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We study the transition between integrable and chaotic behaviour in dissipative open quantum
systems, exemplified by a boundary driven quantum spin-chain. The repulsion between the complex
eigenvalues of the corresponding Liouville operator in radial distance s is used as a universal mea-
sure. The corresponding level spacing distribution is well fitted by that of a static two-dimensional
Coulomb gas with harmonic potential at inverse temperature β ∈ [0, 2]. Here, β = 0 yields the
two-dimensional Poisson distribution, matching the integrable limit of the system, and β = 2 equals
the distribution obtained from the complex Ginibre ensemble, describing the fully chaotic limit. Our
findings generalise the results of Grobe, Haake and Sommers who derived a universal cubic level
repulsion for small spacings s. We collect mathematical evidence for the universality of the full level
spacing distribution in the fully chaotic limit at β = 2. It holds for all three Ginibre ensembles of
random matrices with independent real, complex or quaternion matrix elements.

Introduction. It has been a long discussed question
how classically integrable and chaotic behaviour carries
over to the quantised world. A simple spectral measure
was found in the spacing between neighbouring eigen-
values of the corresponding Hamiltonian H. For closed
systems it is Hermitian, H = H†, with real eigenval-
ues. Berry and Tabor conjectured [1] for quantum inte-
grable systems to generically follow the one-dimensional

(1D) Poisson distribution p
(1D)
P (s) = e−s. In contrast,

Bohigas, Giannoni and Schmit (BGS) conjectured [2]
(cf. [3]) chaotic systems [4] to follow random matrix
theory (RMT) statistics in the corresponding symme-
try class. Initially Dyson [5] had offered a first classi-
fication within RMT, distinguishing systems without or
with time-reversal at (half-)integer spin which is the cele-
brated ”threefold way”. Much evidence has been given to
support this spectral classification in quantum systems,
including neutron scattering, quantum billiards [2], or the
hydrogen atom in a magnetic field [6] to name a few, cf.
[7, 8] for standard references. Starting from Berry’s di-
agonal approximation [9] the BGS-conjecture is now well
understood from a semi-classical expansion [10, 11].

Non-Hermitian operators play an equally important
role in physics, e.g. in disordered systems [12] or Quan-
tum Chromodynamics (QCD) with chemical potential
[13]. Shortly after BGS, the above spectral distinction
between integrable and chaotic was extended by Grobe,

Haake and Sommers (GHS) [14] to Markovian dissipative
open quantum systems. These follow a Lindblad master
equation

dρ

dt
(t) = Lρ(t) , (1)

with L the Liouville and ρ the density operator, cf. [15].
Postponing a detailed discussion for our example of a
quantum XXZ spin-chain, see [16, 17], the eigenvalues of
L are real or come in complex conjugate pairs and can be
used to characterise integrable or chaotic behaviour, see
below. Indeed this has been observed in many examples
for dissipative chaotic systems [18], for the QCD Dirac
operator with chemical potential [19], the adjacency ma-
trix of directed graphs [20] and hard-core bosons with
asymmetric hopping on a one-dimensional lattice at weak
disorder [21]. In [14] GHS studied periodically kicked
tops with damping and the corresponding discrete quan-
tum map. In the integrable limit they found agreement
between the nearest neighbour spacing in radial distance
s of its complex bulk eigenvalues and the two-dimensional
(2D) Poisson distribution

p
(2D)
P (s) =

π

2
se−πs2/4, (2)

which are local quantities. In the fully chaotic limit the
spacing distribution agrees with the corresponding distri-
bution of the Ginibre ensemble [22] of complex Gaussian
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non-Hermitian random matrices (GinUE), given by [14]

pGinUE(s) =

( ∞
∏

k=1

Γ(1 + k, s2)

k!

) ∞
∑

j=1

2s2j+1e−s2

Γ(1 + j, s2)
, (3)

with Γ(1 + k, s2) =
∫∞
s2

tke−tdt the incomplete Gamma
function. GHS conjectured that the local spectrum of a
generic chaotic dissipative open quantum system in the
bulk should follow the same statistics. This was some-
what surprising, as they showed that the complex Ginibre
ensemble leading to (3) does not satisfy the global sym-
metries of dissipative open quantum systems [14], unlike
its real counterpart. They showed in [23] that based on
these symmetries, using perturbative arguments for small
distance s the repulsion is universally cubic. This repul-
sion is shared by the complex Ginibre ensemble (3), as
well as by a larger class of complex normal random ma-
trices [24]. The global statistics of Lindblad operators
has also been compared to random matrices, cf. [25–28].

Our goals are, first, to provide a further example for
the GHS conjecture for complex spectra of integrable or
quantum chaotic systems to be true, given by boundary
driven quantum spin-chains. These are many-body sys-
tems with no meaningful semi-classical limit, so the term
quantum chaos is understood as absence of integrabil-
ity or weak coupling thereof while its rigorous definition
is still lacking. Second, we will show that in the inter-
mediate regime the full spacing distribution is very well
described by a static 2D Coulomb gas at inverse tem-
perature β ∈ (0, 2] in a harmonic potential. Its joint
distribution of the set z of N point charges at rescaled
positions

√

2/β zi=1,...,N ∈ C [29] reads [30]

Pβ(z) ∝ exp

[

−
∑N

i=1
|zi|2 +

β

2

∑N

i 6=j
ln |zi − zj |

]

. (4)

