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ABSTRACT

We review the SU(2/1) internal supersymmetry suggested by D. Fairlie and
the author in 1979. The initial apparent difficulties were resolved when,
with J. Thierry-Mieg, we understood that the gauging of a supergroup
implies taking the usual Yang-Mills-1ike Principal (Double) Fibre Bundle
as a “scaffold" and using its Grassmann algebra as parameter manifold for
the supergauge. SU(2/1) Universality fixes the masses of the Higgs sca-
lar field and the "top" quark around 100-200 GeV, in the same region as
the W and Z masses. A “"unified" supergauge, enclosing SU(3)colour X
SU(2) x U(1), predicts a fourth lepton generation in which the neutrino
mass 1s of the same order.

1. BACKGROUND: PARTICLE PHYSICS AND MATHEMATICS 1919-1992

The progress of physics is often linked with mathematical advances -
we have been aware of this fact ever since the inventicn of the calculus.
In our present paradigm for the fundamental physics of particles and
fields, the first instaliment, namely QED, required the following physi-
cal tools: 1) F. London's (1927) reinterpretation of the electric charge
and current as the Noether-derived conserved quantities corresponding to
invariance under transformations of the quantum phase; 2) To complete the
key concept of local gauge fnvariance, one also needed H. Weyl's two-step
advance - first (1919) in gauging scale transformations (the group R) -
and then, after London's clarification, gauging the locally dependent
group U(1). Mathematically, this was the birth of the Fibre Bundle con-
cept [1]. 3) The development of Relatfvistic Quantum Field Theory (RQFT)
by Tomonaga, Feynman, Schwinger and Dyson (1946-48); mathemat1c3}l
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-path-integral and related functional methods were essential tools. As a
matter of fact these concepts have not yet fully matured mathematically
and relevant studies are continuing.

The “Standard Model® which, at this time, represents the envelope of
our paradigmal understanding, required in addition, 4) The quark model,
whose discovery [2] stemmed from the identification of the overall pat-
tern of hadron states - namely “flavour*-SuU(3) symmetry [3]. This evolu-
tion of symmetries relating to “internal® degrees of freedom represents a
generalization of London's U(1) of electric charge. On the mathematical
front, this step ushered in a generalized use of semi-simple Lie groups.
Particle physicists thereby followed in the footsteps of Weyl, Wigner,
Racah, El1iott, Biedenharn and Moshinsky - the prophets of the “group
pest® [4] in Molecular, Atomic and Nuclear Physics. 5) as in the case
of Weyl's U(1), the local gauge version of SU(3) also involved two steps.
In the first [3] , the "flavour" group was locally gauged. It is,
however, now regarded as a global symmetry, even though it does happen to
involve a “universally"-coupled Yang-Mills multiplet of (massive) vector-
mesons, such as the rho, omega, etc. These are now relegated to the ano-
nymity of “ordinary" quark-antiquark mesonic bound states, with their
universal couplings reinterpreted as “phenomenological" features. In the
second step, the *colour*-SU(3) group [5] was gauged, yielding Quantum
Chromodynamics (QCD). For both, the generalization of Weyl's “eich
invarianz* to semi-simple Lie groups by C.N. Yang and R. Mills and inde-
pendently by R. Shaw, was the crucial step. When the geometric nature of
these theories became clear to physicists in the seventies, algebraic
topology was a great help (instantons, monopoles, etc.). Physics, how-
ever, repaid its debt very rapidly and with largesse - gauge theories
enabled Donaldson and Freedman to make great advances in the topology of
3- and 4- dimensional manifolds. 6) for SU(2)jeft x U(1), Nambu,
Goldstone, Weinberg, Higgs and others had first to develop the physical
understanding of spontaneous symmetry breaking (SSB). It seems there
was no need to invoke new mathematics.

