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Abstract

Structural features of porous materials such as soil define the majority of its physical proper-

ties, including water infiltration and redistribution, multi-phase flow (e.g. simultaneous

water/air flow, or gas exchange between biologically active soil root zone and atmosphere)

and solute transport. To characterize soil microstructure, conventional soil science uses

such metrics as pore size and pore-size distributions and thin section-derived morphologi-

cal indicators. However, these descriptors provide only limited amount of information about

the complex arrangement of soil structure and have limited capability to reconstruct structur-

al features or predict physical properties. We introduce three different spatial correlation

functions as a comprehensive tool to characterize soil microstructure: 1) two-point probabili-

ty functions, 2) linear functions, and 3) two-point cluster functions. This novel approach was

tested on thin-sections (2.21×2.21 cm2) representing eight soils with different pore space

configurations. The two-point probability and linear correlation functions were subsequently

used as a part of simulated annealing optimization procedures to reconstruct soil structure.

Comparison of original and reconstructed images was based on morphological characteris-

tics, cluster correlation functions, total number of pores and pore-size distribution. Results

showed excellent agreement for soils with isolated pores, but relatively poor correspon-

dence for soils exhibiting dual-porosity features (i.e. superposition of pores and micro-

cracks). Insufficient information content in the correlation function sets used for reconstruc-

tion may have contributed to the observed discrepancies. Improved reconstructions may be

obtained by adding cluster and other correlation functions into reconstruction sets. Correla-

tion functions and the associated stochastic reconstruction algorithms introduced here are

universally applicable in soil science, such as for soil classification, pore-scale modelling of

soil properties, soil degradation monitoring, and description of spatial dynamics of soil mi-

crobial activity.
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Introduction

Soil microstructure, i.e. the spatial arrangement of mineral, organic, air and water, and other

phases at the sub-Darcian scale, defines all local (i.e. at the scale of measurement) and effective

(i.e. describing flow processes in an upscaled homogeneous medium, also referred-to as Darcy

scale) soil properties. For example, pore structure and wettability properties of pore walls gov-

ern saturated hydraulic conductivity, capillary properties (water retention characteristic), and

relative permeabilities for unsaturated water and gas flow. Pore-scale modeling approaches [1]

have implemented these interdependencies [2–3] and have proven to be a valuable approach to

predict porous media flow properties based on microscopic pore structure information [4–7].

In addition to filtration properties, structure defines such soil properties as molecular diffusion

[8–10], mechanical properties [11–12], electrical resistivity [13–14], heat transfer and evapora-

tion [15–17], and hydrodynamic dispersion [18–20]. These physical properties combined gov-

ern geochemical reactions and weathering [21–22], transport of solutes, nutrients, viruses or

colloids [23–26], and affect living conditions of microorganisms [27–28]. In turn, such process-

es and the soil’s response to variable boundary conditions (e.g., precipitation, transpiration)

will impact soil fertility and degradation [29], bio-clogging [30], irrigation and tillage manage-

ment [31], and soil water storage under variable and changing climate [32]. In addition, given

the importance of soil microstructure in defining other soil properties, its quantification should

be incorporated in any characterization of basic soil properties. Throughout this paper, all ref-

erences to the term ‘structure’ refer to microstructure.

Conventional methods to study soil structure include soil thin sections; more recently Scan-

ning Electron Microscopy (SEM) and Back-scattering Imaging Microscopy (BSIM) have been

used [8]. Both thin sections, SEM and BSIM usually result in 2D image information. X-ray

micro-tomography (XMT) on the other hand, provides a very effective way of obtaining 3D

images of soil structure with resolutions up to around 1 μm [33–34]. Although entire soil cores

can be scanned with XMT, the larger the core size the lower the spatial resolution. Such 2/3D

images have been used to study soil hydrological processes, structural changes and dynamic ef-

fects associated with biota influence and agricultural practices [35]. However, as soil structural

properties are usually reported only as 2/3D visualizations, particle size/pore-size distributions,

or fractal dimensions, a direct comparison of structural features across different soils is compli-

cated in absence of a comprehensive soil structure descriptor.

Despite the broad recognition that soil structure and its relation to many physical properties

and processes are invaluable in soil science, current research lacks a universal soil structure de-

scriptor to characterize soil structure quantitatively and thus facilitate a universally applicable

comparison for different soils. Such a descriptor should represent soil structure information in

mathematical functions that allow solving the inverse problem, i.e. reconstruct soil structure

from its descriptor function(s).

A variety of soil structure descriptors has been developed over the years, such as 1) particle

size distributions plus organic matter content [36]; 2) pore-size distributions either from 3D

pore structure images or water retention curves [37–38]; 3) fractal dimensions of soil pore

space [4,20,39]; and 4) morphological measurements on thin-sections [29,40–41], and 5) Min-

kowski functionals [35,42].

While these sets of soil structure descriptors provide some first attempt to quantify struc-

ture, they are insufficient to reconstruct soil structure based on the available parameters. In-

deed, even such simple structures as mono-disperse sphere packs can be extremely complex

and possess different degrees of complexity [43–44]; for instance, similar sets of particles with

defined grain sizes can be packed in many different ways. Furthermore, pore-sizes extracted

from XMT images can be accurate only for pore sizes above resolution limit. Tortuosity and
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connectivity parameters inferred from water retention measurements or image analysis are

highly uncertain due to non-uniqueness in the estimation of multiple parameters from often

limited data [45–46]. As a result, the ability to predict capillary or multiphase flow properties

for soils with important structural features is limited [47–48]. Reconstruction of even very sim-

ple synthetic structures using fractal dimension information is often of relatively poor quality

[49]. For relatively simple structures typically observed in Berea or Fontainebleau sandstone, 2/

3D morphological information used as input parameters to process-based reconstruction tech-

niques has proven to yield acceptable reconstructions [50–52], but would fail in soils due to dif-

ferent genesis. Other novel methods such as Minkowski functional distributions [35,42] or

local porosity/connectivity distributions [53] are potentially powerful methods to characterize

soil structure and develop reconstructions. Their main drawback is that they are computation-

ally expensive, which limits widespread application and could explain why applications to re-

construct structure have not yet been reported in the literature.