For β = 0 this leads to the Poisson distribution (2) [18],
whereas β = 2 corresponds to the level spacing distribu-
tion (3) [14]. Third, we collect mathematical evidence
for the fully chaotic case (3) at β = 2 to be universal in
the bulk of the spectrum, regardless of the constraints
[14]. With bulk we mean to stay macroscopically away
from any edge or critical points (here the real line) of
the spectrum. This universality holds for the complex,
real [31] and quaternion Ginibre ensemble - to be
presented here - and for non-Gaussian extensions [32] of
the two former. This is in contrast to random matrices
with real spectra, where quantum chaotic behaviour is
distinct for the three Dyson classes, corresponding to a
1D log-gas at different values β = 1, 2, 4. For complex
bulk eigenvalues of chaotic systems the possibility to
distinguish their global symmetry is thus lost. To
prepare our 2D data from the Liouville operator L for
a comparison we need to unfold the complex spectrum.
While this is straightforward for real spectra [8], we
discuss the literature [19] and present our method below.

Integrable and Non-Integrable Quantum Spin-Chains.

The system we consider is a Heisenberg XXZ Hamilto-
nian H of N spins 1/2, comprising nearest and next-to-
nearest neighbour interactions,

H =J
∑N−1

l=1
(σx

l σ
x
l+1 + σy

l σ
y
l+1 +∆σz

l σ
z
l+1)

+ J ′
∑N−2

l=1
(σx

l σ
x
l+2 + σy

l σ
y
l+2 +∆′σz

l σ
z
l+2) ,

(5)

with J, J ′,∆,∆′ ∈ R. We denote the three Pauli matrices
by σα

l , α = x, y, z, for each single spin l = 1, . . . , N . To
each spin a dephasing operator

Ll =
√
γσz

l , l = 1, . . . , N and γ > 0 (6)

is associated. Additionally, we introduce dissipation of
polarisation at the two ends of the spin-chain via the
Lindblad operators

L−1 =
√

γ+
L σ+

1 , L0 =
√

γ−
L σ−

1 ,

LN+1 =
√

γ+
Rσ+

N , LN+2 =
√

γ−
Rσ−

N ,

(7)

where γ±
L , γ±

R > 0 and σ±
l = σx

l ± iσy
l . The Liouville

operator L acting on a density operator ρ in the master
equation (1) is given by [16, 17]

Lρ = −i[H, ρ] +
∑N+2

l=−1
(2LlρL

†
l − {L†

lLl, ρ}). (8)

The commutator and anti-commutator are denoted by
[., .] and {., .}, respectively, cf. [15].

What we are interested in is the spectral statistics of
the Liouville operator L considered as a (4N−1)×(4N−1)
real matrix, acting on the vector space of density oper-
ators. The reduction in dimension by one results from
the fixed trace condition on ρ and is represented by the
identity matrix. The operator L is real because ρ → Lρ
preserves the Hermiticity. The statistics of L should in-
dicate whether the Lindblad master equation (1) behaves
in an integrable or chaotic way. For this purpose we recall
some properties of the operator L in our example.

Switching off all incoherent processes γ = γ±
L = γ±

R =
0, the operator L becomes a real anti-symmetric (be-
cause of Tr ρ1[H, ρ2] = −Tr [H, ρ1]ρ2) and chiral (due to
[H, ρ]T = −[H, ρT ]) matrix, so that the spectrum be-
comes 1D and is purely imaginary and symmetric about
the origin. When also suppressing the next-to-nearest
neighbour interactions (J ′ = 0) the spectrum is com-
pletely integrable. With increasing J ′ 6= 0 chaotic be-
haviour will take over and Wigner’s β = 1 statistics in
the bulk of the spectrum applies, see [33] for a review of
the standard 1D RMT analysis of this setup.

The situation changes drastically when the dissipative
processes are switched on (γ, γ±

L , γ±
R 6= 0). Then, the

Liouville operator L becomes a real non-symmetric ma-
trix and its eigenvalues spread into the complex plane.
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Nonetheless, there is still a good quantum number which
has to be taken into account, namely the total spin po-
larisation S =

∑N
l=1 σ

z
l . It keeps the coherent processes

invariant due to [H,S] = 0, while all additional inco-
herent dissipative processes result in the following weak
symmetry of the Liouvillian [17]

[L(ρ), S] = L([ρ, S]), (9)

which is equivalent to the vanishing commutator of the
matrix representations of L and of [S, .].

Let |s, n〉 be an eigenstate of H with S|s, n〉 = s|s, n〉
and s = −N/2,−(N − 2)/2, . . . , N/2. Then, the eigen-
value equation of the state |s, n〉〈s′, n′| under the adjoint
action of S is

[S, |s, n〉〈s′, n′|] = (s− s′)|s, n〉〈s′, n′|. (10)

Defining M = N − s+ s′ ∈ {0, 1, . . . , 2N}, the dimension
κ of the eigenspace of the fixed quantum number
s− s′ = N −M is given by κ =

(

2N
M

)

− δNM , where the
Kronecker delta represents the identity matrix which
obviously belongs to the M = N state space. Therefore,
L decomposes into block matrices and one needs to
study the spectral statistics of each of these matrices
separately. Since we are interested in a good statistical
error, it is favourable to choose M close to N , as then the
number of eigenvalues κ ∼ 22N/N grows exponentially
fast for large N .

Comparing Data with Predictions. We have gener-
ated four realisations of the Liouville operator (8) where
for all four cases N = 10 and M = 7 and we set the scale
to J = 1. Thus, we have had in total 77520 eigenvalues
per case to analyse.

