (level 0) to the leaf petiole (level
N) (see Figure 1). An arbitrary level in the plant branching net-
work is denoted by k. The architecture of the branching net-
work is characterized by three parameters (β, β and γ) that
define the relationship of daughter to parent branches. These

are determined by the ratios of branch radii (r) at a given
branching level (βk ≡ rk+1/rk ≡ n–a/2), the ratios of the xylem
tube radii (v) (β ≡ ak+1/ak ≡ n–a/2), and the ratios of branch
lengths (l) (γ ≡ lk+1/lk). The branching ratio, n, is the number of
daughter branches derived from one parent branch, is typically
two, and is assumed to be independent of k. Elsewhere, it has
been shown that, for the network to be volume-filling (leaves
and roots try to fill a three-dimensional space), γ = n–1/3, inde-
pendent of k (West et al. 1997, 1999a, 1999b). It is important
to note that scaling relationships within the plant are para-
meterized in terms of just two scaling factors, a and a , which
determine how the radii of branches and xylem tubes change
or scale within a plant. As discussed below, if biomechanical
constraints are uniform throughout the tree, then βk and a are
also independent of k, showing that the network is self-similar
at different scales (β, β and γ are independent of k) up to the
branching level of the leaf. If, in addition, it is assumed that a
is independent of k, so that any tapering of xylem tubes is uni-
form, it can be shown that the scaling of branch radii and xy-
lem vessel radii is:
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and the scaling of branch lengths together with the volume fill-
ing constraint gives:
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where rN and lN are petiole radius and length, respectively, and
N is total number of branchings. Given that the total number of
xylem tubes is preserved at each branching, multiple scaling
laws can be derived. For example, the number of terminal
branches or leaves is given by nk

L = (rk/rN)2/a, the area of con-
ductive tissue by Ak

CT= AN
CT(rk/rN)2(1 + a)/a, and the proportion of

conductive tissue by fk ≡ Ak
CT/Ak

Tot = nN(a N
2 /rN

2)(rk/rN)2(1 + a – a)/a

(West et al. 1999a, 1999b, Enquist et al. 2000). Thus, the total
cross-sectional area of all daughter branches, nAk+1, at any
level k, is given by nAk +1

Tot /Ak
Tot = nβk

2 = n(1 – a). When a = 1, this
reduces to unity and the branching is area-preserving; i.e., the
total cross-sectional area at any given level, nAk +1

Tot = Ak
Tot

(Richter 1970, Horn 2000). The pipe-model, where all tubes
have the same constant diameter, are tightly bundled and there
is no non-conducting tissue, represents the simple case of
a = 1. In reality, however, tubes are not tightly packed in the
sapwood and there may be heartwood that provides additional
mechanical stability. The above scaling relationships can
therefore be parameterized in terms of two exponents, a and a .
As indicated by West et al. (1999a, 1999b), a and a are deter-
mined from two critical constraints: a from biomechanical sta-
bility and a from the minimization of hydrodynamic
resistance through the vascular network.
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Figure 1. One representation of a hypothetical branching network that
satisfies the WBE model. Reproduced from West et al. (1999a). (a)
Topology of plant branching network. (b) Symbolic representation of
branch vascular structure, showing conducting tubes and non-con-
ducting tissues (black). This is to be contrasted to the tightly bundled
vascular system of the pipe-model in which all tissue is conducting.
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Mechanical and volume filling constraint

As plants increase in size they must be able to resist buckling
under the forces of gravity and wind. Biomechanical princi-
ples indicate that buckling resistance is greatest when the
length and radius of branches maintain the relationship: lk ∝
rk

α . Previous studies have shown that if the condition of me-
chanical stability is the same for all branches, then α is con-
stant and independent of k. In this case a and βk are constant,
giving a branching architecture that is a self-similar at differ-
ent scales (i.e., fractal). Analyses based on scale-invariant so-
lutions to the bending moment equations for beams (elastic
similarity) give α = 2/3 (Greenhill 1881, McMahon and Kro-
nauer 1976, King and Louks 1978, Niklas 1992, but see Niklas
1994b, 1997b). This constraint, which is most important for
the trunk and large branches, agrees well with data for these
segments (McMahon and Kronauer 1976, Bertram 1989, Horn
2000). Assuming that α = 2/3 holds for all k, together with the
volume filling constraint (see Equations 2 and 3) leads to a = 1,
which is precisely the condition for area-preserving branching
(i.e.,  Leonardo's original observation).

Note that the result a = 1 implies that the leaf area distal to
the kth branch Ak

L = CLrk
2, where CL ≡ AL/rN

2 is a constant and
AL is the area of a leaf. In addition, the number of branches of a
given size at a given k level is Nk = nN(rN/rk)

2/a, or Nk ∝ rk
–2. If

reproductive tissues are supplied by vascular elements in the
same way as leaves, they should exhibit similar scaling behav-
ior (see Shinozaki et al. 1964, Stevens 1987, Niklas 1993,
1994, Thomas 1996b).

Hydrodynamic constraint

As plants increase in size, the distance over which resources
must be transported increases. The hydrodynamic resistance
of a given xylem tube, Zk

i , is theoretically given by the classic
Poiseuille formula that governs flow through pipes, Zk

i =
8 4η πlk k/ ,a where η is fluid viscosity (Zimmermann 1983).
Note that any slight change in xylem tube diameter leads to a
disproportionate change in total tube resistance because of the
fourth power dependence on ak. If xylem tube diameter does
not change, then hydrodynamic resistance increases linearly
with transport distance, lk, independently of any mechanical
constraint. Furthermore, because path lengths from the soil to
the leaves and branch meristems differ, resources tend to be
delivered at higher rates over shorter paths, limiting resource
supply to terminal shoots. This linear increase in resistance
would seemingly have limited plant size diversification (see
also Raven and Handley 1987, Raven 1993, Ryan and Yoder
1997).

The total resistance of a single xylem tube running from the
trunk to the petiole can be summed to give:

Z
n

n
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a N
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(–1 /3 + 2
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1 –
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1 3

= 1 – (( – 1)

–
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6

(1 /3 – 2

n l l
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ZN
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a N

/ ) ( – )

)

1

1

(4)

where ZN is the resistance of the petiole (West et al. 1999a).
Here we see how Zi changes with increasing total path length,
lT, through the plant from the base of the branch to the leaf,
where lT = Σ k

N
=0lk = l0(1 – n–1/3). Thus, as lT changes, the behav-

ior of the resistance of the total system Zi depends critically on
the exponent that dictates xylem vessel tapering with branch-
ing level: namely, whether a is greater than, less than or equal
to 1/6. If a is less than 1/6, the total resistance of the network
increases as the path length from soil to petiole increases with
size. However, if a > 1/6, this equation indicates that the total
tube resistance is constant and independent of both the number
of branchings, N, and the total xylem tube length, lT. There-
fore, the model makes a novel prediction that, for a plant with
at least several branching generations, Zi is invariant with in-
creases in plant size. Such tapering of xylem elements is ex-
actly what is needed to ensure that all leaves have comparable
rates of resource supply independent of total branch length.
Because large a corresponds to steeper tapering, this would
eventually lead either to unrealistically large tube radii in the
trunk, or unrealistically small ones in the petiole. To avoid
such extreme tapering, a may be as close as possible to the
minimum value (1/6) consistent with Equation 7.

General plant model: allometric predictions

Together the values of a and a dictate the scaling of several
plant allometric relationships. The assumptions and optimiza-
tion principles stated above lead to quantitative predictions of
how numerous aspects of plant geometry, physiology and
anatomy scale within a plant of a given size and also for some
interspecific exponents. Detailed derivations for numerous
allometric predictions for the plant vascular network are given
in West et al. (1999a) and Enquist et al. (2000). Table 1 sum-
marizes some of these allometric predictions. Allometric rela-
tionships can be expressed in terms of plant mass by assuming
that the total volume, V, occupied by plants is filled with a tis-
sue density that is approximately constant across sizes (see
West et al. 1999a). Specifically, in terms of scaling of mass
with the basal stem length, l0, and diamter, r0, so that l0 ∝
M a1 3( )+ ∝ M1/4 and r0 ∝ M3a/2(a + 3) ∝ M3/8.