Another class of material structure description methods is based on spatial correlation func-

tions (a detailed description is provided below). A particularly powerful reconstruction algo-

rithm is one which employs a stochastic optimization approach based on simulated annealing

[54], often referred to as the Yeong-Torquato technique [55]. Spatial correlation functions

have been used in different disciplines to characterize and reconstruct numerous materials, in-

cluding gels [56], sandstones [57–58], stars and galaxies [59], kerogen porosity in shales [60],

concrete [61], filters [62–63], nanocomsposites [64–65], and soft matter such as food [66]. In

our preliminary study [67] we applied spatial correlation functions (with averaged two-point

probability computed only in orthogonal directions) for soil reconstructions based on the origi-

nal Yeong-Torquato method which considers isotropic heterogeneous materials. On the basis

of our recent modifications to the Yeong-Torquato method, which involves computing direc-

tional correlation functions [68], we demonstrate it is now possible to characterize complex

soils with direction-dependent or anisotropic structures. The current paper builds on our pre-

vious work and is a first-ever demonstration of the predictive capacity of the novel directional

spatial correlation functions [67–68] for soil structure quantification and reconstruction.

The objective of this paper is to apply novel direction-dependent spatial correlation func-

tions to describe 2D soil binary structures (pore-solid images) and develop procedures for test-

ing their usefulness by comparison of connectivity and other soil morphological descriptors

based on original and reconstructed images.

Materials and Methods

Correlation functions

In our notion of correlation functions we mainly follow Torquato [2]. First, we introduce a bi-

nary indicator function I(i)(x), which describes the affiliation between local points (pixels for

2D and voxels for 3D digitized images) of structure under study. For a two-phase system (e.g.

solid-pore) the indicator function will take the following form in each location x in the two-di-

mensional Euclidian space R2:

IðiÞðxÞ ¼

(

1; x 2 Vi

0; x 2 �Vi

; ð1Þ

where Vi ∊ R
2 is the region occupied by phase i, and �V i 2 R

2 is the region occupied by the

other phase. Next, a simple type of correlation function, i.e. the n-point probability function,

Sn, is defined which calculates the probability that n points lie in the same phase in the
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following manner:

SðiÞn ðx1
; x

2
; . . . ; xnÞ ¼ hIðiÞðx

1
Þ; IðiÞðx

2
Þ; . . . ; IðiÞðxnÞi; ð2Þ

where x is the coordinate vector and h. . .i denotes ensemble average. For a statistically homo-

geneous or stationary structure (i.e., the statistical descriptors of the geometrical arrangement

do not depend on the position they are evaluated at), n-point probability functions depend

only on the relative distances between points and not on their absolute coordinate values. This

means:

SðiÞn ðx1
; x

2
; . . . ; xnÞ ¼ SðiÞn ðx12

; x
13
; . . . ; x

1nÞ; ð3Þ

for all n�1, where xij = xj − xi.

While n-point probability functions can theoretically be applied to soil thin-sections or

XMT scans for describing structure, the computational cost is still prohibitive and a much sim-

pler and hence efficient structure descriptor is required, especially in view of its use for struc-

ture reconstruction. As calculation of probability functions with n>3 involves numerous

difficulties, applications so far have typically used a smaller number of points. Yeong and Tor-

quato [55] argue that the complexity of calculations for n>2 is not offset by the gain in accura-

cy. Of the few applications of probability functions with n = 3 available in the literature [59],

none relate to soil science.

The two-point probability (S2) function is the lower-order version of Sn and represents the

probability that two points separated by the vector displacement r(x1,x2) between position vec-

tors x1 and x2 lie in the same phase (pores or solids, represented by respectively white and

black areas in Fig 1):

S
ðiÞ
2
ðx

1
; x

2
Þ ¼ hIðiÞðx

1
Þ; IðiÞðx

2
Þi: ð4Þ

Analogous to Eq 3, one may write for statically homogeneous structures:

S
ðiÞ
2
ðx

1
; x

2
Þ ¼ S

ðiÞ
2
ðrÞ; ð5Þ

where r = x12 is the vector displacement between position vectors x1 and x2. For statistically ho-

mogeneous and isotropic structures the two-point probability functions will only depend on

the scalar distance r between the points, or:

S
ðiÞ
2
ðrÞ ¼ S

ðiÞ
2
ðrÞ: ð6Þ

The first moment, φi, of an n-point probability function, i.e., a one-point function:

S
ðiÞ
1
¼ S

ðiÞ
2
ð0Þ ¼ hIðiÞðxÞi ¼ φi ð7Þ

is the probability of finding the point x to belong to phase i, or to a volumetric fraction (pore

space or solid). For a binary, statistically homogeneous structure the relationship between two-

point probability functions for each phase is given by (superscript b and w refer to respectively

black and white areas in Fig 1):

S
ðbÞ
2
ðrÞ ¼ S

ðwÞ
2
ðrÞ � 2φw þ 1: ð8Þ

where φw is the probability of x being in the pore space. Using autocorrelation function nota-

tion (φb is the probability of x being in the solid space):

wðrÞ ¼ S
ðwÞ
2
ðrÞ � φw

2 ¼ S
ðbÞ
2
ðrÞ � φb

2: ð9Þ

It is noted from Eqs 8 and 9 that two-point probability functions do not discriminate
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Fig 1. Schematic for correlation function computation in four principal directions (X, Y, X-diagonal and Y-diagonal) in a two-phase porousmedium
displaying pore (white areas) and solid (black areas) phase. Thick line segments represent examples providing correlation function’s local values of 1,
while thin lines—0.

doi:10.1371/journal.pone.0126515.g001
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between binary phases. This means that one cannot improve statistical information for a given

structure by computing both S
ðwÞ
2

and SðbÞ
2
. Two-point probability functions possess certain

properties, the most important of which are their physical realizability, i.e., the conditions at

which a given function can be represented by a binary structure. Additional properties have

been described in several comprehensive reviews [2,69].

