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Abstract: The universal size-shape effect law is a law that describes the dependence of nominal strength of specimen or structure on both its size
and the crack (or notch) length, over the entire range of interest, and exhibits the correct small-size and large-size asymptotic properties as required
by the cohesive crackmodel (or crack bandmodel). Themain difficulty has been the transition of crack length from0, inwhich case the size effect is
Type 1, to deep cracks (or notches), inwhich case the size effect is Type 2 and is fundamentally different fromType 1,with different asymptotes. In
this transition, the problem is not linearizable because the notch is not much larger than the fracture process zone. The previously proposed uni-
versal law could not be verified experimentally for theType 1-Type 2 transition because sufficient test datawere lacking. The current study is based
on recently obtained comprehensive fracture test data for three-point bend beams cast from one batch of the same concrete and cured and tested
under identical conditions. The test data reveal that the Type 1-Type 2 transition in the previous universal law has insufficient accuracy and cannot
be captured byTaylor series expansionof the energy release rate function of linear elastic fracturemechanics. Instead, the size effect for a zero notch
and for the transitional range is now characterized in terms of the strain gradient at the specimen surface, which is themain variable determining the
degree of stress redistribution by the boundary layer of cracking. The new universal law is shown to fit the comprehensive data quite well, with
a coefficient of variation of only 2.3%. DOI: 10.1061/(ASCE)EM.1943-7889.0000627. © 2014 American Society of Civil Engineers.

Author keywords: Quasi-brittle fracture; Cohesive crack; Scaling; Asymptotics of fracture; Failure of structures; Statistics of experimental
data.

Introduction

Progress in the modeling of concrete fracture and introduction of
fracture concepts into design codes and practice has been impeded
by the unavailability of a comprehensive database for fracture alone.
The literature features a vast number of fracture data (Becq-
Giraudon 2000; Rocco 1995; Sabnis and Mirza 1979; Ba�zant and
Becq-Giraudon 2002; Ba�zant and Planas 1998; Malvar and Warren
1988; Nallathambi 1986; Petersson 1981; Carpinteri et al. 1995;
Ba�zant and Pfeiffer 1987; Tang et al. 1996; Karihaloo et al. 2003),
but they all cover only rather limited ranges of specimen size, initial
notch depth, and postpeak response and have been performed on
different concretes, on different batches of supposedly the same
concrete, at different ages, at different environmental conditions, at
different rates, with different test procedures, and on specimens of
different types and dimensions. Combining all these data produces
a database with enormous scatter and makes the modeling highly
ambiguous because the effect of these differences is understood
much less than the fracture itself.

To remedy this situation, theU.S. DOTprovided funding to carry
out comprehensive fracture tests on specimens made from the same
batch of one typical modern concrete of the same age and the same
curing conditions, using beam specimens of size range 1:12.5 and
notch depths from 0 to 30% of cross section and including the entire
postpeak softening. In total, 18 different beam geometries (families
of beams) were cast. These data, reported and analyzed in two
previous papers and a companion paper (Hoover et al. 2013; Hoover
and Ba�zant 2013, 2014), will be used here to develop an improved
analytical formula for the effects of size and crack or notch depth on
the nominal strength of specimens.

Development of such a formula has been attempted before (Ba�zant
and Yu 2004, 2009; Ba�zant 1995, 1997) based on the technique of
asymptotic matching, but experimental verification was incomplete.
The objective of this paper is to develop and experimentally verify
a new formula for the combined effects of structure size and crack or
notch depth, called the universal size-shape effect law (because the
variation of crack depth represents an effect of structure shape, or
geometry). One particular objective is to bridge the previously
clarified size effects in specimens with no cracks or notches and in
specimens with deep notches or cracks called the Type 1 and Type 2
size effects, respectively. These two size effects are fundamentally
different and transition between them has been one important gap in
experimental information. The problem is difficult because, in the
transition, the crack or notch is not much larger than the fracture
process zone (FPZ), which precludes linear approximations.