The predictions of WBE mainly focus on the derivation of
scaling exponents. However, the WBE model also quantita-
tively predicts their normalizations (the scaling intercept Y0),
which includes many subtle aspects of leaf-level anatomy and
physiology. Here I focus on the full derivation of two allo-
metric relationships (leaf mass and conductivity). These ex-
amples show how the WBE model quantitatively predicts not
only the allometric exponent but also the value for the
allometric intercept, and shows how subtle taxonomic and en-
vironmental variations may influence variation in allometric
relationships.

Leaf mass

The WBE model predicts that the total number of leaves, nk
L ,

should scale with the total number of branches, N, and with
branch radius, rk, as nk

L = nk/nN = nN – k = (rk/rN)2/a. Here one can
see the influence of biomechanical considerations as shown by
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a, and by the dimensions of the leaf as given by the radius of
the petiole, rN, and the number of petioles, nN. Given that leaf
area and petiole size remain approximately invariant (assump-
tion 2), n Ak

L
k
L∝ where Ak

L = C rkL
2 and CL ≡ AL/rN

a2 / where AL

is mean area of a leaf and rN is the average petiole radius. So,
with a = 1, total leaf area, Ak

L , or number of leaves, nk
L , should

scale with stem diameter asnk
L ∝ Ak

L = CLrk
2 orn rk

L
k∝ ∝2 M3/4.

Taking typical values of petiole radius, rN = 0.5 mm and leaf
area, AL = 30 cm2, gives CL = 1.2 × 104, which is well sup-
ported by empirical data (see West et al. 1999a). Note that dif-
ferences in rN or AL, or in variation in the biomechanical or
volume-filling assumptions reflected in the value of a within
or between species will lead to calculable differences in values
of CL and the scaling exponent of leaf area.

Conductivity

Another key example is given by the scaling of conductivity.
Conductivity is a measure of resistance across a branch of a
given length. Specifically, the hydrodynamic resistance of a
branch segment is given by Zk = Zk

i /nk = 8ηlk/πnkak
4, and con-

ductivity is given by Kk ≡ lk/Zk = KN(rk/rN)2(1 + 2a)/a, where η is
fluid viscosity, KN is conductivity of the petiole, lk is branch
length at level k and vk is radius of a xylem vessel within a
given kth branch. Here KN = πnNaN

4 /8η, where nN and aN are the
mean number of vascular strands per petiole and the mean
cross-sectional area of a xylem vessel, respectively. The pre-
dicted values of a > 1/6 and a = 1 give Kk ∝ rk

8 3/ ∝ M3/4. There-
fore, by measuring η, and anatomical values of nN, aN, rN and
the radius of the branch, rk, the model quantitatively predicts a
specific value for the normalization of conductivity for a given
branch size. Further, potential variation in these parameters
between species or environments will lead to predictable devi-

ations. A series of additional hydrodynamic allometric predic-
tions, such as fluid velocity, total plant resistance, leaf specific
conductivity, branch fluid content and branch resistance are
listed in Table 1 (see West et al. 1999a and Enquist et al. 2000
for additional details).

Whole-plant resource use

The rate of whole-plant resource use will be equal to the total
number of leaves multiplied by the average rate of resource
use per leaf. The WBE model predicts that the total number of
leaves, nL, and the total leaf area, AL

Tot scale as AL
Tot, r0

2 ∝ M3/4.
If all leaves require approximately the same amount of re-
source, then, for example, the rate or whole plant transpiration
or fluid flow rate, Q0, is directly proportional to the total num-
ber of leaves. Thus, Q0 ∝ nL ∝ AL

Tot ∝ r0
2 ∝ M3/4.

Allometric exponents for a series of additional physiologi-
cal and anatomical attributes of vascular plants are predicted
to be quarter-powers when plotted in terms of plant mass, M,
which can be converted to allometric predictions based on
stem diameter, D, or stem radius rk (Table 1). One important
prediction for whole-plant allometry is that the total volume of
fluid within the plant should increase, although slightly, with
plant size (Table 1) indicating an increased role of water stor-
age in the largest trees. This prediction appears to match recent
empirical measures of water content in trees (N. Phillips, per-
sonal communication). Empirical support is given for several
of the predicted exponents; however, several relationships
have yet to be tested.

Comparison with the pipe-model

The WBE model appears to accurately predict many attributes
of vascular plants and provides a more realistic characteriza-
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Table 1. Predicted within-plant scaling exponents as functions of plant mass and branch radius. Symbols are represented in terms of scaling rela-
tionships for the main stem or trunk (Level 0), in terms of a branch or stem in the kth level of the branching hierarchy, or in terms of the
whole-plant (no subscript). Adapted from West et al. (1999a). Abbreviation: nd = no data available.

Variable Plant mass (M) Branch radius (r)

Exponent predicted Symbol Symbol Exponent predicted Exponent observed

No. leaves 3/4 n L
0 nk

L 2 (2.00) 2.011

No. branches 3/4 N0 Nk –2 (–2.00) –2.002

No. tubes 3/4 n0 nk 2 (2.00) nd
Branch length 1/4 l0 lk 2/3 (0.67) 0.652

Branch radius 3/8 r0

Area of conducting tissue 7/8 A0
CT Ak

CT 7/3 (2.33) 2.133

Tube radius > 1/6 a0 ak 1/6 (0.167) nd
Conductivity 1 K0 Kk 8/3 (2.67) 2.631

Leaf-specific conductivity 1/4 L0 Lk 2/3 (0.67) 0.734

Fluid flow rate 3/4 Q0 Qk 2 (2.00) nd
Metabolic rate 3/4 B
Pressure gradient –1/4 ∆P0/l0 ∆Pk/lk –2/3 (–0.67) nd
Fluid velocity –1/8 u0 uk –1/3 (–0.33) nd
Branch resistance –3/4 Z0 Zk –1/3 (–0.33) nd
Tree height 1/4 h
Reproductive biomass 3/4
Fluid volume 25/24

1 Acer saccharum, Yang and Tyree (1993); 2 Shinozaki et al. (1964); 3 Ficus spp., Patino et al. (1995); 4 Thuja occidentalis, Tyree et al. (1983).
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tion of plant structure and function than previous formulations
such as the pipe-model (see Table 2). A comparison of allo-
metric predictions by the WBE model and the pipe-model
(Shinozaki et al. 1964) reveals several important differences
(Table 2). For example, the WBE model predicts that total hy-
drodynamic resistance is approximately constant with plant
size, whereas the pipe-model predicts a directly proportional
increase with size (see also Ryan and Yoder 1997). The pipe-
model does not explicitly include biomechanical constraints,
or allow for the presence of nonconducting tissue. More criti-
cally, it does not account for the increase in total hydrody-
namic resistance with increasing path length from root to leaf.
Thus, it cannot account for the observed scaling exponents for
the tapering of xylem vessels and tracheids and the resulting
change in conductivity and leaf-specific conductivity, ob-
served sapwood/heartwood ratios, and how total vascular
resistances in branch segments should change as terminal
branches are experimentally removed.