Many other types of correlation functions exist: linear, cluster, chord distribution, and pore-

size distribution, to name a few [2]. Each of them represents the probability that the position of

either points or segments on the image satisfies some necessary conditions. Here, in addition

to two-point probability functions, we utilize the linear function L2 (the probability that an en-

tire line segment between two points belongs to one phase) and the two-point cluster function

C2 (the probability that both ends of the line segments belong to the same cluster). The sche-

matic representations of all three correlation functions used in this study are depicted in Fig 1.

Both linear and cluster functions possess some non-trivial information about connectivity of

the phases and, unlike the two-point probability function, do discriminate between phases.

This means that LðwÞ
2
, LðbÞ

2
, as well as CðwÞ

2
and CðbÞ

2
are independent. The notion of averaging in

case of statistically homogeneous (Eq 5) and isotropic structures (Eq 6) is also applicable for

the linear and cluster functions.

There are several ways to calculate correlation functions for a given binary image. Ideally,

for any two-point statistic, one establishes all possible connections between all points and then

calculates average function values using, for example, Eq 6. This requires considerable memory

and computing power, making simulated annealing optimization procedures (see below) very

inefficient because resources increase enormously with increasing image size and dimension. A

faster way to collect such statistics is based on Fast Fourier Transforms—FFT [70]. However,

the FFT method works only for a two-point probability function. The original Yeong-Torquato

method was implemented for two-point probability and linear functions [55], which were cal-

culated along orthogonal directions by moving line segments across the image. As was demon-

strated by Manwart and Hilfer [71], this approach resulted in artificial anisotropy in the

diagonal directions. Jiao et al. [69] introduced the lattice-point method that can potentially

handle any superposition of correlation functions, but as with all previous methods, it also av-

erages function values over the whole image. Such approaches in calculating correlation func-

tions cannot handle well anisotropic structures. Gerke et al. [68] have proposed a new method

to account for structure anisotropy by calculating directional correlation functions. In order to

calculate the above cluster function, C2, the binary phase of interest is first marked into clusters

using the Hoshen-Kopelman algorithm [72] and a set of boundary conditions [73].

In the current paper two-point probability and linear functions are calculated in two orthog-

onal and two diagonal directions (as shown on Fig 1); cluster functions are calculated in two

orthogonal directions only. Calculations involve moving line segments of varying length over

the whole image, where the line segment r(x1,x2) is as in Eq 5 for S2; the generalization for line-

ar function L2 and cluster function C2 is straightforward. As a result, a relationship is obtained

between average function value and length r in the direction of interest.

In this paper we apply correlation functions only to binary soil structures consisting of

pores and solids. Correlation functions can be easily calculated and reconstructed for addition-

al phases [74]. For example, in soil science multiple soil phases could include pores, mineral

grains, clays and organic matter, each with their own correlation and cross-correlation func-

tions [74–76].
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Reconstruction procedure

Provided with a set of correlation function(s), we will reconstruct soil structure by solving the

inverse problem. Our method is based on the Yeong-Torquato technique which uses the so-

called “simulated annealing” stochastic optimization algorithm [54] by matching correlation

functions of a given realization with a reference structure by pixel permutations. This involves

a set of two-point correlation functions in the form of f a
2
ðrÞ, where α is function type and r is

defined similar to Eq 5. The difference between two realizations of the structure can be express-

ed as the sum of squared differences between two sets of correlation functions:

E ¼
X

r

X

a

½f a
2
ðrÞ � f̂ a

2
ðrÞ�

2
; ð10Þ

where f a
2
ðrÞ and f̂ a

2
ðrÞ are the values of the correlation functions for two different realizations

(where the former is usually a value for an original, or reference structure, while the latter is for

the structure being reconstructed). In Eq 10, E represents the "energy" of the system, which is

minimized by the simulated annealing algorithm.

All modern soil structure measurement methods, including XMT or digital microscopy, re-

sult in digital pixel or voxel representation of the soil structure and are directly applicable for

correlation function evaluation and reconstruction procedure implementation. At first, we cre-

ate a random structure and start to change pixel positions (see further), while checking the sys-

tem’s energy according to Eq 10. Because in the beginning of this process the characteristic

sizes of phase aggregates are smaller than for the original image, it is reasonable to accept more

permutations (i.e. changes in pixels’ position), even if they do not reduce the energy E. To this

end, a so-called cooling schedule is chosen for the simulated annealing algorithm, which de-

scribes the probability of accepting any permutation p in the following way:

pðEold ! EnewÞ ¼ f
1;DE < 0

expð�DE=TÞ;DE � 0
; ð11Þ

where T is the "temperature" of the system, as interpreted from the Boltzmann distribution

used in Eq 11 for ΔE� 0, and

DE ¼ Enew � Eold: ð12Þ

The initial temperature T is chosen so that the probability p for ΔE� 0 equals 0.5 [55,69].

The idea behind the cooling schedule is that simulated annealing will result in a global mini-

mum energy E, and the optimization would not get trapped in some local minima. It is general-

ly believed that a global minimum of E can be achieved when cooling is inversely proportional

to the logarithm of k, i.e. T(k)*1/ln(k), where k is a number of permutation trials. Several

complex cooling schedules exist which depend on numerous system parameters [63]. In prac-

tice, a faster cooling schedule is usually utilized in a form of T(k)/T(0)*λ
k, where λ is the an-

nealing scheduling parameter with a value somewhat smaller than, but close to unity [55,69].

