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Universal Spin Dynamics in Infinite-Temperature One-Dimensional Quantum Magnets

Maxime Dupont and Joel E. Moore
Department of Physics, University of California, Berkeley, California 94720, USA and
Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA

We address the nature of spin dynamics in various integrable and non-integrable, isotropic and
anisotropic quantum spin-S chains, beyond the paradigmatic S = 1/2 Heisenberg model. In par-
ticular, we investigate the algebraic long-time decay o t~'/# of the spin-spin correlation function
at infinite temperature, using state-of-the-art simulations based on tensor network methods. We
identify three universal regimes for the spin transport, independent of the exact microscopic model:
(i) superdiffusive with z = 3/2, as in the Kardar-Parisi-Zhang universality class, when the model
is integrable with extra symmetries such as spin isotropy that drive the Drude weight to zero, (ii)
ballistic with z = 1 when the model is integrable with a finite Drude weight, and (iii) diffusive with
z = 2 with easy-axis anisotropy or without integrability, at variance with previous observations.

Introduction.— Understanding equilibrium and out-of-
equilibrium dynamics of interacting quantum systems
remains one of the most strenuous problems in mod-
ern physics. From a phenomenological perspective, tak-
ing into account the few conservation laws of a system
such as energy, momentum and particle number, one
can derive classical hydrodynamic equations to describe a
coarse-grained thermodynamic version of the microscopic
model [1, 2]. Yet, some systems possess an extensive set
of conservation laws, strongly constraining their dynam-
ics and endowing them with exotic thermalization and
transport properties [3-8]. They are known as integrable
systems and are ubiquitous in the low-dimensional quan-
tum world, with experimentally relevant examples from
magnets to Bose gases [9-14].

Two simple paradigms of how a conserved quantity
spreads are exemplified by ordinary thermalizing systems
with diffusion on the one hand, and free-particle systems
(a simple kind of integrable system) with ballistic trans-
port on the other. After many years and much analytical
and numerical progress [3, 6, 15-24], the existence of both
regimes in the spin-half XXZ model, which is a version
of the Heisenberg model with uniaxial anisotropy in the
interaction, has been understood in detail, with quan-
titative explanations of the Drude weight that governs
the amount of ballistic transport. Numerical studies on
this model provide a stringent test of the generalized hy-
drodynamical approach to time evolution of densities in
ballistic regimes of integrable models [19, 20, 25].

Unexpectedly, a numerical study observed a third
behavior at the isotropic (Heisenberg) point of this
model [26, 27]: spin dynamics at infinite temperature
were characterized by superdiffusion with the same dy-
namical critical exponent z = 3/2, defined below, that
appears in the classical, stochastic Kardar-Parisi-Zhang
(KPZ) universality class [28]. This led to additional stud-
ies that explained how the diffusion constant must be-
come infinite at the Heisenberg point [29] and showed
agreement with the full KPZ scaling function [27, 30—
33]. Note that this emergence of superdiffusion and KPZ
universality from quantum models is different from the

superdiffusion with z = 1 that emerges in systems with
momentum conservation [34, 35] or the variable dynam-
ical critical exponent at low temperatures in Luttinger
liquids [36]. It also does not seem to follow from the use-
ful mapping between a classical exclusion process in the
KPZ universality class and statics of the spin-half XXZ
model, for a review, see e.g., Ref. 37.

The main point of this paper is to study infinite-
temperature dynamics in a variety of one-dimensional
quantum magnets with S > 1/2; with and without inte-
grability and isotropy, in order to isolate the requirements
for KPZ superdiffusion. We find several new examples of
higher-spin chains that all have dynamical critical expo-
nent z = 3/2, despite having variable symmetries and in-
teractions. These can be viewed as interpolating between
the S = 1/2 results and recent studies of a classical in-
tegrable spin chain [38]. We find that the occurrence of
superdiffusion with .S = 1 is not limited to the isotropic
case, but that it does require integrability; more precisely,
we find that superdiffusion is not present in the simplest
nearest-neighbor models with S = 1, 3/2 and 2, contrary
to recent proposals [39], and we explain what we believe
to be missing in that theoretical analysis.