Empirical support for general plant model and quarter-
power scaling in vascular plants

Allometric tapering of xylem dimensions

Although it is difficult to measure xylem dimensions, there is
indirect evidence to support the predicted degree of xylem
tube tapering with increasing plant size. Many have noted that,
within a plant, xylem dimensions tend to increase with branch
size (e.g., Zimmermann 1983). Intraspecific data for Tsuga
canadensis L. (Ewers and Zimmermann 1984) provide sup-
port for the prediction that the dimensions of the xylem scale
with an exponent greater than or equal to 1/6. Figure 2 shows
that tracheid diameter scales as a power-law of branch diame-
ter. The observed exponent in Figure 2 is within the 95% con-
fidence intervals of the predicted values of the general plant
model. Further, intraspecific data for Acer (West et al. 1999a;
reproduced in Figure 3) and for four Rhododendron spp. pre-
sented by Noshiro and Suzuki (2001) as analyzed by B.J.
Enquist (unpublished data), and recent analyses by Becker et
al. (2000) for several tree species also indicate that vascular el-
ement diameters scale within the predicted bounds of the

model, supporting the prediction that total hydrodynamic re-
sistance is invariant with plant size. Further, an analysis of fos-
sil tracheid and branch radii during the initial diversification of
tracheophytes shows that evolutionary increases in plant size
are also marked by an increase in xylem dimensions as pre-
dicted by the WBE model (Enquist 2003). Although it is often
technically difficult to measure whole-plant resistance, the
fact that numerous anatomical and physiological attributes
scale according to exponents predicted by the WBE model
strongly suggests that there has been selection to minimize
whole-plant hydrodynamic resistance, independent of plant
size.

Common scaling laws

A striking prediction of the WBE model is that plants and ani-
mals share many allometric scaling relationships. This is sup-
ported by various data compilations. For example, the rela-
tionship for a given network r0 ∝ M 3/8 has been confirmed in
the scaling of aorta radius (r0) with whole-animal mass (see
Peters 1983). The allometric relationships between basal di-
ameter (D0 = 2(r0)) and aboveground dry mass, M, has a mean
interspecific exponent (b) across 73 species of temperate trees
of 2.611 (95% = ± 0.105), which is indistinguishable from the
predicted exponent of 8/3 or 2.667, which is also indistin-
guishable from the predicted r0 ∝ M3/8 (Smith and Brand
1983). Similarly, compilation of the interspecific relationship
between D0 and M for tropical trees (Figure 4) provides addi-
tional support for the model. Again, the observed exponent
r D0 0∝ ∝ M0.38 is indistinguishable from the predicted expo-
nent of 0.375. As trees begin to senesce and drop branches, de-
viation below the theoretical exponent is expected and is
empirically observed. Additional compilation of data from the
literature, including Smith and Brand (1983) and references
listed in Enquist et al. (1998, 1999) shows that, across both an-
giosperms (n = 55) and gymnosperms (n = 30), total leaf area,
AL, scales with an average exponent that is statistically indis-
tinguishable from the predicted value of 2 (i.e., AL ∝ r2 ∝
M3/4). Further, a global compilation of leaf mass and total plant
mass, for both angiosperms and gymnosperms, shows that leaf
mass scales as the 3/4 power of total plant mass (Enquist and
Niklas 2002, Niklas and Enquist 2001, 2002).
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Table 2. Comparison of within-plant allometric predictions made by the WBE allometric plant model and the pipe-model (Shinozaki et al. 1964)
for several physiological and anatomical variables. Notice that because the pipe-model does not include biomechanics or hydrodynamics, it
makes a series of faulty predictions (noted by asterisks), especially of dynamics associated with the vascular network.

Variable Exponent predicted Exponent predicted
Allometric WBE model Pipe-model

Leaf area Ak
L ∝ rk

2 Ak
L ∝ rk

2

Reproductive biomass MRep ∝ rk
2 MRep ∝ rk

2

Number of branches Nk ∝ r–2 Nk ∝ r–2

Fluid velocity* u0 ∝ M–1/8 u0 ∝ M0

Proportion of conducting tissue* fk ∝ rk
1 3/ fk ∝ rk

1

Pressure gradient* (∆P0 /l0)/(∆PN/lN) ∝ M–1/4 (∆P0/l0)/(∆PN/lN) ∝ M0

Total fluid flow/metabolic rate* Q0 ∝ M3/4 Q0 ∝ M1/2

Conductivity* Lk ∝ rk
8 3/ Lk ∝ rk

0

Leaf-specific conductivity* Lk ∝ rk
2 3/ Lk ∝ rk

0
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Stem sap flux

The WBE model predicts that xylem flux should scale as basal
stem diameter raised to power of 2. Several studies report the
total rate of fluid transport in the xylem (Q0) as a function of

stem diameter D, (e.g., Huber 1932, Sakurantani 1981,
Schulze et al. 1985). However, it is technically difficult to
measure sap flow. For example, measurements of sap flow in
the outer few cm of sapwood of large trees are often scaled up
to a whole-tree basis without knowledge of the variation in sap
flow with radial depth. There is evidence that radial variation
is substantial and somewhat unpredictable (James et al. 2002).
Further, differences in local conditions (e.g., high humidity,
resource limitation) lead to wide variation in sap flux for a
given plant size. Therefore, caution must be exercised when
analyzing sap flux data. On the basis that use of maximum re-
ported flux likely minimizes these problems, Enquist et al.
(1998) tested the WBE prediction by assembling maximum
rates of stem flux as a function of stem diameter from small
herbaceous plants to large trees. They showed that, inter-
specifically, sap flux scales allometrically with a characteristic
exponent, Q0 ∝ D1.87 (the 95% confidence interval for the ex-
ponent ranges from 2.01 to 1.736), which is statistically indis-
tinguishable from that predicted by the general allometric
model. Further, recent data collected by James et al. (2002)
show that the scaling exponent is about 2.3 among four indi-
viduals over a diameter range of 34–98 cm with 95% confi-
dence intervals that approximate the predicted value of 2. In
addition, Meinzer et al. (2001) showed that sap flux for several
species of tropical trees also scales according to prediction of
the WBE model. A scaling exponent that approximates 2 also
indicates that rates of xylem flux scale as plant mass raised to
the 3/4 power. Model II (Reduced Major Axis Regression,
RMA) should be used to analyze this data set, as there are
likely errors in basal stem diameter measurements because the
protocol used to measure diameter differed between studies.
Nevertheless, because of such high r2 values, conclusions
based on either Model I or Model II regressions are similar.
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Figure 4. Interspecific allometric scaling of aboveground biomass for
numerous neotropical trees. Data assembled from Brown (1997).
Allometric theory predicts r0 ∝ M3/8 (0.375), and the 95% confidence
intervals for the fitted regression are indistinguishable from this
value.

Figure 2. Scaling of tracheid diameter with branch diameter (2rk) in
Tsuga canadensis. The relationship is best described by a power-law,
showing that tracheid diameter increases with branch diameter ac-
cording to a characteristic allometric scaling relationship. The 95%
confidence intervals for the exponent include the value predicted in
Table 1. The observed exponent is within the range predicted for opti-
mal networks where the total hydrodynamic resistance is independent
of plant size. Data are assembled from Ewers and Zimmermann
(1984).

Figure 3. Effect of removing branch segments: the proportion of total
resistance remaining, Rk, as a function of the diameter of the removed
stem, 2rk (West et al. 1999a). The data points, taken from Yang and
Tyree (1994), represent two different Acer saccharum Marsh. trees.
The solid lines are derived from the WBE model. With a = 1/6, as pre-
dicted from our model, the agreement is excellent. By contrast, with
a = 0, which corresponds to no tapering of xylem elements as in the
pipe-model, the agreement is poor.
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Whole-plant xylem transport provides a measure not only of
nutrient and water use, but also of gross photosynthesis, and
therefore of metabolic rate. Because of stoichiometric and
physiological constraints, the allometric scaling exponents for
water, nutrient and photosynthate fluxes are approximately
equivalent. Although differences in water-use efficiency must
be taken into account, rates of transpiration or xylem transport
are appropriate, although generally overlooked, indices of
whole-plant metabolism.

