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Universal Signatures of Quantum Chaos
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We discuss fingerprints of classical chaos in spectra of the corresponding bound quantum system~.
A novel quantity to measure quantum chaos in spectra is proposed and a conjecture about its universal
statistical behavior is put forward. Numerical as well as theoretical evidence is provided in favor of the
conjecture.
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In classical physics chaos can be characterized by the
long-time behavior of the dynamics, the most obvious
property being a sensitive dependence on initial condi-
tions. Time correlations of classical observables decay
(possibly exponentially) for t ~ ~ when the system shares
the mixing property, rejecting a complete loss of informa-
tion on the system. Integrable systems, however, show
quasiperiodic time evolutions which result in nondecreas-
ing time correlations. For bound conservative systems,
which we are exclusively considering in the sequel, the
quantum mechanical time evolution is almost periodic.
This is due to the discrete spectrum of the time-evolution

operator U(t) = e ~ ', where H denotes the quantum
Hamiltonian with (discrete) spectrum (E„,n E Nj. Thus
the time-correlation function of two states P, q from the
quantum mechanical Hilbert space reads (P, U(t) p) =

, c„e ~ "'. For t ~ this neither increases nor de-
creases but rather fluctuates perpetually, irrespective of the
integrable or chaotic nature of the classical limit. There
thus exists no quantum chaos (QC) that manifests itself in
the long-time behavior of the dynamics.

Instead, one could consider the limit t = ~ in quan-
tum mechanics and would thus study properties of sta-
tionary states, that is, of eigenvalues and eigenfunctions
of H. If one were to identify unique fingerprints of
the corresponding classical dynamics in properties of sta-
tionary quantum states, one could use these to define
QC. Ideally, classically chaotic systems should be char-
acterized by a random behavior of these fingerprints that
qualify the systems to be called "chaotic" also in quantum
mechanics.

The present perception of spectral statistics in QC
asserts that quantum energy spectra of individual systems
with even a low number of degrees of freedom (~2)
can be described by the results of random matrix theory
(RMT) if only the classical limit is strongly chaotic (a
K system). In contrast, statistical properties of quantum
energy spectra of classically integrable systems should be
described by Poissonian random processes. So far this
characterization of different types of spectral fluctuations
has been a purely phenomenological one; it is, however,
desirable to find a theoretical justification of the results
which makes use of the properties of the corresponding
classical systems and which would allow one to predict

the spectral statistics once the classical dynamics is
known. Using periodic-orbit theory [1],Berry and Tabor
[2] analyzed the level spacings of classically integrable
systems, and later Berry [3) extended the analysis to the
spectral rigidity for both integrable and chaotic systems.
In this way the above assertions on spectra1 statistics
were confirmed for "generic" systems on sma11 and
medium scales in the spectra. Berry, however, obtained
a saturation of the two-point statistics on large scales
in contradiction to the predictions based on RMT; long-
range correlations occur due to the relevance of the fine
structure in the periods of short periodic orbits.

In addition, a class of strongly chaotic systems was
found [4] for which the traditional measures of spectral
fluctuations, i.e., the level spacings distribution and the
two-point statistics, nearly behave as is expected for clas-
sically integrable systems. This phenomenon occurs for
geodesic flows on hyperbolic surfaces, i.e., Riemannian
surfaces with metrics of constant negative Gaussian cur-
vatures, whose fundamental groups are of an arithmetical
origin [5]; thus the notion of arithmetical chaos was in-
troduced. It was observed that for these systems a crucial
assumption in Berry s periodic-orbit analysis is strongly
violated in that the arithmetical systems are exceptional in

their classical dynamics by exponentially growing multi-
plicities of lengths of periodic orbits [56]. It was, how-
ever, possible to devise a periodic-orbit analysis in the
spirit of Berry that explains the observed peculiarities of
the spectral statistics [7).

