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Abstract. A private information retrievalscheme allows a user to retrieve a data
item of his choice from a remote database (or several copies of a database) while
hiding from the database owner which particular data item he is interested in. We
consider the question of private information retrieval in the so-called “commodity-
based” model, recently proposed by Beaver for practically oriented service-provider
Internet applications. We present simple and modular schemes allowing us to reduce
dramatically the overall communication involving users, and substantially reduce their
computation, using off-line messages sent from service-providers to databases and users.
The service-providers do not need to know the database contents nor the future user’s
requests; all they need to know is an upper bound on the data size. Our solutions can
be made resilient against collusions of databases with more than a majority (in fact,
all-but-one) of the service-providers.
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1. Introduction

Cryptography in the90s. With the widespread use of World-Wide Web and Internet ap-
plications, cryptographic protocols are increasingly used in commercial settings. Hence,
while the trend of the 1980s was to establish general plausibility results, the trend of
the 1990s was to consider solutions which arebothprovably secure and efficiently im-
plementable in practical applications (for a more general discussion on this topic see
surveys by Goldreich [15] and Goldwasser [19], [18]). This is the case of the current
work as well—here we show how with the help of service-providers one can maintain
the user’s privacy while retrieving information from a remote database with almost the
same total communication cost to/from the user as if we do not care about privacy at all.

Commodity-Based Cryptography. Motivated by a client–server paradigm, Beaver [2]
proposed a new “commodity-based” approach for the design of efficient cryptographic
protocols. In his model there are several independent service-providers, calledcommodity
servers(or simplyserversfor short), which off-line sell “security commodities” to their
clients; these commodities can be later utilized by the clients to perform more cheaply
various cryptographic tasks. An advantage of this model is that the servers do not need
to know private inputs of their clients, do not need to know which or how many other
servers are being used, and only send a single message (commodity) to each client. On
the other hand, this setting is clearly much more restrictive than the usual setting for
secure multiparty protocols (as in [31], [17], [6], and [8]), which allows point-to-point
multiround communication. In [2] Beaver showed how to achieve so-called “1-out-of-2
Oblivious Transfer” and “multicast” in this model, provided that the majority of the
servers are honest. We consider this model in the context of remote database information
retrieval.

Private Information Retrieval. Private information retrieval(PIR) schemes allow a
user to retrieve a data item of his choice from a remote database while hiding which
particular data item he is interested in. In the basic PIR setting the database content is
modeled by ann-bit string x, possibly replicated (for a reason that will be explained
shortly) in k ≥ 1 distinct databases. The user, holding aretrieval index i, wishes to
learn thei th data bitxi . A t-private PIR schemeis a protocol between the user and
the databases in which the user learnsxi while keepingi private from any collusion of
t databases (where the user’s privacy is either information-theoretic or computational,
depending on the setting). By default, PIR refers to 1-private PIR.

A trivial single-database solution to this problem is to let the database send its en-
tire contentx to the user; however, while being information-theoretically private, the
communication complexityof this solution may be prohibitively large. (For example,
consider retrieval from a Web search-engine.) While it is impossible to do better us-
ing a single database and maintaining information-theoretic user privacy [10], it turns
out that if x is replicated in two or more databases, then there are much better solu-
tions. We now briefly mention some of the work done in this area in the past. Private
information retrieval with information-theoretic user privacy was introduced by Chor
et al. [10], who constructed (1-private) schemes with a communication complexity of
O(n1/3) bits fork = 2 databases,O(n1/k) bits for a constant numberk ≥ 3 of databases,



Universal Service-Providers for Private Information Retrieval 39

and O(log2 n log logn) bits for k = O(logn) databases. Ambainis [1] improved the
k-database upper bound toO(n1/(2k−1)) for any constantk (see [22] for an improved
dependence onk). Generalizations tot-private PIR were given in [10] and [22].

ComputationalPIR schemes, in which the user’s privacy should only hold with respect
to computationally bounded databases (relying on certain intractability assumptions),
were first considered by Chor and Gilboa [9], who constructed a 2-database scheme
with subpolynomial communication and by Ostrovsky and Shoup [28] who considered
private reading and writing to/from multiple databases.

Kushilevitz and Ostrovsky [23] constructed the firstsingle-database scheme with sub-
polynomial communication, thereby demonstrating that in the computational setting data
replication can be totally avoided. Subsequent improvements to the communication com-
plexity of their scheme (relying on stronger assumptions) were given by Stern [30] and
most recently by Cachin et al. [7], the latter achieving polylogarithmic communication.
Single-database schemes were shown to imply the existance of one-way functions [5]
and Oblivious Transfer protocols [11]. Moreover, single-database schemes with com-
munication complexity strictly smaller than the database size were recently shown to
exist based on any one-way trapdoor permutation [24].

Our Setting. The setting may be informally described as follows. Similarly to the
original PIR scenario, there is a user holding a retrieval indexi andk ≥ 1 databases
holding copies of ann-bit data stringx. As before, the user wishes to retrievexi without
revealingi to the databases. However, in our setting there are additionally one or more
commodity serverswhich may off-line send randomized messages, called commodities,
to the user and to each of the databases. Acommodity-based PIR scheme(or commodity
schemefor short) consists of the following two stages:

1. (Off-line commodity distribution stage.) Each server, on input 1n and an optional
security parameter 1κ , independently runs a probabilistic polynomial time sampling
algorithm, outputtingk + 1 strings (commodities) sent via secure channels to the
user and thek databases.

2. (On-lineretrieval stage.) With commodities from the off-line stage as private in-
puts, the user and the databases execute some PIR protocol in which the user sends
queries to the databases and receives answers in return.

In a real-life setting we envision many (perhaps competing) servers, where the user de-
cides which and how many of them to use. We measure both the off-line communication
in the commodity distribution stage (i.e., size of commodities) and the on-line communi-
cation between the user and the databases in the retrieval stage. Our main objectives are
to minimize the total communication involving the user (in both stages) and to shift most
of the overall communication to the off-line stage. It should be noted that one clearly
cannot expect to achieve a bettertotal complexity than that of ordinary (i.e., serverless)
PIR schemes, since the servers in any commodity scheme can be simulated by the user to
obtain an ordinary scheme of the same total complexity. We stress though that all of our
schemes allow minimizing the total communication involving theuserto be logarithmic
in n (and polynomial in the security parameter in the single-database case).

Another major goal is to guarantee the user’s privacy even when some of the servers
dishonestly collude with databases. One less obvious motivation for protecting against



40 G. Di Crescenzo, Y. Ishai, and R. Ostrovsky

such collusions is that a nonmalicious yet faulty server (e.g., one with a bad random
number generator) may cause the same damage as a server which colludes with the
databases. (In contrast, faulty databases do not compromise the user’s privacy, neither in
our schemes nor in previous PIR schemes.) In most of our multiserver schemes, even if
all but one of the servers collude with databases, the user’s privacy still remains intact.

Our Results. We start by constructing single-server commodity schemes, where as long
as this server does not collude with the databases the user’s privacy is guaranteed. We
then show how tocomposesuch single-server schemes into multiserver schemes with
improved privacy properties. In particular, by establishing general transformations from
PIR schemes to commodity schemes (and by “plugging in” appropriate modifications of
PIR schemes from [10], [9], and [23]) we obtain the following commodity schemes:

• Computational single-database case:For any constant integersm,d ≥ 1 we con-
struct anm-server, single-database computational scheme, withstanding collusions
of the database with up tom− 1 servers, with user’s communication complexity
O(logn+ poly(κ)) (counting both the user’s commodity and on-line communica-
tion) and server-database commodity complexityO(κ ·n1/d) (whereκ is a security
parameter and security is based on the Quadratic Residuosity Assumption).
• Computational multi-database case:For any constantm≥ 1 we construct anm-

server, 2m-database computational scheme, withstanding collusions of a database
with up tom− 1 servers, with user’s communication of sizeO(logn) and server-

database commodity complexityκ · 2O(
√

logn) (relying on the existence of a pseu-
dorandom generator). Schemes of this type are most appealing when the server-
privacy threshold is small and the database size is large. However, since the number
of databases is perhaps the most important complexity measure, such schemes are
obviously useless for all but very small values ofm.
• Information-theoretic multi-database case:For any constant integersm, t,d ≥

1, we construct anm-server,(mtd+ 1)-database information-theoretically private
scheme, withstanding collusions of up tot databases andm − 1 servers, with
user’s communication complexityO(logn) and commodity complexityO(n1/d).
Schemes of this type are most appealing when the database is moderately sized.

We then proceed to show how to make the amortized cost of our commodity schemes
cheaper and how to test commodities:

• Amortizing commodity cost for multiple queries: In most of ours-private schemes
(i.e., those that can withstands dishonest servers), by usingm> s+ 1 servers the
amortized commodity cost per query can be reduced to(1/(s+ 1)) · (m/(m− s))
times the cost of a single query in the(s+ 1)-server scheme (while maintaining
s-privacy).
• Commodity testing: We give procedures for verifying the validity of commodities

supplied by servers, allowing us to ensure correctness of our schemes even in the
presence of faulty or malicious servers. This problem is particularly natural in
a setting where some of the (potentially many) servers may be malfunctioning.
Moreover, the testing procedure can be carried out off-line, after the distribution of
commodities and before the actual retrieval.
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We finally discuss two extensions of the original problem; one concerns protecting
privacy of the data against a potentially dishonest user (in a sense that the user cannot
get more information than the single entry he has “paid for,” see [13], [30], and [27]) and
another concerns extension of our results to the related problem ofprivate information
storage[28].

Benefits for PIR. As discussed above, reducing thecommunicationcost of PIR serves as
the main motivation for introducing commodity schemes. Indeed, commodity schemes
constructed in this work require little on-line communication and littletotal communi-
cation involving the user; furthermore, their communication is typically unbalanced in
a favorable direction: almost all of it is directed from servers to their clients (namely,
users and databases) and from databases to their clients (namely, users). However, our
transformations of PIR schemes into commodity schemes may also be beneficial for
reducing thecomputationcost of PIR. A substantial portion of the user’s computa-
tion (to an extent depending on the underlying PIR scheme) is shifted to an off-line
stage and is carried out by the servers. Even if better single-database PIR schemes
are devised1 this advantage may still justify the use of commodity schemes in the
computational, single-database case. Finally, a major disadvantage of single-database
commodity schemes over their PIR counterparts is that the user’s privacy may be com-
promised if servers collude with the database. To avoid this, one may use a degen-
erate form of our single-server construction in which the user simulates the server;
while obviously not reducing his total work, this shifts most of the user’s computa-
tion (and communication) to an off-line stage without compromising his privacy in any
way.

Comparison with Related Work. It is instructive to illuminate two points of comparison
between this work and Beaver’s work [2], which introduces the commodity-based model
we use. First, protocols from [2] do not dramatically save on-line communication; the
main goals there are to provide a level of resilience which is impossible to achieve in the
information-theoretic setting without the aid of the servers, and to remove unnecessary
interaction. Second, our solutions achieve resilience to collusions of databases with up
tom−1 servers, in opposition to an optimal threshold ofb(m−1)/2c servers in Beaver’s
Oblivious-Transfer protocol. This higher privacy threshold is made possible here because
of the different setting, which allows either replication of data or computational privacy.

A very different PIR model using auxiliary servers was recently proposed by Gertner
et al. [12]. This model differs from Beaver’s (and our) model in that it allows servers to
interact with the user and the databases. The objective of [12] is also different: it is not
to decrease the total on-line work or the user’s work, but rather to reduce the amount
of unprotected data replication in information-theoretic PIR by allowing a database to
“secret-share” its content with several data servers.

1 Recent single-database PIR schemes [30], [7] fall short of being satisfactorily efficient in two ways. First,
their computation cost is very high (for instance, the scheme from [7] requires the database to performn modular
exponentiations over a large modulus). Second, even their communication overhead is quite significant for
“realistic” choices of parameters, especially when retrieving multibit records.
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Organization. Section 2 contains some notation, as well as formal definitions of the
PIR and commodity PIR models. In Section 3 we summarize the complexity parameters
of specific PIR schemes which can be utilized for obtaining communication efficient
commodity PIR schemes. Section 4 introduces atomic commodity schemes, and Sec-
tion 5 deals with composing them to improve their privacy properties. In Section 6
we construct multi-database schemes based on the method of low-degree polynomial
interpolation. In Section 7 we show that the commodity cost of our schemes can be
amortized over multiple queries. Section 8 provides procedures for testing the cor-
rectness of commodities distributed by the servers. Section 9 discusses two exten-
sions of the original problem. Finally, the appendices contain a description of some
PIR schemes referred to in Section 3, as well as more general commodity testing
procedures.