Based on numerous trials and experience in reconstructing different test cases [60,67–68], we

choose to implement a slower cooling schedule based on the following geometrical progres-

sion:

TðkÞ ¼ Tð0Þlðk�1Þ: ð13Þ

The simulated annealing algorithm is a time-consuming and computationally expensive

technique, although several ways exist for its optimization and acceleration. For example, the

algorithm can be potentially parallelized using e.g. the mixing-of-states method [77], but to
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date we are not aware of published reconstruction techniques utilizing some means of paralleli-

zation. Another acceleration technique involves optimization of correlation function evalua-

tion and is based on the idea that only subsets of correlation functions need recalculation for

each permutation step [55,69,74]. Yet another way to speed up the procedure is by improving

pixel permutation. Random selection of a pair of pixels for permutation will result in very inef-

fective choices, especially at the late stages of the reconstruction (i.e. approaching minimum

level of energy) where it is important to select isolated elements and preferably join them with

the corresponding phase [78].

Finally, computational efforts can be further reduced if the optimization is based on limiting

the length of the segments used for calculating correlation functions, e.g., by using a cut-off dis-

tance |r| as in Eq 5. Ideally, such length should be larger than the average size of structure ele-

ments in the image [69], and can be evaluated from the original set of correlation functions

(see examples in S1 File) ensuring correlation functions maintain a significant part of their as-

ymptotic behaviour. The maximum value assigned to the cut-off distance |r| should be equal or

smaller than the size of the original image.

Here we utilize a relatively simple optimization method in choosing permutations, thereby

closely following Čapek et al. [63]: 1) choose a random location within a phase of interest, 2)

choose two random directions, and 3) in each of these directions, choose two pair of pixels

with a minimum distance between them such that they satisfy two additional conditions: a)

pixels lie in opposite phases, and b) pixels lie at the interface. A purpose-built optimization al-

gorithm for recalculating S2 and L2 functions during annealing is used, which involved applica-

tion of periodic boundary conditions (i.e. opposite sides of image boundaries are connected)

for correlation functions’ evaluation during the reconstruction procedure.

The original Yeong-Torquato technique for image reconstruction based on correlation

functions calculates S2 and L2 only along orthogonal directions. In later work, diagonal direc-

tions were added [63,71], but as with all correlation-based methods used to date, average statis-

tics are determined based on all directions used for correlation function evaluation. Significant

improvement in quality of reconstruction can be achieved by calculating correlations in direc-

tions, but without averaging across directions to describe anisotropic structures [68,79]. During

reconstruction, each direction for each function is included separately in Eq 10. We use S2 and

L2 functions for reconstructions, and calculate C2 to verify the quality of the resulting images

by comparing its energy E for originals and reconstructions. The cluster function was previous-

ly shown to be a superior descriptor [80] and resulted in very accurate reconstructions for iso-

tropic simple binary structures. However, the optimization technique involving the C2

correlation function is not as efficient as the S2 and L2 functions because of the requirements to

track cluster dynamics after each permutation [81]. This requirement makes routine stochastic

reconstructions of large 2/3D images using C2 computationally very expensive.

In summary, reconstructing images first requires correlation function(s) to be calculated

from the original image and stored as a “reference” (Fig 2). In the next step, we create a random

image—a so-called checkerboard—with phase fractions (e.g. porosity) that are known directly

from the reference correlation function according to Eq 7, and subsequently calculate and store

its correlation function(s). The process of random permutation then proceeds by choosing two

pixels of different phases and calculating a change in correlation function after their permuta-

tion; we either accept or reject the permutation according to Eq 11. After that, another pair of

pixels is evaluated for permutation, seeking to reduce the energy of the image. This loop of per-

mutations and correlation function recalculations should be stopped at some point to finalize

the reconstruction procedure. There are two popular ways to do that: 1) after some number of

consecutive unaccepted permutations according to Eq 11 (for example, 106), or 2) by choosing

some accuracy threshold value for the energy E. The latter method is preferable, as it allows the
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comparison of different reconstructions as for similar size and porosity images similar E values

will mean similar accuracy [82]. The scheme of the reconstruction procedure with simple ex-

amples is depicted on Fig 2.

Morphological analysis

To compare thin-sections and their correlation function-based reconstruction, we apply mor-

phological analysis to both original images and their replicas. We first define a pore on a 2D

image as a cluster of connected non-solid material (i.e., white areas on all binary images). All

pores obtained in such a manner are marked and stored separately. For each pore, five different

parameters are calculated (see Fig 3A for a schematic representation of all parameters): 1) area

A, 2) perimeter P, 3) length L, defined as the longest side of the circumscribing rectangular, 4)

width D, the shortest side of the circumscribing rectangular, and 5) orientation index, express-

ed as angle α between the longest side of the circumscribing rectangular and the Y-axis. Based

on the first four parameters, the following shape factor F is defined [41]:

F ¼ ð
4pA

P2
þ
D

L
Þ=2; ð14Þ

where the first element in Eq 14 refers to the so-called object roundness, and the second ele-

ment characterizes the pore isometry. The shape factor F as defined by Eq 14 takes on values

between zero and one and has several advantages over more commonly used definitions of

roundness, such as the squared perimeter P2 [40]. One such advantage is that it allows distin-

guishing between round pores and fissure-like pores, as well as a broad range of other possible

shapes (Fig 3B).

