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Strongly interacting Fermi gases are of great current interest. Not
only are fermions the most common particles in the universe,
but they are also thought to have a universal thermodynamic
behaviour for strong interactions1–3. Recent experiments on
ultracold Fermi gases provide an unprecedented opportunity to
test universality in the laboratory4–8. In principle this allows—
for example—the interior properties of hot, dense neutron stars
to be investigated on earth. Here we carry out a detailed test of
this prediction. We analyse results from three ultracold fermion
experiments involving two completely distinct atomic species
in different kinds of atomic-trap environment6–8. The data are
compared with the predictions of a recent strong-interaction
theory9,10. Excellent agreement is obtained, with no adjustable
parameters. By extrapolating to zero temperature, we show that
the experimental measurements yield a many-body parameter
β ≃ −0.59 ± 0.07, describing the universal energy of strongly
interacting Fermi gases.

Experiments on ultracold Fermi gases at microkelvin
temperatures are revolutionizing many areas of physics. Their
exceptional simplicity allows tests of many-body theory in areas
long thought to be inaccessible. The ability to widely tune the
effective interaction between fermions via a broad Feshbach
resonance in gases of 6Li and 40K has allowed resonance
models proposed in high-Tc superconductivity theory11 to be
implemented with fermionic ultracold atoms12. Fortunately, the
Pauli exclusion principle stabilizes the resulting excited molecular
states against collisional damping13. This has permitted the
experimental observation of the smooth evolution of the Fermi
gas from the attractive regime of Bardeen–Cooper–Schrieffer
(BCS) superfluidity through to a regime where molecules form a
Bose–Einstein condensate (BEC)14–19. On the cusp of this BCS–BEC
cross-over, there is a strongly interacting regime—the so-called
unitarity limit3, which leaves the interatomic distance as the only
relevant length scale.

At this point, the gas is expected to show a universal
thermodynamic behaviour, independent of any microscopic details
of the underlying interactions. The ground-state energy E0 of a
homogeneous gas at zero temperature should be proportional to
the free Fermi energy, EF. Thus, E0 = EF(1 + β), where β is a
universal many-body parameter. Substantial experimental efforts
have been carried out to verify the existence of universality4,5,
though so far there has been no conclusive confirmation. This is
mainly due to the lack of reliable thermometry in the strongly
interacting regime10, leading to an uncertainty in the finite-
temperature corrections.

The universal parameters estimated from energies at the lowest
accessible (but unknown) temperature range from β = −0.68 ±

0.10 to β = −0.54±0.05 (refs 6,8,16,17). Because these are not at
zero temperature, there is an unknown correction factor required
to obtain the ground-state energy, and hence the true value of β.
There is a similar range of estimated theoretical values, though a
more precise value of β =−0.58±0.01 was recently obtained from
zero-temperature quantum Monte Carlo simulations20.

This situation has dramatically improved in the most recent
thermodynamic measurements on strongly interacting Fermi gases
of 40K and 6Li atoms7,8, which allow accurate estimates of the
energy in the universal regime from the fermionic cloud size5. In
experiments on 40K carried out at JILA7, an adiabatic magnetic-
field sweep is used to compare measurements of the cloud size
in the strongly interacting and weakly interacting regimes, so that
the non-interacting temperature is also known from the cloud size
after the sweep. An important conceptual advance of the Duke
group5, who use 6Li, was the realization that such sweeps give a
model-independent measurement of the entropy versus energy in
the strongly interacting regime, thus allowing a precision test8 of
theoretical predictions of universal thermodynamics. A different
approach at Rice6, also with 6Li, makes use of the detailed density
distribution to estimate temperature and entropy.

These ground-breaking investigations provide measurements
accurate to the level of a few per cent, which is an exceptional
accuracy in this challenging field of ultralow-temperature physics.

In this letter, we re-analyse all the available experimental
data from these three laboratories, thus obtaining the measured
entropy–energy relation of two completely different strongly
interacting trapped Fermi gases. We compare this directly with
a single universal theoretical prediction. We use a diagrammatic
approach based on functional path integrals9,21 together with the
local density approximation to treat the inhomogeneous trap.
Below the superfluid transition, our calculations include pairing
fluctuations, which are important in the strongly interacting
regime, owing to the onset of molecule formation. This approach
is described in detail elsewhere9. Above threshold we use
the well known Nozières–Schmidt–Rink (NSR) theory22–24. We
demonstrate a quantitative test of these thermodynamic predictions
by comparing experimental results on both types of atom with a
single theoretical curve, as shown in Fig. 1. There are no adjustable
parameters, so this provides strong evidence for universality.