(a) The boundary driven XX-chain (∆=0) with bulk
dephasing. The parameters are chosen as J ′ = 0,
γ+
L = 0.5, γ−

L = 1.2, γ+
R = γ = 1, γ−

R = 0.8.
The model is equivalent to the Fermi–Hubbard
chain with imaginary interaction U = iγ with off-
diagonal boundaries, see [34], which is known to be
Bethe ansatz integrable. According to the GHS-
conjecture we expect Poisson statistics of the Liou-
villian spectrum, see Fig. 1(a).

(b) The isotropic Heisenberg XXX-chain (∆ = 1) with
pure-source/pure-sink driving. The parameters are
J ′ = 0, γ+

L = 0.6, γ−
R = 1.4, γ−

L = γ+
R = γ = 0

in this regime. The steady state (zero-mode) of
this problem is known to be exactly-solvable [16],
however the full Liouvillian spectrum shows non-
integrable behaviour, see Fig. 1(b).

(c) The XXX-chain (∆ = 1) with arbitrary polarising
boundary driving. Here, we chose the parameters
J ′ = 0, γ+

L = 0.5, γ−
L = 0.3, γ+

R = 0.3, γ−
R =

0.9, γ = 0. The bulk Hamiltonian of this model

(a) (b)

(c) (d)

Figure 1. Comparison of the level spacing distributions for
various Liouville operators (8), the analytical spacing distri-
butions (2) (Poisson β = 0, dotted) and (3) (Ginibre β = 2,
dashed) as well as fits to general Coulomb gas (4) simulations
(Figures (b) and (d), solid). Unfolding (13) is used with the
smearing parameter σ = 4.5 s̄, see (13), where the mean spac-
ing varies from s̄ = 0.0036 to 0.0045 for the data sets (a) -
(d). The first moment of all spacings is normalised to unity.

is well-known to be integrable via Bethe ansatz,
but with the boundary driving not even the steady
state seems to be exactly solvable. The spectrum in
Fig. 1(c) confirms that its dynamics is fully chaotic,
according to the GHS-conjecture.

(d) The XXZ-chain with nearest neighbour and next-
to-nearest neighbour interactions. We have chosen
J ′ = 1, ∆ = 0.5, ∆′ = 1.5 with the same dephas-
ing parameters as in (c). This time, even the bulk
Hamiltonian is non-integrable (quantum chaotic)
so that we expect Ginibre statistics following the
GHS-conjecture, which is confirmed in Fig. 1(d).

All four data sets are depicted in Fig. 1, illustrating
the integrable Fig. 1(a), intermediate Fig. 1(b) and
apparently fully chaotic cases Figs. 1(c)-(d). Note that
the intermediate case (b) flows closer (and is expected

System Poisson fitted Coulomb β Ginibre

(a) 0.015 – 0.15

(b) 0.10 0.0092 (β = 1) 0.058

(c) 0.15 – 0.012

(d) 0.16 0.0094 (β = 1.9) 0.012

Table I. The Kolmogorov distance between the empirical data
shown in Fig. 1, the Poisson distribution (2), fitted value for
β (specified in the inset) of the Coulomb gas and the Ginibre
spacing distribution (3).



4

to converge) to fully chaotic statistics by increasing
the dimension κ. We compare with the 2D Poisson
distribution (2), the distribution of the numerically
generated Coulomb gas (4) with best fit for β, and the
level spacing distribution (3) of the complex Ginibre
ensemble. The Kolmogorov–Smirnov distances [35]
between the empirical distributions of the spectrum of
L, and each of these curves (after fitting β) are listed in
Table I. The spacings for the Coulomb gas are obtained
by generating points with the distribution (4) by using
the Metropolis algorithm, following [36], and then
determining the spacing numerically. Fig. 1 confirms our
expectations of an extended GHS-conjecture [14, 23] for
dissipative open quantum systems to hold, even without
classically chaotic correspondents.

Unfolding of Complex Spectra. In order to compare
the spectrum of L with the spectral statistics of the 2D
Coulomb gas (2)–(4) we need to unfold the spectrum.
This means that we have to separate the fluctuations (fl),
that are supposedly universal, from the global, averaged
(av) spectral density which is system specific:

ρ(x, y) =
∑N

i=1
δ(2)(z− zi) = ρav(x, y) + ρfl(x, y) , (11)

where z = x+iy. For real spectra unfolding is achieved by
introducing the cumulative spectral function and fitting
the smooth part η(x) =

∫ x

−∞ ρav(t)dt [8]. For complex
spectra this is more involved. Following [19], unfolding
is a map

z → z′ = x′ + iy′ = u(x, y) + iv(x, y) (12)

to be found, that satisfies certain conditions. First, af-
ter unfolding the density has to be unity (or constant),
ρav(x

′, y′) = 1, or in other words the Jacobian of the
transformation (12) has to cancel the density before un-
folding, dx′dy′ = ρav(x, y)dxdy. This is certainly not
unique, and we believe that, second, local isotropy has to
be achieved, e.g. using conformal maps [19]. Following
the symmetry of their data the authors [19] proposed to
unfold in strips parallel to the x-axis, in choosing y′ = y
and thus x′ =

∫ x

−∞ ρav(t, y)dt = u(x, y). Apparently for
more general data sets this choice is not ideal, e.g. for
products of M Ginibre matrices where the density at the
origin is singular [37]. Its local statistics is known to still
follow the complex Ginibre ensemble [38], making proper
unfolding crucial.