Investigating spin dynamics.— To investigate the spin
dynamics in quantum spin-S systems, we focus on the
infinite-temperature local spin-spin correlation function,

CLt) = 5o (5200 Sia). ()

where S7 /2 is the spin operator component along the
quantization axis at position L/2 in a system of total
length L, (-) = tr(:)/(2S + 1)% denotes the infinite tem-
perature thermal average and S?(t) = e7!SZe =" is the
time-dependent operator in the Heisenberg picture, with
‘H the Hamiltonian describing the system. The prefactor
3/S(S+1) in Eq. (1) ensures that C(L,t =0) = 1.

We consider a wide range of integrable and non-
integrable, isotropic and anisotropic quantum spin-S
chains described by Hamiltonians of the form H =
> iLMH with iLj,jH the local Hamiltonian density. All
models conserve the total magnetization Si; = >, 57,
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FIG. 1. Top panels (a,c,e,g): Infinite temperature spin-spin correlation function (1) for the isotropic one-dimensional Heisen-
berg model (3) for spin values S = 1/2, 1, 3/2 and 2. Bottom panels (b, d, f,h): Extracted dynamical exponent z(L, ¢, mmax) by
performing curve-fitting inside a sliding window of data points in order to reliably the infinite-length and infinite-time value of
the power-law decay as in Eq. (2). Only the spin-1/2 case is integrable and show consistent superdiffusive dynamical behavior
over time with z(L,t, mmax) = 3/2. For the larger spin-S models, the dynamical exponent value systematically increases when
varying the curve-fitting window toward longer times with z — 2, supporting diffusive dynamics. Additional analyses are

available in the supplemental material.

and some additionally conserve the total spin Siot =
Zj S;, where §; = (Sf,S]y,Sj) is the usual spin-S op-
erator at site j, making them fully isotropic. Because
of S¢ conservation, in the hydrodynamic limit, the spin
fluctuations captured by the spin-spin correlation func-
tion (1) are expected to decay with a power-law tail at
late time for infinitely large systems,

lim lim C(L,t) ~ t~Y/%,

t—00 L—o00

(2)

with z the dynamical exponent characterizing the nature
of the spin dynamics and spin transport in the system:
z = 2 for diffusion, z = 3/2 for KPZ-type anomalous dif-
fusion or superdiffusion, and z = 1 for ballistic dynamics.
We compute the spin-spin correlation function (1) nu-
merically using matrix product states (MPS) calcula-
tions [40] together with the purification method [41]. The
time evolution is performed through the time-evolving
block decimation algorithm [42] along with a fourth or-
der Trotter decomposition [43] of time step 6; = 0.1.
The control parameter of the numerical simulations is
the bond dimension m of the MPS whose convergence
is thoroughly studied in the supplemental material. In
the following, we only show data for the largest bond di-
mension computationally available m = muyax. In prac-
tice one only has access to finite systems L and is lim-
ited in the maximum time ¢. Therefore, it is instructive
to perform curve-fitting inside a sliding window of data
points in order to reliably extract the infinite-length and
infinite-time value of the dynamical exponent z [44].
The Heisenberg model.—We first consider the paradig-

matic SU(2)-symmetric Heisenberg model,

hjj+1 =S Sjt1,

3)

for S = 1/2, 1, 3/2 and 2, and which is integrable ex-
clusively in the spin-1/2 case [45, 46]. The correlation
function (1) and the extracted dynamical exponent z are
shown in Fig. 1. Superdiffusive behavior with z = 3/2
is unambiguously observed for the S = 1/2 case, in
agreement with previous results [26, 27, 29, 30, 47, 48].
z = 3/2 is the same dynamical scaling exponent as of the
KPZ universality class [28], and the relation has been
confirmed by showing that the infinite temperature spin-
spin correlation function obeys KPZ scaling [27, 30]. For
larger spins S > 1, the dynamical exponent value system-
atically increases when varying the curve-fitting window
toward longer times with z — 2, supporting diffusive dy-
namics.