Rates of biomass production

Based on short-term rates of biomass production, G, as a sur-
rogate for rates of metabolism, Niklas and Enquist (2001)
found robust support for the 3/4 scaling exponent. Annualized
rates of biomass production, G, scale with a 3/4 exponent of
whole-plant body mass, M, for the species representing indi-
vidual higher taxa or evolutionary grades (e.g., angiosperms,
gymnosperms and even unicellular algae). Specifically,
among all metaphyte species, the slope of the RMA exponent
is essentially indistinguishable from the predicted value of 3/4
(αRMA = 0.749 ± 0.007, y-intercept = 0.214 ± 0.016, whereas
across tree species, αRMA = 0.791 ± 0.03 and y-intercept =
0.301 ± 0.16). Similarly, for unicellular algae, G is scaled as
the 3/4-power of cell (body) mass (αRMA = 0.749 ± 0.008, y -
intercept = 0.119 ± 0.107). Finally, when data for G and M
were pooled and regressed for all plant species, a single
allometric scaling (regression) formula with a 3/4 exponent
was found to span the 20 orders of magnitude of body size rep-
resented in the data set (αRMA = 0.763 ± 0.003 and y-intercept =
0.208 ± 0.016). Plotting these data with allometric rates of bio-
mass production in animals (Damuth 2001) shows that growth
rates in both plants and animals scale with exponents indistin-
guishable from 3/4. Surprisingly, for a given size, rates of bio-
mass production for both plants and animals are similar
(Damuth 2001).

Both the theoretical model and the empirical evidence indi-
cate that whole-plant metabolic rate scales as M3/4. Because
whole-plant mass scales as M1, mass-specific rates scale as
M –1/4. This agrees with the qualitative observation that size-
specific growth rates are generally highest in annuals and
small herbs and lowest in large trees (Grime and Hunt 1975,
Tilman 1988). See results in Whittaker and Woodwell (1968)
for additional empirical values of G that bracket the predicted
value of M3/4.

Extensions of allometric theory: deviations from pre-
dicted scaling exponents

Variations in any of the model assumptions (space filling,
minimization of resistance, uniform biomechanical const-
raints) or in limiting aspects of ecological environments will
lead to calculable deviations from the predicted exponents. It
is assumed that biomechanical constraints lead to lk ∝ rk

α with
α independent of k. Resistance to elastic buckling, however,
which gives α = 2/3, leading to α = 1 and area-preserving
branching, may not apply throughout the plant, especially in

the butt-swell at the base of the trunk and in the smallest
branches (e.g., Bertram 1989). This can be easily incorporated
into the model as a variation in α for either small or large k,
and will lead to calculable corrections to corresponding scal-
ing laws. Furthermore, grasses, palms, saplings and small
shrubs, with relatively few branches, may not have an area-
filling architecture. A more likely geometry is γ = 1/2 rather
than 1/3 (West et al. 1999a). Because their branches are pre-
dominantly conducting tissue, they maintain area-preserving
branching, where a = 1, and therefore branch length should be
directly related to stem radius, lk ∝ rk, which is in agreement
with observation (Niklas 1997b). Thus, throughout ontogeny,
a most likely varies, leading to calculable deviations in other
allometric relationships. Similarly, variation in the tapering of
xylem vessel or tracheid cross-sectional areas, as indexed by a
(see Figure 2), will lead to concomitant variation in several
scaling exponents.

Additional slight variation in plant allometric relations may
stem from subtle violations of the models central assumptions.
As such, it is important to fully test the central assumptions of
the WBE model. For example, the model assumes that leaf
size, Ak

L (and other anatomical and physiological attributes of
leaves) is approximately constant during plant ontogeny.
However, it is possible that leaf anatomical and physiological
traits may differ, especially in some old trees (Apple et al.
2002). Furthermore, the largest trees may also deviate from
predicted “optimal” allometric scaling relations due to the
shedding of terminal branches associated with senesence
(Chambers 2001). Therefore, it is critical that future research
assessing the WBE model understand that possible violation
of assumptions will likely add subtle detail to the model’s pre-
dictions. As an example, a hypothetical 2-fold increase in AL

during ontogeny will lead to a predictable, but slight, deviation
in the scaling of Ak

L . Using the equation from Box 3 in West et
al. (1999a), Lk

con ≡ Kk/nk
L aL = LN

con(rk/rN)4a/a, it is straightfor-
ward to substitute 2aL while keeping other parameters con-
stant. Using values of rN = 0.5 mm and r0 (basal stem radius)
of 5 mm, 5 cm, or 50 cm leads to a predictable change in the
value of a of 0.243, 0.205 and 0.193, respectively. Such varia-
tion will thus yield, extremely slight, but yet calculable
changes in the expected scaling exponent. Nevertheless, the
results are still consistent with the model prediction that a ≥
0.167.

It is important to note, that even a 2-fold variation in Ak
L is

very small compared to the 10,000 to even 100,000-fold varia-
tion in plant size experienced by a single individual during on-
togeny. As such, any focus on applicability of the WBE model
must assess the predictions in terms of relative importance in
magnitude. More importantly, these examples show how the
WBE model is a zeroth-order model providing a basis for the
development of even more rigorous and detailed models for
understanding how the scaling of various anatomical and
physiological traits are fundamentally linked. Variation in the
fundamental principles or assumptions will lead to predictable
deviations from the optimal expectations as outlined by West
et al. (1997, 1999a).
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Extensions of allometric theory: life history varia-
tion—the importance of tissue density

The general allometric model has so far assumed that tissue
density within and between species is constant. For a given an-
imal tissue type, tissue density, ρ = (M/V), does not vary sig-
nificantly. Plants, on the other hand, often show large differ-
ences in tissue specific density. For example, in trees, wood
density values range from less than 0.1 to well over 1 (Niklas
1992). Extensions of the general allometric model indicate
that such variation reflects a unique way by which plants differ
in many life history traits such as growth rate, time until repro-
duction and death (Enquist et al. 1999). Variation in wood
density and leaf tissue density are associated with many ana-
tomical, physiological and ecological differences among spe-
cies. For example, wood density is correlated with numerous
other traits including: leaf phenology (deciduousness), stem
water storage, probability of embolism, water transport capac-
ity, resistance to seasonal drought, resistance to pathogenic
decay and patterns of phenology, and these, in turn, limit local
ecological distributions (see literature cited in Enquist et
al.1999 and Hacke et al. 2001, Hacke and Sperry 2001).
Enquist et al. (1999), however, showed that variation in
allometric rates of stem growth (dD/dt) is influenced by varia-
tion in ρ among species. Specifically, Enquist et al. (1999) as-
sumed that, for a given plant, the rate at which plant mass, M,
increases over time (dM/dt) is directly proportional to its meta-
bolic rate, B (the rate of gross photosynthesis). Thus, at any
time t, dM/dt = CGB, where CG is a proportionality constant
that can be time-dependent. Note, from the WBE model B ∝
M3/4. Data presented in Enquist et al. (1998) in addition to
Niklas and Enquist (2001) suggest surprisingly little variation
in the scaling of CGB across plant taxa. The WBE model also
predicts that metabolism is proportional to total plant volume,
B ∝ V3/4 and stem diameter, D ∝ V3/8. If ρ = M/V is the tissue
specific density, then, at any time t, these relationships can be
expressed as:

B C
M

D C
M

= =B Dρ ρ












3 4 3 8/ /

, (5)

where CB and CD are corresponding proportionality constants.
Implicit in these results is the assumption that the ratio E/ρ,
where E is Young’s modulus of elasticity, is constant for all
plants (Niklas 1994b). Note that the predictions in Table 1 are
modified accordingly by the inclusion of variation in ρ. Here ρ
is modeled as an average species-specific value for wood tis-
sue density. As shown below, variation in ρ leads to important
differences in allometric growth intercepts. As such, incorpo-
ration of ρ into botanical studies will likely explain a signifi-
cant degree of residual allometric variation. From above, we
have dD/dt = (3C/2/ρ)D1/3 where C ≡ 1/4CGCBC D