In fact we found a much simpler method following (11),
by approximating ρav(x, y) by a sum of Gaussian distri-
butions around each eigenvalue zj ,

ρav(x, y) ≈
1

2πσ2N

∑N

j=1
exp

[ −1

2σ2
|z − zj |2

]

. (13)

The measured spacing at a point z0 is then simply
multiplied by

√

ρav(x0, y0). Testing this on spectra of

products of random matrices, the choice σ = 4.5 s̄ in
terms of the global mean spacing s̄ leads to very good
results, see [39]. This method is applied to our data sets
(a) - (d) in Fig. 1.

Random Matrix Universality. The question raised by
the conjecture of GHS was why the fully chaotic case
should be compared with the predictions of the com-
plex Ginibre ensemble. They showed [14] that due to
Hermiticity constraints generic dissipative open quantum
systems lead to a spectrum of real and complex conju-
gate eigenvalue pairs. Thus one would expect the real
or quaternion Ginibre ensemble (GinOE or GinSE) shar-
ing this property to apply, and not the GinUE. However,
they found an agreement of their data from periodically
kicked tops with damping with the GinUE - results for
the GinOE or GinSE were not available at the time.

While the results for the GinSE became available soon
after [42], including the spacing distribution at the origin
(which is different from the GinUE (3)), the GinOE was
independently solved much later by three groups [31, 43,
44]. They are given by so-called Pfaffian point processes,
with matrix valued kernels as the main building block.

Once all density correlation functions are known all
spectral information is given, including the spacing.
While close to the real line all three ensembles differ,
it was shown that at the edge of the spectrum the GinSE
[45] and GinOE [31] agree with the GinUE [46]. It is
therefore natural to ask if this agreement continues to
hold in the bulk or not. For the GinOE this was an-
swered affirmatively in [31], and in the supplement of
the present work [39] which includes Refs. [40, 41] we
show that this also holds for the GinSE. Below we give
a heuristic argument (see also [11]), why all three sym-
metry classes yield the same spacing distribution in the
bulk and it is thus universal.

The joint probability density function (jpdf) of eigen-
values for all three Ginibre ensembles read [22, 47]

P(k)
GinOE(z)∝|∆M (z)|2∆k(x)

M
∏

i,j=1

(zi − z∗j )
k
∏

i=1

M
∏

j=1

|zj − xi|2

×
k
∏

l=1

e−
1

2
x2

l

M
∏

j=1

sign(Im(zj))erfc
(
√
2Im(zj)

)

e−
1

2
(z2

j+z∗ 2

j ),

PGinUE(z)∝ |∆N (z)|2
∏N

j=1
e−|zj |2 , (14)

PGinSE(z)∝ |∆M (z)|2
M
∏

i>j

|zi − z∗j |2
M
∏

j=1

|zj − z∗j |2e−|zj |2.

Here, ∆N (a) =
∏N

j>k(aj −ak) denotes the Vandermonde
determinant and erfc the complementary error function.
The N = k + 2M eigenvalues in the GinOE are ordered
to yield a positive density, and k counts the number of
real eigenvalues, see e.g. [31, 43, 44] for details, and for
the GinSE N = 2M .
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Figure 2. Comparison of the spacing distribution (3) with nor-
malised first moment and those of the GinOE (blue crosses),
GinUE (red squares), and GinSE (purple triangles) in the
bulk of the spectrum. For the latter we use the standard 2N -
dimensional representation of an N -dimensional quaternionic
matrix, making the complex eigenvalues unique, cf. [22]. An
ensemble of 1000 500× 500 matrices has been generated in a
Monte Carlo simulation. Here, the unfolding is trivial due to
a uniform density of all three ensembles.

For large-N there are only k ∝
√
N real eigenvalues xl

on average [48], and thus we consider M ∼ N/2. Raising
the Vandermonde to the exponent leads to the Coulomb
gas picture (4) at β = 2 for the GinUE. Notice that the
other 2 ensembles are not proportional to |∆N (z)|β for
β = 1, 4. The limiting spectral density is constant on a
disc of radius O(

√
N) for all three Ginibre ensembles, and

also for Coulomb gases (4) for all β > 0, see e.g. [49] for
a review. The local bulk statistics is defined by zooming
into the vicinity of radius R = O(1) of a few mean level
spacings around a bulk eigenvalue z0, chosen far away
from the real axis and the edge of the support. Close
to z0, complex conjugate and real eigenvalues are of the
order O(

√
N) away from z0 and thus do not contribute to

the local spectral statistics. Hence all jpdfs (14) become
locally proportional to

∼
∏

j:|zj−z0|<R

|zj − z0|2 (15)

for large N . Thus all three ensembles coincide locally,
and share the GinUE spacing distribution (3). In Fig. 2,
we illustrate this argument with Monte-Carlo simula-
tions of all three Ginibre ensembles in the bulk, finding
perfect agreement. Very recently numerical evidence
has been given for four further symmetry classes to
follow the spacing (3) of the GinUE [50]. While the
authors identified 2 ensembles where the spacing differs,
it remains to be seen how many classes emerge in the
bulk from the complete list of non-Hermitian ensembles
[51–53].