2. Preliminaries

2.1. General Notation

By Zn we denote the additive group of residues modulon and by GF(q), whereq is a
prime power, a finite field of orderq. Addition, subtraction, and multiplication operations
are sometimes carried over a finite group or field, as implied by the context. Byy⊕ z we
denote the bitwise exclusive-or of the two binary stringsy, z. ByR we denote the set of
reals, byR+ the positive reals, byN the natural numbers, and by [k] the set{1,2, . . . , k}.
By logn we denotedlog2 ne, and byer , r ∈ Zn, ther th unit vector of lengthn (starting
with r = 0). We say that a functionε: N→R+ is negligibleif for every constantc > 0
there exists an integerκc such thatε(κ) < κ−c for all κ ≥ κc.

By default, analgorithm refers to a probabilistic Turing Machine, and anefficient
algorithmto a probabilistic polynomial time Turing Machine. We model adversaries by
nonuniform families of Boolean circuits. Thesizeof a circuit F is the number of gates
in F . By F(y), whereF is anl -input circuit andy is a string over a finite alphabet, we
denote the value of the circuitF applied to thel -bit prefix (or padding) of the binary
encoding ofy.

Whenever referring to arandomchoice of an element from a finite domainA, the
associated distribution is uniform overA, and is independent of all other random choices.
We use the following notation for defining probabilistic experiments and algorithms. By
e

R← E we denote a choice of an elemente from a distributionE (or uniformly from a
finite setE), and bye← v the assignment of the valuev to e. By A(y), whereA is an
algorithm, we denote the output distribution of the algorithmA running on inputy, where
the probability space is induced by the random coins ofA. If A is deterministic,A(y)
denotes its output value. ByPr[e

R← E; f
R← F; . . . : p(e, f, . . .)], where p(·, ·, . . .)

is a predicate, we denote the probability thatp(e, f, . . .) will be true after the ordered
execution of the assignmentse

R← E; f
R← F; . . . .

2.2. Parameters for PIR and Commodity Schemes

We let k denote the number ofdatabases, an instance of which is denotedDB j , and
m denote the number ofcommodity servers(or serversfor short), an instance of which
is denotedSh. A data string, denotedx, is held by allk databases and is unknown
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to the user and the servers. Instead of only considering the default scenario where a
single bit is retrieved, we will occasionally be interested in the more general scenario
of retrieving an`-bit record. To this end we view the data stringx as ann-tuple of
length-̀ records, wherè = 1 by default. The position, also called theindex, of a data
record which the user would like to retrieve is denoted byi , wherei ∈ Zn. Notice that
under the above notation the data string is ann-tuple from({0,1}`)n and the desired data
recordxi is a string in{0,1}`. Finally, in the computational settingκ denotes a security
parameter.

2.3. Definitions

In the following definitions of PIR and commodity-based PIR schemes we restrict our
attention to the default setting ofbit retrieval (i.e., ` = 1 andx ∈ {0,1}n). The more
general case is addressed in Section 2.4.

A PIR schemeis a randomized protocol, in which the user sends aquery to each
database and receives ananswerin return.2 At the end of the interaction, the user ap-
plies somereconstructionfunction to the answers, obtaining the desired data bitxi .
A commodity-based PIR scheme(or commodity schemefor short) consists of: (1) an
off-line commodity distribution stage, in which each server sends a (possibly different)
randomized string, calledcommodity, to the user and to each database; and (2) an on-line
retrieval stage, which proceeds similarly to an ordinary PIR scheme except that queries,
answers, and reconstruction may also depend on commodities. Since PIR schemes may
be viewed as serverless commodity schemes, their definition is derived as a special case
of the following “generic” definition.

An m-serverk-database commodity schemeC is defined by a quadruple of efficient
algorithms(comC,queC,ansC, recC), where:

• comC(1κ ,1n, h) is the commodity generation algorithm invoked by each of them
servers; given a security parameterκ, data sizen, and server identityh, it outputs
randomized commodities(cu

h, (c
db1
h , . . . , cdbk

h )), wherecu
h is sent bySh to the user

and eachc
dbj

h to the corresponding database.
• queC(1

κ ,1n, i, (cu
1, . . . , c

u
m)) outputs ak-tuple of queries(q1, . . . ,qk) generated

by the user on security parameterκ, data sizen, retrieval indexi , and commodi-
tiescu

1, . . . , c
u
m (wherecu

h is the commodity received from serverSh). If P is a PIR
scheme, we also needqueP to output an auxiliaryreconstruction informationstring
z (possibly containing some trapdoor information required for efficient reconstruc-
tion) such that reconstruction can later depend on the answers andz alone, without
depending on the indexi , the queries generated byqueP , or the random coins of
queP . Although takingz to includeall random coins and inputs ofqueP will al-
ways do, it turns out that a much shorter stringz can be used in all currently known
PIR schemes, without affecting the computational efficiency of reconstruction.3

2 A more general definition would allow multiple rounds of interaction rather than a single queries–answers
round. However, all currently known PIR schemes require only a single round of interaction.

3 In all information-theoretic schemes known to date [10], [1], [22], as well as in the computational scheme
of [9], either no such auxiliary reconstruction information is needed or onlyi is needed. In known single-
database computational schemes [23], [30], [7],z of lengthκ or κ + polylog(n) suffices (in [23], for instance,
a trapdoor consisting of the factorization of aκ-bit modulusN is sufficient for efficient reconstruction).
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This feature, which is not very useful in the original PIR setting, turns out to be
important in our context.
• ansC( j, x,qj , (c

dbj

1 , . . . , c
dbj
m )) outputs the answer of databaseDB j , 1≤ j ≤ k, on

the data stringx, queryqj , and commoditiesc
dbj

1 , . . . , c
dbj
m .

• recC((a1, . . . ,ak), (cu
1, . . . , c

u
m), z) outputs a single bit reconstructed by the user

from the answersa1, . . . ,ak, commoditiescu
1, . . . , c

u
m, and (in the case of PIR)

reconstruction informationz.

The special case of PIR. A k-database PIR schemeP is defined as a 0-serverk-
database commodity scheme. HenceP may be defined by a triple(queP ,ansP , recP),
where all commodity-related inputs to these three algorithms are omitted.

Before proceeding to specify the semantic requirements a commodity scheme must
obey, two further syntactic remarks are in place.

1. Some inputs to the functionsqueC,ansC, recC are omitted when they are not
needed. For instance, in most of our constructions all servers play a symmetric
role, in which caseh will be omitted from the inputs ofcomC . We also omit the
input 1κ whenever referring exclusively to information-theoretic schemes (which
do not require a security parameter). Finally, note that the parametersκ,n are
not given as explicit inputs toansP or recP ; however, they may be implicitly
contained in their inputs (for instance, the data stringx determinesn and a query
qj may determineκ).

2. For any schemeC we assume that bothansC and recC are deterministic. IfC is
strictly a commodity scheme (i.e., withm ≥ 1), we assume thatqueC is also
deterministic, which makes the user deterministic as well.

Any commodity scheme must satisfy both correctness and privacy requirements, de-
fined in the next subsections.

2.3.1. Correctness

A commodity scheme is said to becorrect if, at the end of the retrieval stage, the
reconstructed value is always equal toxi (assuming that all parties are honest). This
requirement may be relaxed to allow some small reconstruction error (as in [7]); we use
the perfect correctness variant for simplicity.

We write two separate correctness definitions, one for PIR and one for commodity
PIR withm≥ 1, incorporating the above syntactic remarks.

A k-database PIR schemeP is correct, if, for anyκ,n, x ∈ {0,1}n, i ∈ Zn,

Pr[((q1, . . . ,qk), z)
R← queP(1

κ ,1n, i );
(a1, . . . ,ak)← (ansP(1, x,q1), . . . ,ansP(k, x,qk)) :

recP((a1, . . . ,ak), z) = xi ] = 1,

where the probability is over the random coins ofqueP .
An m-serverk-database commodity schemeC is correct if, for anyκ,n, x ∈ {0,1}n,
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i ∈ Zn,

Pr[(cu
1, (c

db1
1 , . . . , cdbk

1 ))
R← comC(1κ ,1n,1);

...

(cu
m, (c

db1
m , . . . , cdbk

m ))
R← comC(1κ ,1n,m);

(q1, . . . ,qk)←queC(1
κ ,1n, i, (cu

1, . . . , c
u
m));

(a1, . . . ,ak)← (ansC(1, x,q1, (c
db1
1 , . . . , cdb1

m )),

. . . ,ansC(k, x,qk, (c
dbk
1 , . . . , cdbk

m ))) :

recC((a1, . . . ,ak), (c
u
1, . . . , c

u
m)) = xi ] = 1,

where the probability is over the random coins of them independent invocations of
comC .

2.3.2. Privacy

Informally, a commodity scheme is said to be(s, t)-private(and a PIR schemet-private)
if i is kept private from any collusion ofs (possibly dishonest) servers andt databases.4

We use nonuniform security definitions for convenience; the security of our constructions
extends to the uniform setting as well.

Let T ⊆ [k] be the indices oft corrupt databases and letS = {h1, . . . , hs} ⊆ [m]
be the indices ofs corrupt servers, which may distribute arbitrary commodities. We do
not restrict the computation of corrupt servers during the commodity distribution stage;
hence it may be assumed without loss of generality that commodities sent by these servers
aredeterminedby κ,n.5 We specify the (deterministic) corruption strategy of servers
from Sby a functionS∗(·, ·), such thatS∗(1κ ,1n) returns a set{(h1, ch1), . . . , (hs, chs)}
specifying the commodities sent by corrupt servers.6 We let V S∗,T

C = (CS̄,T
C , QS∗,T

C )

denote the jointviewof databases fromT , consisting of bothcommoditiesreceived from

incorrupt servers in̄S
def= [m]\S (included in the random variableCS̄,T

C ) and on-line
queries(included inQS∗,T

C ). More formally, for anyκ,n, i ∈ Zn andS, S∗, T as above,

the random variableV S∗,T
C (κ,n, i ) = (CS̄,T

C (κ,n), QS∗,T
C (κ,n, i )) is obtained as follows:

(1) conduct the probabilistic experiment appearing in the correctness definition above,
except that forl = 1,2, . . . , s replace thehl th invocation ofcomC by an assignment

from the corresponding entry ofS∗; (2) letCS̄,T
C include all commoditiesc

dbj

h with h ∈ S̄

and j ∈ T ; and (3) letQS∗,T
C include all queriesqj with j ∈ T .7 Finally, for any (fixed)

κ,n, we letC(κ,n) denote a restriction ofC to these specific parameters. Thus,V S∗,T
C(κ,n)(i )

andCS̄,T
C(κ,n) are different names for the random variablesV S∗,T

C (κ,n, i ) andCS̄,T
C (κ,n),

respectively.

4 Dishonest databases do not pose any risk to the user’s privacy in our single-round setting.
5 This follows from a standard “averaging argument”; namely, there is some fixed choice of the dishonest

servers’ coins given which the adversary’s advantage is maintained.
6 Commodities sent by corrupt servers todatabasesare irrelevant to the user’s privacy.
7 Note thatQS∗,T

C depends on the corruption strategyS∗, as the user’s queries depend on his commodities.
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Information-Theoretic Privacy. We say that the schemeC is information-theoretically
(s, t)-private (and refer to it as an information-theoretic scheme) if, for any number of
recordsn, retrieval indicesi1, i2 ∈ Zn, collusionS⊆ [m] of s servers with corruption
strategyS∗, and collusionT ⊆ [k] of t databases, the random variablesV S∗,T

C(n) (i1) and

V S∗,T
C(n) (i2) areidenticallydistributed.

Computational Privacy. In the computational setting, the above perfect privacy re-
quirement is relaxed to computational indistinguishability, parameterized by the security
parameterκ and the data sizen.8 Formally, letF be a class of functionsf: N ×N→N ,
specifying a bound on the adversary’s resources (as a function ofκ,n), and letE be a
class of functionsε: N ×N→R+, specifying a bound on the tolerated advantage of
an adversary in distinguishing between different retrieval indices.

