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Non-Abelian anyons promise to reveal spectacular features of quantum mechanics that could ultimately

provide the foundation for a decoherence-free quantum computer. A key breakthrough in the pursuit

of these exotic particles originated from Read and Green’s observation that the Moore-Read quantum

Hall state and a (relatively simple) two-dimensional pþ ip superconductor both support so-called Ising

non-Abelian anyons. Here, we establish a similar correspondence between the Z3 Read-Rezayi quantum

Hall state and a novel two-dimensional superconductor in which charge-2e Cooper pairs are built from

fractionalized quasiparticles. In particular, both phases harbor Fibonacci anyons that—unlike Ising

anyons—allow for universal topological quantum computation solely through braiding. Using a variant of

Teo and Kane’s construction of non-Abelian phases from weakly coupled chains, we provide a blueprint for

such a superconductor using Abelian quantum Hall states interlaced with an array of superconducting

islands. Fibonacci anyons appear as neutral deconfined particles that lead to a twofold ground-state

degeneracy on a torus. In contrast to a pþ ip superconductor, vortices do not yield additional particle

types, yet depending on nonuniversal energetics can serve as a trap for Fibonacci anyons. These results

imply that one can, in principle, combine well-understood and widely available phases of matter to realize

non-Abelian anyons with universal braid statistics. Numerous future directions are discussed, including

speculations on alternative realizations with fewer experimental requirements.

DOI: 10.1103/PhysRevX.4.011036 Subject Areas: Condensed Matter physics, Quantum Information,

Strongly Correlated Materials

I. INTRODUCTION

The emergence of anyons that exhibit richer exchange

statistics than the constituent electrons and ions in a

material is among the most remarkable illustrations of

“more is different.” Such particles fall into two broad

categories: Abelian and non-Abelian. Interchanging

Abelian anyons alters the system’s wave function by a

phase eiθ that is intermediate between that acquired for

bosons and fermions [1,2]. Richer still are non-Abelian

anyons, whose exchange rotates the system’s quantum state

among a degenerate set of locally indistinguishable ground

states produced by the anyons [3–13]. The latter variety

realizes the most exotic form of exchange statistics that

nature in principle permits, which by itself strongly

motivates their pursuit. Non-Abelian anyons are further

coveted, however, because they provide a route to fault-

tolerant topological quantum computation [14–18]. Here,

qubits are embedded in the system’s ground states and, by

virtue of non-Abelian statistics, manipulated through anyon

exchanges. The nonlocality with which the information is

stored and processed elegantly produces immunity against

decoherence stemming from local environmental perturba-

tions. One thereby sidesteps the principal bottleneck facing

most quantum-computing approaches, but does so at the

expense of introducing a rather different challenge: iden-

tifying suitable platforms for non-Abelian excitations.

The quantum Hall effect catalyzed numerous break-

throughs in the search for anyons in physical systems

[18,19]. Quantum Hall states supporting fractionally

charged Abelian anyons are, by now, widely believed to

surface in a myriad of settings, including GaAs [20],

graphene [21,22], oxide interfaces [23,24], and CdTe
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[25], among others. Moreover, Moore and Read suggested

in 1991 that the quantum Hall regime could support

non-Abelian anyons and constructed a candidate state—a

quantum Hall fluid in which composite fermions undergo

pþ ip pairing [26]. This phase supports chiral edge states

consisting of a neutral Majorana sector coupled to a

bosonic charge mode [27], along with Ising non-Abelian

anyons [28] carrying charge e=4 in the bulk [29–36]. A

variety of experiments support the onset of the Moore-Read

state (or its particle-hole conjugate [37,38]) at filling factor

ν ¼ 5=2 in GaAs quantum wells [39–47]. It is important to

remark, however, that braiding Ising anyons does not

produce a gate set sufficient for universal topological

quantum computation. Thus, more exotic non-Abelian

phases that do not suffer from this shortcoming are highly

desirable.

Quantum Hall systems can, in principle, host non-

Abelian anyons with universal braid statistics (i.e., that

allow one to approximate an arbitrary unitary gate with

braiding alone). In this context, the Z3 Read-Rezayi state

[48], which generalizes the pairing inherent in the Moore-

Read phase to clustering of triplets of electrons [49],

constitutes the “holy grail.” Chiral edge states with a very

interesting structure appear here: A charged boson sector

that transports electrical current (as in all quantum Hall

states) in this case coexists with a neutral sector that carries

only energy and is described by the chiral part of Z3

parafermion conformal field theory. As a by-product

of this neutral sector, the bulk admits vaunted

“Fibonacci” anyons—denoted as ε—that obey the fusion

rule ε × ε ∼ 1þ ε. This fusion rule implies that the low-

energy Hilbert space for n Fibonacci particles with trivial

total topological charge has a dimension given by the

(n − 1)th Fibonacci number. Consequently, the asymptotic

dimension per particle, usually called the quantum dimen-

sion, is the golden ratio φ≡ ð1þ
ffiffiffi

5
p

Þ=2. Perhaps the most

remarkable feature of Fibonacci anyons is that they

allow for universal topological quantum computation in

which a single gate—a counterclockwise exchange of two

Fibonacci anyons—is sufficient to approximate any unitary

transformation to within desired accuracy (up to an

inconsequential overall phase). Such particles remain

elusive, although the Z3 Read-Rezayi state and its par-

ticle-hole conjugate [50] do provide plausible candidate

ground states for fillings ν ¼ 13=5 and 12=5. Intriguingly, a
plateau at the latter fraction has indeed been measured in

GaAs, although little is presently known about the under-

lying phase; at ν ¼ 13=5, a well-formed plateau has so far

eluded observation [51–53].