In addition to calculation of the above morphological measures, the total number of the

pores is reported for each image analyzed. Based on the main five morphological parameters

and elements of the shape factor F, each pore is classified into one of five classes according to

its shape (defined by parameter roundness and isometry) and one of three classes of orientation

(defined by parameter α). The five shape classes are as follows (Fig 3B): 1) fissure-like with 0<

F< 0.2, 2) elongated dissected with 0.2< F<0.4, 3) isometric dissected with 0.4< F< 0.6, 4)

isometric slightly dissected 0.6< F< 0.8, and 5) round with 0.8< F< 1, 6). The three orienta-

tion classes are (Fig 3B): 1) vertical, with inclinations of 0–30° and 150–180°, 2) oblique, with

inclinations between 30–60° and 120–150°, and 3) horizontal, with inclinations between 60–

120° All eight classes together are used for comparison of original and reconstructed images

(see further).

Soil thin-section images, analysis and reconstruction procedure

In order to study reconstruction techniques and test applicability of correlation functions to

describe soil structure, we have chosen eight 2.1x2.1 cm2 soil thin-section binary images (seg-

mented into solid material and pores) of soils of the Russian Plane (Table 1). These soil types

(images) are marked I-VIII. All images had the size of 994 by 994 pixels with a resolution of

21.2 μm.

In total five reconstructions were made for each thin-section image. This involved using

two-point probability functions for pores and two-point linear path functions for both pores

and solid phases; these correlation functions provide a new way for quantifying soil structure.

All functions were computed in the main orthogonal and diagonal directions (i.e. four

Fig 2. Overall scheme of the reconstruction procedure. Illustrations are provided for each stage using
reconstruction of circles as example.

doi:10.1371/journal.pone.0126515.g002
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directions in total), based on a recently developed procedure [68]. The size of reconstructions

was the same as of original images, i.e. 9942 pixels. The reconstruction procedure was based on

the following parameters: 1) the annealing schedule parameter λ = 0.999999, a value which en-

sures slow annealing cooling while reaching ground state (i.e. with global minimum energy or

best fit between original and reconstructed image) according to Eq 10; 2) the spatial cut-off is

at |r| = 300 pixels to capture all correlation lengths on the original soil images (based on

Fig 3. Main concepts of the morphological analysis. a) morphological parameters calculated for each pore element, and b) examples of pores extracted
from original soil images and their shape classifications (all five shape classes are shown in roundness (4πA/P2)—isometry (D/L) coordinates).

doi:10.1371/journal.pone.0126515.g003
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example soil type I displaying the overall slowest decay of the L2
(b) function, Fig 4); 3) a pre-

scribed accuracy E = 10−7 was used to terminate the iterative reconstruction procedure, which

roughly corresponds to leaving about 1–2% of all pixels that are ill-positioned and therefore

contribute to a mismatch between original and reconstructed correlation functions [67,82].

Strictly speaking, because of the stochastic permutations invoked for the annealing procedure,

no parameter fitting or optimization of reconstructed structures is made at any stage. Also note

that the reconstruction procedure preserves total porosity, i.e. originals and reconstructions are

always identical in terms of porosity, as the first moment of any correlation function for a

given phase is equal to the phase’s fraction (Eq 7) [2].

All images, including each original thin-section and its five reconstructions, were analyzed

in terms of a solid space and a pore space—structure, using the different metrics for further

qualitative comparison. First, for each soil type comparison was performed on the basis of the

total number of pores and the pore-size distribution of an entire image. Next, directional clus-

ter functions were calculated in two orthogonal directions for all images. The comparison was

performed by computing energy similar to Eq 10 (squared difference between cluster functions

of original and reconstruction):

E ¼
X

r

X

a

½Ca

2
ðrÞ � Ĉa

2
ðrÞ�

2
; ð15Þ

where Ca
2
ðrÞ and Ĉa

2
ðrÞ are the values of the correlation functions for reconstruction and origi-

nal image, respectively, and summation with α goes over two orthogonal directions (horizontal

and vertical) and two phases (black and white). Finally, morphological analysis of each image

is performed as described above and the number of pores falling into each of eight morphology

classes (based on Fig 3B) is calculated. Based on the sum of squared differences (SSD) calculat-

ed for each parameter analyzed, the best reconstruction (i.e. lowest SSD) for each soil type was

identified. On the basis of these criteria, which each highlight a different feature of soil struc-

ture, an evaluation of reconstructions can be made.

Results and Discussion

A visual comparison of all eight original images and their best performing reconstructions sug-

gests that reconstructions are broadly capable to reproduce the main features of the original

soil images, including anisotropic structures and patterns of pore aggregates (Fig 5, to see all

five reconstructions for each soil type, refer to S1 File for this article). Obvious flaws in the re-

construction are 1) inability to correctly reproduce elongate features such as cracks and crack-

Table 1. Soil thin-section information.

Structure type Soil type* Horizon Sampling depth, cm

I Soddy-podzolic C (parent material) 170–180

II Chernozem C (parent material) 170–180

III Grey forest BC (transitional horizon) 80–90

IV Chernozem Ap (ploughed humus horizon) 5–10

V Chernozem A (humus horizon) 5–10

VI Grey forest B (illuvial horizon) 60–70

VII Soddy-podzolic EL (eluvial horizon) 20–25

VIII Podzol EL (eluvial horizon) 20–25

*according to Russian soil classification [83]

doi:10.1371/journal.pone.0126515.t001
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like connecting pores for soil types II, III, V and VI, and 2) somewhat shorter reconstruction of

the horizontally oriented features for soil type VII. The total number of pores (Fig 6) and the

pore-size distributions (Fig 7 and S1 File) generally show a relatively good agreement between

original thin-sections and the reconstructions. All reconstructions resulted in a nearly perfect

match between the original and target correlation functions.