Review of Size Effect and Crack Length Effect

In elastoplasticity, the nominal strength of geometrically similar
structures, defined as

sN ¼ cN
Pu
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is independent of the structure size D (P 5 maximum load; b
5 structure width; and cN 5 dimensionless constant chosen for
convenience). The size effect is understood as any dependence of sN

on D, which is a feature typical of fracture or damage mechanics.
According to linear elastic fracture mechanics (LEFM), which

applies to homogeneous perfectly brittle materials, and for geo-
metrically similar structureswith similar cracks,sN } D21=2, which
is the strongest possible size effect. For quasi-brittle materials such
as concrete, one can distinguish two simple types of size effect.
Considering geometrically similar structures containing at maxi-
mum load cracks or notches that are sufficiently larger than the FPZ,
one has the Type 2 size effect, which is well described by the size
effect law (SEL)

sN ¼ Bft9ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ D=D0

p ðType 2Þ (2)

HereB and the transitional structure sizeD0 are empirical parameters
to be identified by data fitting and ft9 5 tensile strength of concrete,
introduced for convenience. Eq. (2) was derived (Ba�zant 1984) by
simple energy release analysis and later by several other ways,
especially by asymptotic matching based of the asymptotic power
scaling laws for very large and very small D (Ba�zant and Planas
1998; Ba�zant 2005). In the standard size effect plot of logsN versus
logD, Eq. (2) gives a smooth transition from a horizontal asymptote
to an inclined asymptote of slope 21=2 (Fig. 1).

By means of asymptotic expansion of equivalent LEFM, it was
further shown (Ba�zant et al. 1989; Ba�zant and Kazemi 1991) that

Bft9 ¼ E9Gf =g09cf , D0 ¼ cf g09=g0 (3)

where g0 5 gða0Þ; g09 5 g9ða0Þ; a5 a=D 5 relative crack length;
a0 5 a0=D 5 initial value of a; gðaÞ5 k2ðaÞ 5 dimensionless
energy release rate function gðaÞ of LEFM; kðaÞ5 b

ffiffiðp DÞKI=P
where KI 5 stress intensity factor, P 5 load; g9ðaÞ5 dgðaÞ=da;
E95E 5 Young’s modulus for plane stress and E95E=ð12 n2Þ
for plane strain (where n 5 Poisson ratio); Gf 5 initial fracture
energy 5 area under the initial tangent of the cohesive softening
stress-separation curve; cf 5 characteristic length, which repre-
sents about a half of the FPZ length and may be expressed as
cf 5 gsl0, where gs 5 material-dependent coefficient, for the
present specimens equal to 0.29 (Ba�zant and Yu 2011; Cusatis and
Schauffert 2009); and l0 5EGf =f 9

2
t 5 Irwin’s material character-

istic length (Irwin 1958). Gf , cf , and l0 are all considered to be in-
dependent of structure size, i.e., as constants, because they are the
characteristics of the cohesive crack softening law, which itself is
a material property (note the difference of Gf from the total fracture
energy, which represents the total area under the cohesive softening

stress-separation law, and the fact that Gf is not equal to the energy
release rate, which can vary with the size and distance from notch tip;
on the other hand,GF is equal to the energy release rate in an infinitely
large specimen).

Based on Taylor series expansion of function gðaÞ, Eq. (2) may
be rewritten as (Ba�zant and Kazemi 1991; Ba�zant et al. 1989)

sN ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E9Gf

g0Dþ g09cf

s
ðType 2Þ (4)

Because function gðaÞ or kðaÞ embodies information on the effects
of crack length and structure geometry (or shape), Eq. (4) is actually
a size-shape effect law for Type 2 failures.

The Type 1 size effect is observed in structures of the so-called
positive geometry (Ba�zant and Planas 1998), which fail under con-
trolled load as soon as themacrocrack initiates from a smooth surface.
In this case,sN approaches, for largeD, a constant value (a horizontal
asymptote in the size effect plot), since the Weibull statistical size
effect (Weibull 1939, 1951) is unimportant. For three-point bend
beams, it is indeed unimportant. Why?—because the zone of high
stress is rather concentrated, even in absence of a notch. This prevents
the critical crack from forming at widely different locations of dif-
ferent random local strength (for the same reason, the statistical size
effect is negligible in Type 2 failures also). The statistical size effect is
also unimportant for small enough specimens of any geometry, for
which the structure is notmuch larger than the FPZ. The deterministic
size effect is also called energetic, because it can be derived from the
limit case of energy release when the crack length approaches zero.

