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We give a brief introduction to the AIXI
model, which unifies and overcomes the limita-
tions of sequential decision theory and universal
Solomonoff induction. While the former theory is
suited for active agents in known environments,
the latter is suited for passive prediction of un-
known environments.

Introduction: Every inductive inference problem can
be brought into the following form: Given a string
x1x2...xt−1 ≡ x1:t−1 ≡ x<t, take a guess at its continu-
ation xt. We will assume that the strings which have to
be continued are drawn from a probability distribution
µ. The maximal prior information a prediction algo-
rithm can possess is the exact knowledge of µ, but often
the true distribution is unknown. Instead, prediction is
based on a guess ρ of µ. We expect that a predictor
based on ρ performs well, if ρ is close to µ or converges
to µ.
Universal probability distribution: Let M :=
{µ1, µ2, ...} be a finite or countable set of candidate prob-
ability distributions on strings. We define a weighted
average on M,

ξ(x1:n) :=
∑

µi∈M
wµi ·µi(x1:n),

∑

µi∈M
wµi =1, wµi > 0.

We call ξ universal relative to M, as it multiplica-
tively dominates all distributions in M, i.e. ξ(x1:n) ≥
wµi ·µi(x1:n) for all µi ∈ M. In the following, we as-
sume that M is known and contains the true distribu-
tion from which x1x2... is sampled, i.e. µ ∈ M. The
condition µ∈M is not a serious constraint if we include
all computable probability distributions in M with high
weights assigned to simple µi. Solomonoff-Levin’s uni-
versal semi-measure is obtained if we include all enumer-
able semi-measures in M with weights wµi ∼ 2−K(µi),
where K(µi) is the length of the shortest program for
µi [1, 3]. One can show that the conditional ξ and µ
probabilities rapidly converge to each other:

ξ(xt|x<t) → µ(xt|x<t) with µ probability 1. (1)

Since the conditional probabilities are the basis of the
decision algorithms considered in this work, we expect a
good prediction performance if we use ξ as a guess of µ.

Bayesian decisions: Let `xtyt
∈ [0, 1] be the received

loss when predicting yt ∈Y , but xt ∈X turns out to be
the true tth symbol of the sequence. Let LnΛρ

be the
total expected loss for the first n symbols of the Bayes
predictor Λρ which minimizes the ρ expected loss. For in-
stance for X =Y={0, 1}, Λρ is a threshold strategy with
y
Λρ

t = 0/1 for ρ(1|x<t) >
< γ, where γ := `01−`00

`01−`00+`10−`11
.

Let Λ be any prediction scheme (deterministic or prob-
abilistic) with no constraint at all, taking any action
yΛ

t ∈Y with total expected loss LnΛ. If µ is known, Λµ

is obviously the best prediction scheme in the sense of
achieving minimal expected loss LnΛµ ≤LnΛ for any Λ.
For the predictor Λξ based on the universal distribution
ξ, on can show LnΛξ

/LnΛµ = 1 + O(
√

K(µ)/LnΛµ), i.e.
Λξ has optimal asymptotics for LnΛµ → ∞ with rapid
convergence of the quotient to 1. If L∞Λµ is finite, then
also L∞Λξ

[1, 3].

More active systems: Prediction means guessing the
future, but not influencing it. One step in the direction
to more active systems was to allow the Λ system to act
and to receive a loss `xtyt depending on the action yt and
the outcome xt. The probability µ is still independent
of the action, and the loss function `t has to be known
in advance. This ensures that the greedy Λµ strategy is
still optimal. The loss function can also be generalized
to depend on the history x<t and on t.

Agents in known probabilistic environments: The
full model of an acting agent influencing the environ-
ment has been developed in [2, 3]. The probability of
the next symbol (input, perception) xt depends in this
case not only on the past sequence x<t but also on the
past actions (outputs) y1:t, i.e. µ=µ(xt|x<ty1:t). We call
probability distributions of this form chronological. The
total µ expected loss is

∑
x1:n

(`1 + ... +`n)µ(x1:n|y1:n),
where we assumed a total number of n interaction cycles.
Action yt(x<ty<t) and loss function `t(x1:ty1:t) may de-
pend on the complete history, which allows planning and
delayed loss assignment.