Our result of diffusive dynamics in these non-integrable
cases is perhaps not too surprising, but there is a rela-
tively long crossover before reaching this limit, and the
fact that at short time z ~ 3/2 can be misleading. For
instance, based on calculations on a low-energy effec-
tive quantum field theory for the Heisenberg model (3),
namely the non-linear sigma model [49-51], the authors
of Ref. 39 claim that anomalous spin transport is present
in any spin-S Heisenberg chain at low temperature, and
persists at high temperature as corroborated by simula-
tions on the exact spin-1 microscopic model. However
their simulations do not go to long enough time to ob-
serve the increase of z as we do. The superdiffusive dy-
namics that they obtain is an artifact of the low-energy
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FIG. 2. Top panels (a,c, e, g): Infinite temperature spin-spin correlation function (1) for various one-dimensional spin-1 models.
First, the isotropic bilinear-biquadratic Heisenberg chain defined in Eq. (4) for two different signs of the biquadratic term
(panels a and c respectively). Then, the Zamolodchikov-Fateev model (5) with easy-plane (A = 0.5) and easy-axis (A = 1.2)
anisotropy (panels e and g respectively). Bottom panels (b, d, f,h): Extracted dynamical exponent z(L, t, mmax) by performing
curve-fitting inside a sliding window of data points. Superdiffusion is observed at the isotropic SU(2) and SU(3) points of the
bilinear-biquadratic S = 1 chain while diffusive and ballistic spin dynamics are respectively obtained for the easy-axis and
easy-plane ZF model. Additional analyses are available in the supplemental material.

field theory which is integrable [52, 53], while the ex-
act microscopic model is not. This long-time crossover
to diffusion could possibly have been anticipated based
on previous studies on integrability breaking in S = 1/2
quantum spin chains, where the integrability breaking
is controlled either by adding a parameter or by going
to low temperature [17, 54]. For example, the charge
conductivity is finite with broken integrability but di-
verges as a power-law in inverse temperature or strength
of integrability-breaking [54], because of the same kind of
long-time crossover observed here. The result of diffusion
in the non-integrable S > 1 Heisenberg chain is further
evidence that integrability breaking should be regarded
as a “dangerously irrelevant” perturbation to dynamics
at long times [55]: even if the breaking is weak and irrel-
evant at low energy in the renormalization group sense,
it can strongly modify the long-time behavior by induc-
ing thermalization. It is worth noting two other recent
works mentioning (super)diffusion in the S = 1 Heisen-
berg chain [56, 57], although they could not provide a
definitive answer regarding the nature of the spin dy-
namics.

Even in the classical limit S — oo, where spin op-
erators in Eq. (3) are replaced by standard unit vectors,
identifying whether spin diffusion is normal or anomalous
has a long-standing history [58-65]. The issue was set-
tled by doing a systematic finite-size analysis in Ref. 66:
As in the quantum cases displayed in Fig. 1, z — 2 is
only reached asymptotically at relatively long time. This
confirms normal diffusive spreading of spin fluctuations,
as expected for a non-integrable model. Interestingly, the

spin dynamics of an integrable classical spin chain with
the same symmetries as the Heisenberg model, known as
the Faddeev-Takhtajan model [67-69], has recently been
explored [38]. The authors are able to show that the
spin transport is superdiffusive with z = 3/2, and be-
longs to the KPZ universality class, just like the quantum
spin-1/2 Heisenberg chain. In addition to the isotropic
point, easy-plane and easy-axis regimes of the model are
also investigated and respectively exhibit ballistic and
diffusive spin transport; again, just like the quantum
S = 1/2 Heisenberg model. This legitimately raises ques-
tions of possible universality regarding the spin dynamics
depending on the nature of the anisotropy in the model.
To address this, we extend the current study to larger
spin-S quantum models.