Conclusions We have studied universal spectral prop-
erties of dissipative open quantum systems. Their corre-
sponding Liouville operator L generically exhibits com-
plex eigenvalue statistics. In our example we numerically
diagonalised boundary driven quantum spin-chains of the
XXZ type, with nearest and next-to-nearest neighbour
interactions with different sets of couplings. Depending
on these parameters, it is known that the system under-
goes a transition from integrable to chaotic behaviour.
The spacing distribution in radial distance between the
complex eigenvalues of L has shown to be an efficient
measure to observe this transition. Generalising the con-
jecture of Grobe, Haake and Sommers for the extreme
cases, we have shown that the intermediate statistics is
very well described by a two-dimensional Coulomb gas
with harmonic potential, by fitting to an inverse temper-
ature β ∈ [0, 2]. Furthermore, we have generalised the
universality argument of these authors from a cubic re-
pulsion for small spacing in the chaotic case β = 2 to
hold for the full distribution in all three Ginibre ensem-
bles. Here, we contributed analytically to the quaternion
case, and illustrated this by numerical evidence.

Several open questions deserve further studies. While
for quantum systems with real eigenvalues the emer-
gence of random matrix statistics in the chaotic regime
is well understood, using a semi-classical expansion, such
an approach is not developed here. Further examples
for physical systems with complex eigenvalues should be
studied throughout the transition region from integrable
to chaotic behaviour, to see if the description by a 2D
Coulomb gas is indeed universal.
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Appendix A: Unfolding and Spacings of the Coulomb Gas

In this section we give some more details about our unfolding procedure and provide examples that illustrate our
method. We then give examples for the numerically generated spacing distribution for the two-dimensional (2D)
Coulomb gas at various values of β.

The goal of unfolding is to separate the fluctuations (fl) of the density from the global, averaged (av) spectrum

ρ(x, y) =
N
∑

i=1

δ(2)(z − zi) = ρav(x, y) + ρfl(x, y) , (A1)

where z = x + iy. In the new coordinates z → z′ = x′ + iy′ the mean density should become uniform dx′dy′ =
ρav(x, y)dx dy, and the fluctuations around it are to be compared with the universal predictions from random matrices.

Our procedure to determine the average density is very simple. The Dirac delta at each eigenvalue zj is replaced
by a broadened Gaussian distribution

ρav(x, y) ≈
1

2πσ2N

N
∑

j=1

exp

[ −1

2σ2
|z − zj |2

]

. (A2)

We choose the variance σ to be larger than the global mean spacing s̄ between the eigenvalues, in order to obtain a
smooth density. The unfolded spacing is then obtained for every bulk eigenvalue zj by finding its nearest neighbour,

and then multiply their distance by
√

ρav(xj , yj), as the inverse local mean density measures the local area. The
resulting empirical spacing distribution is then normalised by rescaling the first moment to unity. This is compared
to the equally normalised spacing distribution of the complex Ginibre ensemble (GinUE),

p(s) = d pGinUE(ds), d =

∫ ∞

0

ds s pGinUE(s) ≈ 1.14, pGinUE(s) =
∞
∑

j=1

2s2j+1e−s2

Γ(j + 1, s2)

∞
∏

j=1

Γ(j + 1, s2)

Γ(j + 1)
. (A3)

We have tested the above procedure for the spacing distribution of the eigenvalues of the product of M = 2, 3, 4, 5
matrices from the GinUE, because the result is known analytically. They provide a good testing ground as their
average mean density is not constant [1]

ρav(x, y) =
1

Mπ
|z|2(1−M)/M Θ(1− |z|) , (A4)

making unfolding necessary. Furthermore, it is known that the local statistics in the bulk of the spectrum agrees with
that of the GinUE [2], and hence with its spacing distribution (A3). Because of this we have used these ensembles to
find a good choice for σ in (A2). The choice σ = 4.5 s̄ leads to very good results, as shown in Fig. 1.

Figure 1. Comparison of the spacing distribution in the bulk of the spectrum for the product of M = 2 (left) and M = 4 (right)
complex Ginibre matrices of sizes N = 200, showing data from 1000 ensembles. Blue plus symbols indicate the data before and
red crosses after unfolding, the full line gives the rescaled Ginibre distribution (A3).
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Figure 2. Numerically generated spacing distribution p(s) for a 2D Coulomb gas for various values of β = 0.5, . . . , 4. Also
shown is the Poisson distribution (A6) in 2D corresponding to β = 0, with the weakest (linear) repulsion for small s.

For treating the data from the Liouville operator we proceed in the same way, by first computing the global average
spacing s̄, then determining the average density according to (A2), and finally normalising the first moment to unity.

The second purpose of this section is to give examples for the spacing distribution of the 2D Coulomb gas. Its
unnormalised joint distribution of charges in the plane reads

PCoulomb({z}) =
N
∏

j>k

|zj − zk|β
N
∏

j=1

e−|zj |2 , β > 0 . (A5)

The points distributed according to this distribution are generated following [3], using a Metropolis algorithm. Here,
unfolding is a trivial rescaling because the corresponding Coulomb gas is known to follow the circular law, (A4) at
M = 1, for arbitrary β > 0, cf. [4] for a review. We have generated a library of spacings in steps of 0.1 in β, that was
used to fit the data from the Liouville operator. In Fig. 2 we give some examples for the so obtained spacings, where
we have normalised the first moment to unity for each curve. Only for β = 2 the analytical result is known (A3), as
well as for β = 0 which yields the Poisson distribution in 2D,

p
(2D)
P (s) =

π

2
se−πs2/4. (A6)

Note that the first moment of the Poisson distribution is already unity. It is also displayed in Fig. 2 for comparison.