When, however, the zone of high stress in Type 1 failures
occupies a large part of the structure, as in tensile loading of bars or
in four-point bending, the statistical size effect is not negligible and
for large sizes becomes important. Then the large size asymptote
for Type 1 size effect is, in the log-log plot, a downward inclined
straight line of a slope 2n=m, which is much milder than the
slope of 21=2 for LEFM (Weibull 1939, 1951) (Fig. 1); here m
5 Weibull modulus and n 5 number of spatial dimensions of
fracture scaling (n5 2 for the present tests). The small-size as-
ymptote is also a horizontal line and, formedium sizes, the size effect
is a transition between these two asymptotes. In absence of the
statistical size effect

sN ¼ fr‘

�
1þ rDb

Dþ lp

�1=r

ðType 1, deterministic, or energeticÞ

(5)

and in presence of the statistical size effect

sN ¼ fr‘

"�
ls

ls þ D

�rn=m

þ rDb

Dþ lp

#1=r

ðType 1, energetic-statisticalÞ
(6)

Here fr‘,Db, lp, ls, and r are empirical constants to be determined from
tests; fr‘ 5 nominal strength for very large structures, assuming no
statistical size effect (in the special case of very large beams, fr‘
represents the flexural strength, also called the modulus of rupture);
andDb 5 depth of the boundary layer of cracking (roughly equal to the
FPZ size). In all previousworks,D5D5 same characteristic structure
size as used for the Type 2 size effect [Eq. (4)]. The reason for placing
an overbar on D is that D is later redefined in terms of the strain
gradient.

Furthermore, ls 5 statistical characteristic length and lp
5 material characteristic length, which is related to the maximum

Fig. 1. Dependence of sN on structure size D of beams with (a) deep
notches and (b) no notch
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aggregate size da. Introducing lp is necessary for mathematical
reasons, as a means to satisfy the asymptotic requirement of a finite
plastic limit forD→ 0 while ensuring the effect of lp to be negligible
for D� lp. However, if the structure is larger than 10lp, one can set
lp � 0, which corresponds to the original formulation of the Type 1
law. lp differs from Irwin’s (1958) characteristic length l0. Also in the
limit of m→‘, the statistical Eq. (6) reduces to the deterministic
Eq. (5). Further note that scaled tests of three-point bend beams with
a notch of a0 $ 0:15 have been shown to yield virtually the same
fracture parametersGf and cf as the tests with a0 5 0:50 (Tang et al.
1996), which is the reason why tests with a0 5 0:50 were deemed
unnecessary for present comprehensive test program.

Type 1 Size Effect in Terms of Boundary
Strain Gradient

An asymptotic expansion of LEFM function gðaÞ for initiating
cracks and consideration of the limit a0 → 0 indicated that (Ba�zant
1997, 2005)

Db ¼ 2cf g99ð0Þ=4g9ð0Þ, fr‘ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E9Gf =cf g9ð0Þ

q
(7)

where typically g99ð0Þ, 0. However, these expressions must be
suspected of poorer accuracy because gð0Þ5 0, and approximations
by higher-order derivatives always have much larger errors. The
comprehensive tests of Hoover et al. (2013) confirmed this suspi-
cion. When the Type 2 SEL [Eq. (4)] was optimally fitted to the
comprehensive test results (Hoover and Ba�zant 2013) fora0 $ 0:15,
the value of fr‘ predicted by Eq. (7) using function gðaÞ is1.33 times
smaller than necessary to fit the no-notch test results and the value of
Db is 2.1 times smaller. Thus, although the form of Eq. (5) obtained
as the limit case of equivalent LEFM is correct, Eq. (7) gives
parameter values that are too inaccurate and must therefore be
abandoned as a consequence of the comprehensive test results of
Hoover et al. (2013). It also means that Eq. (7) cannot be used to
determine Gf , which means the only way to determine Gf is to
perform size effect tests on a large size range of beams with deep
relative notches.