2 3/ . Note here,
C reflects many biological attributes of a plant, which may or
may not differ between species. Hence, the model provides the
basis for the integration of many functional attributes of
plants. This formula can be integrated to give:

ρ( ( ) ( ) ( )/ /D t D t C t dt
t

t2 3
0

2 3

0

– ) = ∫ , (6)

where the time dependence of all variables has been made ex-
plicit and the integration has been carried out from some initial
time t0 up to some arbitrary time t. Assuming that the propor-
tionality constants, exponents and density are constant over
time, a plot of D(t)2/3 versus D(t0)

2/3 for fixed times t and t0 for
any species should yield a straight line with a universal slope
of unity, but with an intercept that depends on the time interval
and the species. If, however, ρ of a given plant is taken to be
independent of time, but is allowed to vary across species, the
intercept of the production relationship should be inversely
proportional to ρ. If CG, CB and CD are independent of time,
then the intercept, namely the right-hand side of Equation 6, is
given by C(t – t0). Furthermore, if C does not vary among spe-
cies and the time interval is the same for all species, then
weighting D(t)2/3 and D(t0)

2/3 by ρ and replotting all species to-
gether should yield a universal line of unit slope so that
ρ(D(t)2/3 – D(t0)

2/3) = C(t – t0)dt. Thus, the weighted allometric
growth intercept should no longer depend on the species but
only on the time interval and C (but see below for the repro-
ductive period).

This framework allows one to recast the mass-production
law as a function of basal stem diameter, D, where dM/dt =
(CGCB/C D

2 )D2. This gives the novel prediction that across spe-
cies, dM/dt, for trees of fixed diameter is explicitly independ-
ent of wood density ρ. Enquist et al. (1999) tested these allo-
metric growth predictions in 45 species of tropical trees,
differing dramatically in their rates of stem diameter growth.
Specifically, they compiled long-term growth rates in basal
stem diameter with species differing in ρ. Plotting D(t)2/3 ver-
sus D(t0)

2/3 for each species provides robust support for the
prediction that the slope of the relationship between D(t)2/3 and
D(t0)

2/3 is 1. Despite species-specific differences, a slope of 1
indicates that the average production of new mass across all
species scales as M3/4. However, species differ in their growth
intercepts because of differences in dD/dt, reflecting life-his-
tory variation from fast-growing disturbance specialists with
short life spans to slower growing emergent trees of mature
forest with relatively longer life spans. As predicted by the
model, plotting the growth intercept C against ρ yields a nega-
tive relationship where C ∝ ρ–1. In other words, despite alloca-
tion differences among species, all species appear to be pro-
ducing biomass at the same rate (cf. Nicklas and Enquist
2001). Enquist et al. (1999) further utilize this general form of
the growth equation and prior life history theory (Charnov
1993) to predict how the timing of life history events (e.g.,
time until reproduction, mean life span) must be related to
variation in allocation as indexed by wood tissue density.

A full treatment of ontogenetic growth is complex. Never-
theless, the growth model outlined here is a first step in pre-
dicting how variation in allocation (as reflected in ρ) influ-
ences plant allometry and plant growth. A more detailed
treatment of how allometry influences ontogenetic growth is
given in West et al. (2001). Further, the derivation thus far has
assumed that the plant is not reproducing, so that all produc-

1054 ENQUIST

TREE PHYSIOLOGY VOLUME 22, 2002

D
ow

nloaded from
 https://academ

ic.oup.com
/treephys/article/22/15-16/1045/1633776 by guest on 16 August 2022



tion is given to growth. Growth, however, must slow with the
onset of reproduction, as some fraction of production, λdM/dt,
is then devoted to reproduction and not individual growth
(1 – λ)dM/dt. Life history theory (Stearns 1992, Charnov
1993) predicts the age (size) course of reproductive alloca-
tion (λ). Thus, reproduction will cause growth allometries to
deviate from the simple power-function.

Summary of model

The above treatment should be viewed as a zeroth-order model
for plant allometry. It represents a variant of the WBE model
(West et al. 1997) for linear branching resource networks,
which incorporates salient features of plants. It makes several
simplifying assumptions, and incorporates only those essen-
tials of plant anatomy and physiology necessary to derive an
integrated formalized characterization of the architecture, bio-
mechanics and hydrodynamics of vascular plants. It can serve
as a starting point for more elaborate models that incorporate
special features of particular kinds of plants growing in differ-
ent environments (i.e., variation in ρ, AL, etc.).

The model can account for many features of plant structure
and function. First, it predicts several anatomical and physio-
logical scaling relationships, which compare closely with em-
pirical values (see Table 1). The close correspondence be-
tween predicted and observed scaling exponents demonstrates
the power of this single model to provide a quantitative inte-
grated explanation for many features of vascular anatomy and
physiology as well as whole-plant architecture. Because it also
predicts several scaling relationships that have yet to be mea-
sured, the model is subject to rigorous tests.

Second, the model predicts the magnitudes of certain vari-
ables, including: conductivity of different branch segments;
surface area of leaf supplied by each tube; pressure gradient
differential between leaf and trunk (the pressure difference be-
tween the base of the trunk and leaf); the ratio of conducting to
nonconducting tissue; and maximum radius and height of a
tree. These predictions correspond well with observed values,
and illustrate how the design of resource distribution networks
constrains anatomy and physiology; they follow from an inter-
play between geometrical, hydrodynamical and biomechan-
ical principles. Perhaps the most important prediction of the
model is that of quarter-power scaling, which has been widely
commented on in animals, predicted theoretically and demon-
strated empirically in vascular plants. Quarter power scaling
emerges from selection to maximize the scaling of surface ar-
eas while minimizing the scaling of internal transport distance
(West et al. 1999b).

Importantly, the model shows how plants can overcome the
potentially devastating effect of increasing resistance with
tube length, so as to insure comparable xylem flow to all
leaves of the plant. Measurements of changes in vessel radius
and branch resistance support this prediction (Zimmermann
1983, Ewers and Zimmermann 1984). Furthermore, there is
evidence for increasing range in xylem tube size with increas-
ing plant size in the fossil record—supporting the prediction
that xylem tube diameter taper increases with increasing

branch diameter (Niklas 1984).
In 1983, Martin Zimmermann proposed the hydraulic seg-

mentation hypothesis of plant architecture and postulated that
strong selection for restricting embolisms to peripheral
branches has led to observed patterns of vascular resistance
(Zimmermann 1983). During times of extreme negative water
potentials, xylem conduits are prone to cavitation. Zimmer-
mann (1983) hypothesized that constriction of xylem tubes at
branching junctions served to isolate these damaging embo-
lisms and was responsible for observed patterns of hydraulic
architecture. Xylem elements in expendable peripheral
branches and petioles were therefore more subject to cata-
strophic failure, thus, protecting the main trunk and secondary
branches from hydraulic failure.

There is evidence for such branch constrictions in several
species of vascular plants (Zimmermann 1983, Lev-Yadun
and Aloni 1990, Ellison et al. 1993, Aloni et al. 1997, others).
If these constrictions are of approximately the same size, z, at
all branch junctions, they would contribute Nz to the total tube
resistance. The resulting consequence is almost identical to
the result with tapering tubes, i.e., a = 1/6, leading to an addi-
tional resistance that increases logarithmically with length.
Nevertheless, recent studies have indicated that these constric-
tions appear to play a minor role in the total hydrodynamic re-
sistance of the xylem network (Tyree and Alexander 1993,
Yang and Tyree 1994). Although our work proposes a differ-
ent mechanism for whole-plant hydrodynamic resistance than
that proposed by Zimmermann, our model shows how several
anatomical, physiological and architectural characteristics of
vascular plants can be functionally linked by the biological de-
mands of resource transport through fractal-like branching
networks. Furthermore, selection for isolation of embolisms to
peripheral branches may occur in the framework of our model
as long as (1) the number of constrictions are proportional to
the number of branchings; and (2) the overall hydrodynamic
resistance, due to constrictions, does not scale with plant size.