The morphological analysis further showed a good agreement between original and recon-

structed pore shape parameters and their orientation metrics (Fig 8). Most prominent devia-

tions can be seen for circular and isometric dissected pores (shape factor 5 and 3). For the

former, the numbers are usually much lower on reconstructions. This is mainly due to the pres-

ence of mixed shaped pores on all original images, for which the correlation functions, when

averaged over different directions, cannot capture roundness appropriately (unlike in the case

when all structures are round, like on Fig 2). For this reason, the number of class 3 pores (iso-

metric dissected) was much higher on replicas. This effect for classes 3 and 5 is especially pro-

nounced for soil type I, where the majority of pores in the original image are round. All pore

orientations (classes 6–8) were captured accurately by functions computed only in four (two

orthogonal and two diagonal) directions. This means that the method is sufficiently applicable

for anisotropic structures. In other words, directional correlation functions can identify and de-

scribe anisotropic soil structures.

Three sets of metrics were applied to test the quality of the reconstruction algorithm. First,

the best out of five reconstructions for each of eight soil types was chosen based on a series of

morphological parameters (Fig 3) and evaluation of squared differences (marked with � on his-

tograms for all soil types in S1 File). Next, squared differences similar to energy E were calculat-

ed with cluster functions obtained from all original images and replicas (Figs 9 and 10); this

allows selecting the best reconstruction according to connectivity statistics. Finally, the best re-

construction was also determined by comparison of the total number of pores (Fig 6) and

pore-size distributions (Fig 7). Table 2 summarizes the results of comparing these three differ-

ent sets of metrics; in most cases the total number of pores and the pore-size criteria provided

Fig 4. Correlation functions for pores (solid and dashed lines) and solid phase (dash dot line). S2
(w)

and L2
(w) are, respectively, two-point probability and linear functions for pore phase; L2

(b) is a linear
function for solid phase. All correlation functions are evaluated in four principal directions according to Fig
1. Example is for soil type I exhibiting the largest spatial correlation length of L2

(b) across all soil types.

doi:10.1371/journal.pone.0126515.g004
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similar results, while for six soil types (marked with �) the best reconstruction according to ei-

ther morphology and cluster, or cluster and pore statistics, coincided. This indicates some de-

gree of consistency between the metrics applied, hence adds confidence to the selected “best”

reconstruction. On the other hand, observed disagreements also highlight the limitations of the

applied metrics as unique identifiers of pore structure and as a comparison tool to assess recon-

struction quality. As the prime interest of studying soil structure is to obtain biophysical soil

properties, the best criterion would be one based on a comparison of such physical properties

for original and reconstructed images, which typically requires three-dimensional reconstruc-

tions and pore-scale modeling [84–85].

Cluster functions calculated separately for original and reconstructed images showed ac-

ceptable reconstruction quality (i.e. displaying very similar key structural features) for most

soil types (see Fig 9 and S1 File). A nearly perfect match between original and reconstructed

cluster functions was obtained for soil type I; this soil is characterized by a single disconnected

porosity. Similar observations are made for soil type IV, which also consists of isometric, dis-

connected agglomerates of pores (S1 File). A further good agreement is observed for types II

and VIII (S1 File). Their cluster function values deviate only slightly for reconstructed pore

space (white): i.e., the reconstruction is lower in the vertical direction due to the inability to re-

construct a vertical crack on the original image (Fig 5) for soil II. The observed higher

Fig 5. All original eight soil type images (left column) with their best performing reconstructions based on a cluster function analysis (middle
column) or pore morphological analysis (right column) (if reconstruction performance for both analyses is identical, then only one image is
shown). Size of thin section = 2.1×2.1 cm2. Blue shaded areas highlight pore features that were poorly reconstructed: type II) vertical pore; III) complex
elongated pores; V) one connected pore dominating entire image; VI) one connected fissure-like pore; VII) numerous horizontal cracks; VIII) horizontal
features in the upper-right marked region.

doi:10.1371/journal.pone.0126515.g005
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connectivity for soil type VIII is due to presence of the area with horizontal cracks. Some signif-

icant deviations can be seen for the pore phase (but still good agreement for solid phase) of soil

types III and VII: with lower connectivity for reconstructions in horizontal direction due to the

absence of mainly vertical cracks present on the original image for soil III, and presence of hor-

izontal elongated pores for soil VII (highly connected horizontal cracks, Fig 5). The worst per-

formance according to cluster functions metrics is observed for soil type V, where the original

pore space is highly connected via small cracks (creating one large interconnected pore

highlighted on Fig 5), a feature which is much less present on the reconstructions. A lower de-

gree of connected pore space is also visible for soil type VI. All S2, L2 and C2 functions provide

complementary information on structure anisotropy; however, the degree of anisotropy

Fig 6. Total number of pores for original images and their five reconstructions compared for all soil types (I-VIII).

doi:10.1371/journal.pone.0126515.g006
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measured by each function can be different and suggests that different correlation functions do

provide additional and important information on soil structure.

Each reconstruction of the 944 by 944 pixel images required approximately 0.3 to 1.5 hours

of program execution time on a Intel Xeon X7560 2.26 GHz CPU. This includes up to 10 min-

utes for the calculation of the S2-L2-C2 correlation functions set. This means that such correla-

tion functions can be easily evaluated for standard soil images, while the reconstruction

procedure for 2D images is sufficiently fast to be performed on a personal computer.

The inability of the S2-L2 correlation functions to reconstruct connectivity for soil types V

and VI highlights some of their current limitations for soil structure characterization and reveal

a necessity to include more correlation functions into soil structure description and reconstruc-

tion. We would like to point out that the reconstruction procedure was implemented here

mainly to demonstrate that the structural features can be reconstructed using correlation func-

tions and also highlight the importance of information content (discussed below). In this

sense, correlation functions are more powerful than any other proxy soil structure descriptor

known to date (e.g., grain-size distribution, pore-size distribution, Minkowski functionals,

water retention curve, etc.). Significant improvement is observed here in comparison with our

preliminary application of correlation functions (averaged two-point probability function

only) to structure description by using the original Yeong-Torquato technique [67]. To the

best of our knowledge, this is the first application of directional correlation functions to recon-

struct anisotropic soil structure.