Further, by using power-law extrapolation to estimate finite-
temperature corrections, we are able to show that all the
experimental data give rise to a universal many-body coefficient
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Figure 1 Illustration of the universal thermodynamics of a strongly interacting

Fermi gas. Comparison between theoretical predictions and experimental

measurements on the entropy–energy (S–E) relation of strongly interacting Fermi

gases in a harmonic trap. The inset highlights the low-entropy region. The energy is

in units of the Fermi energy, which is the highest single-particle energy level of a

non-interacting gas in the same trap with the same number of fermions, N. The

brown solid curve is our theoretical prediction, and the black dash–dotted curve is

the ideal-gas energy. The experimental data are on 6Li and 40K fermionic atoms,

with error bars taken from the experimental papers using appropriate conversions.

All results agree with a single, universal theoretical curve.

of β ≃ −0.59±0.07. This is in excellent agreement both with the
Monte Carlo results20, β=−0.58±0.01, and our earlier theoretical
prediction9 of β ≈ −0.599.

We summarize the experimental procedures, as typified by the
JILA work using 40K atomic gas7. Here, the strongly interacting
gas is prepared in a harmonic trap at the Feshbach resonance,
and the potential energy is measured from the observed radius.
Next, the magnetic field is swept adiabatically to a zero-scattering-
length field, and the potential energy at this field is again measured,
which gives the non-interacting temperature. From these data,
we obtain the entropy of the interacting gas7, as the energy–
entropy relation of a non-interacting Fermi gas is known. The
total energy is also obtained, as it is twice the potential energy at
the resonance, owing to the virial theorem5. Figure 2a gives the
predicted potential energy ratio as a function of the non-interacting
temperature in the presence of a harmonic trap, together with
the experimental measurements. The observed reduction of the
potential energy in the strongly interacting regime is theoretically
reproduced. Converting the non-interacting temperature and the
potential energy into the total entropy and energy, respectively, we
obtain the entropy–energy relation for 40K gas in Fig. 2b. We find an
excellent agreement between the experimental data and theoretical
predictions below threshold. There is a small discrepancy just
above the critical temperature of (T/TF)

0 ≈ 0.25 or the critical
entropy of Sc ≃ 2.2N kB, where we expect that the above threshold
NSR theory may be less reliable. This effect is clearly visible
in Fig. 2a, which gives the original experimental measurements.
The nonlinear transformation used to obtain the entropy–energy
relation in Fig. 2b means that conventional rectangular error
bars give only a qualitative indication of the uncertainties in
this figure.

Next, we discuss in greater detail the 6Li experiment at Duke8,
which has greater accuracy but involves some extra corrections
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Figure 2 Analysis of the 40K experiment in JILA. a, Experimental data on the

potential energy Epot normalized to that in the non-interacting regime E 0
pot for a 40K

gas at unitarity, as a function of the non-interacting gas temperature (T/TF )0. It

converges to unity as expected (dashed green horizontal line). The experimental

data are compared with our theoretical prediction for a harmonically trapped,

strongly interacting Fermi gas. b, Comparison between theory and experiment on

the entropy dependence of the energy for a unitarity gas. The experimental entropy

is calculated from the non-interacting temperature, with error bars converted from

the experimental data. The energy is double Epot owing to the virial theorem5.

owing to the anharmonic trap used, and residual interactions
in the weakly interacting cloud. The strongly interacting Fermi
gas of N = 1.3(2) × 105 atoms is prepared in a shallow gaussian
(anharmonic) trap V (r)= V0{1−exp[−m(ω2

⊥
ρ2 +ω2

z z2)/(2V0)]}
at a magnetic field B = 840 G, slightly above the resonance position
B0 = 834 G. Here V0 gives the trap energy scale, m is the atomic
mass, ω⊥ and ωz are the transverse and axial trap frequencies and
ρ and z are the transverse and axial coordinates of the spheroidal
trap geometry. The coupling constant kFa = −30.0, where kF is
the Fermi wavevector and a is the s-wave interatomic scattering
length, is sufficiently large to ensure the onset of the universal
thermodynamic behaviour. Experimentally, the entropy of the gas
is measured by an adiabatic passage to a weak interacting field
B = 1,200 G, where kFa = −0.75 and the entropy and temperature
are known from the cloud size after the sweep. The energy E is
determined model independently from the mean square radius of
the strongly interacting fermion cloud 〈z2〉840 measured at 840 G,
according to the virial theorem5,8,