Read and Green [54] laid the groundwork for the pursuit

of non-Abelian anyons outside of the quantum Hall effect

by demonstrating a profound correspondence between the

Moore-Read state and a spinless 2D pþ ip superconductor

[55]. Many properties that stem from composite-fermion

pairing indeed survive in the vastly different case where

physical electrons form Cooper pairs. In particular, both

systems exhibit a chiral Majorana edge mode at their

boundary and support Ising non-Abelian anyons in the

bulk. Several important distinctions between these phases

do, nevertheless, persist: (i) Their edge structures are not

identical—a pþ ip superconductor lacks the chiral

bosonic charge mode found in the Moore-Read state.

(ii) Different classes of topological phenomena arise in

each case. On one hand, a pþ ip superconductor realizes a

topological superconducting phase with short-range entan-

glement; the Moore-Read state, on the other, exhibits true

topological order, long-range entanglement, and hence

nontrivial ground-state degeneracy on a torus. This impor-

tant point closely relates to the next two distinctions. (iii) In

contrast to the paired state of composite fermions, an

electronic pþ ip superconductor is characterized by a

local order parameter. Defects in that order parameter—i.e.,

neutral h=2e vortices—bind Majorana zero modes

and, accordingly, constitute the Ising anyons akin to

charge-e=4 quasiparticles in the Moore-Read state

[54,56]. (iv) Because of the energy cost associated with

local order-parameter variations, superconducting vortices

are, strictly speaking, confined (unlike e=4 quasiparticles).

Confinement does not imply inaccessibility of non-Abelian

anyons in this setting, since the “user” can always supply

the energy necessary to separate vortices by arbitrary

distances. Non-Abelian braiding statistics is, however,

realized only projectively [57,58] as a result—i.e., up to

an overall phase that, for most purposes, is fortunately

inessential. The existence of an order parameter may

actually prove advantageous, as experimental techniques

for coupling to order parameters can provide practical

means of manipulating non-Abelian anyons in the

laboratory.

Shortly after Read and Green’s work, Kitaev showed

that a 1D spinless p-wave superconductor forms a closely

related topological superconducting phase [59] (which one

can view as a 2D pþ ip superconductor squashed along

one dimension). Here, domain walls in the superconductor

bind Majorana zero modes and realize confined Ising

anyons whose exotic statistics can be meaningfully har-

vested in wire networks [60–63]. Although such nontrivial

one-dimensional (1D) and two-dimensional (2D) super-

conductors are unlikely to emerge from a material’s

intrinsic dynamics, numerous blueprints now exist for

engineering these phases in heterostructures fashioned

from ingredients such as topological insulators, semicon-

ductors, and s-wave superconductors [64–70]. (See

Refs. [71,72] for recent reviews.) These proposals highlight

the vast potential that “ordinary” systems possess for

designing novel phases of matter and have already inspired

a flurry of experiments. Studies of semiconducting wires

interfaced with s-wave superconductors have proven par-

ticularly fruitful, delivering numerous possible Majorana

signatures [73–78].

ROGER S. K. MONG et al. PHYS. REV. X 4, 011036 (2014)

011036-2



These preliminary successes motivate the question of

whether one can—even in principle—design blueprints for

non-Abelian anyons with richer braid statistics compared to

the Ising case. Several recent works demonstrated that this

is indeed possible using, somewhat counterintuitively,

Abelian quantum Hall states as a canvas for more exotic

non-Abelian anyons [58,79–84]. (See also Refs. [85,86].)

Most schemes involve forming a fractionalized “wire” out

of counterpropagating Abelian quantum Hall edge states.

This wire can acquire a gap via competing mechanisms,

e.g., proximity-induced superconductivity or electronic

backscattering. Domain walls separating physically distinct

gapped regions bind Zn generalizations of Majorana

zero modes [87,88] and consequently realize non-

Abelian anyons of a more interesting variety than those

in a 1D p-wave superconductor. Unfortunately, however,

they too admit nonuniversal braid statistics, although

achieving universal quantum computation requires fewer

unprotected operations [79,89].

In this paper, we advance this program one step further

and pursue a similar strategy toward non-Abelian anyons

with universal braid statistics. More precisely, our goal is to

construct a new 2D superconductor that bears the same

relation to the Z3 Read-Rezayi state as a spinless pþ ip
superconductor bears to the Moore-Read state. With this

analogy in mind, it seems reasonable to demand that such a

phase satisfy the following basic properties. First, the

boundary should host a chiral Z3 parafermion edge mode

but lack the Read-Rezayi state’s bosonic charge sector.

Second, the bulk should exhibit essentially the same non-

Abelian content as the Read-Rezayi phase—particularly

Fibonacci anyons.

We show that one can nucleate a phase with precisely

these properties, not in free space but rather in the interior

of a fractionalized medium. Our approach resembles that of

Refs. [90,91], which demonstrated that hybridizing a finite

density of non-Abelian anyons produces new descendant

phases in the bulk of a parent non-Abelian liquid. In the

most experimentally relevant cases of the Moore-Read state

and a 2D spinless pþ ip superconductor, these descend-

ants were found to be Abelian. We describe what amounts,

in a sense, to an inverse of this result. The specific

construction we follow relies on embedding an array of

superconducting islands in an Abelian quantum Hall

system to proximity-induce Cooper pairing in the fluid.

When the islands remain well separated, each one binds

localized zero modes that collectively encode a macro-

scopic ground-state degeneracy spanned by different

charge states on the superconductors. Hybridizing these

zero modes can then lift this degeneracy in favor of novel

non-Abelian 2D superconducting phases—including the

Read-Rezayi analogue that we seek.