For any two distributionsD1, D2, circuit F , and constantε > 0, we say thatF
distinguishes between D1 and D2 with anε-advantageif |Pr[F(D1) = 1]−Pr[F(D2) =
1]| ≥ ε. For anyS ⊆ [m],T ⊆ [k], ε > 0, and positive integersf, κ,n, we say that
the collusion(S, T) can ( f, ε)-breakC(κ,n), if there exists a corruption strategyS∗

for servers inS, retrieval indicesi1, i2 ∈ Zn, and a circuitF of size f , such thatF
distinguishes betweenV S∗,T

C(κ,n)(i1) andV S∗,T
C(κ,n)(i2) with anε-advantage.

We say that the schemeC is (computationally)(S, T)-private with privacy level(F, E),
if, for any functionf ∈ F , there exists a functionε ∈ E , such that for anyκ,n the col-
lusion(S, T) cannot(f(κ,n), ε(κ,n))-breakC(κ,n). In other words, everyF-bounded
adversary corrupting(S, T) should gain from its view only anE-bounded advantage in
distinguishing between any two retrieval indices. Finally, we say thatC is (s, t)-private
(with privacy level(F, E)), if it is (S, T)-private for all collusions(S, T) with |S| = s
and|T | = t . The parameters(s, t) will sometimes be referred to as theprivacy thresh-
old (in contrast to theprivacy level(F, E)). Since the default database privacy threshold
considered in other PIR works ist = 1, in the context of commodity schemes “s-private”
will stand for(s,1)-private.

Note thatC is information-theoretically(s, t)private if and only if it is computationally
(s, t)-private with privacy level(F, E) for all function classesF, E . This observation
will allow us to use the computational framework in theorems and proofs that apply to
boththe computational and the information-theoretic settings.

When referring tospecificschemes the privacy level(F, E) will usually be omitted,
under the implicit understanding that it is closely related to the strength of an underlying
intractability assumption. As a default privacy level (which takes over wheneverF, E
are omitted)F can be taken to be the class of all polynomials inκ (or equivalently
in κ + n), andE to be the class of all functionsε(·, ·) which become negligible inκ
whenevern is polynomially bounded inκ. That is,ε ∈ E if for any polynomialp(·) there
is a negligible functionε′(·) such thatε(κ,n) ≤ ε′(κ) whenevern ≤ p(κ). This default
definition corresponds to the usual “conservative” security assumptions which limit the

8 It seems more natural to let the level of privacy depend on the security parameterκ alone. How-
ever, allowing the privacy level to depend onn as well better fits constructions (as in [9] and [7]) whose
security slightly degrades withn, even when the adversary’s resources are bounded by a fixed function
of κ.
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problem size and the adversary’s power to be polynomial in the security parameter and
the adversary’s advantage to be negligible.

We finally remark that the above definition of computational privacy implies privacy
in the sense of the single-parameter definition used in [9], wheren serves both as a
data size parameter and as a security parameter. Specifically, if a schemeP is private
under our two-parameter definition with the default privacy level, then for anyc > 0 the
single-parameter schemePc defined byPc(n) = P(nc,n) is private under the single-
parameter definition. Moreover, ifP is private with a stronger privacy level, then smaller
functions ofn can be substituted forκ, as small aspolylog(n) in an extreme case (e.g.,
whenF = {2c1κ} andE = {2−c2κ} for some constants 0< c1, c2 < 1).

2.3.3. Complexity

Complexity is measured, by default, in terms of communication. Thecommunication
complexityof a PIR scheme or a commodity scheme is denoted(α, β), whereα (called
the query complexity) is the maximal number of query bits sent from the user to any
database, andβ (called theanswer complexity) is the maximal number of answer bits
sent from any database to the user. Thereconstruction information complexityof a PIR
schemeP, denotedγ , is the maximal length of the reconstruction information stringz
output byqueP .

Note that the communication complexity reflects only the communication cost of the
retrieval stage. Thecommodity complexityof a commodity scheme is denoted(δu, δdb),
whereδu (resp.δdb) is themaximalnumber of commodity bits sent from any server to
the user (resp. to any database). Since PIR schemes and commodity schemes are param-
eterized by the number of recordsn, a security parameterκ (in the computational case),
and the record sizè(to be addressed in the next subsection), the complexity measures
α, β, γ, δu, δdb may depend on these parameters. Finally, whenever the parameter` is
omitted it is understood to be equal to 1. For instance,β(κ,n) is used to denote the
answer complexity on ann-bit data string with security parameterκ.

2.4. Extending Bit Retrieval to Block Retrieval

The definitions in Section 2.3 only address the default case of bit retrieval. A more
general schemeC ′, allowing retrieval of multibit records (also referred to asblocks),
may be defined by applying the following modifications to the original definitions.
First, a record length parameter` should be optionally given as an additional input to the
algorithms comprisingC ′ (as we shall see, this option is not used in our context). Second,
the correctness definition should be strengthened to apply to every` andx ∈ ({0,1}`)n
(whererecC′ should not be restricted to return a single bit). Finally, we require the privacy
level to be independent of the record length`; i.e., we use the same definitions except for
extra universal quantifiers oǹwhere appropriate. In the remainder of this subsection
we address the special case of block retrieval for PIR schemes; the more general case of
commodity schemes can be handled similarly.

LetP be any PIR scheme, as defined in Section 2.3. We define a default extension of
P into a block retrieval schemeP ′ in the following “naive” way, which is used in [10]
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as a basis for further optimization.9 For any data stringx ∈ ({0,1}`)n and 1≤ w ≤ `,
let xw denote then-bit string obtained by taking only thewth bit from each record. To
retrieve aǹ -bit record usingP ′: (1) the user invokesqueP as inP; (2) each database
answers the user’s query by invokingansP ` times, once under eachn-bit data string
xw; and (3) the user applies the reconstruction functionrecP ` times, once for each
answer.

Note that the user’s queries in the schemeP ′ are independent of the record length`.
Hence, we have:

Claim 1 [10]. Any PIR schemeP (for bit retrieval) can be extended into a private
block retrieval schemeP ′, such thatqueP ′ = queP . Moreover, if the answer complexity
of P is β(κ,n), then the answer complexity ofP ′ is β ′(κ,n, `) = ` · β(κ,n) (and the
query complexity, reconstruction information complexity, and privacy level ofP ′ are the
same as ofP).

Relying on Claim 1 we freely use any PIR schemeP (or similarly any commodity
schemeC) on data strings of arbitrary record size, and do not involve the record size in
the privacy analysis.

3. PIR Schemes with Low Answer Complexity

Most of the commodity schemes constructed in this work can use any PIR scheme as
a building block. However, for the commodity schemes to be efficient, we are typically
interested in PIR schemes whose answer complexity is very low.

Table 1 summarizes the parameters of some PIR schemes whose answer complexity
is minimized to either a single bit, in the multi-database case, orκO(1) bits, in the
computational single-database case. The parameters of some of these schemes will be
explicitly referred to in what follows. The parameterd appearing in the table can be
substituted by any positive integer (including 1). In the “security type” column, “i.t.”
stands for information-theoretic security, “comp.” for computational security, “PRG” for
the existence of a pseudo-random generator (or equivalently one-way functions [21]),
“QRA” for the Quadratic Residuosity Assumption [20], “PRA” for the Prime Residuosity

Table 1. Parameters of some PIR schemes.

Name k t α β γ Security Type

Pk
1 k k− 1 n 1 0 i.t.
P t,d

2 td + 1 t O(n1/d) 1 0 i.t.

P3 2 1 κ · 2O(
√

logn) 1 0 comp. (PRG)
Pd

4 1 1 O(dκn1/d) κd κ comp. (QRA)
Pd

5 1 1 O(dκn1/d) κ · 2O(d) κ comp. (PRA)
P6 1 1 (κ + logn)O(1) (κ + logn)O(1) (κ + logn)O(1) comp. (8-H)

9 We use schemesP with the smallest answer complexity possible; optimization techniques from [10] and
[9] do not yield any improvement for such schemes.
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Assumption (see [30] and references therein), and “8-H” stands for the newly introduced
8-Hiding assumption (see [7]).

The schemePk
1 is the simplest one to describe: The user picksk otherwise-random

queriesq1, . . . ,qk ∈ {0,1}n whose bitwise exclusive-or is equal toei , each databaseDB j

replies with the inner product (over GF(2)) x · qj , and the user reconstructsxi by taking
the exclusive-or of thek answer bits. (This is a simple generalization of an elementary
scheme from [10].) The other schemes are variants of schemes from [10], [9], [23], [30],
and [7].
P t,d

2 is obtained by applying a small optimization to the polynomial interpolation-
based scheme from [10] (see Remark 2 in Section 6).P3 is a variant of the 2-database
computational scheme from [9]; in this scheme the user’s queries are interpreted as two
short pseudorandom “seeds,” which are expanded (independently) by the two databases
to twon-bit strings whose exclusive-or isei . The scheme can then proceed asP2

1. Details
of this scheme will appear in the journal version of [9].

The remaining schemes are all single-database schemes.Pd
4 is a variant of the scheme

from [23]. This variant and some optimized version of it (in a setting where a public
random string is available) are described in Appendix 9.2.Pd

5 , which generalizes the
construction ofPd

4 , is from [30]. Finally,P6 is from [7]. Since the main focus of this
work is on obtaining general and provably secure reductions, we use the less efficient
schemePd

4 (which is based on a more “standard” security assumption) to instantiate our
single-database results.

We stress that while the schemeP6 is essentially optimal as far as its asymptotic
complexity is concerned, the relative performance of the different schemes under “real-
life” parameters may vary. In particular, the information-theoretic schemes and the 2-
database computational schemeP3 have a better communication complexity on small
to moderately sized data strings (say, withn = 106), or on larger strings with larger
records. Moreover, these schemes are significantly more computationally efficient than
the single-database schemes, roughly corresponding to the efficiency difference between
a private-key and a public-key encryption of the entire data.

4. Atomic Single-Server Commodity Schemes

In this section we present a simple transformation from anyt-privatek-database (com-
putational or information-theoretic) PIR scheme to a(0, t)-private, single-server,k-
database commodity scheme. Single-server schemes obtained via this transformation
are referred to asatomic schemes, and are subsequently composed into schemes with
improved privacy properties.

We start with an informal description of how atomic commodity schemes are con-
structed, where for simplicity we refer here to the single-database case; a formal treatment
of the general case will follow.

Consider any 1-round single-database (computational) PIR schemeP. Such a scheme
may be viewed as the following three-stage procedure: (1) the user computes a ran-
domized queryq corresponding to the retrieval indexi (to which we sometimes refer
as a query pointing to the ith data record); (2) the database computes an answer to
this query based on the database contents; and (3) the user reconstructs thei th data
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record,xi , from the answer and some auxiliary reconstruction informationz gener-
ated along with the query. While the communication and computation costs of each
such step may vary from one scheme to another, none of the known PIR schemes
is satisfactorily efficient in both of these aspects. The following simple idea allows
us to shift most of the communication cost and a substantial part of the user’s com-
putation from the on-line protocol to an off-line stage, and from the user’s hands to
an external commodity server. Instead of having the user computeon line a query
pointing to the desired data record, we let the server performoff line the following
operations:

• Pick a random retrieval indexr .
• Compute a random queryq pointing to ther th data record, along with its associated

reconstruction informationz.
• Send the indexr along withz to the user, and the queryq to the database.

Such commodities supplied by the server can then serve as anoblivious window, pointing
to a random location in the data string which is known to the user but is computationally
hidden from the database. All that is left to the user, knowing the location of this window
relative to his retrieval index, is to specify by how much the data string should be cyclically
shifted (say, to the left) so that the desired record will be aligned with this window.
Then, using the database’s answer on the shifted data string and the reconstruction
information supplied by the server, the user can efficiently reconstruct the desired data
record. Note that since the privacy ofP guarantees thatr is kept private from the
database, the shift amount1 = i − r (mod n) sent by the user gives the database no
useful information.