The example of arithmetical chaos clearly teaches us

that there do not exist universal fingerprints of classical
chaos that manifest themselves in the level spacings distri-
bution or in the two-point statistics. Moreover, the expec-
tation based on RMT does not rea1ly provide a criterion in

which chaotic systems distinguish themselves in a particu-
lar randomness, since the spectral fluctuations expressed
by the considered quantities are stronger (Poissonian-like)
in the integrable case. It thus seems desirable to introduce
a quantity that clearly distinguishes quantum systems with
chaotic classical limits from those with integrable ones,
and which in a more direct and intuitive way expresses
the random character of spectral fluctuations in the former
case. It is the aim of this Letter to put forward a con-
jecture on a suitable quantity to measure QC in spectra
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and to provide evidence in favor of it. A preliminary an-
nouncement can be found in [8].

In the following we will discuss bound conserva-
tive systems of f ~ 2 degrees of freedom with actions
S»(E) = f» p . dq of classical periodic orbits y that
scale according to S»(AE) = A S»(E), A ) 0. We de-
note the positive root E by x = E so that S (E) =
(EIEo) S»(Eo) =: x &», where R» does not depend on the
energy E. Examples of scaling systems are billiards and
geodesic flows on Riemannian manifolds, where x = p =
~E is the modulus of the momentum (in suitable units)
and R~ = l„ is the geometrical length of y. Furthermore,
Hamiltonian systems with scaling potentials, V(A.q) =
A" V(q), A ) 0, yield u =

z + —„. The discrete spectrum
{E„;n E N) of the Hamiltonian H will be studied in terms
of the variable x, i.e., in the form {x„=E„;n C Nj. Its
spectral staircase reads M(x):= ¹{x„;0 ~ x„~x), and
can in general be decomposed into a smooth part 3V(x)
describing a "mean behavior" of 3V(x), and a fluctuating
part 3Vp] (x).

One can now express 2V&](x) for strongly chaotic
systems, i.e., E systems whose periodic orbits are isolated
and unstable, by the dynamical zeta function which reads
forf =2andRes) o.,

Z (s) =
I I ~ I ~ 1 I

y n=0

—[sa, +(n+ —,')u, ]—gzcr e

as it arises from Gutzwiller's semiclassical trace formula
[1]. Z(s) is a function of the variable s = ix, whe—re
the outer product in Eq. (1) runs over all primitive peri-
odic orbits y of the classical system and u~ denotes the
stability exponent of y, g~ is a phase factor attached to
y, and o.„=~1 depends on whether y is a direct hyper-
bolic (o„=+1) or an inverse hyperbolic (o.» = —1) or-
bit; o., ) 0 denotes the abscissa of absolute convergence
(the entropy barrier) of the Euler product (1). Using
Gutzwiller's trace formula one obtains that in the semi-
classical limit the scaled eigenvalues x„are given by the
zeros of Z(s) at s„= ~ix„The sp.ectral staircase 2V(x)
thus counts the number of zeros of Z(s) on the critical
line s = ix, x E—R, in the interval [O, x]. Once Z(s) is
holomorphic in a strip ~Res~ ~ 8, 8 ) 0, the argument
principle, which is a common tool in analytic number
theory, yields that

1
3Vt](x) = —arg Z(ix), (2)

and 3V(x) is such that Z(ix) e' ~&'] is real valued for
x E R, implying the functional equation Z(ix) e'

Z( —ix)e ' " [9]. We remark that the assertion on
the holomorphy of Z(s) can in general not be proven
rigorously, but is known to be true for geodesic flows on
hyperbolic manifolds where Z(s) is given by Selberg's
zeta function [10]. In other cases Gutzwiller's trace
formula suggests that Eq. (2) holds in the semiclassical

limit. We stress that for classically integrable systems a
representation (2) of SVt](x) in terms of a zeta function
does not exist.