As an illustrative warm-up, Sec. II explores the simplest

trial application corresponding to an integer quantum Hall

system at filling ν ¼ 1. Here, the superconducting islands

trap Majorana modes that, owing to broken time-reversal

symmetry, rather naturally couple to form a 2D spinless

pþ ip superconducting phase within the fluid. In other

words, imposing Cooper pairing provides a constructive

means of generating the non-Abelian physics of the Moore-

Read state starting from the comparatively trivial integer

quantum Hall effect. This result is fully consistent with

earlier studies of Refs. [92,93] that explored similar physics

from a complementary perspective.

One can intuitively anticipate richer behavior for a

superconducting array embedded in an Abelian fractional

quantum Hall state. In particular, since here charge-2e
Cooper pairs derive from conglomerates of multiple frac-

tionally charged quasiparticles, such a setup appears natural

for building in the clustering properties of Read-Rezayi

states. This more interesting case is addressed in the

remainder of the paper. We focus specifically on the

experimentally observed spin-unpolarized ν ¼ 2=3 state

[94]—also known as the (112) state—for which super-

conducting islands bind Z3 generalizations of Majorana

modes. This phase is ideal for building in the physics of the

Z3 Read-Rezayi state, since coupling to an s-wave super-

conductor can generate Cooper pairs built from three

charge-2e=3 excitations [95]. [Note that various other

quantum Hall phases, e.g., the bosonic (221) state, yield

the same physics.] Hybridization of these modes is sub-

stantially more difficult to analyze since the problem

cannot, in contrast to the integer case, be mapped to free

fermions. Burrello et al. recently addressed a related setup

consisting of generalized Majorana modes coupled on a 2D

lattice, capturing Abelian phases including a generalization

of the toric code [96]. We follow a different approach

inspired by Teo and Kane’s method of obtaining non-

Abelian quantum Hall phases from stacks of weakly

coupled Luttinger liquids [97]. Although their specific

coset construction is not applicable to our setup, a variant

of their scheme allows us to leverage theoretical technology

for 1D systems—i.e., bosonization and conformal field

theory—to controllably access the 2D phase diagram.

With the goal of bootstrapping off of 1D physics,

Secs. III and IV develop the theory for a single chain of

superconducting islands in a ν ¼ 2=3 state. There we show,

by relating the setup to a three-state quantum clock model,

that this chain can be tuned to a critical point described by a

nonchiralZ3 parafermion conformal field theory. Section V

then attacks the 2D limit coming from stacks of critical

chains. (A related approach in which the islands are

“smeared out” is discussed in Sec. VII.) Most importantly,

we construct an interchain coupling that generates a gap in

the bulk but leaves behind a gapless chiral Z3 parafermion

sector at the boundary, thereby driving the system into a

superconducting cousin of the Z3 Read-Rezayi state that

we dub the “Fibonacci phase.”

The type of topological phenomena present here raises

an intriguing question. Should one view this state as
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analogous to a spinless pþ ip superconductor (which

realizes short-ranged entanglement) or rather an intrinsic

non-Abelian quantum Hall system (which exhibits true

topological order)? Interestingly, although superconductiv-

ity plays a key role microscopically for our construction,

we argue that the Fibonacci phase is actually topologically

ordered with somewhat “incidental” order-parameter phys-

ics. We indeed show that Fibonacci anyons appear as

deconfined quantum particles, just like in the Z3 Read-

Rezayi state, leading to a twofold ground-state degeneracy

on a torus that is the hallmark of true topological order.

Moreover, superconducting vortices do not actually lead to

new quasiparticle types, in sharp contrast to a pþ ip
superconductor where vortices provide the source of Ising

anyons. In this sense, the fact that the Fibonacci phase

exhibits an order parameter is unimportant for its universal

topological physics. Vortices can, however, serve as one

mechanism for trapping Fibonacci anyons—depending on

nonuniversal energetics—and thus might provide a route to

manipulating the anyons in practice. Section VI provides a

topological quantum field theory interpretation of the

Fibonacci phase that sheds light on the topological order

present and establishes a connection between our con-

struction and that of Refs. [90,91].

Figure 1 summarizes our main results for the ν ¼ 1 and

ν ¼ 2=3 architectures as well as their relation to “intrinsic”

non-Abelian quantum Hall states. (For a more complete

technical summary, see the beginning of Sec. VIII.) On a

conceptual level, it is quite remarkable that a phase with

Fibonacci anyons can emerge in simple Abelian quantum

Hall states upon breaking charge conservation by judi-

ciously coupling to ordinary superconductors. Of course,

experimentally realizing the setup considered here will be

very challenging— certainly more so than stabilizing Ising

anyons. It is worth, however, providing an example that

puts this challenge into proper perspective. As shown in

Ref. [98], a 128-bit number can be factored in a fully fault-

tolerant manner using Shor’s algorithm with ≈103

Fibonacci anyons. In contrast, performing the same com-

putation with Ising anyons would entail much greater

overhead since the algorithm requires π=8 phase gates that

would need to be performed nontopologically and then

distilled, e.g., according to Bravyi’s protocol [99]. For a

π=8 phase gate with 99% fidelity, the scheme analyzed in

Ref. [98] requires ≈109 Ising anyons to factor a 128-bit

number [100]. Thus, overcoming the nontrivial fabrication

challenges involved could prove enormously beneficial for

quantum-information applications. In this regard, inspired

by recent progress in Majorana-based systems, we are

optimistic that it should similarly be possible to distill the

architecture we propose to alleviate many of the practical

difficulties toward realizing Fibonacci anyons. Section VIII

proposes several possible simplifications—including alter-

nate setups that do not require superconductivity—along

with numerous other future directions that would be

interesting to explore. The abundance of systems known

to host Abelian fractional quantum Hall phases and the

large potential payoff together provide strong motivation

for further pursuit of this avenue toward universal topo-

logical quantum computation.