The procedure we have just described is referred to as theatomic commodity scheme
based onP, and is denotedCP . Formalizing and generalizing the above procedure, we
have:

Theorem 1. LetP be any t-private, k-database PIR scheme(k ≥ 1) with communi-
cation complexity(α, β) and reconstruction information complexityγ . Then there is
a (0, t)-private, single-server, k-database commodity schemeCP with communication
complexity(logn, β), commodity complexity(logn+ γ, α), and the same privacy level
asP.10

Proof. A commodity schemeCP as required is formally described in Fig. 1. The
correctness ofCP follows from observing that when cyclically shiftingx by 1 places
to the left, the desired recordxi moves to positioni −1 = r , to which the commodity
queries point.

We turn to show thatCP is (0, t)-private with the same privacy level asP. Fix κ,
n, and a collusionT ⊆ [k] of t databases. We reduce the privacy ofCP to the pri-
vacy ofP by showing that if the collusion(∅, T) can( f, ε)-breakCP(κ,n), then the
collusion T can ( f, ε)-breakP(κ,n). Let VT

C (i ) denote the view ofT-databases in
CP(κ,n) on indexi (more precisely,VT

C (i ) is the random variableV S∗,T
CP (κ,n)(i ), defined

10 In particular, ifP is information-theoretically private, then so isCP .
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Fig. 1. Atomic single-server commodity schemeCP .

in Section 2.3, withS∗ = ∅), and similarly letQT
P(i ) denote the view ofT-databases

in P. Now, suppose thatF is a circuit of size f distinguishing with anε-advantage
betweenVT

C (i1) and VT
C (i2), for somei1, i2 ∈ Zn. By the definition ofCP , the view

VT
C (up to replicated components) isVT

C (i ) = (QT
P(R), i − R), where R is a ran-

dom variable uniformly distributed overZn. Since the random variable(R, i − R) is
distributed identically to(i − R, R) (and since the randomness ofQT

P is independent
of R), the random variableVT

C (i ) is distributed identically to(QT
P(i − R), R). Now,

since

|Pr[F(QT
P(i1− R), R) = 1]− Pr[F(QT

P(i2− R), R) = 1]| ≥ ε

then, using a standard averaging argument, there existsr0 ∈ Zn such that thisε-advantage
is maintained conditioned byR= r0. That is,

|Pr[F(QT
P(i1− r0), r0) = 1]− Pr[F(QT

P(i2− r0), r0) = 1]| ≥ ε.

Therefore, the circuitF ′ defined byF ′(q) def= F(q, r0) is a circuit of sizef distinguishing
between retrieval indicesi1− r0 andi2− r0 with anε-advantage, as required.

Finally, the communication and commodity complexity ofCP are clearly as specified,
and ifP is computationally efficient, then so isCP .

Note that total communication involving the user inCP , counting both the off-line
commodity distribution stage and the on-line retrieval stage, is dominated by the answer
complexity ofP. Section 3 contains an overview of some known PIR schemes with low
answer complexity. Such schemes, which are not very useful in the usual PIR setting,
serve as the most natural building blocks for commodity schemes.

Finally, it is important to observe that in any atomic schemeCP , a collusion of the
server with a single database can easily learni , regardless of the privacy threshold ofP.
Moreover, even an honest server with a faulty source of randomness will compromise
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the user’s privacy inCP . This obvious weakness of atomic schemes is dealt with in the
following two sections.

5. Composing Commodity Schemes

As observed above, in any atomic commodity scheme the user’s privacy is totally de-
pendent on a proper behavior of the single server. A natural approach for alleviating
this problem is to distribute the user’s trust among several servers rather than one. We
achieve this bycomposingatomic commodity schemes into multiserver schemes with
improved privacy properties.

5.1. The Single-Database Case

We start by describing the special case of composingatomic,single-databasecommodity
schemes; a more general composition operator is defined and formally analyzed in the
next subsection.

Consider two atomic single-database commodity schemes:CP1 with serverS1, and
CP2 with serverS2. The composed scheme proceeds as follows:

COMMODITIES: Each of the two servers independently distributes commodities as in the
corresponding atomic scheme. Letr1, r2 denote the random retrieval indices picked,
respectively, byS1,S2, and letq1,q2 denote the correspondingP1- andP2-queries.

RETRIEVAL: The database simulates all possible queries made by the user in the retrieval
stage ofCP1, and constructs a virtual data stringx′ whose records consist of answers to
these queries. Specifically, thel th record ofx′, 0 ≤ l < n, will consist of the answer
according toP1 to the commodity-queryq1 on the original data stringx shifted byl
records to the left. The retrieval of thei th record ofx can now be reduced to retrieval of
the1th record ofx′, where1 = i − r1 (mod n) is the query used inCP1 for retrieving
thei th record ofx. The user retrieves this1th record ofx′ using the retrieval procedure
of CP2, based on commodities supplied byS2. Knowing this record, the user can apply
to it the reconstruction procedure ofCP1 to obtainxi . Note thatx′ hasn records, exactly
as the number of records inx. The larger record size ofx′ will only affect the database’s
answer, whose size may be proportional to this record size.11

The query sent by the user in the composed scheme isi − r1 − r2. Since bothr1 and
r2 are hidden from the database and exactly one of them is hidden from each server,i is
kept private from any collusion of the database with a single server.

Intuitively, the transformation from the original data stringx to the virtual data string
x′ corresponds to anoblivious shiftof x by a random amountr1, which is known to the
user andS1 but is unknown to the database andS2. Indeed, each record ofx′ may be
viewed as an encoding, according toP1, of a corresponding shifted record fromx. Using
this notion of oblivious shifts, the retrieval stage of the composed scheme described

11 In the single-database case we consider the “naive” block retrieval of Claim 1 as a worst-case scenario.
The complexity of the composed scheme can be substantially improved ifC2 implements block retrieval in a
more efficient way. Some amortization of the cost of retrieving blocks is obtained by the scheme from [30].
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above can be viewed as follows:

• Using q1, the database obliviously shiftsx by r1 records to obtain a virtual data
stringx′; then, usingq2, the database obliviously shiftsx′ by r2 records to obtain a
virtual data stringx′′.
• The user explicitly asks for the(i − r1 − r2)th record ofx′′, from which he can

reconstructxi .

(Note that we have slightly modified the previous scheme; there the database only com-
putes the single record ofx′′ required by the user.)

The above presentation makes it conceptually easy to generalize the two-server com-
posed scheme into anm-server scheme, which keepsi private from any collusion of
the database withm− 1 servers. In such anm-server scheme the database successively
performsm oblivious shifts on the data, using commodities from them different servers,
and the user reconstructsxi from the(i −6m

h=1rh)th record of the resultant virtual data
string. Notice that with our default implementation of block retrieval (using Claim 1)
each oblivious shift increases the record size of the virtual data string by a multiplicative
factor equal to the answer size of the underlying PIR scheme. Thus, for all but very
small values ofm this approach will yield schemes with an unrealistically large answer
complexity. One potential way of avoiding this problem is by using more efficient block
retrieval techniques. This problem can also be avoided in the multi-database case, which
is discussed in Sections 5.2 and 6.

Before introducing a more general multi-database composition operator, we state the
result obtained by composing atomic single-database schemes in the manner described
above.

Theorem 2. LetP be a single-database PIR scheme with communication complexity
(α, β) and reconstruction information complexityγ . Then, for any constant m≥ 1,
there is an m-server, (m − 1)-private, single-database commodity schemeCm

P , with
communication complexity(logn, βm), commodity complexity(logn + γ, α), and the
same privacy level asP.

A generalization of Theorem 2 is formally proved in the next subsection. As a special
case, we may obtain the following:

Corollary 1. For any constant integers m,d ≥ 1 there is an m-server, single-database,
(m−1)-private computational commodity scheme(assuming QRA),with communication
complexity(logn, κO(1)) and commodity complexity(logn,O(κ · n1/d)).

Proof. Such a scheme can be obtained by applying Theorem 2 to the PIR schemePd
4 .

More precisely, the actual communication complexity is(logn,O(κmd)); for constant
m andd, this is polynomial inκ.12

12 Fixing the number of databases [10], [1], or the complexity parameterd [23], has been the convention
in other PIR related works. In Section 6 we present a (multi-database) scheme whose complexity is also
polynomial inm.
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We note that since the schemePd
4 allows us to trade answer complexity for query

complexity (an extreme case isd = 1, in which the query complexity is linear inn
and the answer complexity is onlyκ), a similar tradeoff can be established between the
commoditycomplexity and thecommunicationcomplexity in them-server scheme of
Corollary 1. Finally, this scheme can be made more efficient ifPd

5 orP6 is used instead
of Pd

4 (see Section 3).

5.2. Multi-Database Composition

Known multi-database PIR schemes possess several advantages over their single-database
counterparts. First, they allow information-theoretic user privacy, which cannot be a-
chieved at all in the single-database case (unless the entire database is sent to the user
[10]). Other advantages are their computational complexity, which is typically much
more modest, and their superior communication complexity on moderately sized data
strings. Finally, and in our context most importantly, they can potentially have the small-
est answer complexity possible—as low as a single bit (this is the case for the schemes
Pk

1,P
t,d
2 ,P3). In contrast, it is not hard to observe that a very low answer complexity

implies a poor level of computational privacy in single-database PIR schemes. Since the
bottleneck of the previous multiserver solutions was the answer complexity of the under-
lying PIR schemes, multi-database schemes seem like better candidates for commodity
schemes with a high threshold of server-privacy.

However, when trying to apply the composition technique described in the previous
subsection to multi-database commodity schemes, the following problem arises. Con-
sider an attempt to compose two atomic multi-database schemes,CP1 andCP2. When
letting each database compute a virtual data string as defined for the single-database
case, strings computed by different databases may differ; indeed, these strings depend
on differentP1-queries sent as commodities to the databases. Consequently, there is
not enough data replication to allow using the multi-database schemeP2 for retrieval
from the virtual data strings. The latter problem may be overcome by increasing the
number of databases, thereby introducing sufficient additional data replication to allow
the second-level retrieval. This idea is used in the following formalization of a composi-
tion operator, which generalizes the composition technique described in the previous
subsection.

Consider any two commodity schemes,C1 andC2, where eachCb is anmb-serverkb-
database scheme with communication complexity(αb, βb) and commodity complexity
(δu

b, δ
db
b ). We define a composed schemeC = C1 ◦ C2 usingm = m1 + m2 servers

and k = k1k2 databases. For convenience, server indices will be taken from the set
({1} × [m1]) ∪ ({2} × [m2]) and database indices from the set [k1] × [k2].

The composed schemeC, on parametersπ
def= (κ,n), will invoke the schemeC1 on the

same parametersπ and the schemeC2 on the parametersπ ′ def= (κ,n′(π)), wheren′(κ,n)
is the size of the query domain ofC1(κ,n). Note that ifC1 is an atomic scheme, then
n′(π) = n, andn′(π) ≈ 2α1(π) in general. Hence, we require thatα1(π) = O(logn) for
C to be computationally efficient. The schemeC proceeds as follows.

COMMODITIES: Each serverS1,h1 generates commodities asSh1 in C1(π), except that
each commodity originally sent fromSh1 to DB j1 will now be sent fromS1,h1 to all
databasesDB j1, j , j ∈ [k2]. Similarly, each serverS2,h2 generates commodities asSh2 in
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C2(π
′), except that each commodity originally sent fromSh2 toDB j2 will now be sent

from S2,h2 to allDB j, j2, j ∈ [k1].

RETRIEVAL:

1. The user computesk1 queries(q1, . . . ,qk1) pointing to the retrieval indexi as
in C1(π) (with commodities from serversS1,h); then, viewing each queryqj1 as
a retrieval index, the user computesk2 queries(qj1,1, . . . ,qj1,k2) pointing toqj1
according toC2(π

′) (using C2-commodities from the serversS2,h). Each query
qj1, j2 is sent to the databaseDB j1, j2.

2. Each databaseDB j1, j2 computes a virtual data stringx( j1), consisting ofn′ records
of sizeβ1, where each record contains an answer to a possible user’s query in
C1. Specifically, thel th record ofx( j1) is the answer, according toC1 (and using
C1-commodities), to thel th retrieval query onx. The databaseDB j1, j2 replies to
the user’s query by simulatingC2 on the data stringx( j1) and the user’s queryqj1, j2.

3. The user reconstructsxi by first recovering each entryx( j1)
qj1

, j1 ∈ [k1], from the
answers ofDB j1,1, . . . ,DB j1,k2 (using the reconstruction function and commodities
of C2), and then applying the reconstruction function ofC1 to the resultant values.