Family of S=1 models— We first turn our atten-
tion to various spin-1 models, starting with the isotropic
bilinear-biquadratic Heisenberg chain,

hjjo=S;- 8501+ (8- S541)". (4)
The two cases considered, with the £ sign for the bi-
quadratic term, are both integrable. With the mi-
nus sign, the model is known as the SU(2)-invariant
Babujian-Takhtajan Hamiltonian [70-72]. Its dynami-
cal spin-spin correlation function (1) as well as the long-
time decay exponent z are plotted in Fig. 2 (a,b) and
show superdiffusion. This is the first time that anoma-
lous spin dynamics is observed in a quantum magnet
besides the spin-1/2 Heisenberg chain, and might hint
that something universal is responsible for this behav-
ior in integrable systems, such as the rotation symme-



try. This is why the Hamiltonian (4) with a plus sign
(known as the Uimin-Lai-Sutherland model [73-75]) is
interesting, because it extends the SU(2) symmetry to
SU(3), and still demonstrate superdiffusive spin dynam-
ics, see Fig. 2 (c,d). This means that having an inte-
grable SU(2)-symmetric model is not in itself a necessary
ingredient to have anomalous diffusion, as pointed out in
Ref. 48. This statement will be extended by looking at
an integrable SO(5)-symmetric spin-2 chain.

Before that, to investigate the effect of anisotropy, we
consider the anisotropic S = 1 Zamolodchikov-Fateev
(ZF) model [76],

S7STia+ 5757 + (247 = 1) 757,
+ 2[(85)"+ (9 + (287 - 1) (55)7]

— > fan(D)SEST,SESE (5)

a,b€(z,y,z]

hjjy1 =

where fab = fbaa fzz = 2A?% — 1, facz = fyz =2A -1
and f,; = 1 otherwise. This model is analogous to
the quantum spin-1/2 XXZ chain in the sense that it
is parametrized by a continuous anisotropy parameter
A and that it is integrable for |A| < 1 [77-79]. At
the isotropic point A = 1, it coincides with the Babu-
jlanTakhtajan Hamiltonian (4) previously studied. In
presence of easy-axis anisotropy, i.e., |A| > 1, we observe
diffusive dynamics, as shown in Fig. 2 (e, f) for A = 1.2,
while for an easy-plane anisotropy |A| = 0.5 < 1, dy-
namics is ballistic. In the later case, ballistic transport
is expected as the Mazur bound [15, 80, 81] computed
analytically in Ref. 82 establishes a non-vanishing Drude
weight for this model.

Overall, the dependence on the spin dynamics (diffu-
sive, ballistic and superdiffusive) on the anisotropy is
quite familiar, with identical behavior observed for the
spin-1/2 quantum Heisenberg chain [26], the classical
Faddeev-Takhtajan model [38] and now the S = 1 ZF
model. However, an interesting feature at S = 1 is that
the ZF model also shows superdiffusion in the “easy-
plane limit” A = 0, see Fig. 3 (a,b). The possibility that
the A = 0 point in the ZF model is special was previously
pointed out [82] on the grounds that it is not forced to
have ballistic transport by the conserved quantities that
force nonzero Drude weight at other values 0 < |A] < 1.

Integrable SO(5)-symmetric spin-2 chain.— To con-
firm the universal nature of superdiffusion in integrable
isotropic magnets, we study a generalization of the S = 1
bilinear-biquadratic Heisenberg chain (4). It can be
written down as a one-parameter family of bilinearbi-
quadratic Hamiltonians in terms of the SO(2n + 1) gen-
erators [83, 84]. Focusing on the n = 2 case [85] and
using a spin-2 formulation of this model [83, 84, 86], one
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FIG. 3. Top panels (a,c): Infinite temperature spin-spin
correlation function (1) for the spin-1 Zamolodchikov-Fateev
model (5) at A = 0 and the SO(5)-symmetric bilinear-
biquadratic S = 2 model defined in Eq. (6) for § =
arctan(1/9). Bottom panels (b,d): Extracted dynamical ex-
ponent z(L, t, Mmax) by performing curve-fitting inside a slid-
ing window of data points. Superdiffusive spin dynamics is
observed in both cases with z = 3/2. Additional analyses are
available in the supplemental material.