The Type 1 size effect law has originally been derived (Ba�zant
and Li 1995) by considering the stress redistribution in beam
bending caused by the finite depth Db of the boundary layer of
cracking. This depth is roughly the same as the size of the FPZ of
deep cracks and is about seven times da. The stress redistribution is
essentially local and depends on how much the normal strain ɛn at
surface, in the direction parallel to surface, changes over the depth
Db of the boundary layer of cracking. As suggested in Eq. 2.49 of
Ba�zant (2005), this change may be characterized in terms of the
strain gradient ɛ,n 5 ∂ɛ=∂xn, where xn is the coordinate normal to the
surface, oriented outward. The ratio ɛ=ɛ,n has the dimension of
length and is proportional to the structure sizeDwhen geometrically
similar structures are considered. This suggests redefining D in
Eqs. (5) and (6) as follows:

D ¼ 2ɛ
cɛ,n

(8)

The reason for factor 2 is tomakeD coincide with the actual depthD
of a slender beam subjected to bending moment M alone (to verify
this fact, note that ɛ at surface is equal to ɛ,nD=2, according to the
plane cross section hypothesis). Factor cðS=DÞ is introduced as
a geometry factor, defined as 1 for a slender beam. The strain
gradient should be obtained by elastic analysis with no crack and not

by fracture analysis with a crack, because it represents the modi-
fication of elastic analysis needed to approximate the cohesive
fracture effect.

The beams tested in Hoover et al. (2013) were not slender. They
had a span-to-depth ratio S=D5 2:176, and therefore cðS=DÞ� 1.
According to the exact elastic solution (e.g., Timoshenko and
Goodier 1951, p. 101), the stresses at the midspan cross section vary
with transverse coordinate y as follows:

EɛðyÞ ¼ 3P
2c3

�
S
4
2 c
p

�
yþ P

2pc
þ P
pc

�
y3

2c3
2

3y
10c

�
(9)

Hence

ɛ
ɛ,n

¼ ɛðcÞ
ɛ,yðcÞ ¼

c

2
D with c ¼ 0:896 (10)

where c5D=2; and S 5 span. Calculation of factor cðS=DÞ for
different S=D makes it possible to infer the size effect for beams
with S=D other than 2.176.

Using an elastic solution to determine factor c might seem de-
batable. Wouldn’t a solution with the cohesive crack model or
a damage model be more appropriate? Not in the present context,
because the purpose of ɛ,n is to introduce a correction of elasticity to
approximate the solution with the cohesive crack or damage model,
for which no correction for strain gradient is needed.

Another debatable point might be that the data fitted here are for
specimens of the samewidth b (which means using two-dimensional
scaling). Wouldn’t a proportional increase of b (i.e., three-
dimensional scaling) be more appropriate? Not really, because it
would bring about additional problems. Near the side walls there is
a layer of constant thickness in which the crack must be nonplanar
and the crack front curved (which is called the shear-lip phenom-
enon). Thus, if bwere varied, then different portions of the specimen
thickness b would be occupied by the surface layer. This is a small
effect but it could cause the average fracture energy over width b to
vary (slightly) and would create additional scatter in the size effect
trends.

Universal SEL

When the crack at failure is neither negligible nor large, the size
effect trend is expected to be some sort of a transition between the
Types 1 and 2. To clarify this transition and thus obtain a combined,
or universal, size-shape effect law has been one key objective of the
comprehensive fracture tests (Hoover et al. 2013).

In absence of comprehensive test data, there have been two
previous purely theoretical attempts at a universal size effect that
would be bridging Type 1 and Type 2 size effects. The first attempt
(Ba�zant 1996; Ba�zant and Li 1996) led to a formula in which the
transition was not smooth. A smooth formula was derived in Ba�zant
and Yu (2009), but it could not be checked against experiments. The
comprehensive fracture tests now make possible such a check, and
show that the previous attempts to bridge the Type 1 and 2 size
effects were not accurate enough.

An improved universal SEL (USEL) with the strain gradient
could be derived by a similar asymptotic matching procedure as in
Ba�zant andYu (2009). However, it will be shorter to present first this
universal law and then demonstrate that is has the correct asymptotic
properties. Considering also the statistical size effect, the non-
statistical and statistical USELs may be stated as follows:
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sN ¼
"

E9Gf

g0Dþ ð12 lÞcf g09 þ lE9Gf =f 2r‘

#1=2 
1þ rlDb

Dþ lp

!1=r

(11)

sN ¼
"

E9Gf

g0Dþ ð12 lÞcf g09 þ lE9Gf =f 2r‘

#1=2

�
"�

lls
Dþ ls

�rn=m

þ rlDb

Dþ lp

#1=r
(12)

in which an empirical Type 1 to 2 transition parameter is introduced
and defined as

l ¼ e2½ak
0ðD=daÞp=q� (13)