A formal definition of the composed schemeC is given in Fig. 2. Its correctness follows
directly from the correctness ofC1, C2. The following lemma includes a straightforward
complexity analysis.

Fig. 2. Composed commodity schemeC1 ◦ C2.
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Lemma 1. The communication complexity ofC is (α2(π
′), β1(π) · β2(π

′)), and its
commodity complexity is(max{δu

1(π), δ
u
2(π

′)},max{δdb
1 (π), δ

db
2 (π

′)}). Furthermore, if
the query domains ofC1, C2 are of size n each, thenπ = π ′ = (κ,n); hence in this case
the communication complexity ofC becomes(logn, β1 · β2) (with query domain of size
n). Finally, if α1 = O(logn), thenC is computationally efficient.

We turn to analyze the privacy ofC. Let S= ({1}×S1)∪ ({2}×S2) be a set of corrupt
servers, and letT = T1× T2 be a set of databases. We reduce the(S, T)-privacy ofC to
boththe(S1, T1)-privacy ofC1 and the(S2, T2)-privacy ofC2. The reduction can be made
tighter and cleaner in the case thatC1 andC2 are either atomic schemes or compositions
of atomic schemes. More generally, such a tighter reduction is possible whenever the
composed schemes meet the following stronger privacy requirement.

Definition 1. We say that astrong collusion(S, T) can( f, ε)-breakC(κ,n) if, for some
circuit F of size f , indicesi1, i2 ∈ Zn, corruption strategyS∗, andarbitrary function
help,

|Pr[F(CC(i1),help(QC(i1))) = 1]− Pr[F(CC(i2),help(QC(i2))) = 1]| ≥ ε,

whereCC(i ) = CS̄,T
C(κ,n)(i )andQC(i ) = QS∗,T

C(κ,n)(i ). We say thatC isstrongly(s, t)-private
(with a specified privacy level) if it satisfies the privacy definition from Section 2.3 with
respect to strong collusions.

Note that a strong collusion may perform an arbitrary (unbounded) computationhelp
on the queries alone, followed by a bounded computation on the commodities and the
output ofhelp.

The following lemma may be proved very similarly to Theorem 1.

Lemma 2. For any t-private PIR schemeP, the atomic commodity schemeCP is
strongly(0, t)-private with the same privacy level asP.

Lemma 3. Fix κ,n (which determineπ,n′, π ′), and suppose that the strong collusion
(resp. collusion) (S, T) can( f, ε)-breakC(π). Then:

1. The strong collusion(resp. collusion) (S1, T1) can( f, ε)-breakC1(π) (resp. ( f +
f2(π

′), ε)-breakC1(π), where f2(π ′) is the size of circuitry required for computing
queC2(π ′)).

2. The strong collusion(resp. collusion) (S2, T2) can( f, ε)-breakC2(π
′).

Proof. We use the following simplified notation. By(C1,C2, Q1(i,C1), Q(i,C1,C2))

we denote the joint random variables associated with the invocation ofC(π), where
C1 andC2 are, respectively, theC1(π)- andC2(π

′)-commodities,Q1(i,C1) are the in-
termediateC1-queries computed by the user as a function of the indexi and his com-
modities fromC1, and Q(i,C1,C2) are the finalC-queries. We writeQ(i,C1,C2) =
Q2(Q1(i,C1),C2), indicating thatQ is obtained by applyingqueC2(π ′), with commodi-
tiesC2, to each of thek1 entries ofQ1. Finally, using the usual superscripts to denote



Universal Service-Providers for Private Information Retrieval 57

restrictions of these variables or specify a corruption strategy, the view of the(S, T)-
collusion with corruption strategyS∗ is (up to replicated components)

((CS̄1,T1
1 ,CS̄2,T2

2 ), Q
S∗2 ,T2

2 (Q
S∗1 ,T1

1 (i,C1),C2)),

whereS∗b is the restriction ofS∗ to Cb-servers.
If the strong collusion(S, T) can( f, ε)-breakC(π), then there is a corruption strategy

S∗, a circuitF of size f , indicesi1, i2 ∈ Zn, and functionhelp, such thatF distinguishes
between

((CS̄1,T1
1 ,CS̄2,T2

2 ),help(Q
S∗2 ,T2

2 (Q
S∗1 ,T1

1 (i b,C1),C2))), (1)

b = 1,2, with an ε-advantage. If an ordinary collusion(S, T) can( f, ε)-breakC(π),
then the above holds withhelprestricted to be the identity function.

We start by proving the first claim. Using an averaging argument, there exist some fixed
commoditiesc2 output by allC2-servers (extendingS∗2) given which theε-advantage of
F is maintained. That is, conditioning byc2 and slightly bending corruption strategy
notation,F distinguishes between

((CS̄1,T1
1 , cS̄2,T2

2 ),help(Qc2,T2
2 (Q

S∗1 ,T1

1 (i b,C1), c2))),

b = 1,2, with an ε-advantage. Hence, lettinghelp′(q) = help(Qc2,T2
2 (q, c2)), there

is a circuit of size f distinguishing between(CS̄1,T1
1 ,help′(Q

S∗1 ,T1

1 (i b,C1))), b = 1,2,
with an ε-advantage, implying that the strong collusion(S1, T1) can ( f, ε)-breakC1.
The case of an ordinary collusion can be handled similarly: ifhelp in (1) is the identity
function, to( f + f2(π

′), ε)-breakC1(π) one may use a circuitF1 such thatF1(c,q) =
F((c, cS̄2,T2

2 ), Qc2,T2
2 (q, c2)), where the evaluation ofQ2 can be handled with at most an

f2(π
′) extra cost to the size ofF .

Finally, to prove the second claim, we condition the view (1) by fixedC1-commodities
c1 which maintain theε-advantage ofF . That is, the circuitF distinguishes between

((cS̄1,T1
1 ,CS̄2,T2

2 ),help(Q
S∗2 ,T2

2 (Qc1,T1
1 (i b, c1),C2))),

b = 1,2, with anε-advantage. Lettingi ′b = Qc1,T1
1 (i b, c1), there is a circuit of sizef

distinguishing between(CS̄2,T2
2 ,help(Q

S∗2 ,T2

2 (i ′b,C2))), b = 1,2. We may conclude that
the strong collusion(S2, T2) can( f, ε)-breakC2(π

′), and ifhelpis the identity function,
then this holds for an ordinary collusion as well.

Lemma 4. If C1 is strongly(s1, t)-private andC2 is strongly(s2, t)-private, both with
privacy level(F, E) and query domain of size n, thenC is strongly(s1+s2+1, t)-private
with privacy level(F, E).

Proof. Since both query domains are of sizen, we haveπ ′ = π = (κ,n). Now
fix π , and suppose that some strong collusion(S, T), where|S| = s1 + s2 + 1 and
|T | = t , can ( f, ε)-breakC(π). For b = 1,2, let Sb = {h: (b, h) ∈ S}, and let
T1 = { j1: ∃ j ( j1, j ) ∈ T} andT2 = { j2: ∃ j ( j, j2) ∈ T}. The strong collusion(S, T̃),
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whereT̃ = T1 × T2, can also( f, ε)-breakC(π), sinceT ⊆ T̃ . Moreover, both|T1| ≤ t
and|T2| ≤ t , and either|S1| ≤ s1 or |S2| ≤ s2. It follows by Lemma 3 that in the first
case (|S1| ≤ s1) there is a strong(s1, t)-collusion which can( f, ε)-breakC1(π), and
in the second case (|S2| ≤ s2) there is a strong(s2, t)-collusion which can( f, ε)-break
C2(π).

A direct application of the composition tool to atomic schemes of the previous section
thus gives the following.

Theorem 3. LetPk be a t-private, k-database PIR scheme with communication com-
plexity (α, β), and reconstruction information complexityγ . Then, for any constant
m ≥ 1, there is an m-server, (m− 1, t)-private, km-database commodity schemeCm

Pk ,
with communication complexity(logn, βm), commodity complexity(logn+ γ, α), and
the same privacy level asPk.

Proof. A schemeCm
Pk as required can be obtained by composingm atomic commodity

schemes based onPk in an arbitrary order. Complexity, privacy, and computational
efficiency (for a constantm) follow by induction from the claims about the composition
operator. (Complexity and efficiency follow from Lemma 1 and privacy from Lemmas 2
and 3). For the sake of concreteness, an explicit description of such a composed scheme
is given in Fig. 3.

Remark 1. It can be readily verified that in the single-database case (k = 1), all servers
in the composed schemeCm

Pk play a symmetric role (i.e.,comC(κ,n, h) is independent

Fig. 3. Composedm-server commodity schemeCm
Pk .
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of h). In the multi-database case, however, despite using the same commodity generation
algorithm, each server sends its commodities to a different set of databases. By letting
each server simulate allm servers, the servers’ role can always be made symmetric at
the expense of increasing the commodity complexity by a factor ofm.

“Plugging in” the schemeP3 in Theorem 3, we obtain the following:

Corollary 2. For any constant m≥ 1 there is an m-server, (m − 1)-private, 2m-
database computational commodity scheme, with communication complexity(logn,1)

and commodity complexity(logn, κ · 2O(
√

logn)) (assuming the existence of a pseudo-
random generator).

We remark that although the number of databases in the above corollary grows ex-
ponentially with the privacy thresholds, this overhead is arguably tolerable for small
values ofs such as 1 or 2.

6. Polynomial-Interpolation-Based Commodity Schemes

In all of the schemes obtained in the previous section, the total communication cost of
retrieval grows exponentially with the server-privacy thresholds (though polynomial in
logn andκ for a fixed s). This is clearly the case with the single-database scheme of
Theorem 2, where the answer of this single database grows exponentially withm, but
is also the case with schemes obtained via Theorem 3, where communication with each
database may be only logarithmic inn (and independent ofm whenβ = 1), but the
number of databases grows exponentially withm.

In this section we extend techniques from [10], based on the method of low-degree
polynomial interpolation (see [3] and [4]), to obtain multi-database commodity schemes
which avoid this exponential growth of communication. In particular, achievings-privacy
would requires+ 1 servers,s+ 2 databases, and logn + 1 communication with each
database. This makes the total communication cost of retrieval grow only logarithmically
in n andlinearly in the privacy thresholds.

We use the following two lemmas.

Lemma 5. Let n be an integer and q a prime power, let yh represent a sequence of
variables yh0 , yh

1 , . . . , yh
n−1, and letδi1,i2 denote Kronecker’s function(i.e., δi1,i2 equals

1 if i 1 = i2 and0 otherwise). Then for any m≥ 1 and i ∈ Zn there exists a degree-m
multivariate polynomial Pmi (y

1, y2, . . . , ym) in m · n variables overGF(q), such that,
for every r1, . . . , rm ∈ Zn,

Pm
i (er1, . . . ,erm) = δi,r ,

where r=∑m
h=1 rh (mod n).

Moreover,Pm
i can be evaluated in polynomial time (in the size of its inputs).
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Proof. Fixing n andq, define the following sequence of polynomials:P1
i (y

1) = y1
i

and

Pm
i (y

1, . . . , ym) =
∑
w∈Zn

Pm−1
w (y1, . . . , ym−1) · ym

i−w,

where the subtractioni − w is taken modulon. It easily follows by induction onh that
Pm

i as defined above meets the specified requirements. SincePh def= (Ph
0 , . . . , Ph

n−1) can
be efficiently evaluated given the values ofPh−1, the values ofPm can be efficiently
computed on a given assignment by iterating the evaluation of allPh, whereh runs from
1 tom.

The next lemma slightly improves a similar bound implicit in [10].

Lemma 6. Let l,d be positive integers, and let q> d+1be a prime power. Then there
exist nl ,d

def= (l+d
d

)
degree-d multivariate polynomials pi (y1, . . . , yl ), 0 ≤ i < nl ,d, and

assignmentsvi ∈ GF(q)l , 0 ≤ i < nl ,d, such that pi1(vi2) = δi1,i2 for all 0 ≤ i1, i2 <

nl ,d.

Proof. The existence of suchpi , vi can be easily derived from the following facts:

• the number of degree-d monic monomials13 overy1, . . . , yl is
(l+d

d

)
(as the number

of ways for placing at mostd identical balls inl distinct bins);
• whend < q− 1 these monomials are linearly independent, where each monomial

p is identified in a natural way with the vectorup ∈ GF(q)q
l

such thatup
y1···yl =

p(y1, . . . , yl ).