gets,
A 5 1
hjiv = 0039[—1 — 551 Sinitg (S5 Sj1)’
1
+ ﬁ (Sj . Sj+1)3} + sinG[l — 5SJ . Sj+1
_ 7
12

+1712(Sj 'Sj.l,.l)ﬂ. (6)

1
(S5 - Sje1)" + 3 (8 Sj)’

It has an integrable point at 6§ = arctan(1/9), as well as
other remarkable points whose values can be generalized
as a function of n for all symmetry groups [86-90]. We
show in Fig. 3 (¢, d) that, once more, anomalous diffusion
is present at an integrable and isotropic point which is
neither characterized by SU(2), nor SU(3) but SO(5) in
this case.

Summary and discussions.— Employing extensive nu-
merical simulations based on tensor network methods,
we have investigated the algebraic long-time decay of
the infinite temperature spin-spin correlation function
in various integrable and non-integrable, isotropic and
anisotropic quantum spin-S chains [91]. Our results un-
equivocally support universal spin dynamics in infinite-
temperature one-dimensional magnets, with three differ-
ent possible regimes: (i) superdiffusive, as in the KPZ
universality class, when the model is integrable with ex-
tra symmetries such as spin isotropy that drive the Drude
weight to zero, (ii) ballistic when the model is integrable
with a finite Drude weight, and (iii) diffusive otherwise.



One potential future direction is to demonstrate that
the full KPZ [28] scaling function fxpz is indeed
present for all models showing anomalous diffusion, i.e.,
(S7(1)Sz(0)) ~ t=2/3 fxpz[r(At)~2/%] with A some pa-
rameter [92; 93]. As it is very costly to compute the dy-
namical spin-spin correlation function at all distances r,
it would be numerically preferable to use the workaround
developed in Ref. 27 for S = 1/2 to address this ques-
tion. An open puzzling question is what ingredient(s)
makes the superdiffusive behavior with z = 3/2 robust
in all isotropic integrable magnets, classical and arbitrary
spin-S quantum models alike? It would also be interest-
ing to see if the mechanism of anomalous diffusion pro-
posed in Ref. 29 for the spin-half Heisenberg chain can
be extended to all these superdiffusive examples.
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Supplemental material to “Universal Spin Dynamics
in Infinite- Temperature One-Dimensional Quantum Magnets”

Firstly, we show that the fitting procedure to extract the dynamical exponent z is stable by considering
different sizes for the fitting window. Secondly, we discuss the finite-size effects which are visible in the
plots of the main text. Then, we show that good convergence of our results versus the bond dimension
m of the matrix product states is achieved. Finally, two additional models are studied, supporting our
conclusions. Specifically, we look at an integrable SU(5) spin-2 model and the non-integrable XY S = 3/2
model. A summary of the parameters for all the models considered is also available.

ROBUSTNESS OF THE FITTING PROCEDURE
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FIG. 1. Extracted dynamical exponent z by considering different sizes (¢t = 10, t = 20 and ¢ = 30) for the fitting window. Each
model of the main text is considered at the largest system size Lmax and largest bond dimension mmax (see Tab. I). The panels
correspond to: (i) Heisenberg S = 1/2, (ii) Heisenberg S = 1, (iii) Heisenberg S = 3/2, (iv) Heisenberg S = 2, (v) Babujian-
Takhtajan S = 1, (vi) Uimin-Lai-Sutherland S = 1, (vii) Zamolodchikov-Fateev S =1 at A = 0.5, (viii) Zamolodchikov-Fateev
S =1at A =12, (ix) Zamolodchikov-Fateev S = 1 at A = 0.0, (x) SO(5) symmetric S = 2 model.

To evaluate the robustness of the fitting procedure and reliably extract the dynamical exponent z, we try different
size for the fitting window: ¢t = 10, 20 and 30. Each window contains 10¢ data points because of the Trotter time step
d¢ = 0.1 considered to perform the time evolution. The largest system size L. and largest bond dimension myy .y of
each model of the main text is considered in Fig. 1. We see that the fitting procedure is stable with no deviation for
z versus the size of the fitting window. The extracted dynamical exponents z in the main text correspond to a time
window of size t = 10.