Appendix B: Bulk Universality of the Symplectic Ginibre Ensemble

1. Complex Ginibre Ensemble

In order to state the universality of the symplectic Ginibre ensemble (GinSE) in the bulk of the spectrum, we recall
what is known for the complex Ginibre ensemble, to which we would like to show equivalence. We follow here [5, 6].
The joint probability density function (jpdf) of the GinUE equals (A5) at β = 2, PGinUE({z}) = PCoulomb({z})|β=2,

with normalising partition function ZN = N ! πN
∏N−1

j=0 j!. The k-point density correlation functions defined as

RGinUE
k,N (z1, . . . , zk) ≡

1

ZN

N !

(N − k)!

∫

CN−k

d2zk+1 · · · d2zNPGinUE({z}) = det
1≤i,j≤k

[KN (zi, z
∗
j )] (B1)

form a determinantal point process (DPP) at finite N . Its kernel of orthogonal polynomials is given by

KN (z, u∗) =
1

π
e−

|z|2

2
− |u|2

2

N−1
∑

j=0

(zu∗)j

j!
=

1

π
e−

|z|2

2
− |u|2

2 eN−1(zu
∗) , (B2)
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and determines all spectral correlation functions for finite-N . It contains eN−1(x) =
∑N−1

j=0 xj/j!, the exponential

polynomial of degree N − 1. The large-N limit at the origin, with z, u = O(1), is trivial and given by

KGin(z, u
∗) = lim

N→∞
KN (z, u∗) =

1

π
exp

[

−|z|2
2

− |u|2
2

+ zu∗
]

, (B3)

the limiting Ginibre kernel. It determines all limiting k-point correlation functions at the origin. The limit in the
bulk of the spectrum is based on the asymptotic of the exponential polynomial, expressed in terms of the incomplete
Gamma-function. For the latter the following uniform asymptotic holds [7]

lim
N→∞

(

Γ(N,Nx)

Γ(N)
= e−NxeN (Nx)

)

=

{

0, x > 1 ,
1, 0 ≤ x < 1 .

(B4)

This implies the limiting circular law RGinUE
1,N (z) = 1

π e
−|z|2eN−1(|z|2) ∼ 1

πΘ(1 − |z|2/N), that the macroscopic (or

global) spectral density is constant on a disc of radius
√
N . For the local bulk limit we zoom into the vicinity of

the bulk point
√
Nz0, with |z0| < 1 to stay away from the edge. From (B4) we can thus replace the exponential

polynomial by an exponential, to obtain the following kernel at large-N

KN

(√
Nz0 + ξ,

√
Nz∗0 + η∗

)

∼ fN (ξ)

fN (η)
KGin(ξ, η

∗) , with fN (ξ) = exp

[

1

2

√
N(z∗0ξ − z0ξ

∗)

]

, (B5)

and ξ, η = O(1). Noting that the k-point correlation functions remain unchanged when replacing the kernel by an

equivalent kernel, KN (z, u) → g(z)
g(u)KN (z, u) for an arbitrary g(z) 6= 0 due to the invariance of the determinant, the

following bulk limit holds for all k-point correlation functions

lim
N→∞

RGinUE
k,N

(√
Nz0 + ξ1, . . . ,

√
Nz0 + ξk

)

= det
i,j=1,...,k

[

KGin(ξi, ξ
∗
j )
]

. (B6)

Because all k-point correlation functions at the origin and in the bulk agree, also all other spectral correlation functions
will agree, including the limiting spacing distribution (A3).

2. Symplectic Ginibre Ensemble

Following [6, 8] the GinSE is given by the jpdf of N complex eigenvalues and normalisation constant

PGinSE({z}) =
N
∏

i>j

|zi − zj |2|zi − z∗j |2
N
∏

l=1

|zl − z∗l |2 e−|zl|2 , ZN = N !(2π)N
N
∏

j=1

(2j − 1)! , (B7)

where N = 2M . It has the following k-point correlation functions defined as in (B1)

RGinSE
k,N (z1, . . . , zk) =

k
∏

l=1

(z∗l − zl)Pfi,j=1,...,k [KN (zi, zj)] , (B8)

forming a Pfaffian point process with the matrix valued 2× 2 kernel

KN (z, w) = e−(|z|2+|w|2)/2
(

κN (z, w) κN (z, w∗)
κN (z∗, w) κN (z∗, w∗)

)

. (B9)

The latter contains a single antisymmetric pre-kernel at different arguments,

κN (z, w) =
1

π

N−1
∑

k=0





z2k+1

(2k + 1)!!

k
∑

j=0

w2j

(2j)!!
− w2k+1

(2k + 1)!!

k
∑

j=0

z2j

(2j)!!



 . (B10)

Clearly all density correlation functions (B8) vanish along the real axis. Notice that we have not pulled the pre-factor
in (B8) inside the Pfaffian determinant, in order to avoid taking unnecessary square roots.
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It is not difficult to show that the pre-kernel satisfies the following system of differential equations at finite-N :

∂zκN (z, w)− z κN (z, w) =
1

π
e2N−1(zw)−

1

π

z2N

(2N − 1)!!
eN−1(w

2/2) ,

∂wκN (z, w)− w κN (z, w) = − 1

π
e2N−1(zw) +

1

π

w2N

(2N − 1)!!
eN−1(z

2/2) . (B11)

Following (B4) the exponential polynomials on the right hand side (rhs) can be replaced by exponentials, as long as

|z|, |w| ≤ C <
√
2N , allowing them to diverge, |z|, |w| → ∞ as N → ∞. This is compatible with the limiting spectral

density obeying the circular law on a disc of radius
√
2N (compared to

√
N for the GinUE).