Now, since thenl ,d × ql matrix whose rows are all the vectorsup is of full rank,14 it is
row-equivalent to a matrixAof whichnl ,d columns induce an identity matrix. Identifying
each of thesenl ,d columns with an assignmentvi and each linear combination used for
obtaining a row ofA with a corresponding polynomialpi , the desired result is obtained.

An explicit construction of suchpi , vi , slightly improving a construction from [10],15

is described in the following. Letmi (y1, . . . , yl ) be thei th degree-d monic monomial
(say, according to lexicographic order). With eachmi associate a “characteristic vector”

vi = (vi
1, . . . , v

i
l ), such thatmi = ∏l

j=1 y
vi

j

j . Letting y0
def= d −∑l

j=1 yj and vi
0

def=
d −∑l

j=1 v
i
j (= d − deg(mi )), definepi as

pi (y1, . . . , yl ) =
l∏

j=0

vi
j−1∏

k=0

yj − k

vi
j − k

.

13 We define a degree-d monic monomial to be the product ofat most d, not necessarily distinct, variables;
“monic” indicates that the coefficient is 1.

14 Here and in the following, ana× b matrix is said to be of full rank if its rank is equal to min(a,b).
15 The construction in [10] implies a similar bound withnl ,d =

(
l+d−1

d

)
, utilizing only the

(
l+d−1

d

)
mono-

mials whose degree isexactly d.
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Since
∑l

j=0 v
i
j = d, each pi is of degreed. It is straightforward to verify that the

constructedpi , vi meet the requirements.

It is interesting to note that the bound
(l+d

d

)
in the lemma is tight, as it coincides

with the dimension of the linear space of degree-d multivariate polynomials (which
is spanned by the degree-d monic monomials). This means that the application of the
polynomial interpolation technique to PIR, as in [10], in a sense cannot be pushed any
further.

Theorem 4. Let m, t,d be positive integers, let k
def= mtd + 1 and q be a prime

power greater than k+ 1. Let ln,d denote the smallest integer l such that
(l+d

d

) ≥ n.
Then there is an(m − 1, t)-private information-theoretic commodity schemeCm,t,d,
with m servers, k databases, communication complexity(logn, logq), and commodity
complexity(logn, ln,d · logq). Moreover, this scheme can be applied to data strings
whose records are elements ofGF(q) (rather than single bits) at the same cost.

Proof. Let k = mtd+1 andl = ln,d, let pi , vi be as promised by Lemma 6, and letPm

be as promised by Lemma 5. We view the data bits (or records) as elements of GF(q).
A commodity schemeCm,t,d as required is described in the following:

COMMODITIES: Each serverSh, 1≤ h ≤ m:

1. Picks a random indexrh ∈ Zn, which is sent as a commodity to the user, and
computes the corresponding assignmentvrh .

2. Independently shares each entry ofvrh according to Shamir’s secret sharing scheme
[29] with privacy thresholdt , over GF(q). Formally, for eachwth entryvrh

w , 1 ≤
w ≤ l , and each databaseDB j , Sh sends toDB j the sharef h

w(θj ), where f h
w is

a random degree-t (univariate) polynomial with free coefficientvrh
w , and eachθj ,

1 ≤ j ≤ k, is a distinct nonzero element in GF(q) associated withDB j . We let
µh, j denote thel -tuple of shares sent fromSh toDB j .

RETRIEVAL:

1. U sends to each database the query1
def= i −∑m

h=1 rh (mod n).
2. Each databaseDB j replies with

aj
def=
∑
w∈Zn

xw+1 · Pm
w (p(µ

1, j ), . . . ,p(µm, j )),

wherep = (p0, p1, . . . , pn−1), andw +1 is computed modulon.
3. U reconstructs by interpolation:xi is taken to be the free coefficient of the (unique)

degree-mtd univariate polynomialp over GF(q) such thatp(θj ) = aj , j =
1, . . . , k.

PRIVACY: Let S= [m]\{h0} be a set ofm−1 corrupt servers with corruption strategyS∗,
and letT ⊆ [k] be a set oft corrupt databases. The privacy of the scheme follows from
the fact that the collusionS, T cannot obtain any information about the indexrh0 picked
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by the remaining server. More formally, for anyn, i the viewV S∗,T
Cm,t,d

(n, i ) includes:

• commoditiescT
h0

sent by the incorrupt serverSh0 to databases fromT ;
• the user’s query1 = i −∑m

h=1 rh (mod n), where all indicesrh exceptrh0 are
determined by corrupt servers (as specified byS∗).

Now, the commoditiescT
h0

consist ofl independentt-tuples of elements from GF(q),
each containingt shares generated by at-private Shamir’s secret-sharing. It follows that
cT

h0
is distributed uniformly over GF(q)lt , independently ofrh0. Sincerh0 is uniformly

distributed overZn, we may conclude that the joint view(cT
h0
,1) is uniformly distributed

over GF(q)lt × Zn, independently ofi .

CORRECTNESS: It suffices to show that the points(θj ,aj ), j ∈ [k], lie on a degree-mtd
(univariate) polynomial whose free coefficient isxi . This can be argued in a straightfor-
ward way by tracing the computation of the answersaj . For eachh ∈ [m] andu ∈ [l ],
the points(θj , µ

h, j
u ), j ∈ [k], lie on a degree-t polynomial (namely, the polynomialf h

u
picked by the user) whose free coefficient isvrh

u . Since eachpw is of degreed, for any
h ∈ [m] andw ∈ Zn the points(θj , pw(µh, j )) lie on a degree-td polynomial whose free
coefficient ispw(vrh), which by Lemma 6 equalsδe,rh . Finally, since eachPm

w is of de-
greed, for eachw ∈ Zn the points(θj , Pm

w (p(µ
1, j ), . . . ,p(µm, j ))) lie on a degree-mtd

polynomial whose free coefficient isPm
w (er1, . . . ,erm), which by Lemma 5 is equal to

δw,r (wherer =∑ rh). It follows that the points(θj ,aj ) lie on a degree-mtdpolynomial
whose free coefficient is

∑
w∈Zn

xw+1 · δw,r = xr+1 = xi . This concludes the proof of
Theorem 4.

Remark 2. When retrieving a single-bit, the schemeCm,t,d can be converted into a
similar scheme, in which each database replies with asingleanswer bit, and the user
takes the exclusive-or of the answers to obtainxi . We briefly describe how this is done.
Observe that inCm,t,d the user reconstructsxi by computing afixedlinear combination
over GF(q) of thek field elements replied by the databases. Thus, as a first step we can
let each database multiply its original answer by the corresponding coefficient, so that
reconstruction consists of computing thesumof all answers over GF(q). Then, ifq is
chosen to be a power of 2 (q = 2dlog(k+1)e will suffice) it is enough to send the user only
the “least significant bit” of each answer.

Combining the above remark with the fact thatln,d = O(n1/d) for any constantd, we
have the following corollary of Theorem 4:

Corollary 3. For any constants s, t,d there is an(s, t)-private information-theoretic
commodity scheme with s+ 1 servers, k = dt(s+ 1) + 1 databases, communication
complexity(logn,1) and commodity complexity(logn,O(n1/d)).

7. Multiple-Query Schemes

In this section we show that the commodity complexity of previous schemes can be
amortized over multiple queries made by the user.
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A ρ-queryPIR or commodity scheme can be defined using a straightforward extension
of the single-query definitions; the generalized privacy requirement should assert that any
two retrievalindex vectorsi = (i1, . . . , iρ) andi′ = (i ′1, . . . , i ′ρ) cannot be distinguished
(in the appropriate sense) by the adversary. Any commodity schemeC (or PIR scheme
P) can be extended into aρ-query scheme usingρ parallel and independent repetitions.
This extension is referred to as thenaive q-query extensionof C. It follows by a standard
hybrid argument (see [14]) that ifC is private with privacy level(F, E), then its naive
ρ-query extension is private with privacy level(F, ρE), whereρE def= {ρε: ε ∈ E}.
We show that in the case of our commodity schemes, the commodity cost of the naive
ρ-query extension can be reduced.

We start with a motivating example. Suppose that the user wishes to retrieve two
records, with (arbitrary) indicesi1, i2, using a 1-private single-database commodity
schemeC2

P , whereP is some single-database PIR scheme. In the naive 2-query ex-
tension ofC2

P , the scheme is independently invoked twice in parallel. The retrieval cost
of this solution is twice as large as that for a single query, and so is its commodity cost.
The total number of commodity pairscu, cdb generated by the two servers will thus be
four (each server generates two pairs, one for each retrieval). Note that one cannot use the
same commodities for the two retrievals, since this would reveal the differencei1− i2 to
the database, potentially disclosing too much information about what the user is looking
for. We now show that using an additional server, thetotal commodity cost of the above
scheme can be improved to three commodity pairs of the same size as before. Consider
a scheme in which each of the three serversS1,S2,S3 sends a single commodity pair, as
in the original single-query scheme, and theni1 is retrieved using the schemeC2

P with
commodities fromS1,S2, andi2 is retrieved using the same scheme with commodities
fromS2,S3. The view of the database will consist of the three commodities supplied by
the different servers, as well as the user’s queriesi1 − r1 − r2 andi2 − r2 − r3. It is not
hard to verify that the joint distribution of these queries reveals nothing about(i1, i2)

as long as at least two ofr1, r2, r3 are kept private. Assuming that at most one server
is dishonest, the (computational) privacy of at least two of the three indices is ensured.
Summarizing, we have obtained a 1-private 3-server scheme for retrieving two records,
with the same retrieval complexity as the naive 2-server scheme, but with a lower com-
modity cost (three commodities instead of four). In the following we show how this can
be generalized to obtain substantial savings in the commodity cost, asymptotically by
up to a multiplicative factor ofs+ 1.

Theorem 5. Assume n is a prime power, and let G be a full-rankρ ×m matrix over
GF(n) such that the Hamming weight of every row in G isw, and G generates a
linear code whose minimal distance is d. Let Cw be a commodity scheme obtained
via Theorems2 or 4; in particular, Cw is a w-server, k-database, (w − 1, t)-private
commodity scheme with communication complexity(logn, β)and commodity complexity
(logn, δdb), in which all servers play a symmetric role. Then there is an m-server, k-
database, (d−1, t)-private commodity schemeCm

ρ for ρ retrievals, with communication
complexity(ρ logn, ρβ) and commodity complexity(logn, δdb). Moreover, Cm

ρ has the
privacy level of the naiveρ-query extension of its underlying PIR schemeP (and is
information-theoretically private ifCw is obtained via Theorem4).
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Proof. Observe that in every schemeCw as above, the user’s query is of the form
i−∑w

h=1 rh, where eachrh is supplied by a different server. We denote byCw[λ1, . . . , λw],
whereλ1, . . . , λw are fixed nonzero elements of GF(n), a generalization ofCw in which
the user’s query isi −∑w

h=1 λhrh (i.e., Cw = Cw[1,1, . . . ,1]). In case of a scheme
Cw obtained via composition ofw atomic single-database schemes (Theorem 2), such a
generalization can be realized by modifying the definition of thehth composed atomic
scheme so that the user’s query is1 = i − λhr (instead ofi − r ), and each database
replies with an answer on a databasex′ such thatx′j = xλh· j+1 (instead of replying onx
cyclically shifted by1). Schemes obtained via the polynomial interpolation technique
(Theorem 4) can be appropriately generalized by a straightforward modification of the
polynomialsPm

i from Lemma 5.
We now define the schemeCm

ρ .

COMMODITIES: Each serverSh, 1≤ h ≤ m, sends commodities as a single server inCw.

RETRIEVAL: Letgu
1, . . . , g

u
w denote the nonzero entries in theuth row ofG, andhu

1, . . . , h
u
w

their corresponding columns. Then, for each retrieval indexi u, 1≤ u ≤ ρ, the user and
the databases execute the retrieval protocol ofCw[gu

1, . . . , g
u
w], using commodities sup-

plied byShu
1
, . . . ,Shu

w
.

The correctness ofCm
ρ follows directly from the correctness of the schemesCw and

from the fact that all servers inCw play a symmetric role. Since each of them servers
sends commodities for a single retrieval, as inCw, the commodity complexity is as
indicated. The communication complexity is the same as that ofρ retrievals usingCw.