II. TRIAL APPLICATION: pþ ip

SUPERCONDUCTIVITY FROM THE INTEGER

QUANTUM HALL EFFECT

The first proposal for germinating Ising anyons in an

integer quantum Hall system was introduced by Qi,

Hughes, and Zhang [92]; these authors showed that in

the vicinity of a plateau transition, proximity-induced

Cooper pairing effectively generates spinless pþ ip

Superconducting 

islands

MajoranaMajorana

Superconducting 

islands

parafermion

(a)

(b)

parafermion

Spin-unpolarized

Moore-Read

Read-Rezayi

+ charged boson

+ charged boson

“Fibonacci phase”

phase

FIG. 1. Abelian quantum Hall states interlaced with an array of

superconducting islands (left column) realize analogues of exotic

non-Abelian quantum Hall states (right column). The interface

between the superconducting regions and surrounding Abelian

quantum Hall fluids supports chiral modes similar to those on the

right, but without the bosonic charge sector. (We suppress the

edge states at the outer boundaries of the Abelian quantum Hall

states for simplicity.) Solid circles denote deconfined non-

Abelian excitations, while open circles connected by dashed

lines represent confined h=2e superconducting vortices. Quasi-

particle charges are also listed for the non-Abelian quantum Hall

states. In (a), σ particles represent Ising anyons, which in the

pþ ip phase on the left correspond to confined vortex excita-

tions. In (b), ε is a Fibonacci anyon that exhibits universal braid

statistics. The superconducting Fibonacci phase is topologically

ordered and supports deconfined ε particles—similar to the Read-

Rezayi state. Vortices in this nontrivial superconductor do not

lead to new quasiparticle types, but can, in principle, trap

Fibonacci anyons and/or electrons.
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superconductivity in the fluid. In this section, we will

establish a similar link between these very different phases

from a viewpoint that illustrates, in a simplified setting, the

basic philosophy espoused later in our pursuit of a Read-

Rezayi-like superconductor that supports Fibonacci any-

ons. Specifically, here we investigate weakly coupled

critical 1D superconducting regions embedded in a ν ¼
1 quantum Hall system, following the spirit of Ref. [97]

(see also Ref. [101]). This quasi-1D approach gives one a

convenient window from which to access various states

present in the phase diagram—including a spinless 2D pþ
ip superconductor analogous to the Moore-Read state [54].

There are, of course, experimentally simpler ways of

designing superconductors supporting Ising anyons, but

we hope that this discussion is nonetheless instructive and

interesting. Two complementary approaches will be pur-

sued as preliminaries for our later treatment of the fractional

quantum Hall case.

A. Uniform-trench construction

Consider first the setup in Fig. 2(a), wherein a ν ¼ 1

quantum Hall system contains a series of trenches (labeled

by y ¼ 1;…; N) filled with some long-range-ordered

superconducting material. As the figure indicates, the

boundary of each trench supports spatially separated right-

or left-moving integer quantum Hall edge states described

by operators fR=LðyÞ. We assume that adjacent counter-

propagating edge modes hybridize and are therefore

generically unstable, due either to ordinary electron back-

scattering or Cooper pairing mediated by the supercon-

ductors [102]. Let the Hamiltonian governing these edge

modes be H ¼ HKE þ δH þH⊥. Here,

HKE ¼
X

N

y¼1

Z

x

½−ivf†RðyÞ∂xfRðyÞ þ ivf†LðyÞ∂xfLðyÞ� (1)

captures the kinetic energy for right and left movers, with x
a coordinate along the trenches (which we usually leave

implicit in operators throughout this section). The second

term δH includes electron-tunneling and Cooper-pairing

perturbations acting separately within each trench:

δH ¼
X

N

y¼1

Z

x

½−tf†RðyÞfLðyÞ þ ΔfRðyÞfLðyÞ þ H:c:�; (2)

where t > 0 and Δ > 0 denote the tunneling and pairing

strengths. Finally, H⊥ incorporates electron tunneling

between neighboring trenches with amplitude t⊥,

H⊥ ¼ −t⊥
X

N−1

y¼1

Z

x

½f†LðyÞfRðyþ 1Þ þ H:c:�: (3)

Figure 2(a) illustrates all of the above processes.

Hereafter, we assume jt⊥j ≪ t, Δ, corresponding to the

limit of weakly coupled trenches. It is then legitimate

to first treat HKE þ δH, which is equivalent to the

Hamiltonian for N independent copies of quantum spin

Hall edge states with backscattering generated by a

magnetic field and proximity-induced pairing [65]. As in

the quantum spin Hall problem, the t and Δ perturbations

(a)

(b)

FIG. 2. (a) Setup used to nucleate a pþ ip superconducting

state with Ising anyons inside of a ν ¼ 1 quantum Hall fluid. The

arrows indicate integer quantum Hall edge states. Uniform

superconductors fill each of the N trenches shown. The edge

states opposite a given trench can hybridize either through

electron backscattering t or Cooper pairing Δ mediated by the

intervening superconductor; both processes favor gapping the

edge modes, but in competing ways. Adjacent trenches are

assumed to couple weakly via electron tunneling t⊥. With t⊥ ¼
0 and t ¼ Δ, each trench resides at a critical point at which the

adjacent quantum Hall edge states evolve into counterpropagat-

ing Majorana modes. Turning on t⊥ then mixes these modes in

such a way that “unpaired” chiral Majorana edge states survive at

the boundary, thus triggering a pþ ip phase. (b) Phase diagram

for the weakly coupled trenches near criticality. States that

smoothly connect to the limit of decoupled chains are labeled

“trivial”; see the text for a more detailed description of their

properties.
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favor physically distinct gapped phases that cannot be

smoothly connected without crossing a phase transition.