The completion of the Standard model was followed by the emergence
of two continuation programs: 7) Gauge-Unification, an embedding of
SU(3)colour X SU(2)1eft X U(1) € G 1n a simple Lie group G, with the aim
of reaching with respect to the break G » SU(3)x[SU(2)xU(1)], a level of
understanding comparable to that of the SSB of {SU(2)xU(1)}+» U(1)eject. -
This program did not involve new concepts mathematically at first, but it
encountered the "hierarchy” problem, f.e. difficulties in the preser-
vation of two distinct SSB systems with a large energy-level separation.
Spacetime supersymmetry [6], emerging independently of some earlier
mathematical beginnings, provides one possible answer, whose validation
requires the discovery of a rich spectrum of complementary states in the
region of .5 -~ 2 TeV. 8) Quantum Gravity, i.e. the quantization of a
gauge theory which does not follow the Yang-Mills pattern. Here too,
supergroups and supergeometry were mobilized, yielding Supergravity and
Superstrings. These theories manage to involve Unification structures as
well, in the above sense.

In 1992, we do not yet know whether supergroups and supermanifolds
will indeed provide the physical answers in these programs. In mathema-
tics, the physics interest has brought about the classification of the
simple Lie superalgebras [7], completed by V. Kac and about important
advances in supergeometry by Kostant, Berezin, Leites, De Witt, Bachelor
and Rogers [8].

2. GEOMETRICAL DESCRIPTION FOR GHOSTS AND BRST

In 1976-77, 1 was mostly involved in trying to understand the
geometry of gravity - and of the newly born supergravity - gauge theories
which were gauging spacetime symmetries. After starting an {fterative



gauge approach in superspace with the Caltech group [9], 1 collaborated
with T. Regge [10] 1in developing a geometric gauge approach with Lie
derivatives and the non-Lie algebras they generate, with structure func-
tions instead of structure constants. The geometry involved a “softened"
version (in the sense of Salvator Dali's *Soft Self-Portrait" or of his
watches..) of the relevant Group Manifold, with spontaneous fibration:
Spacetime, the maniflold of the translations subgroup, becoming a base
manifold in an effective bundle - by the equations of motion, with the
Lorentz group as fibre. For supergravity, this happens to 8-dimensional
superspace, and the "local supersymmetry" transformations are generated
by the relevant spinorial super-Lie derivative.

I spent some time in 1977 in Paris and lectured about this work. My
audience included a graduate student, J. Thierry-Mieg, who got finterested
and participated in the completion of this program [11]. By the time I
returned to Paris in 1978, Jean had applied our technique of working in
the full dimensionality - a must for the Soft Group Manifold (SGM) - to
Principal Fibre Bundles as well. This seemed redundant, previous work
having either been done globally and invariantly, using the exterior
calculus, or having been limited to the horizontal projection of a
selected section, i.e. to the gauge potential field A3, dxH . Picking a
section and working nevertheless in the full d1mens1on§11ty. brought out
the seemingly uninteresting components of the connection. In the
following, is the coordinate of G, the gauged group; for reasons that
we shall explain later, we have doubled the gauge group from G to G x G
in these formulae.

C = [A%; dx¥ + X3, dy™ + x*3m dy*D ] {A3} (2.1)

Aa is the Lie algebra matrix basis. Jean suggested that x2 = X3y gym

might represent the ghost field, first introduced by Feynman, to preserve
off-mass-shell unitarity, further developed by De Witt and by Faddeev and
Popov. As a 1-form it anticommutes, its Lorentz scalar nature not-
withstanding. Moreover, we soon found [12] that expanding similarly the
full-dimensionality exterior derivative,

Be=d+s+sx dedHdy,,s=dfMay, s*=dyMay, (2.2)

yields the BRST unitarity equations [13], which are nothing more than the
Maurer-Cartan structure equations of the bundle, guaranteeing that the
curvature 2-form be purely horizontal, i.e. making dxAdy and dyAdy com-
ponents (and dxAdy*, dy*Ady*, dyAdy*) all vanish. The GxG formulation we
use here leads to a symmetric ghost-antighost geometric system, with an
appropriately symmetric BRST/antiBRST algebra, first constructed by
Curci and Ferrari [14] (in the original BRST formulation, the anti-ghost
transformation did not lend itself to geometrization). The geometrical
identification of the ghosts and of the BRST operator and equations was
criticized at first, but is accepted and used everywhere now, including
the former critics, except that for some unexplained reason, Stora
designates it now as "the Russian formula®.