Fig 7. Comparison between pore-size distribution for original soil type VII and its corresponding best reconstructed image according to pore
morphological metrics (a larger pore range is zoomed out for better visibility of the resulting distribution).

doi:10.1371/journal.pone.0126515.g007
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Several types of discrepancies were evident from the above analysis. The discrepancies are es-

pecially important as concerns the connectivity of the pore space, which is consistently lower for

the reconstructed image. This in turn results in a different number of total pores and different

pore-size distributions, with the degree of discrepancy depending on the soil type (see S1 File).

This can be explained in part by 1) the fact that the set of correlation functions employed con-

tains insufficient information about pore structure [86], and in part by 2) the inappropriate

weighing of different correlation functions employed based on their information content ac-

cording to Eq 10 [68]. The remaining challenge, thus, is to determine which sets of correlation

functions contain enough information to characterize a given soil structure. The existence of de-

generated states of the S2 correlation function was demonstrated for hypothetical structures and

some simple composite materials [86–87]. Furthermore, reconstructions using only the S2 cor-

relation functions have been shown to result in a less connected pore space [88–89]. The behav-

ior of the L2 and C2 correlation functions in regards to their degeneration properties is an active

area of research in theoretical physics. However, while S2 and L2 based isotropic reconstructions

do work well for some simple heterogeneous materials such as composites and sintered filters

[2,63,90], it is clear from our study that their applicability to reconstruct complicated soil struc-

ture is limited.

Adding more sampling directions for correlation functions involved in the reconstruction

scheme could help to improve reconstruction quality. However, applying a large number of di-

rections would increase the computational resources significantly. The result is slow conver-

gence of the resulting information content to a 100% one is expected with increasing number

Fig 8. Scatter plot of poremorphology classes using pore shape class 1–5 (Fig 3B) and orientation classes 6–8 (Fig 3B) for original and best
reconstructed images for all soil types I-VIII.

doi:10.1371/journal.pone.0126515.g008
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of directions, similar to the use of higher-order correlation functions [86]. Another potential

way to improve reconstruction of images exhibiting highly connected pore spaces would be the

use of the erosion-dilation method [81,91]. A third way to improve reconstruction quality is

implementation of the C2 correlation function for reconstruction procedures, as it should con-

nect all disconnected pore aggregates for types V and VI, as well as improve statistics for all

other types. We note again that the C2 correlation function was calculated here only to assess

the degree to which the reconstructed image matched the original one. Also, note that cluster

functions for the same soil sample measured in 2D and 3D are fundamentally different; only

the latter represents true connectivity information. The use of the C2 correlation function for

reconstruction purposes is currently too computationally intensive; to date it has been applied

only for some simple test cases and Al-Si-Fe alloy images of limited size [79–80].

Another likely reason why our reconstructions failed to capture particular features, such as

elongated pores, is statistical inhomogeneity or non-stationarity of soil structure. According to

the definition in Torquato [2], "the media is statistically homogeneous if the joint probability

distributions describing the stochastic process are translationally invariant, i.e., invariant under

a translation (shift) of the space origin". In other words, such distributions are independent of

position. Some areas with anisotropic, i.e. elongated pores are significantly different from the

rest of the pore space (highlighted in blue on Fig 5); other typical examples of statistical inho-

mogeneity observed in our soil thin-section images include two types of porosities within the

Fig 9. Comparison ofC2 cluster functions for original and reconstructed soil images for a) soil type I (best case), and b) soil type V (worst case).
The legend is similar to that of Fig 4 for two-point probability and linear functions.

doi:10.1371/journal.pone.0126515.g009
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same image, e.g. regular round and fissure-like pores (see Fig 5). This means that transition

from Eq 5 to Eq 6, i.e. the assumption about statistical homogeneity, is not exactly justified.

Fig 10. Cluster function differences for all reconstructed soil images (calculated as arithmetic average of C2 differences between originals and
replicas for each soil type and each orthogonal direction).

doi:10.1371/journal.pone.0126515.g010

Table 2. Summary of best reconstructions according to different quantitative metrics (numbers 1, 2, 3, 4, or 5 refer to reconstructionmethod, avail-
able in S1 File).

Metrics Soil type

I II III IV V VI VII VIII

Pore size distribution 2 1* 3* 4 1 1 1 1

Total # of pores 2 1* 3* 3 1 1 1,3* 1

Cluster function C2
(b), C2

(w) 3* 2 5 1* 5 3* 3* 3

Morphology (eight classes) 3* 1* 3* 1* 3 3* 3* 5

doi:10.1371/journal.pone.0126515.t002
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Correlation functions have been used by numerous researchers to reconstruct many different

heterogeneous materials; however, the statistical homogeneity of the input images was rarely

checked [55,58,60,62–63,67,79]. To the best of our knowledge, to what degree the combined

S2-L2-C2 correlation functions can address the problem of statistical inhomogeneity or non-sta-

tionarity has not been tested; only C2 in combination with S2 was applied in reconstructions of

very simple cases [79–80]. Periodic structures can be reconstructed exactly [68,75], but they are

rarely, if ever, observed in soils and other natural porous media.

Correlation functions combined with simulated annealing are not the only reconstruction

procedure that can be used to create 2/3D images from 2D cuts. Other methods include: 1)

Gaussian random fields [92], multi-point statistics (MPS) [85,93–96], entropic descriptors

[97], fractal dimension measures [49], and process-based algorithms [50–52]. MPS is one of

the most popular methods and was recently proven to be very effective in reconstructing het-

erogeneous porous media [85,95–96]. Applications of MPS to soil include 2D [93] and 3D

[84,98] Markov chain reconstructions, a variation of the multi-point method. However, such

methods do not provide any information on porous media structure per se, as they usually op-

erate with probabilities of image events in a window of given size, or reconstruct images using

the mosaic from the original.