Ecological consequences of allometric scaling

The last section of this paper shows how a common allometric
model for the origin of anatomical and physiological scaling
relationships is critical for understanding the origin of scaling
relationships observed at the population, community and eco-
system levels. The scaling of metabolism at the level of the in-
dividual ramifies to influence numerous scaling relationships
at multiple levels of organization in biology. Thus, several dis-
parate patterns are hypothesized to have a common mechanis-
tic basis. More importantly, a general model of metabolic scal-
ing in biology provides a quantitative framework for scaling
from cells to ecosystems.

Scaling of plant population density

Perhaps the most powerful attribute of a general allometric
model is that it provides the basis on which to build quantita-
tive ecological models. Because the WBE model offers a
mechanistic hypothesis for many observed anatomical and
physiological allometries at the level of the individual, it also
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offers a basis from which to construct mechanistic connec-
tions between these organismal processes and their ecological
consequences (Enquist et al. 1998, 1999, Enquist and Niklas
2001, Niklas and Enquist 2001). The biological and physical
principles imposed on vascular networks powerfully deter-
mine the space over which plants utilize resources and the
rates of whole-plant resource use. These principles, in turn,
constrain biological organization in populations, ecological
communities and ecosystems. One example is the relationship
between population density and body size in ecological com-
munities (Damuth 1981, Enquist et al. 1998).

When the dry mass of the average plant (M ) in mature popu-
lations is plotted against maximum plant density (Nmax) there
is a distinct upper boundary that has traditionally been charac-
terized by a power law with an exponent ≈ –3/2 (Yoda et al.
1963, Harper 1967, Gorham 1979, White 1985). This pattern,
known as the “–3/2 thinning-law,” has been proposed to hold
for plants in both single and mixed species stands and over a
size range spanning 12 orders of magnitude from unicellular
algae to the tallest trees (Gorham 1979, White 1985, see also
Agusti et al. 1987). As plants grow, they fill a three-dimen-
sional volume (a linear distance, l3) and cover an exclusive
area (a linear distance, l2), suggesting a simple geometric ex-
planation for the –3/2 density/mass relationship (see Yoda et
al. 1963, Miyanishi et al. 1979, White 1981, Norberg 1988, see
also Harper 1967). The constraint of packing geometric
shapes into a finite area leads to a geometric limit between
density and mass, hence Nmax ∝ M3/2.

Recently, however, the theoretical and empirical bases for
the density mass boundary have been questioned (see Hutch-
ings 1983, Weller 1987, 1989, 1990, 1991, Zeide 1987, 1991,
Norberg 1988, Osawa and Suigita 1989, Lonsdale 1990,
Dewar 1993, Petraitis 1995, see also White 1985, Ellison
1987). The –3/2 exponent, derived from purely geometrical
considerations, is difficult to reconcile with known mecha-
nisms of plant growth, resource uptake and competition. Fur-
thermore, increasingly precise data suggest that the
interspecific boundary is closer to –4/3 (Weller 1989, see also
Lonsdale 1990), indicating that population density scales as
M–3/4, which is the same exponent reported in animals
(Damuth 1981, 1987, McMahon and Bonner 1983, Brown
1995). Because metabolic rates of animals scale as M3/4, simi-
lar relationships in plants suggest that both share a common
scaling law, which reflects how resource requirements of indi-
vidual organisms affect competition and spacing among indi-
viduals within ecological communities.

Enquist et al. (1998) developed a simple extension of the
WBE model by following the ecological ramifications of
allometry in ecological communities. They assumed that: (1)
sessile plants compete for spatially limiting resources; (2)
their rate of resource use scales as M3/4; and (3) plants grow
until they are limited by resources, R (where R has units of en-
ergy per unit area), so that the rate of resource use by plants ap-
proximates resource supply. The maximum number of indivi-
duals, Nmax, that can be supported per unit area is related to the
average rate of resource use per individual, Q, and the total
rate of resource use of all individuals, by QTot ≈ R ≈ NmaxQ ≈

NmaxCBM–3/4, where CB is an allometric constant reflecting tis-
sue-specific metabolic demand, Q, in units of watts. At
equilibrium, when rates of resource use approximates rates of
resource supply, R is constant, Equation 7 yields:

N
R

C
Mmax

B

=
– /3 4

. (7)

This ecological extension of the WBE model, based on re-
source use by individual plants, therefore predicts a mass-den-
sity-scaling exponent of –4/3, rather than –3/2 as predicted by
the geometric model (Yoda et al. 1963). Further, residual vari-
ation is predicted to be primarily due to physiological and en-
vironmental differences as indexed by variation in possible CB

and R. Data presented in Enquist et al. (1999) and Niklas and
Enquist (2001) indicate little variation in CB between forest
trees and even across major plant taxa. Nevertheless, future
studies are needed to assess the degree to which CB varies
across taxa. If correct, most residual variation in the scaling of
plant density will be a result of variation in R. Thus, environ-
ments where rates of limiting resource supply are higher will
be characterized by more dense populations for a given plant
size.

Enquist et al. (1998) analyzed data from the literature relat-
ing M and Nmax (Figure 5) and found an exponent, –1.341,
which has statistical confidence intervals that include –4/3 but
not –3/2. Recent studies also suggest that the thinning expo-
nent is close to –4/3 (see Weller 1987, Lonsdale 1990). Other
sources in the literature express total aboveground plant bio-
mass per unit area (MTot) as a function of maximum population
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Figure 5. Relationship between maximum population density ob-
served across plants and their maximum average mass. The fitted ex-
ponent indicates that population density, N ∝ M–3/4 as M ∝ N–4/3.
Data from Enquist et al. (1998).
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density (see Weller 1987, 1989, Lonsdale 1990, Petraitis
1995). Further, the general allometric model predicts the scal-
ing of total plant mass, MTot = NmaxM ∝ NmaxNmax

– /4 3 ∝ Nmax
– /1 3.

The observed scaling relationship between MTot and Nmax show
an exponent indistinguishable from Nmax

– /1 3.

Invariance of energy use in ecosystems

Because the total rate of resource use per unit area, QTot, is the
product of population density and the mean rate of resource
use per individual, Q, from above, we have QTot ≈ NmaxQ ≈
(R/CB)M –3/4CBM 3/4 = RM 0, where M is the average mass of an
individual and CB is an allometric constant. Therefore, a gen-
eral allometric model gives the nonintuitive prediction that the
total energy use, QTot, or productivity of plants in ecosystems
is invariant with respect to body size, but directly proportional
to rates of limiting resource supply R. Enquist et al. (1998)
tested this prediction by calculating QTot from the data used to
compile Figures 4 and 5. As shown in Enquist et al. (1998), the
rate of resource use per surface area scales as M 0.0135. This em-
pirical value does not differ statistically from the size
invariance M0 predicted by the model. The relationship holds
across 12 orders of magnitude variation in plant size. Ener-
getic equivalence indicates that, within a given environment,
an approximate amount of limiting resource is divided among
either many small individuals or a few large individuals. The
variation around the regression line is predicted to reflect vari-
ation in resource supply and therefore in productivity (re-
flected by variation in R) among ecosystems ranging from
grasslands and tundra to temperate and tropical forests (e.g.,
Rosenzweig 1968). The allometric estimation of maximum
xylem surface flux in terrestrial ecosystems (mean of 10.45 l
m–2 day–1) is well within the previously reported range for ter-
restrial ecosystem flux rates (data summarized in Jones 1992).
Thus, more productive environments (high values of R) have
more dense populations for their mass than less productive en-
vironments (low values of R).

The Enquist et al. (1998) model does not predict thinning
trajectories as plants approach the limit where Q ≈ R. It does,
however, predict that the rate of resource use per unit area var-
ies among plant communities with differences in resource sup-
ply but not with plant size. Thus, ecosystems composed of
plants of contrasting sizes and life forms, such as certain for-
ests, grasslands and agricultural fields, can have identical pro-
ductivities (see Rosenzweig 1968, Harper 1977, Schulze et al.
1994, K. Gross, Michigan State University, personal commu-
nication, see also Dewar et al. 1998).