For Δ > t, each trench realizes a 1D topological super-

conductor with Majorana zero modes bound to its end

points, while for Δ < t, trivial superconductivity appears.

Deep in either gapped phase, small hopping t⊥ between

trenches clearly yields only minor quantitative effects on

the bulk.

We therefore focus on the critical point t ¼ Δ at

which these opposing processes balance. Here arbitrarily

weak t⊥ can play an important role as each trench remains

gapless. In this limit one can factorize δH in a revealing

way:

δHt¼Δ ¼ −t
X

N

y¼1

Z

x

½f†RðyÞ − fRðyÞ�½fLðyÞ þ f†LðyÞ�: (4)

At the transition the “real part” of fRðyÞ and the “imaginary

part” of fLðyÞ are thus unaffected by the perturbations in

δH, while the other components hybridize and gap out.

Hence the important low-energy operators at the critical

point correspond to right- and left-moving gapless

Majorana fields γR=LðyÞ, defined as

γRðyÞ ¼
1

2
½f†RðyÞ þ fRðyÞ�;

γLðyÞ ¼
i

2
½f†LðyÞ − fLðyÞ�:

(5)

Notice that, like the original quantum Hall edge states,

the chiral Majorana modes emerging at criticality are

spatially separated across each trench. Using Eq. (5) one

can straightforwardly derive an effective low-energy

Hamiltonian that incorporates small deviations away from

criticality as well as weak intertrench coupling t⊥; this

reads

Heff ¼
X

N

y¼1

Z

x

�

−ivγRðyÞ∂xγRðyÞþ ivγLðyÞ∂xγLðyÞ

þ imγRðyÞγLðyÞ
�

þ2it⊥
X

N−1

y¼1

Z

x

γLðyÞγRðyþ1Þ; (6)

where m ¼ 2ðΔ − tÞ. [To obtain this result, one can simply

replace fRðyÞ→ γRðyÞ and fLðyÞ → iγLðyÞ in H since the

imaginary part of the former and the real part of the latter

are gapped; note the consistency with Eq. (5).]

The structure of the phase diagram for Heff, which

appears in Fig. 2(b), can be deduced by examining limiting

cases. First, in the limit jmj ≫ t⊥ perturbations within each

trench dominate and drive gapped phases determined by the

sign of m. With m < 0 tunneling t yields a trivially gapped
superconducting state within the quantum Hall system.

Conversely, for m > 0 Cooper pairing Δ produces a chain

of Majorana modes at the left and right ends of the trenches

that form a dispersing band due to small t⊥. We also refer

to the resulting 2D superconductor as trivial since it

smoothly connects to the decoupled-chain limit. (This

phase nevertheless retains some novel features and is

characterized by nontrivial “weak topological indices”

[101]. For instance, lattice defects can bind Majorana zero

modes [101], and the dispersing 1D band of hybridized

Majorana modes can be stable if certain symmetries are

present on average [103–106]. Hence, we denote this trivial

state with a star in the phase diagram [107].) More

interesting for our purposes is the opposite limit, where

t⊥ dominates so that genuinely 2D phases can arise. Upon

inspecting the last term in Eq. (6), one sees that when

m ¼ 0 intertrench hopping gaps out all Majorana fields in

the bulk but leaves behind gapless chiral Majorana

edge states described by γRðy ¼ 1Þ on the top edge and

γLðy ¼ NÞ on the bottom. This edge structure signifies the

onset of spinless pþ ip superconductivity with vortices

that realize Ising anyons. By passing to momentum space

and identifying where the bulk gap closes, one can show

that the transitions separating the states above occur at

jΔ − tj ¼ jt⊥j, yielding the phase boundaries of Fig. 2(b).

We have thereby established the correspondence illus-

trated in Fig. 1(a) between an integer quantum Hall system

with (long) superconducting islands and the Moore-Read

state. Toward the end of this paper, Sec. VII will discuss a

similar uniform-trench setup in the fractional quantum Hall

case. For technical reasons, however, it will prove simpler

to analyze a fractional quantum Hall system with super-

conductivity introduced nonuniformly within each trench.

In fact most of our treatment will be devoted to such an

architecture. As a preliminary, the next subsection analyzes

spatially modulated trenches in an integer quantum Hall

system, once again recovering spinless pþ ip supercon-

ductivity from weakly coupled chains.

B. Spatially modulated trenches

We now explore the modified setup of Fig. 3(a) in which

the ν ¼ 1 edge states within each trench are sequentially

gapped by pairing Δ and electron tunneling t, creating an

infinite, periodic array of domain walls labeled according

to the figure. This setup can again be described by a

Hamiltonian H¼HKEþδHþH⊥ as defined in Eqs. (1–3),

but now with t and Δ varying in space. For simplicity, we

will assume t ¼ 0 in the pairing-gapped regions and Δ ¼ 0

in the tunneling-gapped regions. (One can easily relax this

assumption if desired.)