3. EMERGENCE OF Su(2/1)

This is how, sometime early in 1979, I noted that, should we be
gauging a supergroup, the ghosts of the odd piece of the superalgebra-
valued connection would be plain bosonic fields. Moreover, should the
supergroup be SU(2/1), they would have i1sospin-hypercharge quantum num-
bers similar to those of the K-mesons in an SU(3) octet; but these are
precisely the quantum numbers assigned to the Higgs field in SU(2) x
U(1). In the same “ghost* multiplet (the vertical part of the SU(2/1)
connection) the other four fields would be nreciselv the canonical ahosts




-of the (W, Z, v) vector-mesons. Looking at the leptons, their SU(2) x
U(1) assignments fitted perfectly with the defining 3-dim. representation
of SU(2/1). I did not yet know what to do with the quarks, and said so
in the paper [15]. The Weinberg angle came out as sin?0 = .25 , a value
close to the experimental .22 - .23 (which it might reproduces, with
renormalization corrections, from 100 GeV downwards; however, this is
based on normalizing the algebra's matrices ya by

tr (Ma up) = 2 8ap (3.1)

which befits su(3) rather than su(2/1), at first sight at least. However,
the supertrace, which would have been the obvious choice, 1{s useless:
A1l it does is define a metric which is then used to define upper-index
matrices

str (Ma Wp) = 2 Gab » Wa = Gap WP (3.2)

This was one of the paradoxical results, at first.

David Fairlie conceived the same idea of the SU(2/1) supergroup [16],
with a different motivation, related to the method of dimensional reduc-
tion, popular at the time. His Higgs fields were the residual post-
reduction components of "normal* Yang-Mills fields originally. The result
was the same. Following our proposal, about ten papers were written by
various authors (Jarvis, Taylor, etc.), applying SU(2/1) , but this
stopped after a while. The novelty of applying a supergroup as an inter-
nal symmetry gauge meant that, in the beginning, there were many probliems
of interpretation and apparent paradoxes, which gave the theory a specu-
lative tingé. One obvious issue, the quarks, was quickly solved since
Nahm, Scheunert and Rittenberg had studied [17] the representations of
s1(2/1) and shown that besides the 3, there was a fundamental 4, related
to the homomorphism Su(2/1) ~ OSp(EIZ) This is the ortho- symplectic
supergroup with a metric f{io? x 13}: The even subgroups su(2) ~ sp(2)
and u(1) ~ so(2)). The 4 carries precisely the internal quantum numbers
of the 4 quark chiral fields, up to addition of an overall constant.
Moreover, 1f this constant 1s set so as to make electric charges become
integers (e.g. adding -2/3), all matrix elements in the 4th column and
row of the representation matrices vanish and 4 » 3, 1{.e. the group

“predicts that there are 4 fractional charge fields, but only 3 when for
integer charges [18]. Note the economy in the number of (arbitrary)
mu1t1plet assignments: 2 (I=1/2 & I=0) for leptons and 3 (I=0, I=1/2,

I=0) for quarks, plus as many Yy assignments, in su(2)xu(l) (i.e. a total
of 10) are replaced by 2 multip!ets and a constant (total: 3 choices) in
su(2/1)! For the mesons, of course, we remove the arbitrariness in the
selection of the I and Yw ass1gnments for the Higgs field - a reduction
of 2. In toto, a reduction of 9 in the multiplet assignments.

Two mysteries were resolved in 1982 [19,20]: (a) The above mentioned
emergence of the SU(3) metric and normalization (in getting the Weinberg
angle) and (b) new types of ghosts which appear in the gauge (adjoint)
vector meson multiplet. Indeed, together with the (W%, Z, V) J=1 gauge
particles of SU(2) x U(1) , we now have four K*-1ike vector mesons, but
they anticommutel The resolution of this riddlie required a new under-
standing of the way in which a supergroup is gauged (at least for an
internal supersymmetry, but possibly always). This advance was achieved
independently of similar results, which were soon to be obtained in
mathematics by Quillen [21]. In 1986, I showed [22] that the prediction
for the mcss of the Higgs field

Mh = 2 My (3.3)

could be derived even without gauging the supergroup, taking instead a
minimalist approach, i.e. assuming SU(2/1) to be a phenomenological glo-




" bal flavour-type low-energy symmetry.
With Shlomo Sternberg in 1980, we developed the appropriate
(phenomenological) “superunification* [23],

[SU(Z/l)w-em X SU(3)CQ]] c SU(H/I) (3.4)

which predicts 2n-5 generations. There was need, for this purpose, to
construct the representations of si(n/1). It turns out that n=7 has the
advantage of being anomaly-free [24]. It predicts 4 generations; since
the experimental bound for generations with massless or 1ight neutrinos
is 3, the 4th generation should involve a neutrino with a mass higher
than half the Z mas, roughly.