We now suppose that the asymptotic behavior of the
spectral staircase is given by 3V(x) —3V(x) —c xP, x ~
~, with some positive constants c and p. In the case
of billiards or geodesic flows and for scaling potentials
this holds with p = f. The mean spectral density then

de&(x)
behaves as d(x) =

d
—Pcx& ' for x ~. The

spectral rigidity of {x„;nC N) is defined as

b,3(L;x):=

(min Cx (9V (x + x) —A —Be]'), (3)
(x) '

()
(A, B) pL

2d(x)

where ( ) denotes an average in x over an interval [x—
B,x + 8] with d(x) ' (( (I) «x. In the limit L ~ ~ and
x ()() such that x/i = 2xd(x)/pL (x) one obtains that

[7]
x+l

5 (x) — —
Ch Bing(x) ),2l

(4)

where 6 (x) = liml, 53(L;x). Thus 6 (x) approaches
for x ~ the second moment of the distribution of the
values of 3Vq](x). However, in all interesting cases 5 (x)
diverges for x ~ so that Eq. (4) suggests to define the

quantity

Sent](x)

Qh (x)

whose limit distribution (if it exists) has for x ~ a
second moment of 1. Since by definition Sf'](x) describes
the fluctuations of the spectral staircase about a mean
behaviour, the first moment of W(x) vanishes [7]. We
thus conclude that the distribution

1—
tu, {e E [x —i, x + i]; W(e) E [a, b]j

2l
x+I

d e X[a,bl(W(e)) (6)
2l x —)

of W(e) on the interval [x —i, x + i] has in the limit
x, i (x mean zero and unit variance. In Eq. (6) Xi, bl(w)
denotes the characteristic function of the interval [a, b],
and p, is the Lebesgue measure on R.

We are now in a position to formulate our conjec-
ture: For bound conservative and scaling systems the
quantity W(x), Eq. (5), possesses a limit distribution for
x ~ ~ with zero mean and unit variance. This distri-
bution is absolutely continuous with respect to Lebesgue
measure on the real line with a density f(w). Thus

x+1 b

lim — de Xi, bj(W(e)) = dw f(w) (7).
z, i~co 2l
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Furthermore,

dww f(w) = 0, dw w f(w) = 1. (8)

X(f):= —f dw f(w)(nf(w) (9)

measures a mean unlikelihood for W(x) to be of a
specific value and thus provides a quantitative measure
for spectral randomness. Under the constraint of a fixed
variance, which is always 1 here, 2[f] is maximized by
a normal distribution of mean zero. Thus the content of

If the corresponding classical system is strongly chaotic,
1

then f(w) is a Gaussian, f(w) = ~ e ~ . In contrast,
a classically integrable system leads to a non-Gaussian
density f(w).

We want to add a few remarks: (i) The conjecture
is proven for some integrable systems [11], namely,
geodesic flows on flat two-dimensional tori (in electro-
magnetic fields of Aharonov-Bohm type). There the den-
sity f(w) roughly behaves as f(w) —ci e ",w ~ ~.
(ii) In many respects the complex zeros of the Riemann
zeta function g(s) behave like scaled eigenvalues x„of
a hypothetical classically chaotic system without antiu-
nitary symmetry. The analog of Eq. (2) reads 9/&)(x) =

1 1—arg g(z + ix) It h. as been proven using Selberg's mo
mentformalism [12] that the corresponding quantity ~(x),
with b~(x) —