We will show that the second term on both rhs’ in (B11) are subleading for large-N . For z, w = O(1) this is obvious,
using Stirling’s formula. Defining

κN (z, w) = e
1

2
(z2+w2)ΛN (z, w) , (B12)

the lhs of the first equation (B11) becomes e
1

2
(z2+w2)∂zΛN (z, w), and likewise for the second. Putting the exponentials

on the other side and integrating, we obtain for large-N

ΛN (z, w) ∼ 1

π

∫ z

w

du e−
1

2
(u−w)2 − 1

π

∫ z

w

du
1√
2

(

u2e

2N

)N

e−
1

2
u2

=
1√
2π

erf[(z − w)/
√
2]− I(z, w) . (B13)

Here, we have used ΛN (w,w) = 0 due to antisymmetry, applied Stirling’s formula and introduced the error function,

erf(x) = 2√
π

∫ x

0
e−t2dt, which is antisymmetric, too. The integral I(z, w) defined in (B13) can be estimated by the

absolute value of the integrand, parametrising u = (1− t)w+ tz = x+ iy with t ∈ [0, 1], and applying the ML Lemma:

|I(z, w)| ≤ 1

π
√
2

∫ 1

0

dt|z − w|
(

(x2 + y2)e

2N

)N

e−
1

2
(x2+y2)ey

2 ≤ 1

π
√
2
|z − w| max

0≤t≤1

{

eN(log(q(t)2)+1−q(t)2)
}

ea. (B14)

Here, we use that when |z|, |w| diverge as ∼
√
2N , also u diverges as |u(t)| =

√
2Nq(t), with 0 < q(t) < 1. This

leads to an estimate for the first part of the integrand, with a negative exponent. The remaining factor ey
2

has been
estimated defining a = max{[Im (z)]2, [Im (w)]2}. It is compensated after multiplying back with exp[(z2 +w2)/2] and
the weight from (B9):

∣

∣

∣

∣

exp

[

−1

2
(|z|2 + |w|2 − z2 − w2) + a

]∣

∣

∣

∣

=
∣

∣exp[−[Im (z)]2 − [Im (w)]2 + a]
∣

∣ ≤ exp[−b], (B15)

for b = min{[Im (z)]2, [Im (w)]2} → ∞ equally diverging for N → ∞. Thus this contribution to the pre-kernel vanishes

exponentially for large N , even if |z − w| may diverge as O(
√
2N). The analysis for the second equation in (B11)

follows from interchanging z ↔ w. In summary, for large-N we obtain the following asymptotic on the domain
|z|, |w| ≤ C <

√
2N ,

e−(|z|2+|w|2)/2κN (z, w) ∼ e−(|z|2+|w|2)/2κ(z, w) , (B16)

where we defined

κ(z, w) =
1√
2π

exp[(z2 + w2)/2] erf[(z − w)/
√
2] . (B17)

For z, u = O(1) this was derived in [8], corresponding to the large-N limit at the origin. There, the limiting
correlation functions read

lim
N→∞

RGinSE
k,N (z1, . . . , zk) =

k
∏

l=1

(z∗l − zl)Pfi,j=1,...,k

[

e−(|zi|2+|zj |2)/2
(

κ(zi, zj) κ(zi, z
∗
j )

κ(z∗i , zj) κ(z∗i , z
∗
j )

)]

. (B18)

These are clearly different from the k-point correlations of the GinUE (B6), e.g. the local density of the GinSE at the
origin is given by

lim
N→∞

RGinSE
1,N (z) = (z∗ − z)e−|z|2κ(z, z∗) =

1√
2π

(z∗ − z) exp[−|z|2 + (z2 + z∗ 2)/2] erf[(z − z∗)/
√
2] . (B19)
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To prove the agreement of all k-point correlations with the GinUE in the bulk of the spectrum, away from the real
axis, we will proceed as in the bulk limit of the GinUE in the previous sub-section, cf. (B5), by using the uniform limit

to the solution (B17). We choose a bulk point
√
2Nz0 of the spectrum, with |z0 = x0 + iy0| < 1, and z0 − z∗0 = O(1)

to stay away from the real axis, and we choose arguments
√
2Nz0 + ξ and

√
2Nz0 + η of the pre-kernel being in the

vicinity of
√
2Nz0. Due to the structure of the Pfaffian (B8) we have to distinguish four different combinations of

complex conjugations for the arguments of the pre-kernel, times the weight function.
We first take the limit when none of the arguments is complex conjugated:

e−
1

2
(|
√
2Nz0+ξ|2+|

√
2Nz0+η|2)κN (

√
2Nz0 + ξ,

√
2Nz0 + η) ∼ 1√

2π
e−

1

2
(|
√
2Nz0+ξ|2+|

√
2Nz0+η|2−(

√
2Nz0+ξ)2−(

√
2Nz0+η)2)

×erf[(
√
2Nz0 + ξ −

√
2Nz0 − η)/

√
2] . (B20)

The N -dependence inside the error function cancels, with the argument of erf[(ξ − η)/
√
2] being of order one. Multi-

plying out we obtain for the exponential factors

exp

[

−1

2

(

4N(|z0|2 − z20) +
√
2N ((z∗0 − 2z0)(ξ + η) + z0(ξ

∗ + η∗)) + |ξ|2 − ξ2 + |η|2 − η2
)