E

N EF

=
〈z2〉840

z2
F

(1−κ),
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where EF = (3Nω2
⊥
ωz)

1/3 = kBTF is the Fermi energy for an ideal
harmonically trapped gas at the trap centre, and z2

F is defined
by 3mω2

z z2
F ≡ EF. The correction factor 1 − κ accounts for the

anharmonicity in the shallow trapping potential V0 ≃ 10EF.
Figure 3a shows the bare experimental data on the ratio of

the mean square axial cloud size at 1,200 G to that at 840 G, as a
function of the energy at 840 G, as compared with the theoretical
simulations with the same realistic parameters, except that we
use a resonance field B0 for the strongly interacting gas. Good
agreement is found, with no free parameters. As before, there is a
small discrepancy between the raw data and theoretical predictions,
just above the critical energy. We have recalculated the entropy
corrections due to residual interactions in the 1,200 G cloud to
improve the accuracy at the 1% level, by using an above-threshold
NSR theory. Calibration of the entropy from the measured mean
square axial cloud size at 1,200 G using the theoretically predicted
dependence of the entropy on the size (inset in Fig. 3b) leads to the
comparison for the entropy–energy relation, as shown in Fig. 3b.
The agreement is even more impressive.

We can now describe the procedures used to obtain Fig. 1,
which illustrates the universal thermodynamic behaviour of a
strongly interacting Fermi gas. Here we have plotted all the
measured data in a single figure, and compared them with
our prediction for the entropy dependence of the energy of a
harmonically trapped, strongly interacting Fermi gas, as well as
that of an ideal Fermi gas. The slight shift of the experimental
data in the Duke experiment due to the anharmonicity of the trap
has been corrected, by subtracting the (small) theoretical difference
between a shallow gaussian trap and a harmonic trap for the energy
at the same entropy. We also plot a single data point from the
6Li experiment at Rice6 for the energy at their lowest entropy.
The agreement between theory and experiment is excellent for
almost all the measured data. Exactly the same theory is used
in all cases, with results from three different laboratories6–8. The
universal thermodynamics of a strongly interacting Fermi gas is
strikingly demonstrated, independently of which atomic species we
compare with.

Just above the critical entropy Sc ≃ 2.2N kB, for the superfluid–
normal-fluid phase transition, there is a suggestion of a discrepancy
between theoretical predictions and these precise measurements.
At this point the above-threshold NSR theory is least accurate10.
The data here may even indicate a first-order superfluid phase
transition. We note that the exact order of phase transition for a
strongly interacting Fermi gas is still an open question25, and merits
further investigation.

A key feature of current ultracold Fermi-gas experiments is
that the lowest attainable entropy is around S = 0.7N kB, which
corresponds to a temperature of 0.10–0.15TF at unitarity. This
non-zero entropy or temperature affects the precise determination
of the universal many-body parameter β. To remove the
temperature dependence, we assume that in the low-entropy
regime (below the phase transition) there is a power-law
dependence of the energy on the entropy: E − E0 ∝ Sα, as
anticipated theoretically. For non-interacting Fermi and Bose
gases, the power-law exponents are 2 and 4/3, respectively. The
thermodynamics of a unitary gas should lie between an ideal
Fermi gas and an ideal Bose–Einstein condensate. The fitting
procedure leads to E0/(N EF) = 0.48 ± 0.03 and E0/(N EF) =

0.48 ± 0.04, for the Duke and JILA experiments, respectively,
with a similar power-law exponent α = 1.7 ± 0.4. Here the
error bar accounts only for the fitting error. Using the relation
E0/N = (3/4)(1+β)1/2EF for a harmonic trap4, this gives rise to
β ≃ −0.59±0.07: which agrees fairly well with the most accurate
quantum Monte Carlo simulations20, β = −0.58 ± 0.01, and our
theoretical prediction9, β ≈ −0.599. Our theoretical power-law

Ec = 0.84EF
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Figure 3 Analysis of the 6Li experiment at Duke. a, Experimental data on the ratio

of the mean square cloud size at 1,200 G, 〈z 2〉1,200, to that at 840 G, 〈z 2〉840, for a
6Li gas, as a function of total energy, are compared to the theoretical simulations.