It remains to show that the schemeCm
ρ is (d − 1, t)-private. LetS be a set ofd − 1

corrupt servers and letT be a set oft databases. SinceG generates a linear code with
minimal distanced, theρ × (m− d + 1) matrix GS̄, obtained by restrictingG to its
columns with indices from̄S, is of full rank (otherwise there exists a nonzero codeword
whose Hamming weight is smaller thand). It follows that there is a server setS′ of size
m− ρ, S⊆ S′, such that the (square) matrixGS̄′ is nonsingular. If the collusion(S, T)
can( f, ε)-breakCm

ρ (κ,n), then the same holds for the (larger) collusion(S′, T).
Now, fix κ,n, and corruption strategyS′∗, and letR = (R1, . . . , Rm) be a random

variable consisting of the indices sent as commodities to the user. Note that the entriesRh

with h ∈ S̄′ are uniformly and independently distributed over GF(n), and each remaining
entry Rh, h ∈ S′, has some fixed valuerh determined byS′∗(κ,n). The user’s query (to
each database) isi−GR, wherei = (i1, . . . , iρ) is his index vector. The commodities sent
from servers in̄S′ to databases inT include queries from|S̄′| independent invocations of
an underlying PIR schemeP(κ,n), where each invocation uses a corresponding entry
of R as its retrieval index; we denote this joint distribution of commodities byQP(RS̄′).
The joint view of databases fromT on index vectori is VC(i) = (QP(R), i − GR).

Now, suppose there are two index vectorsi1, i2 and a circuitF of size f such thatF dis-
tinguishes betweenVC(i1) andVC(i2)with anε-advantage. That is,F distinguishes with
anε-advantage between(QP(RS̄′)QP(r S′), ib −GS̄′RS̄′ −GS′ r S′), b = 1,2. Using the
independence ofQP(RS̄′) andQP(r S′), there exists a circuitF ′ of size f distinguishing
with anε-advantage between(QP(RS̄′), i

′
b−GS̄′RS̄′), b = 1,2, wherei′b = ib−GS′ r S′ .

Finally, since for any index vectori the random variable(QP(RS̄′), i −GS̄′RS̄′) is iden-
tically distributed to(QP(G

−1
S̄′ (i − RS̄′)),RS̄′), we may apply yet another averaging

argument to conclude that for some index vectorsi′′1, i
′′
2 there is a circuitF ′′ of size f
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distinguishing betweenQP(i′′1) andQP(i′′2) with anε-advantage. Hence we have shown
thatCm

ρ is (d − 1, t)-private, with the same privacy level as that of the naiveρ-query
extension of its underlying PIR schemeP.

Remark 3. The condition onG in Theorem 5 can be relaxed to allow rows with
different Hamming weight inG; in such cases,w can be taken as themaximalrow
weight inG. This generalization, however, is not very useful for our purposes.

In the following we focus on the case wherew = d, in which Theorem 5 induces
no penalty in the communication cost or the number of databases of the multiquery
scheme. This restriction motivates the following problem: Given a prime powern and
positive integersρ,d, find a minimal-length linear code over GF(n) which is generated
by ρ linearly independent codewords of weightd and whose minimal distance isd.
We let m(n, ρ,d) denote this minimal length, corresponding to the minimal number
of commodity-tuples which by Theorem 5 are sufficient for performingρ independent
(d− 1)-private retrievals from ann-record data string, with no penalty in the communi-
cation complexity or the number of databases. The commodity costm(n, ρ,d) should be
compared with the cost of the corresponding naive extension scheme, whosed servers
distribute a total ofdρ commodity-tuples. For instance,m(n, ρ,2) = ρ + 1, as the
ρ × (ρ + 1) matrix

G =


1 1 0 0 · · · 0
0 1 1 0 · · · 0

. . .

0 0 . . . 0 1 1


generates (over GF(n)) a code of distance 2, thus generalizing the motivating example
from the beginning of the section to an asymptotic savings factor of 2 for 1-private
schemes.

More generally, we have:

Fact 1. For any n, ρ,d such that n≥ ρ − 1, m(n, ρ,d) = ρ + d − 1.

Proof. For n, ρ,d as above, there exist [ρ + d − 1, ρ,d] linear codes over GF(n)
(see Chapter 11 of [25]). Theρ × (ρ + d − 1) generating matrixG of such code
can be transformed via elementary row operations to a matrixG′ generating the same
code, which contains aρ×ρ identity submatrix. Since the Hamming weight of each row
of G′ is at most(ρ+d−1)−ρ+1= d, we have shown thatm(n, ρ,d) ≥ ρ+d−1. On
the other hand, it follows from the Singleton bound (see p. 33 of [25]) thatm(n, ρ,d) ≤
ρ + d − 1.

We remark that the requirementn ≥ ρ − 1 is necessary for the above bound to hold.
Luckily, in most plausible situationsn is significantly larger thanρ,16 in which case the
following corollary of Fact 1 applies.

16 Frequently changingsmalldatabases can yield exceptions to this rule.
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Corollary 4. Assuming that the number of queriesρ is smaller than the database size
n, Theorem5 can asymptotically save a factor of s+ 1 in the amortized commodity cost
of multiquery(s, t)-private schemes obtained via Theorems2, 3,or 4. If the number of
servers is limited to m0, m0 > s, the amortized savings factor is(s+1) · ((m0−s)/m0).

8. Commodity Testing

So far we have only addressed the goal of protecting the user’s privacy, without consid-
ering issues of correctness in the presence of faulty parties. In this section we consider
the problem ofcommodity testing, that is, verifying whether commodities provided by
a given server are valid.

We restrict our attention to commodities for which there exists a PIR schemeP, such
that the user’s commodity is some retrieval indexr (possibly along with reconstruction
information), and the databases’ commodities consist of queries, generated according to
P, pointing tor . We note that commodities used in atomic schemes, and hence also in
the composition of such schemes, are of this type.Correctnessof such commodities is
defined as follows.

Definition 2. Given a PIR schemeP, data sizen, and corresponding commodities
c = ((r, z), (q1, . . . ,qk)) (supposedly output bycomCP (κ,n) for someκ), the commodities
c are said to becorrect on a data string x, x ∈ {0,1}n, if recP((a1, . . . ,ak), z) = xr ,
whereaj = ansP( j, x,qj ); their correctness ratiois the proportion of data strings on
which they are correct. The commodities are said to becorrect if they are correct on all
data strings of lengthn.

Notice that in any commodity scheme which is composed of atomic schemes, ensuring
correctness of all commodities distributed by the servers guarantees correct execution
of the retrieval procedure, assuming that the databases are honest.

We give two types of procedures for testing correctness of commodities, the second
being more general than the first; however, procedures of the first type are much more
efficient, and despite their lack of generality can be applied to most PIR schemes known
to date. Both procedures treat the underlying PIR scheme as a black box, verifying
correctness of commodities by testing them on some (small) sample of data strings. While
their validity relies on the honest behavior of the databases, none of them compromises
the user’s privacy, even when there are dishonest databases. Finally, both procedures
require a single round of (off-line) interaction, and their communication complexity
involves an error probability parameterε.

In the remainder of this section we describe the more efficient (and less general) testing
procedure. The more general type is discussed in Appendix B.

8.1. Linear Schemes

Fix a security parameterκ, data sizen, and a finite fieldF. A PIR schemeP(κ,n) is
said to belinear overF if for any stringsq1, . . . ,qk, z, there exists a linear functional
g: Fn→F, such that, for anyx ∈ {0,1}n, recP((a1, . . . ,ak), z) = g(x) whereaj =
ansP( j, x,qj ). That is, even if the queries and the reconstruction information are badly
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formed, the reconstructed value is “well-behaved” in the sense that it is equal to some
linear combination of the data. All known multi-database PIR schemes [10], [1], [9],
[22] fit into this category.17

In the linear case, the goal of the testing procedure is to verify efficiently that the
linear combination corresponding to the commoditiesc is correct, i.e., equal toxr ,
while keepingr private from the databases. Note that to achieveabsoluteconfidence in
commodities’ correctness, the “black-box approach” requires that the tested strings span
the linear space GF(q)n, implying that at leastn data strings must be tested. However,
settling for a small probability of one-sided error, a much more efficient solution to this
problem can be obtained as a typical application ofsmall-bias probability spaces[26].
The following fact is proved in [26].

Fact 2. For any n∈ N andε > 0, there is(an efficiently constructible) meta-test-set
Tn,ε ⊆ (GF(q)n)l , where l= O(log(1/ε)), such that:

• |Tn,ε | is polynomial in n and1/ε.
• For every y∈ GF(q)n, y 6= 0,at most anε-fraction of the test-tuples(w1, . . . , wl ) ∈
Tn,ε satisfy y· wb = 0 for all 1≤ b ≤ l .

We now use Fact 2 to verify commodities with error probabilityε:

1. The user picks a random indexd ∈ [|Tn,ε |] and sends it to each database.
2. Each databaseDB j finds thedth test-tuple inTn,ε , (w1, . . . , wl ), and replies with
(a1

j , . . . ,a
l
j ), whereab

j = ansP( j, wb,qj ).
3. The user accepts if the commodities were correct on alll selected test strings;

that is, if, for every 1≤ b ≤ l , recP((ab
1, . . . ,a

b
k), z) is equal to ther th entry

of wb.

Since the random test indexd is independent of the commodities, the above testing
procedure does not compromise the user’s privacy. If the tested commodities are correct,
the user always accepts. If they are incorrect, the user accepts with probability at most
ε; to see this, note that ifv 6= er represents the linear combination corresponding to
incorrect commodities, thenv − er 6= 0, implying that with probability at least 1− ε
there is a test vectorwb from the selected test-tuple such thatv · wb 6= er · wb.

The communication complexity of the scheme isO(logn+ β log(1/ε)), whereβ is
the answer complexity ofP. We note that one can use a simpler construction ofTn,ε for
constantε (see [26]) and amplify success probability by independent repetitions, yielding
a computationally easier procedure with a slightly worse asymptotic communication of
O((logn+ β) log(1/ε)).

We finally remark that while our definition of commodity correctness does not directly
apply to the polynomial interpolation scheme from Section 6 (as it is not composed of
atomic schemes), it is possible to handle this scheme as well within the same linear
framework as above.

17 While known single-database schemes do not directly fit into this category, similar methods can be applied
to the schemes from [23] and [30].
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9. Extensions

In this section we discuss two extensions of the results presented in previous sections.

9.1. Protecting Data Privacy

Ordinary PIR schemes may reveal to the user (and especially to a dishonest user who
does not follow his protocol) more information about the data stringx than just a single
data recordxi . This is a serious disadvantage in some scenarios, e.g., when the user
is required to pay for each data item he retrieves. In [13] and [27] it is shown how to
transform ordinary PIR schemes into stronger schemes, which protect the privacy of the
data in the sense thatany user, even a dishonest one, cannot learn more than a single
data record in each invocation.

All the results of this work can be directly applied to such stronger schemes as well.
Moreover, our use of PIR schemes with a very simple answer structure (see Section 3)
makes it particularly easy to satisfy the extra data privacy requirement. In fact, the (mod-
erate) overhead incurred by the transformations in [13] and [27] can be almost totally
eliminated in the commodity-based setting, provided that not all servers collude with the
user. For instance, consider commodity schemes in which the user reconstructsxi by tak-
ing the exclusive-or ofk answer bitsa1, . . . ,ak. This is the case for the optimized version
of the schemeCm,t,d (see Corollary 3), as well as for commodity schemes constructed
from the computational PIR schemeP3. If each answer bitaj in these schemes is masked
with a bit r j such that thek bits r1, . . . , rk are random subject to the constraint that their
exclusive-or is 0, then the only information aboutx revealed by the masked answers is
a single data bitxi . Letting the servers provide random masksr j as above, we obtain
commodity schemes that maintain data privacy with respect to anhonestuser, who sends
the same shift amount1 to all databases. A technique from [10] can be used to prevent a
dishonest user, sending different shift amounts to different databases, from learning any
information about the data. This requires onlyO(logn) additional commodity bits, and
yields a commodity scheme which protects the privacy of the data againstany(possibly
dishonest) user.18

9.2. Application to Private Information Storage

Most of the results presented in this work can be adapted to the related problem ofPrivate
Information Storageintroduced in [28]. Private information storage schemes allow a user
to write and read data privately to/from a data string which issecret-shared(rather than
replicated) among several databases. In the case of writing, this means that both the
address of the written record and its contents should be hidden from each collusion oft
databases.