Implications of organismal allometry for the structuring
of plant communities

One of the most prominent allometric patterns observed in
both plant and animal communities is the inverse relationship
between body mass and abundance (e.g., De Liocourt 1898,
Morse et al. 1985). Because an inverse community relation-
ship between size and abundance reflects how biomass and
productivity are partitioned among individuals, it offers con-

siderable insight into the mechanisms structuring ecological
communities across varying environments. However, rela-
tively little is known about how size distributions vary across
differing environments or how they vary among species.

Enquist and Niklas (2001) showed how community size dis-
tributions originate from the common allometric constraints
across plant species. In particular, extensions of allometric
theory predict that total standing community biomass will be
invariant with respect to species composition and thus lati-
tude. Furthermore, the intrinsic capacity to produce biomass
on an annual basis will vary little across communities. As out-
lined above, allometric theory predicts that the total number of
individuals per unit area, N, in any size class m, equals Cm

M–3/4, where Cm is the number of individuals per unit area nor-
malized to a given size class m, and M is the body mass of size
class m. The general allometric model for plant vascular sys-
tems also predict that M is proportional to the 8/3-power of
stem diameter D of any size class (i.e., M ∝ D8/3), such that N
will scale as N ∝ M–3/4 ∝ D–2. If these scaling laws hold for en-
tire communities, organismal traits can be used to link to
larger scale properties of communities across different ecosys-
tems. Enquist and Niklas (2001) show how the total standing
community biomass, MTot, is given by the formula:

M C M dM C M Mm mTot = = 4 –– /

max

min

max
/

min
/( ) ,3 4 1 4 1 4∫ (8)

where the subscripts min and max denote the minimum and
maximum body masses within a given community, respec-
tively. Since both the minimum and maximum body sizes are
largely insensitive to species composition or latitude (see
Enquist and Niklas 2001, and results below), any variation in
MTot will be determined by variation in Cm. However, for
closed canopy forest, both theory and observation suggest that
Cm varies little, such that MTot is expected to vary little across
communities. Specifically, for any given size class, the rate of
resource use per size class, Rm ≈ Qm ≈ Cm Bm, where the aver-
age metabolic rate of a class size Bm = CBAm. Here, Am is leaf or
root area, and CB is the rate of resource use per unit area, which
can vary across species. Because allometric theory and empir-
ical data show that Am = CA(M/ρ)3/4, where ρ is bulk tissue den-
sity and CA is a constant of proportionality reflecting the
species-specific amount of leaves or roots per individual per
unit area, the following formula was derived:

C
R

C C M
m

m

mA B

≈
( / ) /ρ 3 4

, (9)

which shows quantitatively how numerous biological and
abiotic factors can influence plant population density per size
class. Nonetheless, biometric and physiological data indicate
no differences in the mean values of CB, CA and ρ across tropi-
cal and temperate tree species or with variation in species rich-
ness (Whittaker and Woodwell 1968, Brown 1997, Enquist et
al. 1998, 1999). This invariance indicates that total commu-
nity biomass is likely to be insensitive to species diversity,
even though Cm can vary in response to a variety of environ-

TREE PHYSIOLOGY ONLINE at http://heronpublishing.com

UNIVERSAL SCALING IN TREE AND VASCULAR PLANT ALLOMETRY 1057

D
ow

nloaded from
 https://academ

ic.oup.com
/treephys/article/22/15-16/1045/1633776 by guest on 16 August 2022



mental factors (e.g., temperature, precipitation) known to in-
fluence Rm. As the total rate of community resource use RTot ≈
ΣNmBm ∝ GTot, where GTot is the net primary production of a
given community and Nm is the number of individuals in a
given mth size class, it follows that GTot ≈ QN ≈
CBM3/4CmM–3/4 = CBCmM0, where CB and Cm are allometric
constants. Thus, within a community, there is energetic equiv-
alence between size classes, with the small size classes utiliz-
ing the same amount of energy per unit time as a large size
class. Furthermore, if Cm, and the maximum and minimum
sizes within a given community, Mmax and Mmin, do not vary
across communities, then it also follows that variation in rates
of plant community total biomass production, GTot, are more
influenced by ecological factors that reduce the capacity of
metabolic production (e.g., abiotic and biotic features of eco-
systems that influence the extent to which plants can maxi-
mally transpire water and assimilate CO2) than by species-spe-
cific physiological capacities or variation in species diversity.

Enquist and Niklas (2001) tested these predictions based on
macroecological data sets that span taxonomically and physio-
gnomically diverse plant communities. They primarily draw
on a large data set assembled by Gentry (1988, 1993), which
spans near-monospecific stands to some of the most bio-
diverse forested communities on Earth. Specifically, the Gen-
try data set represents a 22-year accumulation from 227 sites
across six continents of tropical and temperate closed canopy
forest communities ranging between 60.4° N and 40.43° S and
between 20 and 3,050 m in elevation. The complete data set
contains a total of 83,121 individual plants. Based on the
aforementioned protocol, the maximum number of species per
0.1 ha increases toward the equator. Yet, total tree standing
biomass per 0.1 ha is invariant with respect to species number,
latitude, or elevation even though tree density increases from
northern to southern latitudes (see Enquist and Niklas 2001).
Finally, as predicted by theory, the number of individuals per
sample area scales as the –2 power of stem diameter or as the
–3/4 power of plant mass, both within and across communities
(Figures 6 and 7).

The –2 scaling rule also appears to hold with increasing
geographic sampling areas, including continental and global
samples (Enquist and Niklas 2001). Latitude and species num-
ber do not contribute greatly to the variance observed in local
size distribution exponents, indicating that similar allometric
constraints across species similarly influence community size
distributions across major biomes (Figure 7). Furthermore,
neither the size frequency distribution exponent nor the num-
ber of individuals is correlated with annual precipitation. The
principal exceptions to these findings are the size distributions
for communities at high latitudes (≥ 40° N or S). For these
communities, the size distribution exponent tends to be less
negative than D –2, indicating lower densities of smaller indi-
viduals. Yet, even for these communities, total standing bio-
mass is, on average, indistinguishable from that of communi-
ties at lower latitudes or elevations. Furthermore, as shown in
Enquist and Niklas (2001), with increased geographic sam-
pling area, even the high latitude North American forests ap-

proximate the –2 power law.
Recent analyses by Enquist (2002) provides preliminary ev-

idence suggesting that the –2 scaling rule for forests has appar-
ently not changed over hundreds of millions of years of plant
evolution. Assembling diameter distributions for in situ fossil
forests for an Early Tertiary forest (dominated by species
within the Taxodiaceae, Cupressaceae, Pinaceae, Ginkgo-
aceae, Fagaceae, Juglandaceae, Menispermaceae and Ulma-
ceae (see Basinger et al. 1994)), and a middle Jurassic forest
(dominated by conifers of extinct taxa likely related to Aru-
cariaceae and Podocarpaceae (see Pole 1999)), provides a
unique window by which to assess allometric scaling across
ancient communities containing extinct taxa (Figure 6). With-
in each fossil community the sizes and spatial positions of
stumps have been preserved so as to preserve the size distribu-
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Figure 6. Diameter distributions for in situ fossil forests for an Early
Tertiary (A) and a Jurassic (B) forest. For each fossil community the
sizes and spatial positions of stumps have been preserved so as to pre-
serve the size distribution. Note, the Jurassic forest has a smaller sam-
ple size and there appears to be a paucity of the smallest stems (�
omitted from statistical analysis). Fitted scaling exponents show that
fossil forests scale with exponents indistinguishable from modern for-
ests indicating that N ∝ D–2 ∝ M–3/4 (A: αRMA –2.195, 95% CI –1.79
to –2.60, F = 129.75, n = 14, r2 = 0.92; B: αRMA –1.737, 95% CI –1.43
to –2.04, F = 131.47, n = 18, r2 = 0.89).
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tion of a once living community. Fitted scaling exponents
show that both fossil forests scale with exponents indistin-
guishable from modern forests and from predictions from the
general allometric model, indicating that N ∝ D–2 ∝ M–3/4