CONVERGENCE WITH THE BOND DIMENSION

For each model considered in the main text, we show in Fig. 2 that for the largest system size Lyax (see Tab. I)
good convergence versus the bond dimension m is achieved for the extracted dynamical exponent z. Respectively in
the (b) middle and (c) bottom rows of Fig. 2, we display z versus time for three values of the bond dimension and z
versus the inverse bond dimension for three values of the time (short, intermediate and long).

First excluding the S = 1, S = 3/2 and S = 2 Heisenberg models, we observe in Fig. 2 a systematic convergence
of z in the limit ¢ — oo and 1/m — 0 to either z = 1, z = 3/2 or z = 2, depending on the case. In particular, the
dynamical exponent takes one of these three values and not something in between, random or out of control. Plus,
our results are consistent with one another depending on the properties of the models (e.g., integrable, non-integrable,
isotropic). Based on this, one can then argue that for the S =1, .S = 3/2 and S = 2 Heisenberg models, the numerics
should also be reliable (convergence is indeed observed as 1/m — 0). Computationally, we are not able to reach long
enough times to observe convergence as t — co. This means that there is a relatively long crossover before reaching
the asymptotic long-time limit, which is going to be diffusive since it looks like z — 2 as t — oco. As discussed in the
main text, such a relatively long crossover also exists for the classical Heisenberg model. Although smaller (hence we
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FIG. 2. Top rows (a): Infinite temperature spin-spin correlation function for the largest system size Lmax for each of the models
considered in the main text (see Tab. I) for different bond dimensions m. Middle rows (b): For the same three values of the bond
dimension of the corresponding upper panel, the dynamical exponent z is extracted by performing curve-fitting inside a sliding
window of 10t data points, and is plotted versus t. Bottom rows (c): For three values of the time ¢ (short, intermediate and long
— and highlighted in the corresponding upper panel by an arrow), the dynamical exponent is fitted inside a window containing
10t data points and plotted versus the inverse bond dimension 1/m. Lines are guide for the eye. The panels correspond to: (i)
Heisenberg S = 1/2, (ii) Heisenberg S = 1, (iii) Heisenberg S = 3/2, (iv) Heisenberg S = 2, (v) Babujian-Takhtajan S = 1,
(vi) Uimin-Lai-Sutherland S = 1, (vii) Zamolodchikov-Fateev S = 1 at A = 0.5, (viii) Zamolodchikov-Fateev S =1 at A = 1.2,
(ix) Zamolodchikov-Fateev S =1 at A = 0.0, (x) SO(5) symmetric S = 2 model.

are able to resolve it), a crossover is also visible for the non-integrable ZF model at A = 1.2 in Fig. 2 (vii-b) as well
as for the non-integrable S = 3/2 XY model of Fig. 3 (2)

In fact, it is very interesting that a moderate bond dimension seems sufficient to accurately capture the correct

algebraic behavior ~ t~/# at infinite temperature. It is unclear why entanglement (the amount of entanglement that
can be encoded is controlled by the bond dimension m, and which is therefore bounded by mpya.x) has little to do
with it, but this surely opens perspectives for future studies. We also want to mention that other works, see e.g.,
Refs. 95, 27 and 96, successfully addressing similar questions, use a finite bond dimension that is way smaller than
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one would naively require for the system sizes and times considered.

FINITE-SIZE EFFECTS

When studying long-time dynamics on a finite system, the system size L has to be large compared to the causality
light cone to avoid any finite size effect. In order to take this into account, the data for the smaller system sizes are
shown until the time at which a significant deviation from the larger system size is visible, while we typically consider
tmax ~ 100 otherwise.

For instance, if one considers Fig. 1 (d,f,h) of the main text, there is a perfect collapse of L = 32 data onto the
L = 64 data, which also collapse nicely onto the L = 128 data. This collapse survives for later and later times as the
system size is increased. The deviation that can be observed at “long time” for the small system sizes is a causality
light cone effect as this is only observed at longer times for larger system sizes. Within the light cone, there is no
systematic deviation from small to large system sizes for the exponent.