In the following we only deal with 1-round storage schemes; this is contrasted with
the main construction of [28], which requires logarithmically many rounds of interac-
tion. We also assume that the “write” operation specifies an additive change to thei th

18 Note that in the underlying PIR schemes the user has much more cheating power; by choosing invalid
queries the user can learn linear combinations of large sets of data bits. In the commodity schemes the user’s
cheating is restricted to specifying different shift amounts, which can be more easily taken care of.
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record, say over a finite field, rather than overwrite it with a specific value (e.g., in
the case of single bit records, the user determines whether or not to flip thei th data
bit). An “overwrite” operation can then be implemented using one read operation for
retrieving thei th record, followed by one write operation to change (or unchange) its
value.

More formally, a 1-round storage scheme is defined as follows. The “read” operation
proceeds as in the case of PIR, except that the distributed representation of the data
string is different (i.e., the data string is secret-shared rather than replicated). In a “write”
operation, the user sends to each database a query string, calledcommand, which is
interpreted by each database to represent some transformation of its share of the data
string. After performing these transformations, the shares held by the databases should
represent an appropriately modified data string, in a way that will be consistent with
subsequent read and write operations performed byanyuser. Such a scheme is said to
be t-private if the commands viewed by anyt databases give them no information (in
the appropriate sense) on the write address or the change amount.

The notion of acommodity storage schemecan be defined in the natural way. We now
argue that an analogue of the atomic commodity PIR schemes from Section 4 exists for
storage schemes as well. Consider any 1-roundk-database storage scheme in which the
data string is shared recordwise (implying that shifting all shares by the same amount
results in a valid representation of the shifted data string). For simplicity, we also assume
that this storage scheme applies to single-bit data records, and that there is a dummy
location which is not considered a part of the data string (so that to unchange the data
the user may flip the dummy bit). A “write” operation in a corresponding commodity
storage scheme can then proceed as follows:

• The server picks a random storage indexr ∈ Zn and ak-tuple of commands for
flipping xr . Each command is sent to the corresponding database and the indexr to
the user.
• In the on-line stage, the user sends to each database a shift amount1 = i −

r (mod n). Each database: (1) cyclically shifts its share by1 records to the left;
(2) interprets its commodity command and performs the required transformation
on the shifted share; and (3) shifts the transformed share back by1 records to the
right.

The read operation for the commodity scheme can be obtained from the original read
operation as in atomic commodity PIR schemes.

Single-round storage schemes on which the above transformation may operate can be
based on any of the PIR schemesPk

1,P t,d
2 , andP3, with similar storage cost as the retrieval

cost of the PIR schemes.19 In fact, a 1-round storage scheme can be based on any PIR
scheme in which the user’s query is interpreted as asking for asinglelinear combination
of the data records, over some finite field. In a corresponding storage scheme, the data
string will be equal to the sum of all its shares; a write operation, adding 1 toxi , is
implemented by having each database add to its share the coefficient vector of the linear
combination corresponding to a query pointing toxi .

19 If the “read” operation is implemented via a multi-database PIR scheme, the number of databases should
be increased (as in [28]) to allow sufficient replication of each share.
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Generally, attempting to construct storage schemes with higher server-privacy thresh-
olds turns out to be more problematic, as the composition technique of Section 5 does
not seem to be applicable in its full generality to the case of storage. However, it is
possible to directly construct multiserver storage schemes with similar parameters to the
commodity PIR schemes of Corollary 2 or Theorem 4.

Appendix A. The PIR SchemePd
4

In this appendix we describe the PIR schemePd
4 and some possible optimization of this

scheme in a setting where a public source of randomness is available.
The schemePd

4 can be obtained by a straightforward modification of the recursive
construction from [23]. It uses the quadratic residuosity-based public-key encryption
scheme from [20] described below. The public key is aκ-bit modulusN = pq, where
p,q are two large primes satisfyingp ≡ q ≡ 3 (mod 4), and the private key is the
pair (p,q). Let J+1

N denote the multiplicative group of residues moduloN with Jacobi
symbol 1. To encrypt a bit 0 we letEN(0) = r 2 (mod N), and to encrypt a bit 1 we
let EN(1) = −r 2 (mod N) wherer is a random residue moduloN. Note that an en-
cryption of 0 (resp. 1) is a random quadratic residue (resp. quadratic nonresidue) inJ+1

N .
If m = m1m2 · · ·m` is a message of length̀, thenm is encrypted by independently
encrypting each of its̀ bits; that is,EN(m) = EN(m1)EN(m2) · · · EN(m`). The de-
cryption functionD(p,q)(c), wherec is aκ`-bit ciphertext, proceeds by parsingc into
κ-bit residues(c1, . . . , c`), and extracting the quadratic character of each residue using
the private key(p,q).

The schemePd
4 proceeds as follows. Assume thatn = ad for some integera. The

user views the data stringx as embedded in ad-dimensional cube of lengtha, and
naturally identifies his retrieval indexi with its coordinates(i1, . . . , i d) ∈ Zd

a . The
user’s query consists of the public keyN, along with da independent encryptions
(c1

0, . . . , c
1
a−1), . . . , (c

d
0, . . . , c

d
a−1), where eachcd′

a′ is an encryption of the bit 1 ifi d′ = a′

and an encryption of the bit 0 otherwise. In other words, the query includes an encryp-
tion of thed length-a unit vectorsei1, . . . ,eid . The private key(p,q) is taken to be the
reconstruction information. To specify how the database computes its answer, we define
an operatorselect(y, c) as follows. Lety be ana-record data string with record length`,
and letc be ana-tuple of ciphertexts, where each ciphertextca′ , a′ ∈ Za, is an element
of J+1

N . We defineselect(y, c) to be a string of lengthκ`, obtained by concatenating the
` residuess0, s1, . . . , s̀ −1, where

s̀ ′ =
a−1∏
a′=0

c(ya′ )`′
a′ (mod N)

(and eachs̀ ′ , 0≤ `′ < `, is represented usingκ bits). Note that ifc encodes a length-a
unit vectorei ′ andy is a data string consisting ofa records of length̀, thenselect(y, c)
is aκ`-bit encoding ofyi ′ . The database’s answer will be computed usingd successive
applications of theselectoperator, each having the effect of decreasing the dimension
of the data cube by 1 and increasing the representation size of each entry by a factor of
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κ. Specifically, the database starts by lettingy(d) = x, and ford′ = d− 1,d− 2, . . . ,0
lets y(d

′) be anad′ -record data string, with record length`(d
′) = κd−d′ , defined by

y(d
′)

(i1,i2,...,id′ )
= select((cd′+1

0 , . . . , cd′+1
a−1 ), (y

(d′+1)
(i1,i2,...,id′ ,0)

, . . . , y(d
′+1)

(i1,i2,...,id′ ,a−1))).

The database replies with a data stringy(0), whose single record may be intuitively
viewed as a “d-level encoding” ofxi . Finally, the user reconstructsxi from this answer
by successively applying the decryption functionD(p,q) to the answerd times.

In a setting where a public source of randomness is available, the query complexity
of Pd

4 may be improved by an asymptotic factor ofκ (and in fact the same improvement
applies to the query complexity of the original scheme from [23]). The idea is to modify
the schemePd

4 by first letting the user and the database parse the public random string
as a sequence of random elements inJ+1

N , and then replacing each residue sent by the
user with a single correction bit. Since(−1) is a quadratic nonresidue modulo any Blum
integerN, the database can flip the quadratic character of any public residue simply by
negating it. The query complexity of the modified scheme isκ + dn1/d (in opposition to
κ + dκn1/d of Pd

4 ) and its answer complexity isκd (as ofPd
4 ).

Appendix B. General Commodity Testing

In this section we address the general problem of testing commodities which correspond
to anarbitrary PIR scheme. Note that in this case, achieving absolute confidence in
commodity correctness using the “black-box approach” requires all 2n data strings to
be tested. Again, settling for a small probability of error one can do much better, using
straightforward sampling techniques.

Informally, the testing procedures will either reject commodities or give statistical
evidence that their correctness ratio is high. To avoid the worst case possibility of having
a certified commodity fail on a specific data stringx, the on-line retrieval protocol will
be augmented to include randomization of the data string, as well as repeated querying
for amplifying success probability.

We start by describing a procedure which is (statistically) secure against servers with
unlimited computational power, but requires the use of a public random string picked
independently of the commodities. This need for public randomness is dispensed with
in what follows. For the sake of simplicity, we refer only to anatomicschemeCP . The
techniques can be adapted to any of our multiserver schemes as well.

COMMODITY STAGE:

1. The server, on input 1κ ,1n, distributes commoditiesc = ((r, z), (q1, . . . ,qk)) as
in CP(κ,n).

2. The user and the databases parse the public random string asy1, y2, . . . , yκ , where
eachyd is n-bit long, and test the commoditiesc on each data string. That is, for
each 1≤ d ≤ κ, each databaseDB j replies withaj = ansP( j, yd,qj ), and the
user verifies thatrecP((a1, . . . ,ak), z) is equal to ther th bit of yd.

3. If the commodities fail the test, the user rejects. Otherwise, the user and the
databases proceed to the retrieval stage.
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RETRIEVAL STAGE:

1. The user and the databases parse the remainder of the public random string as
z1, z2, . . . , zκ , where eachzd is n-bit long.

2. The user and the databases invoke the original retrieval schemeκ times, where in
thedth invocation the databases replace the data stringx by the (random) string
x ⊕ zd.

3. The user reconstructsl answer bitsb1, . . . ,bκ according to the original reconstruc-
tion function, and outputs the majority vote of the bit valuesbd ⊕ (zd)i .

The second part of the next claim follows from a standard application of Chernoff
bounds.

Claim 2. The above testing procedure satisfies the following:

• If the commodities c are correct, the user will always output the correct data bit.
• For any commodities c, data string x, retrieval index i, and security parameterκ,

if the user does not reject c at the commodity stage, then the probability that his
output is wrong(i.e., is different from xi ) is 2−Ä(κ).

We now argue that, under mild cryptographic assumptions, public randomness can be
replaced by a shorter seed sent from the user to each database.

Claim 3. Suppose there exists a nonuniformly secure20 pseudorandom generator G:
{0,1}κ(L)→{0,1}L (i.e., any polynomial-size circuit family distinguishes UL from
G(Uκ(L)) with at most a negligible advantage in L, where Ù is the uniform distri-
bution on`-bit strings). Let L = 2κn denote the total length of the public random
string in the above testing procedure. Now modify the procedure by replacing the
public random string with a random seed of sizeκ(L) sent from the user to each
database, so that both the user and the databases can apply G to the seed to obtain
a common pseudorandom string of length L. Then the modified procedure satisfies the
following:

• If all commodities are correct, the user will always output the correct data bit.
• For any commodities c, data string x, retrieval index i, and security parameterκ,

if the user does not reject c at the commodity stage, then the probability that his
output is wrong(i.e., is different from xi ) is negligible inκ.

Proof. If (for infinitely many κ ’s) there existcκ , xκ , iκ which make the user err with
κ−O(1) probability, then a truly public random string of lengthL ≥ κ can be distinguished
from a pseudorandom one with aκ−O(1) advantage, contradicting the pseudorandomness
assumption. Specifically, theκth distinguishing circuit takes anL = 2κ|xκ | bit string as
input, then simulates the above procedure (withcκ , xκ , iκ ) using its input as the public
random string, and finally outputs 0 if the user’s output is equal toxi and 1 otherwise.

20 Nonuniform security may be relaxed to uniform security if a corrupt server is restricted to be computa-
tionally efficient.
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Since the algorithmsansP , recP , andqueCP are efficient, the size of such a circuit can
be polynomial inL, the length of its input.

Substituting a “sufficiently secure” seed size forκ(L) (e.g.,κ(L) = Lc for anyc > 0
under standard cryptographic assumptions, orκ(L) = polylog(L)under more ambitious
assumptions), we get a communication efficient testing procedure for the general case
(though not quite as efficient as for the linear case). We finally note that more general
techniques for derandomizing BPP algorithms (see [16] for a survey) may be used to
improve the above procedure.
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