Suppose, for the moment, that each domain is long

compared to the respective coherence length and that the

trenches are sufficiently far apart that they decouple. In this

case the Cooper-paired regions constitute 1D topological

superconductors that produce a Majorana zero mode

exponentially bound to each domain wall [65]. An explicit

calculation reveals that the Majorana operator for domain
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wall j at position xj in trench y takes the form (up to

normalization)

γjðyÞ ∝
Z

x

e−jx−xjj=ξðx−xjÞ½fRðyÞ − ið−1ÞjfLðyÞ þ H:c:�:

(7)

Here ξðx − xjÞ denotes the decay length for the Majorana

mode and is given either by v=t or v=Δ, depending on the

sign of x − xj. The 2D array of zero modes present in this

limit underlies a macroscopic ground-state degeneracy,

since one can combine each pair of Majoranas into an

ordinary fermion that can be vacated or filled at no energy

cost. Next, imagine shrinking the width of the tunneling-

and pairing-gapped regions, as well as the spacing between

trenches, such that domain walls couple appreciably. Our

objective here is to investigate how the resulting hybridi-

zation among nearby Majorana modes resolves the massive

degeneracy present in our starting configuration.

Focusing again on the weakly-coupled-chain limit, we

first incorporate hybridization within each trench. The

simplest intrachain perturbation consistent with the sym-

metries of the problem tunnels right- and left-moving

electronsbetweenneighboringdomainwalls and reads [108]

Hintra ¼
1

4

X

N

y¼1

X

j

λj½−if†Rðxj; yÞfRðxjþ1; yÞ

þ if†Lðxj; yÞfLðxjþ1; yÞ þ H:c:�: (8)

[This Hamiltonian encodes a discrete version of the kinetic

energy in Eq. (1).] The x coordinate in the argument of fR=L,
usually left implicit, has been explicitly displayed since it is

nowcrucial.Wedefine the real couplings appearing above as

λj ≡ λΔ for j even and λj ≡ λt for j odd. Physically, λΔ and λt
respectively arise from coupling adjacent pairing- and

tunneling-gapped regions [see Fig. 3(a)] and thus clearly

need not be identical. We assume, however, that λΔ, λt ≥ 0.

According to Eq. (7), projection of Hintra into the low-

energy manifold spanned by the Majorana operators is

achieved (up to an unimportant overall constant that we will

neglect) by replacing

fRðxj; yÞ→ γjðyÞ; fLðxj; yÞ → ið−1ÞjγjðyÞ: (9)

This projection yields the following effective Hamiltonian

for the decoupled trenches:

Hintra → −i
X

N

y¼1

X

j

½λtγ2j−1ðyÞγ2jðyÞ þ λΔγ2jðyÞγ2jþ1ðyÞ�;

(10)

which is equivalent to N independent Kitaev chains [59].

As written above, λΔ and λt favor distinct dimerization

patterns for the Majorana operators that cannot be smoothly

connected without closing the bulk gap. Alternatively,

one can view the problem in more physical terms by

implementing a basis change to ordinary fermions

cjðyÞ ¼ ½γ2j−1ðyÞ þ iγ2jðyÞ�=2. Equation (10) then

describes decoupled 1D p-wave-paired wires. If λΔ domi-

nates the superconducting wires reside in a gapped

(a)

(b)

FIG. 3. (a) Variation on the setup of Fig. 2(a) that also supports

a pþ ip superconducting state with Ising anyons. Here, a ν ¼ 1

quantum Hall system hosts spatially modulated trenches whose

edge states are gapped in an alternating fashion by backscattering

t and Cooper pairing Δ. When the trenches decouple and the

gapped regions are “large,” each domain wall binds a Majorana

zero mode. Electron hopping across the domains hybridizes the

chain of Majorana modes in each trench through couplings λΔ
and λt shown above. These couplings favor competing gapped

phases, and when λΔ ¼ λt, each chain realizes a critical point with

counterpropagating gapless Majorana modes in the bulk—similar

to the uniform-trench setup of Fig. 2(a). Turning on weak

coupling t⊥ðj − j0Þ between domain walls j and j0 in adjacent

trenches then generically drives the system into a pþ ip phase

(or a p − ip state with opposite chirality). (b) Phase diagram for

the 2D array of coupled Majorana modes near criticality. Here, λ⊥
and λ0

⊥
represent interchain couplings between gapless Majorana

fermions at the critical point, which follow from t⊥ðj − j0Þ
according to Eq. (15).
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topological phase with protected Majorana end states,

whereas if λt dominates a trivially gapped state emerges.

The transition separating these 1D phases arises when

λΔ ¼ λt. Viewed in terms of superconductors this limit

corresponds to the situation where the chemical potential

for the cj fermions is fine-tuned to the bottom of the band, so

thatgaplessbulkexcitations remainatzeromomentumdespite

the p-wave pairing. As in the preceding subsection we will

concentrate on this transition point, since here even weak

intertrench coupling (to which we turn shortly) can qualita-

tively affect the physics. When λΔ ¼ λt one can solve either

Eq. (10) directly, or the equivalent superconducting problem

by diagonalizing the Hamiltonian in momentum space. This

exercise shows that at criticality right- and left-moving

Majorana fields γR=LðyÞ form the relevant low-energy degrees

of freedom—precisely as in the uniform-trench construction

examined earlier. Moreover, these continuum fields relate to

the lattice Majorana operators via

γjðyÞ ∼ γRðyÞ þ ð−1ÞjγLðyÞ: (11)

Using Eq. (11) to rewrite Eq. (10) and taking the continuum

limit yields

Hintra ∼
X

N

y¼1

Z

x

½−i ~vγRðyÞ∂xγRðyÞ þ i ~vγLðyÞ∂xγLðyÞ

þi ~mγRðyÞγLðyÞ�; (12)

where the velocity ~v follows from the tunnelings in Eq. (10)

and ~m ∝ λΔ − λt reflects small deviations away from criti-

cality. Note that Eq. (12) exhibits an identical structure to the

intrachain terms in Eq. (6), which were derived for spatially

uniform trenches. The appearance of common physics near

criticality in the two setups is quite natural; indeed, in a coarse-

grained picture appropriate for the critical point the spatial

modulations in the trenches are effectively blurred away.