HereD is given by Eq. (8); andGf , cf , fr‘,Db, r, k, p, q, lp, and ls are
parameters to be calibrated by data fitting, whereas c is calculated
from the strain profile. The only purpose of the transition parameterl
is to provide a smooth transition between the Type 1 and 2 behaviors.
Thus, it is justified as an asymptotic matching parameter, with as-
ymptotic cases l5 1 for no-notch specimens and l5 0 for deep
notch specimens. Other smooth expressions for l were also tried
(e.g., l5 e2ða0=kÞp and l5 e2ða0D=kdaÞp ) but did not fit the data as
well. The surface lða,DÞ at the location of each beam size used in
Hoover et al. (2013) and overall is pictured in Fig. 2.

According to the method of asymptotic matching, which is the
only way to formulate the SEL analytically, Eqs. (11) and (12) are
justified by checking that they match the following two basic as-
ymptotic trends:
1. For no notch, on setting a5 0, g0 5 0, and l5 1 and using

c5 0:896, Eqs. (11) and (12) reduce to the deterministic or
statistical Type 1 SELS in Eqs. (5) and (6); and

2. For deep notches, on setting l5 0, both Eqs. (11) and (12)
reduce to the Type 2 size effect law in Eq. (2).

Previously (Ba�zant and Yu 2009), it was further shown that the
Type 1 and 2 SELS satisfy the large-size and small-size asymptotic
properties of the cohesive crack model applied to Type 1 and 2
failures.

Furthermore, it was experimentally confirmed that, within the
range of inevitable experimental scatter, the SEL of Type 2 gives
about the same values of fracture energyGf when applied to notched
fracture specimens of different geometries [e.g., notched beam

bending, edge-notched tension, eccentric compression (Ba�zant and
Pfeiffer 1987)] [this checkwasmade before function gðaÞ, needed to
also obtain cf , was introduced into the SEL].

Eqs. (11)–(13) also give the correct prediction for an unnotched
direct tension specimen. Indeed, in this case, ɛ,n 5 0, D→‘, l5 1,
and g0 → 0. Eq. (12) thus reduces to sN 5 fr‘½ls=ðD1lsÞ�m=n, which
correctly gives, for large D, the pure Weibull statistical size effect
sN 5 fr‘D2m=n.

Verification of USEL by Comprehensive
Fracture Tests

To calibrate the deterministic USEL, the mean of the data was
computed separately for each family of identical specimens from the
comprehensive fracture tests (Hoover et al. 2013) (these means are
shown in the figures as the large and thin x points). Then all these
means were optimally fitted by Eq. (11). The trust-region-reflective
optimization algorithm (Coleman and Li 1994, 1996) was used. It
would not have been meaningful to fit all the unknown parameters
concurrently because every one of them would then be influenced
by all the data.

In particular, the fracture parameters Gf and cf should not be
influenced by the data for beams with no notches (Type 1 data) or
shallow notches, and fr‘, Db, lp, and r should not be influenced by
the data for deep notches. Therefore, these parameters were de-
termined first by separate fitting of specimens with deep notches
(a5 0:30, 0:15) and specimens with shallow or no notches (a5 0),
and only the remaining ones, i.e., k, p, and q were identified by si-
multaneous optimal fitting of all the data. Only the nonstatistical USEL
in Eq. (11) was considered because parametersm and ls for theWeibull
statistical size effect cannot be identified from the present data. They are
nevertheless well known from other studies (Ba�zant et al. 2007).
Nonlinear fitting of the Type 1 SEL [Eq. (5)] to the notchless (a5 0)
beams gave (Hoover and Ba�zant 2013)

Db ¼ 73:2mm, lp ¼ 126:6mm, fr,‘ ¼ 5:27MPa, r ¼ 1=2

(14)

Actually, the optimization gave r5 0:52, but replacing it with
r5 0:5 was found to have increase the COV of Type 1 data fits
negligibly (from 1.907 to 1.909%).