Sequential decision theory: The goal is to perform
the actions which minimize the total µ expected loss:

yt := arg min
yt

∑
xt

... min
yn

∑
xn

(`1+ ... +`n)µ(x1:n|y1:n), (2)

LnΛµ = min
y1

∑
x1

... min
yn

∑
xn

(`1+ ... +`n)µ(x1:n|y1:n). (3)

1



The minimization over yt is in chronological order to
correctly incorporate the dependency of xt and yt on
the history. Note that yt only depends on the known
history x<ty<t, whereas minima and expectations are
taken over the unknown xt:nyt:n variables. The policy
(2) (called AIµ model) is optimal in the sense that no
other policy leads to lower µ-expected loss.
Bellman equations: In the case that `t is independent
of y<t and µ is independent of y1:n, policy (2) reduces to
the greedy Bayes Λµ strategy. For (completely observ-
able) Markov Decision Processes µ = µ(xt|xt−1yt) (2)
and (3) can be written as recursive Bellman equations
of sequential decision theory with state space X , action
space Y, state transition matrix µ(xt|xt−1yt), rewards
−`t, etc. The general (non-MDP) case may also be (ar-
tificially) reduced to Bellman equations by identifying
complete histories x<ty<t with states and µ(xt|x<ty1:t)
with the state transition matrix. Due to the use of com-
plete histories as state space, the AIµ model neither as-
sumes stationarity, nor the Markov property, nor com-
plete accessibility of the environment. But since every
state occurs at most once in the lifetime of the system
the explicit formulation (2) is more useful than a pseudo-
recursive Bellman equation form. There is no principle
problem in determining yk as long as µ is known and
computable and X , Y and n are finite.
Reinforcement learning for unknown environ-
ment: Things dramatically change if µ is unknown.
Reinforcement learning algorithms are commonly used
in this case to learn the unknown µ (or directly a value
function). They succeed if the state space is either small
or has effectively been made small by generalization or
function approximation techniques. In almost all ap-
proaches, the solutions are either ad hoc, or work in
restricted domains only, or have serious problems with
state space exploration versus exploitation, or have non-
optimal learning rate. Below we propose the AIξ model
as a universal and optimal solution to these problems.
Unknown loss function: Furthermore, the loss func-
tion `t(x1:ty1:t) may also be unknown, but there is an
easy “solution” to this problem. The specification of the
loss function can be absorbed in the probability distri-
bution µ by increasing the input space X . Let xt≡x′tlt,
where x′t is the regular input, lt is interpreted as the
loss, `t(x1:ty1:t) is replaced by lt in (2) and (3), and
µ is only non-zero if lt is consistent with the loss, i.e.
lt = `t(x1:ty1:t). In this way all possible unknowns are
absorbed in µ.
The universal AIξ model: Encouraged by the good
performance of the universal sequence predictor Λξ, we
propose a new model, where the probability distribu-
tion µ is learned indirectly by replacing it with a uni-
versal prior ξ. We define ξ(x1:n|y1:n) :=

∑
µi∈M wµi ·

µi(x1:n|y1:n) as a weighted sum over chronological proba-
bility distributions in M. Convergence ξ(xn|x<ny1:n) →
µ(xn|x<ny1:n) can be proven analogously to (1). Replac-

ing µ by ξ in (2) the AIξ system outputs

yt := arg min
yt

∑
xt

... min
yn

∑
xn

(lt+ ... +ln)ξ(x1:n|y1:n) (4)

in cycle t given the history x<ty<t, where xt≡x′tlt. The
largest class M which is necessary from a computational
point of view is the set of all enumerable chronological
semi-measures with weights wµi∼2−K(µi), where K(µi)
is the Kolmogorov complexity of µi. Apart from the
dependence on the horizon n and unimportant details,
the AIξ system is uniquely defined by (4) without ad-
justable parameters. It does not depend on any assump-
tion about the environment apart from being generated
by some computable (but unknown!) probability distri-
bution in M.
Universally optimal AI systems: We want to call
an AI model universal, if it is µ-independent (unbiased,
model-free) and is able to solve any solvable problem
and learn any learnable task. Further, we call a uni-
versal model, universally optimal, if there is no program
which can solve or learn significantly faster (in terms of
interaction cycles). As the AIξ model is parameterless,
ξ rapidly converges to µ in the sense of (1), the AIµ
model is itself optimal, and we expect no other model to
converge faster to AIµ (in some sense) by analogy to the
sequence prediction case, we risk the conjecture that AIξ
is such a universally optimal system. Further support is
given in [2, 3] by a detailed analysis of the behaviour
of AIξ for various problem classes, including prediction,
optimization, games, and supervised learning. We dis-
cuss in which sense AIξ overcomes some fundamental
problems in reinforcement learning, like generalization,
optimal learning rates, exploration versus exploitation,
etc. Computational issues are also addressed.
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