On Fig. 2 (b) of the main text, there is at all time a systematic deviation of the data from L = 32 to L = 128,
with no overlap for the value of the exponent (even within a time window within the causality light cone). But as
one considers larger and larger system sizes L, the exponent goes toward z = 3/2, converging to its thermodynamic
value.

ADDITIONAL MODELS

In addition to the ten models considered in the main text, we consider two extra models in this supplemental
material, strengthening our conclusions. First we study the integrable SU(5) Uimin-Lai-Sutherland model through
a spin-2 representation. Its Hamiltonian is the same as Eq. (6) of the main text for the value of the parameter
6 = arctan(1/3). Then, we look at the XY S = 3/2 model, which is non-integrable and described by the local
Hamiltonian density,

hjjv1= Sja': f+1 + S;‘IS;'I-i-l' (1)

The infinite-temperature local spin-spin correlation function is computed similarly to all other models, and the data
are displayed in Fig. 3. We get, as expected, superdiffusive spin dynamics for the SU(5) integrable model while it
is diffusive for the other one. We note that there exists a finite crossover time before reaching the asymptotic long-
time limit in the diffusive case. Interestingly, the dynamical exponent at short time [see, e.g., Fig. 3 (2-e)] takes a
value z > 2 while the other non-integrable models studied displayed a short-time exponent z & 3/2, which could be
misleading to distinct diffusive from superdiffusive dynamics. Moreover, in the low-energy limit, the Hamiltonian (1)
can be described by an effective field theory which is integrable (specifically as a Tomonaga-Luttinger liquid), but no
sign of ballistic behavior is locally observed in the dynamical expoment z(t).
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FIG. 3. The two left columns (1) correspond to the integrable SU(5) Uimin-Lai-Sutherland model of Eq. (6) of the main text
with 6 = arctan(1/3). The two right columns (2) correspond to the non-integrable XY S = 3/2 model of Eq. (1). Panels
(a) show the infinite-temperature local spin-spin correlation function for different system sizes at the computationally largest
available bond dimension (see Tab. I). Panels (b) show the extracted dynamical exponent by performing curve-fitting inside
a sliding window of data points. The data considered are those of panels (a). Panels (c) display the effect of the size of the
fitting window (10, 20 and 30) on the extracted dynamical exponent. Panels (d) show the correlation function for the largest
system size considered (see Tab. I) for various bond dimensions. Panels (e) show the extracted dynamical exponent from the
data of panels (d) by performing curve-fitting inside a sliding window. Panels (f) display the value of the extracted dynamical
exponent versus the inverse bond dimension for the largest system size considered, at three different times (short, intermediate
and long).

SUMMARY OF THE PARAMETERS

Model System size L Maximum bond dimension considered mmax
32 2048
Heisenberg 64 2048
S=1/2
128 (Lmax) 512
32 1024
Heisenberg 64 1024
S=1
128 (Lmax) 512
32 512
Heisenberg 64 512
S =3/2
128 (Lmax) 256
32 512
Heisenberg 64 512
S=2

128 (Lmax) 256




32 1024

Babujian-Takhtajan 64 1024
S=1
128 (Lmax) 512
32 1024
Uimin-Lai-Sutherland 64 1024
S=1
128 (Lmax) 512
32 1024
Zamolodchikov-Fateev 64 1024
S=1,A=05
128 (Limax) 512
128 512
Zamolodchikov-Fateev 256 256
512 (Lmax) 256
32 1024
Zamolodchikov-Fateev 64 1024
S=1,A=0
128 (Lmax) 512
32 512
SO(5)-symmetric 64 512
S =2, § = arctan(1/9)
128 (Lmax) 256
32 512
SU(5)-symmetric 64 5192
S =2, 0 =arctan(1/3)
128 (Lmax) 256
64 512
XY S =3/2 128 256
256 (Lmax) 256

TABLE I. Maximum bond dimension mmax used in the simulation of the different systems of length
L considered in the main text and in the supplemental material. For each system, the maximum size
Lax considered is also highlighted.
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