(Early Tertiary forest: αRMA –2.195, 95% CI –1.79 to –2.60, F
= 129.75, n = 14, r2 = 0.92; Jurassic Forest: αRMA –1.737, 95%
CI –1.43 to –2.04, F = 131.47, n = 18, r2 = 0.89). Because of
the likely increase in error associated with measuring basal
stem diameter in fossil forests, Model II RMA regression was
used. Note, the Jurassic forest data set has a smaller sample
size and appears to have a paucity of the smallest stems (open
diamond symbol, Figure 6, which was omitted from statistical
analysis). The apparent invariance of the size distribution ex-
ponent across fossil forests and extant forests suggests that the
underlying allometric constraints and the fashion by which
plants compete for limiting resources within ecological com-
munities have not changed appreciably over millions of years
of plant evolution.

Conclusions

A general theory of allometry appears to offer a theoretical
framework from which to draw mechanistic connections be-
tween several major areas of botanical research. Quarter-
power allometric scaling laws, well known in animals, also ap-
ply to many plant characteristics. There are many allometric
parallels, including: metabolic rate M3/4, radius of trunk or
aorta M3/8, size of, and fluid velocity, in terminal vessels M0,
population density and community abundance M –3/4, and en-
ergy use per unit area M0. Furthermore, because both animals
and plants are predicted to have many identical allometric ex-
ponents, a common influence of body size in nearly all aspects
of biological structure, function and diversity is suggested.
This framework, however, also shows how some fundamental
differences between species can be viewed as differences in

patterns of allocation and the timing of life-history events.
Perhaps the most intriguing attribute of a developing theory

for biological allometry is the assertion that allometric rela-
tionships observed at multiple levels of biological organiza-
tion have a common mechanistic basis. Furthermore, despite
wide variation in taxonomic diversity and differences between
local abiotic conditions, plants and plant communities can be
shown to exhibit approximately invariant scaling exponents.
For example, despite wide variation in species diversity, abun-
dance and biomass, tree-dominated communities are charac-
terized by nearly identical size-frequency distributions reflect-
ing nearly equivalent standing biomass. Thus, the number of
individuals within a given community sample scales as D–2

and thus M –3/4. These observations are consistent with allo-
metric theory but contrast in many important ways with specu-
lations, geometric models of plant species packing and recent
niche-based theoretical predictions. A general allometric the-
ory suggests that variation in plant species composition is in-
stead associated with concomitant changes in the degree of
partitioning of a limited amount of resources rather than in-
creases (or decreases) in community biomass and, potentially,
depending on the local environment, productivity (Tilman et
al. 1997). Such partitioning is most likely reflected in life-his-
tory tradeoffs in the allocation of metabolic production, such
as in tissue density, ρ, or between leaf, stem, root and repro-
ductive biomass (Enquist et al. 1999, Enquist and Niklas 2002,
Niklas and Enquist 2002).

Extensions of a general allometric framework reveal how
several prominent organismal-, community- and ecosystem-
level properties emerge from relatively few allometric and
biomechanical rules. The constraints of resource transport
through fractal-like vascular networks ultimately dictate how
individuals fill space, use resources, and produce and allocate
biomass. Such constraints are reflected in allometric scaling
relationships, which are evident at multiple levels in biology.
A central challenge to environmental scientists is to predict
how ecosystems will respond to future variation in biotic and
abiotic attributes. This mandate requires the development of a
rigorous and predictive science, which by definition requires a
central focus on scaling. The work presented here points to the
importance of physiological rates and times in influencing
many patterns in biology. Allometric rules dictate how meta-
bolic production and biomass are partitioned among different
plant parts at the level of the individual. Furthermore, these
rules provide a quantitative basis for drawing mechanistic
connections between numerous features of organismal biol-
ogy, ecology, ecosystem studies and evolutionary biology.
Thus, a common body of allometric theory promises to pro-
vide a general framework for predicting how variation in
many attributes of plant form, function and diversity are fun-
damentally interrelated.
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Appendix 1

Table A1. Summary of symbols and mathematical notation used.

Symbol Definition Additional definitions

AL Total leaf area

Am Mean leaf area of a given mth size class

Ak
CT Cross-sectional area of conducting tissue for a given kth branch

Ak
Tot Total cross-sectional area of a given kth branch

a Scaling factor describing potential tapering of branch radii See definition of β,
r

r
nk

N

N k a= ( – ) / 2

a Scaling factor describing potential tapering of xylem vessel or See definition of β,
a
a

k

N

k

N

a a
r
r

= 





/

tracheid radius across branching levels

ak Average cross-sectional area of a given xylem tube (vessel or tracheid) in
a branch in the kth branching level

aN Average cross-sectional area of a xylem tube (vessel or tracheid) in the petiole

α Exponent relating stem diameter and stem height rk ∝ lk
α

αLS Slope of Model I regression

αRMA Slope of Model II regression

B Rate of total plant

Bm Average metabolic rate of a given size class

b Allometric exponent

β Ratio of branch radii βk ≡ rk+1/rk ≡ n–a/2

Continued on overleaf.
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Table A1 cont’d. Summary of symbols and mathematical notation used.

Symbol Definition Additional definitions

β Ratio of xylem tube radii β ≡ ak+1/ak ≡ n–a/2

CA Proportionality constant Am = C
M

A ρ






3 4/

CB Proportionality constant B = C
M

B ρ






3 4/

CD Proportionality constant D = C
M

D ρ






3 8/

CG Proportionality constant
dM
dt

C B= G

Cm Proportionality constant, reflecting the number of individuals within a
given mth size class. See Equation 9

D0 Basal stem diameter D0 = 2(r0)

E Young's modulus of elasticity

G Whole-plant biomass production per year

GTot Total biomass production per unit area per year

γ Ratio of branch lengths lk+1/lk; γ = n–1/3

H Pigment content per algal cell; foliage biomass, ML per metaphyte

Kk Conductivity of the kth branch Kk ≡ lk/Zk = KN(rk/rN)2(1 + 2a)/a

KN Conductivity of petiole KN = πnNaN
4 /8η

k Branching level within a hierarchical branching plant network
ranging from the basal branch, where k = 0, to the leaf, where k = N

η Fluid viscosity

L Total plant length

Lk
con Leaf conductivity (the conductivity per unit leaf area) Lk

con ≡ Kk/nk
L

La

lk Length of a given kth branch

lN Length of leaf petiole

lT Total path length from basal branch to leaf lT = lkk

N

=∑ 0
= l0(1 – n–1/3)

λ Fraction of annual metabolic production allocated to reproduction

M Body mass

Mmax Maximum body mass

Mmin Minimum body mass

MTot Total standing biomass per unit area

m Size class

N Total number of branching levels or generations, within a given
plant, from trunk (or basal stem) to petiole

Nmax Maximum number of individuals

NTot Total number of plants per unit area

n Branching ratio; number of daughter branches derived from a parent branch n = nk+1/nk

nk Total number of branches within a given kth branching level nk = nNnN – k

nk
L The total number of branches or leaves distal to the kth branch nk

L = nk/nN

nN Mean number of xylem tubes (vessels and or tracheids) per petiole

Q Rate of resource use per individual per unit time

Q0 Rate of fluid flow through the basal stem of a plant

R Rate of supply of limiting resource per unit area, in units of watts

rk Radius of a given kth branch

rN Radius of leaf petiole

ρ Tissue density ρ = M/V

t Time

V Volume

Zi Total resistance of plant xylem
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