In addition to being used for structure quantification and stochastic reconstructions, corre-

lation functions can also be applied to evaluate numerous physical properties using so-called

rigorous bounds [2]. Current methods mainly include the usage of three-point or four-point

probability functions S3 and S4 [99]. However, the performance of such methods was rarely

demonstrated for soils. As it was shown that S3 and S4 provide insufficient information to fully

characterize porous media in terms of structural properties [80,86], we expect insufficient accu-

racy from applying rigorous bounds involving S3 and S4. Nonetheless, such methods can find

their use in providing approximate estimations of soil properties in a computationally efficient

way.

The importance to soil science of porous media structure description and reconstruction al-

gorithms based on correlation functions should not be underestimated. Examples include: 1)

reconstructing 3D data from digitized thin-sections; 2) describing spatial correlations for min-

erals, clays, organic matter, microbial activity in soil and their temporal dynamics following

treatment or management options; 3) monitoring soil degradation processes; and 4) soil classi-

fication. Potentially reconstructions can be also used to derive soil hydrophysical properties

such as hydraulic conductivity, water retention properties and relative permeabilities for unsat-

urated air/water flow [5]. The latter involves reconstructing 3D soil images from 2D cuts [100–

101] followed by pore-scale fluid flow modeling. Developing 3D reconstructions by applying

2D correlation functions is especially appealing for soils, as they often have different pore struc-

tures at different scales such that an integrated multi-scale 3D analysis may become prohibi-

tive. For example, nano-scale porosity can be characterized using FIB-SEM/SEM 2D imaging

from which 3D reconstructions can be developed [60]. Macro-porosity can then be character-

ized using lower resolution XMT; assemblage of the nano- and macro-porosity is the final step

in achieving a consistent multi-scale pore system [60,102].

In this article we focused on soil structure in 2D, as both the thin-section measurements

and the reconstruction of soil structure using correlation functions provided 2D information

only. Establishing 3D reconstructions of soil structure from 2D thin-sections would be a logic

next step, and would be particularly valuable in the case of anisotropy in more than one direc-

tion. It can also form the basis for permeability prediction using flow simulation [67,84]. Even

when the spatial domain is limited to 2D, the testing of correlation function-based reconstruc-

tion algorithms is still relevant: it ensures an optimal method can be identified in a stepwise

manner, i.e. in 2D first when complexity and computational resources are less than in 3D.
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According to our current findings, the main questions we need to answer before correlation

functions can be applied with confidence to address today’s grand challenges in soil science are

as follows:

1. Are sets of S2-L2-C2 correlation functions unique for each soil type?

2. How will the introduction of the C2 function into reconstruction procedures affect recon-

struction quality?

3. What set of correlation functions is necessary to reliably specify soil structure?

4. What soil properties can be reliably predicted using correlation functions and

reconstructions?

5. Can we use correlation functions to describe soil structure dynamics as a result of freezing/

thawing or wetting/drying cycles?

6. What degree of comprehensiveness of statistical information is provided by calculation of

correlation functions in multiple directions, and what is a minimum of such directions?

Answering all ore even a few of these questions may significantly improve our ability to de-

scribe soil structure, and its dynamics.

Conclusions

In this paper we explored the performance of universal correlation functions in characterizing

and reconstructing soil binary (solid-pore phases) structures. In particular, for the first time,

we applied two-point probability and linear correlation functions to both characterize and re-

construct 2D soil images. In the current analysis, cluster correlation functions were introduced

to better characterize soil connectivity and compare quality of reconstruction schemes. Also

for the first time, correlation functions were computed in four directions and applied to natural

porous media (soil). Based on two-point probability functions and linear correlation functions

calculated from original soil thin-section images, we reconstructed 2D soil structure using a

simulated annealing optimization technique. Future improvements of this novel approach will

help to overcome the current limitations in regard to reconstructing soil structure.

In reconstructing eight different soil types with contrasting pore structures, major differ-

ences between reconstructed and original image were noted and interpreted as a lack of infor-

mation content in the correlation functions employed. We compared original thin-sections

and their stochastic reconstructions using three sets of test metrics. Set one involves an original

morphological analysis. Set two used cluster correlation function computations, while the third

set uses the total number of pores and their pore size-distributions.

None of these metrics were found to be sufficient to uniquely characterize the difference be-

tween original and reconstructed images. This also demonstrates that the conventional mea-

sures such as pore-size distribution are insufficient to characterize soil structure. Possibly the

best way to measure the accuracy of reconstruction would be to apply pore-scale modeling ap-

proaches to determine physical properties (such as Ksat or water retention curve) of 3D recon-

structed soil structures and compare them to independent laboratory measurements.

The two-point probability, linear and cluster correlation functions showed potential to ac-

curately describe structural properties for both solid and pore phases of all thin-sections for all

eight soils; moreover, they can be parameterized with a limited number of fitting parameters or

basis functions. This provides numerous opportunities for future applications of correlation

functions in soil science, which may include soil classification, degradation monitoring, spatial

description of microbial activity, to name only a few.
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Supporting Information

S1 File. A full dataset of reconstruction and analysis results. In this material for each of eight

soil types we report: 1) original image of the thin-section, 2) all five reconstructions obtained

using the method described in paper, 3) a set of S2-L2 correlation functions for original image

(all reconstructions have similar correlation functions up to a tolerance of E = 10–7, all minor

differences would be invisible on the such a graph), 4) a comparison of cluster functions com-

puted for original image and best replica judging by differences in cluster function values, 5)

comparison of pore-size distributions for original thin-section and the best replica judging by

morphology analysis, 6) a table with results of morphological analysis covering all replicas and

the original.

(PDF)
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