The data are obtained by an adiabatic passage from a strongly interacting field

B= 840 G to a weakly interacting field B= 1,200 G. The total energy is measured

at 840 G by using the virial theorem, and is normalized with respect to the Fermi

energy of a non-interacting gas. The theoretical curve is calculated under the same

procedure and parameters, except that the starting field is at the Feshbach

resonance B= 834 G. As shown by the dashed green horizontal line, the ratio

converges to unity at high energy as the gas becomes more ideal. The arrow points

to the theoretically predicted energy at the transition point. b, Experimental data on

the entropy dependence of the energy for a strongly interacting gas at 840 G,

compared with the predictions from our strong-interaction theory. The result for an

ideal gas is also plotted. The entropy and error bars of the gas are calibrated from

the experimental mean square axial cloud size 〈z2〉1,200, using our theoretical

dependence of the entropy on the cloud size (as shown in the inset), which should

be extremely accurate in the weakly interacting regime.

prediction is α = 1.5 in the LDA regime, which also agrees
with experiment.

METHODS

We briefly explain our analytic theory. This is an approximate method using

perturbation theory summed to all orders, because no exact results are known.

In the homogeneous gas case, it relies on the many-body T-matrix

approximation to account for the effects of collective Bogoliubov–Anderson

modes, and extends the standard NSR approach to the broken-symmetry state9.

This amounts to considering the contributions of gaussian fluctuations

around the mean-field saddle point to the thermodynamic potential

(with Nambu notation),

Ωpf =
1

2

∑

Q

lndet

[

χ11 (Q) χ12 (Q)

χ12 (Q) χ11 (−Q)

]

,
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where

χ11(Q) =
m

4πh̄2a
+

∑

K

G11(Q−K )G11(K )−
∑

k

1

2ǫk

,

χ12(Q) =
∑

K

G12(Q−K )G12(K ),

are respectively the diagonal and off-diagonal parts of the pair propagator.

Here, Q = (q, iνn), K = (k, iωm), and
∑

K = kBT
∑

m

∑

k (q and k are

wavevectors, νn and ωm bosonic and fermionic Matsubara frequencies,

respectively), m is the fermion mass, T the temperature, and ǫk = h̄2k2/2m,

G11 and G12 are BCS Green functions with a variational order parameter ∆.

Together with the mean-field contribution

Ωmf =
∑

k

[

ǫk −μ−Ek +
∆

2

2ǫk

+2kBT ln f (−Ek)

]

−
m∆

2

4πh̄2a
,

with excitation energy Ek = [(ǫk −μ)2 +∆
2]1/2 and Fermi distribution

function f (x) = 1/(1+ex/kB T ), we obtain the full thermodynamic potential

Ω =Ωmf +Ωpf. All the observables are calculated straightforwardly following

the thermodynamic relations, once the chemical potential μ and the order

parameter ∆ are determined. Number conservation in the form n = −∂Ω/∂μ

is strictly satisfied, yielding an exact identity for the pressure P and energy

density U of a unitarity gas: P = 2U/3 (refs 3,5). For simplicity, in our

calculations we determine the order parameter at the level of the mean field,

using the gap equation ∂Ωmf/∂∆= 0. Part of our approach was also previously

derived using a functional integral method21. In the case of the normal Fermi

liquid with vanishing order parameter, the usual NSR formalism is recovered22.

This type of perturbation theory with bare BCS Green functions in the pair

propagators constitutes the simplest description of the BCS–BEC cross-over,

including the essential pair fluctuations. More sophisticated approximations

with dressed Green functions in the pair propagators, that is, the GG0 (ref. 26)

and the fully self-consistent GG schemes27,28, have also been proposed. In

ref. 10, we carried out a comparative study of these different approximation

schemes for a unitarity gas in the normal state. A related calculation in the

superfluid phase has also been carried out recently25. Compared with the latest

path-integral Monte Carlo simulations29,30, our analytic perturbation scheme

seems to be the optimal choice for the calculations of the type required for the

entropy–energy relation. However, there is a small region around the critical

temperature where none of the current calculations are reliable, and we see

indications of this in the data.

To include the effects of the trap, we use the local-density approximation

by assuming that the system can be treated as locally uniform, with a

position-dependent local chemical potential μ(r) = μ−V (r), where V (r) is

the trapping potential. The local entropy and energy, calculated directly from

the local thermodynamic potential using thermodynamic relations, are then

summed to give the total entropy and energy. We note that in the presence of a

harmonic trap the exact identity P = 2U/3 yields the virial theorem5, which

states that the potential energy of the gas is a half of its total energy.
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