]

. (B21)

Obviously the leading term in the exponent −4N(y20 − ix0y0) will make the limit of this matrix element vanish,

lim
N→∞

e−
1

2
(|
√
2Nz0+ξ|2+|

√
2Nz0+η|2)κN (

√
2Nz0 + ξ,

√
2Nz0 + η) = 0 . (B22)

Despite the invariance of the Pfaffian determinant Pf(BTAB) = det(B)Pf(A), allowing to go to an equivalent matrix
kernel, such transformations cannot compensate the leading order term as it is ξ- and η-independent. The same
argument applies to the pre-kernel with both arguments complex conjugated, as it is trivially obtained via complex
conjugation:

lim
N→∞

e−
1

2
(|
√
2Nz0+ξ|2+|

√
2Nz0+η|2)κN (

√
2Nz∗0 + ξ∗,

√
2Nz∗0 + η∗) = 0 . (B23)

Let us come to the pre-kernel with one complex conjugated argument only:

e−
1

2
(|
√
2Nz0+ξ|2+|

√
2Nz0+η|2)κN (

√
2Nz0 + ξ,

√
2Nz∗0 + η∗) ∼ 1√

2π
e−

1

2
(|
√
2Nz0+ξ|2+|

√
2Nz0+η|2−(

√
2Nz0+ξ)2−(

√
2Nz∗

0
+η∗)2)

×erf[(
√
2Nz0 + ξ −

√
2Nz∗0 − η∗)/

√
2] . (B24)

Here, the N -dependent terms do not cancel and the argument X =
√
N(z0 − z∗0) + (ξ − η∗)/

√
2 of the error function

becomes large in the imaginary direction (i.e. at angle ±π/2), due to z0 − z∗0 = O(1). Thus we can use the following
expansion [7]

erf(X) = sign(Re (X))− 1√
πX

exp[−X2](1 +O(1/|X|2)) , (B25)

for |X = ReiΦ| → ∞, with |Φ| < 3
4π, cf. [9]. Multiplying out the exponential factor in (B24) we obtain this time

exp

[

−1

2

(

2N(2|z0|2 − z20 − z∗20 ) +
√
2N (z0(ξ

∗ + η∗ − 2ξ) + z0(ξ + η − 2η∗)) + |ξ|2 − ξ2 + |η|2 − η∗2
)

]

. (B26)

For the term ±unity in (B25) the contribution of order O(N) in the exponent is again −4Ny20 , and thus it vanishes
in the limit. Consequently we only obtain a contribution from the next term including the Gaussian factor exp[−X2].
This leads to cancellations and we finally obtain

e−
1

2
(|
√
2Nz0+ξ|2+|

√
2Nz0+η|2)κN (

√
2Nz0 + ξ,

√
2Nz∗0 + η∗) ∼ −1√

2N(z0 − z∗0)
KGin(ξ, η

∗)
f2N (ξ)

f2N (η)
,

(B27)

with fN from (B5). The same result applies to the complex conjugated pre-kernel, resulting into a checkerboard
structure, that is every other matrix element in (B9) becomes zero in every row and column. In order to cancel the
pre-factor in (B8), which would still lead to an algebraic decay to zero, and to arrive at the final answer, we need the
following standard property of such a Pfaffian determinant:

Pf [A⊗ iσy] = det[A] . (B28)
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Here, A is an arbitrary N×N matrix and σy the second Pauli matrix, leading to such an anti-symmetric checkerboard
embedding of A. In summary we obtain for the limit in the bulk away from the real line to leading order

RGinSE
k,N

(√
2Nz0 + ξ1, . . . ,

√
2Nz0 + ξk

)

∼
√
2N(z∗0 − z0)

k det
i,j=1,...,k

[

−1√
2N(z0 − z∗0)

KGin(ξi, ξ
∗
j )

f2N (ξi)

f2N (ξj)

]

. (B29)

After cancelling all the pre-factors and using the equivalence of kernels it agrees with the correlation functions (B6)
of the GinUE in the bulk of the spectrum. This finishes the bulk universality proof. The (different) universality of
the correlations functions (B18) obtained when staying close to the real axis can be shown is a similar way.

[1] Z. Burda, R. A. Janik, B. Waclaw, Phys. Rev. E 81, 041132 (2010) [arXiv:0912.3422].
[2] G. Akemann and Z. Burda, J. Phys. A 45, 465201 (2012) [arXiv:1208.0187].
[3] D. Chafaï, G. Ferré, J. Stat. Phys. 174 692 (2019) [arXiv:1806.05985].
[4] S. Serfaty, Microscopic description of Log and Coulomb gases, in Random Matrices, edited by A. Borodin, I. Corwin, A.

Guionnet, IAS/Park City Mathematics Series, Volume 26, AMS, Providence (2019), pp. 341-387 [arXiv:1709.04089].
[5] J. Ginibre, J. Math. Phys. 6, 440 (1965).
[6] M.L. Mehta, Random Matrices, Academic Press, 2nd Edition, New York 1990.
[7] F.W.L Olver et al. (eds.), NIST Handbook of Mathematical Functions. Cambridge University Press, Cambridge 2010.
[8] E. Kanzieper, J. Phys. A: Math. Gen. 35, 6631 (2002) [arXiv:cond-mat/0109287].
[9] For cos(2Φ) < 0 the exponential function diverges and the term of order unity is subleading.