2 2 ln ln x, has a Gaussian limit distribution
and thus is in accordance with our conjecture. Moreover,
the same result has been obtained by Selberg [13] for a
more general class of zeta functions. The crucial prop-
erties that had to be required for the Gaussian limit dis-
tribution to be proven was a representation as a Dirichlet
series and the existence of a functional equation. Since
in general dynamical zeta functions (1) can be represented
by Dirichlet series and they obey a functional equation
(at least in a semiclassical approximation), we are led to
expect a Gaussian limit distribution for strongly chaotic
systems as expressed by the conjecture. We are reminded
that the existence of a functional equation is assured for
geodesic Bows on hyperbolic surfaces. These systems
may hence be the most accessible ones for a proof of
the conjecture (possibly by Selberg's moment formalism).
(iii) We restricted our analysis of spectral fluctuations to
scaling systems. One could expect that our conjecture
extends to general bound conservative systems. The Auc-

tuations would then have to be considered in the energy
variable E itself since no other suitable variable seems
available. But notice that one cannot extend the analogy
to the (Riemann) zeta function in a simple manner. It
should also be pointed out that so far almost exclusively
scaling chaotic systems have been analyzed numerically
in their spectral properties. (iv) A Gaussian limit distribu-
tion can be viewed as the validity of a central limit theo-
rem for the spectral fluctuations. The spectral entropy

our conjecture is that classicaIIy strongly chaotic systems
have maximally random quantum spectra.

From Berry's semiclassical analysis of the spectral
rigidity [3] one obtains that for classically integrable bil-
liards 5 (x) —c; x, x ~, with some nonuniversal con-
stant c;. For rigorous results, see Ref. [14]. "Generic"
classically chaotic systems with an antiunitary symme-
try yield 5 (x) —[(P —1)/m. 2]lnx, whereas those with-
out such a symmetry show 5 (x) —[(P —1)/27r-']lnx.
In arithmetical chaos one observes [7] that 5 (x)—
(A/4m2)x/Inx, where A denotes the area of the respec-
tive arithmetic surface. This informtion thus enables one
to construct the quantity W(x) asymptotically for x
and then to study its distribution (6) for x, l

We now provide numerical evidence in favor of our
conjecture for three strongly chaotic systems. In Fig. 1

histograms of the distributions of the respective quantities
W(x) on certain finite intervals are presented together
with Gaussian fits. In the definition (5) of W(x) the
saturation value 5 (x) enters which, as mentioned above,
is only known asymptotically for x ~. We observe
that with our finite x values we could not pass to
the asymptotic regime so that the observed distributions
show variances that have not yet reached the limiting
value of 1, which by construction has to be attained for
x ~. But most importantly, the Gaussian form of the
distributions is already clearly statistically significant. In

Fig. 1(a) we present the results for the geodesic flow on
a nonarithmetic compact hyperbolic surface of genus two
(see Ref. [15]) for an x interval containing the 4500th-
6000th eigenvalue. A second example is provided by a
billiard on the hyperbolic plane in a triangle with angles
(m. /2, n/3, n. /8), which is known to show arithmetical
chaos. The result, based on the first 1040 eigenvalues,
is shown in Fig. 1(b). Finally we present in Fig. 1(c)
the result obtained from the first 1850 eigenvalues of the
truncated hyperbola billiard. The billiard domain on the
Euclidean plane is given by that of the desymmetrized
hyperbola billiard (see Ref. [9]), truncated by a circular
arc perpendicular to the x~ axis.

So far we have been dealing with signatures of QC
in spectra. The same question can, however, a1so be
addressed to eigenfunctions of H. Already in 1977 Berry
conjectured [16] that the values of eigenfunctions ((ll„(tI)

would be Gaussian distributed in the semiclassical limit
when the classical system is chaotic. For integrable
systems eigenfunctions are known to concentrate on the
invariant tori in phase space. Thus the conjecture on the
statistical behavior of wave functions reads analogously to
the one concerning spectra: The distributions of the values

of individual eigenfunctions of H converge for n ~ ~
to an absolutely continuous distribution with respect to
Lebesgue measure. Once the corresponding classical
system is strongly chaotic this limit distribution has
a Gaussian density, whereas for classically integrable
systems the density is non Gaussian -Several nu. merical
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FIG. 1. The distributions of the quantity W(x) are shown for
the three chaotic systems as explained in the text.

tests have been performed in the past also confirming this
conjecture [17].
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