One can now readily restore weak coupling between

neighboring trenches. Consider the following intertrench

Hamiltonian:

H⊥¼−

X

N−1

y¼1

X

j;j0
t⊥ðj−j0Þ

�

f†Lðxj;yÞfRðxj0 ;yþ1ÞþH:c:

�

;

(13)

which encodes generic electron hoppings from the bottom

of domain wall j in one trench to the top of domain wall j0

in the trench just below. We have assumed that the

tunneling strengths t⊥ðj − j0Þ above are real and depend

only on the spacing j − j0 between domain walls. These

hoppings should be reasonably short ranged as well; see

Fig. 3(a) for examples of significant processes. Since we

are interested in weak interchain coupling near criticality, it

is useful to filter out high-energy physics, employing

Eqs. (9) and (11) to project H⊥ onto the low-energy

manifold:

H⊥ ∼ i
X

N−1

y¼1

Z

x

½λ⊥γLðyÞγRðyþ 1Þ þ λ0
⊥
γRðyÞγLðyþ 1Þ�:

(14)

The coupling constants here are defined as

λ⊥ ∝
X

j

t⊥ðjÞ; λ0
⊥
∝
X

j

ð−1Þjt⊥ðjÞ (15)

and, importantly, differ in magnitude unless fine-tuned.

The full low-energy theory describing our weakly

coupled, spatially modulated trenches is Heff ¼ Hintraþ
H⊥, with the terms on the right side given in Eqs. (12) and

(14). When λ0
⊥
¼ 0, this effective Hamiltonian is essentially

identical to Eq. (6) [109]. The phase diagram thus mimics

that of the uniform-trench case and can again be inferred

from considering extreme cases. When the mass term

~m ∝ λΔ − λt dominates over all other couplings, we obtain

superconducting states that smoothly connect to the

decoupled-chain limit; the cases λΔ < λt and λΔ > λt
respectively correspond to the trivial and “trivial*” phases

discussed in the previous subsection. If instead λ⊥ domi-

nates, then the interchain coupling gaps out all Majorana

fields in the bulk but leaves a gapless right mover at the top

edge and a gapless left mover at the bottom edge. This

regime realizes the spinless pþ ip superconducting phase

that supports Ising anyons. Finally, by examining Eq. (14),

we see that when λ0
⊥
provides the leading term, we simply

obtain a spinless p − ip superconductor with gapless edge

states moving in the opposite direction. All of these phases

exhibit a bulk gap; the transitions between them occur

when j ~mj ¼ jλ⊥ − λ0
⊥
j, at which this gap closes. Figure 3(b)

illustrates the corresponding phase diagram. It is worth

stressing that when the trenches are each tuned to criticality

(so that ~m ¼ 0), interchain coupling generically drives the

system to either the pþ ip or p − ip phase since λ⊥ − λ0
⊥

vanishes only with fine-tuning.

To summarize, we have shown in this section that

depositing superconducting islands (either uniformly or

nonuniformly) within integer quantum Hall trenches allows

one to access nontrivial 2D superconducting states support-

ing Ising anyons. This outcome emerges quite naturally

from weak interchain perturbations when the individual

trenches are tuned to criticality, which can be traced to the

fact that time-reversal symmetry is absent and the carriers

in the quantum Hall fluid derive from a single fermionic

species. So far, the weakly-coupled chain approach was

convenient but by no means necessary since this section

dealt only with free fermions. One can readily verify, for

instance, that the Ising-anyon phases we captured survive

well away from this regime and persist even in an isotropic

system. The remainder of this paper treats analogous setups

where the ν ¼ 1 state is replaced by a strongly correlated

fractional quantum Hall fluid. Throughout, numerous
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parallels will arise with the simpler treatment described

here. We should point out that in the fractional case, the

weakly-coupled chain approach provides the only analyti-

cally tractable window currently at our disposal, although

we similarly expect isotropic relatives of the physics we

capture to exist there as well.

III. OVERVIEW OF Z3

PARAFERMION CRITICALITY

One useful way of viewing Sec. IIB is that we dissected a

ν ¼ 1 quantum Hall system to construct a nonlocal repre-

sentation of the transverse-field Ising model—i.e., a

Majorana chain. In preparation for treating the more

theoretically challenging ν ¼ 2=3 fractionalized setup, here
we review an analogous Z3-invariant chain corresponding

to the three-state quantum clock model. This clock model

realizes a critical point described by a Z3 parafermion

conformal field theory (CFT), which provides the building

blocks for the Read-Rezayi wave function and plays a

central role in describing the edge modes of this state.

Studying the chain will enhance our understanding of the

symmetries, phase structure, and perturbations of this CFT.

Furthermore, much of the groundwork necessary for our

subsequent quantum Hall analysis will be developed here.