The size range 1:12.5 was large enough to identify all the fracture
parameters in Eq. (5). Gf and cf were identified by weighted non-
linear regression of the Type 2 SEL [Eq. (4)] run jointly for the

(a)
(b)

Fig. 2. Trend of the transition function lða,DÞ (a) at location of each beam size and (b) entire surface
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a5 0:30 and 0.15 beams, with different g0 and g09 for each a. The
means in each family were assigned the weights wi 5s22

i
=
PN

i51s
22
i , representing the inverse variance of each beam family

normalized with the sum of the inverse variances for all N families
(N5 8). The optimization gave

Gf ¼ 56:25N=m, cf ¼ 29:79mm (15)

The optimization of the remaining parameters, all belonging
to the transition function lða,DÞ [Eq. (13)], furnished k5 1:57,
p5 0:755, and q5 0:108.

The surface of the optimized USEL is pictured in Fig. 3, where
the contour lines are the lines of constantD or constant a. The COV
of fit of the entire surface (defined as the RMS error divided by the
mean of all data) is only 2.30%. For simplicity, the optimized
parameters in the transition function may be rounded as

k ¼ 3=2, p ¼ 3=4, q ¼ 1=9 (16)

which makes the COV only slightly higher (2.45%).
Although it seems that these parameter values can be kept the

same even for other specimen geometries, recalibration may be
needed for good accuracy.

The USEL can be drawn for a fixed a, which gives a size effect
plot of logðsN=ft9Þ versus logðD=D0Þ, or at a fixed relative depth
D=D0, which gives the plot of logðsN=ft9Þ versus logðaÞ. In Figs. 4
and 5, these plots are created and compared with the data from
Hoover et al. (2013). The COV for each curve is indicated in the
figures. It is seen that the curves fit the data satisfactorily. The largest
COV, equal to 3.8%, comes from the size effect plot for a5 0:025,
which is in the transition. The remaining COV values are less than
3.2%, and four of them are less than 2%.

Remaining Questions

It must be admitted that the experimental verification of the capa-
bility of the present universal size-shape effect law is not complete as

Fig. 3. Entire USEL surface; COV of fit is 2.3%

Fig. 4.Effect of relative crack length on the normalized nominal strength of data fromHoover et al. (2013) optimally fitted by the USEL [Eq. (11)]; the
COVs of each fit are shown
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far as the structure geometry (or shape) is concerned. That the Type 2
size effect law, with the sameGf , can fit the nominal strength values
measured on different types of fracture specimens, including three-
point bend, double-edge-notched tensile, and edge-notched ec-
centric compression specimens, has been experimentally verified in
Ba�zant and Pfeiffer (1987).

Because Eq. (8) describes a local effect, for which remote
boundaries are irrelevant, this equation forD should, in theory, apply
for any geometry. However, this remains to be proven experi-
mentally. The transition function l is not completely local, and
therefore its applicability to other geometries is less certain. The
applicability of D and l to other geometries could also be verified
computationally, using the cohesive or crack-band model. Extending
these function to a very different material would surely necessitate
recalibration.

Conclusions

1. The use of the dimensionless energy release rate function gðaÞ of
LEFM,whichwas previously shown to provide the correct effect
of specimens geometry on the size effect (ofType2) in specimens
with deep notches or cracks, does not give a correct transition to
the size effect (of Type 1) in specimens with no notch or crack.
The reason is that the energy release rate of an initiating crack
vanishes, which forces the use of higher-order derivatives of
gðaÞ. However, differentiation of a functional approximation is
known to always greatly increase the approximation error.

2. To remedy the problem, the effective structure size for the
Type 1 size effect is now characterized in terms of the ratio of
the strain at surface to the gradient of that strain. In theory, this

Fig. 5. Effect of normalized structure size on the normalized nominal strength of the data from Hoover et al. (2013) optimally fitted by the USEL
[Eq. (11)]; the COVs of each fit are shown
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ratio should apply regardless of the structure geometry, but
experimental data to check this are unavailable.

3. Fracture parametersGf and cf must be identified separately by
fitting only the size effect data from deeply notched specimens
(a5 0:3 and 0:15), and parameters fr‘,Db, lp, and r separately
by fitting only the size effect data for unnotched specimens
(a5 0). The parameters of the transition function k, p, and q
are then identified by fitting the entire data set.

4. The new USEL fits the measured nominal strength quite well,
with an overall COV of only 2.3%.

5. The new USEL also fits well the individual crack length and
size effect data, with the two largest COVs equal to 3.8 and
3.2% and the rest of less than 3%.
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