In 1990, Sternberg and I returned to the gauging of the supergroup,
with improvements exploiting the mathematical advances in the theory of
the *superconnection* [25,26]. In 1991, with C.Y. Lee, we improved and
completed the relevant geometricall-derived BRST for SU(2/1), guarantee-
ing unitarity. We also [27] checked the possibility of generating, the
-m* &*h negative mass-term, needed to trigger the SSB, by using radiative
corrections @ 1a Coleman-Weinberg. This is the only term in the SSB
mechanism which did not appear naturally from SU(2/1), in our original
treatment. The radiative corrections mechanism gives a low-mass Higgs
and I do not favour this approach, as a result. An alternative deriva-
tion was suggested in 1991, based on the inclusion of a discrete operator
in the overall SU(2/1) covariant derivative [28]. This idea was an inno-
vation, in what amounted otherwise to a plain (twelve-years late) redis-
covery of the whole theory, during 1990-91, by Coquereaux, Scheck, and
others, spurred by independent developments in non-commutative geometry,
by A. Connes and his group [29]. Returning to the couplings, SU(2) x
U(1) introduces g and g as gauge couplings (or g and tg 8), A for the &*j
potential and 2 different ¢ Yukawa couplings cY* &,¥ for leptons and for

quarks, aside from -m* &%y and <0|8,]0> = v, which remain free in
SU(2/1). The first 3 couplings are replaced by a single one. In addition,
with the Higgs field as part of the gauge multiplets, its coupling to
fermions should be universal - provided we disentangle a related compli-
cation, perhaps in the framework of SU(7/1), 1.e. which of the lepton +
quark sets get their mass only from the Higgs field which is included in
SU(2)yeft X U(1) © SU(2/1) (not to be confused with another SU(2/1)
subgroup of SU(7/1) which makes the generations), rather than from other
pieces of the overall Higgs field of the unified SU(7/1). Since a uni-
versal coupling implies masses of the order of v, it seems the 3rd or 4th
family fit best with this description phenomenologically.

Note that the correlation between gradings and chirality assignments
is no surprise [30], it s built in the chiral structure of Weak Inter-
actions. The fact that the lepton and quark multiplets' SU(2) x U(1)
quantum numbers correspond to supermatrices with str(Q) = 0 is due to the
observation that electrically charged particles have mass (from renormal-
ization?) and thus there 1s always a right-fermion for each charged left-
fermion. Since SU(2) means tr(Iy) = 0 and there is no right-I, implies
str(Iy) = 0, and by the analog of the Gell-Mann Nishijima formula,
str(Yy) = 0. Thus SU(2/1) just represents a "natural" embedding within
the smallest supergroup with this supertracelessness.

There 1s no true spin-statistics problem for the lepton or quark
multiplets. The odd generators contain Parity (the y° matrix), since
they relate left and right chiralities. They operate on (1/2,0)+(0,1/2),
behaving as (1/2,1/2). Acting on the SL(2,C); representation, they con-
nect-1/2 to 0 (and similarly in SL(2,C)g ). %he R state is thus a spin-
less “boson* under SL(2,C); and vice versa. We use doubled representa-
tions [18]. Note, however, that only the left-SU(2/1) is gauged.




"4, THE METHOD OF THE SUPERCONNECTION AND U(2/1) <= U(3) TRANSMUTATION

G i1s a supergroup gauged internally, T its Lie superalgebra
I' =Tt +I'", I't the even and I'" the odd generators

[rs.rp] = 1rgg¢ I,
[rg.re] = 1543 1y, (4.1)
{r1,ry} = dy3é rg,

with Tg p € Tt and Iy y c I,

Selecting a section over the superbundle, x 1s the (spacetime) horizontal
coordinate, y the (internal) vertical. We construct the Grassmann algebra

A X,y) over both. with A = A* + A", the even and odd pieces
( X),..) tor forms in x, A RA¢ Pre<td, whereas

A®

<’N,'N = d1m A‘iy) for fzrms 1n y. Notice that the y coordinate itself
is commutat1ve, 1ike x; to supply an anticommuting parameter for I'y we
simply use odd order forms, &4,

ry.fin(x,y) dy® = rq.fl, (4.2)

The anticommutativity property of the parameter F! now derives from its
being a one-form in the y variable. The carets “ over the indices indi-
cate the presence of a superalgebra, 1.e. the caret over the 1 index con-
tains the information about the anticommutation property, which is not
yet present in the function fi(x,y). Here the 1 index stands for the same
subalgebraic quantum numbers, but taken within the related (even) Lie
algebra within the "Hermitian Lie algebra® [21]. Such a Hermitian Lie
algebra occurs when the same basic set of generators can close either as
a Lie algebra, or, by selecting a subalgebra I'* and imposing a Z(2) grad-
ing and anticommutation rules for I'" = I'/Tt , they close on a super-
algebra.

For our application, we use U(3) = U(2/1). For the t=i transition,
the transformation relates only to the change in the generalized Lie
bracket, with 3«j, from {1,]{ to [1,3]; for ghe &-a transition, the
change 1s only in the decomposition gver the (u°,u ) versus (A*,A°) vec-

tors in the (8,0) plape nce = 0, but
(8,0) p e 1 gs)used explici‘ly. the forms being

takeanosgz A§29 1. e. only er spacetime. As a result, g?uging involved
higher tensors as gauge fields (such as the Ka]b-Ramond B However,
we shall now show that the identification of the Higgs f1e¥d used A(y),
antiTportant point in the understanding of the emergence of the U(3)
metric.

Connections C over a Principal Fibre Bundle (= a Yang-Mills gauge
theory) enter D = A + C and acting on forms (coordinates x,y) increase
their degree by one, with D = D¢+ + D+ (vertical and horizontal - pro-
Jec:;ng)over a selected section) A =d + s as in (2.2) and C = A + X as
in 1

Changing now to a supergroup, but staying sti1l with the Yang-Mills
picture in which y (and not yet A) spans the fibre, we can immediately
identify the Higgs field. The conne tion C is still an anticommutative
one-form and so are A and x. However,

A= ASy g dxV + ALy gy ¥ (4.32)
X = xin vg Oy + xlp py gy (4.3b)
where we have underiined 1n each term the factors inducing fermion beha-



‘viour, whether it is the odd degree of the form or the odd part in the
" superaigebra. We note that whereas xa = X3y dy® 1s indeed a fermionic
scalar ghost field, x! = xi; g*m has boson statistics (the fermi feature
in % is supplied here by the y! matrices in the algebra. This 1s how
SU(2/1) had originally occured to me [15], as I related. Here the Higgs
is a one-form, valued in the odd part of the superalgebra.

We now change to the “superconnection" geometry of refs. [20, 21, 25,

26]. The fibre is no more spanned by y, it is spanned by A(y). The
parameters

Fa(x,y) € A*(x,y), FY(x,y) € A-(x,y) . (4.4)

The gauge field has the quantum numbers of the parameters it gauges (this
is the essence of the Yang-Mills idea) and a degree higher by one, in the
variable of tge relevant parallel-transport (covariant derivative) it
spans. For F4(x,y) nothing has changed if it is taken from A°(x,y);
should it, however, involve a higher even degree, such as A*(x,y), the
relevgnt piece of the connection is the gauge totally antisymmetric tep-
sor Cq,,0 of [20]. Now take the action of the odd generator I'y, the Fl e
Ai(x,yg parameters, one-forms in dym. For the vertical ("the gfost")

Hi(x,y) = x15 dy" = hign(x,y) dy™ * dy" . (4.5)

g1 (our former x') is now an even-order form in dyM [20]. The transition
from the Principal Fibre Bundle (Yang-Mills) geometry, for an internal
supergauge, to that of the Superconnection thus puts the Q‘h field into
the even part of the Grassmann algebra and with the relevant U(3) index,
instead of U(2/1). As a matter of fact, we can generalize the result and
directly 1dent1f¥ l‘h with a zero-form [25,26]. The supercurvature
involves (d613 ¢ 03), which is then squared, yielding the A &* term.

We get the sin?@ = .25. However, U(3) is not simple, and we should check
whether the A coupling is preserved in the renormalization procedure.
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