The Z3 quantum clock model is comprised of a chain

of three-component “spins.” Here, we assume an infinite

number of sites (to avoid subtleties with boundary con-

ditions) and define operators σj and τj that act nontrivially

on the three-dimensional Hilbert space capturing the spin

at site j. These operators satisfy a generalization of the

Pauli-matrix algebra

σ3j ¼ τ3j ¼1; σ
†
j ¼σ2j ; τ

†
j ¼ τ2j ; σjτj¼ei2π=3τjσj; (16)

while all other commutators aside from the last equation

above are trivial: ½σj; τj0≠j� ¼ ½σj; σj0 � ¼ ½τj; τj0 � ¼ 0. It

follows that σj and τj can point in three inequivalent

directions separated by an angle of 2π=3, similar to a clock

hand that takes on only three symmetric orientations.

Noncommutation of these operators implies that τj “winds”

σj and vice versa. In other words, each operator can be

represented by a matrix with eigenvalues 1, ei2π=3, and
e−i2π=3, but one cannot simultaneously diagonalize σj and

τj. The simplest quantum clock Hamiltonian bears a similar

structure to the transverse-field Ising model and reads

H ¼ −J
X

j

ðσ†jσjþ1 þ H:c:Þ − h
X

j

ðτ†j þ τjÞ; (17)

where we assume couplings J; h ≥ 0. This 1D Hamiltonian

can be found by taking an anisotropic limit of the 2D

classical three-state Potts model, and so the two share

essentially identical physical properties.

The quantum clock model in Eq. (17) exhibits the useful

property of nonlocal duality symmetry. Indeed, upon

introducing dual operators

μj ¼
Y

k≤j

τk; νj ¼ σ†jσjþ1 (18)

that satisfy the same relations as in Eq. (16) with σj → μj
and τj → νj, the Hamiltonian takes on an identical form,

Hdual ¼ −h
X

j

ðμ†jμjþ1 þ H:c:Þ − J
X

j

ðν†j þ νjÞ; (19)

with h and J interchanged. Equation (17) additionally

exhibits a number of other symmetries that play an

important role in our analysis. Spatial symmetries include

simple lattice translations Tx and parity P (which sends

σj → σ−j and τj → τ−j). The model also preserves a Z3

transformation (σj → ei2π=3σj) and a corresponding dual

operation Zdual
3 (μj → ei2π=3μj). Finally, there exists a time-

reversal symmetry T that squares to unity (σj → σj,

τj → τ
†
j ) and a charge-conjugation symmetry C that flips

the sign of the Z3 charge carried by the clock-model

operators (σj → σ
†
j , τj → τ

†
j ).

Like the closely related transverse-field Ising model, the

clock Hamiltonian supports two symmetry-distinct phases.

When J dominates, a ferromagnetic phase emerges with

hσji ≠ 0, thus spontaneously breaking Z3; increasing h
drives a transition to a paramagnetic state that in dual

language yields hμji ≠ 0 and a broken Z
dual
3 . Hence, one

can view σj as an order parameter and μj as a “disorder

parameter.” Duality implies that the phase transition occurs

at the self-dual point J ¼ h, and indeed the exact solution

shows that this point is critical [110]. The scaling limit of

the self-dual clock Hamiltonian is described by a Z3

parafermion (or, equivalently, three-state Potts) CFT [111],

whose content we discuss further below.

We will describe in the next section a new physical route

to this CFT. In particular, our approach uses ν ¼ 2=3
quantum Hall states to construct a chain of Z3 generalized

Majorana operators that arise from the clock model

via a “Fradkin-Kadanoff” transformation [112]. This

transformation—which is analogous to the more familiar

Jordan-Wigner mapping in the transverse-field Ising chain

—also lends useful intuition for the physical meaning of

parafermion fields, as we will see. The Fradkin-Kadanoff

transformation in the clock model allows for two closely

related forms of these Z3 generalized Majorana operators:

either

αR;2j−1 ¼ σjμj−1; αR;2j ¼ ei2π=3σjμj (20a)

or

αL;2j−1 ¼ σjμ
†
j−1; αL;2j ¼ e−i2π=3σjμ

†
j ; (20b)

which differ only in the string of operators encoded in the

disorder parameter μj. Note that when applying a Jordan-

Wigner transformation to the Ising chain, there is no such

freedom since there the string is Hermitian. The above

operators satisfy
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α3A;j ¼ 1; α
†
A;j ¼ α2A;j (21)

for A ¼ R=L, similar to the clock operators from which

they derive. Because of the strings, however, they exhibit

nonlocal commutation relations

αR;jαR;j0 ¼ eið2π=3Þsgnðj
0−jÞαR;j0αR;j;

αL;jαL;j0 ¼ e−ið2π=3Þsgnðj
0−jÞαL;j0αL;j: (22)

Equations (21) and (22) constitute the defining proper-

ties for the Z3 generalized Majorana operators that will

appear frequently in this paper. By using the labels L and R,
we have anticipated the identification of these operators

with left- and right-moving fields in the CFT. On the lattice,

however, αRj and αLj are not independent, as one can

readily verify that

α
†
R;2jþ1αR;2j ¼ ei2π=3α†L;2jþ1αL;2j;

α†R;2j−1αR;2j ¼ α†L;2jαL;2j−1: (23)

Despite this redundancy, it is nevertheless very useful to

consider both representations since αRj and αLj transform

into one another under parity P and time reversal T .

In terms of αRj, the clock Hamiltonian of Eq. (17) reads

H ¼ −J
X

j

ðei2π=3α†R;2jþ1αR;2j þ H:c:Þ

− h
X

j

ðei2π=3α†R;2jαR;2j−1 þ H:c:Þ: (24)

An equivalent form in terms of αL;j follows from exploiting

Eqs. (23). The ferromagnetic and paramagnetic phases of

the original clock model correspond here to distinct dimer

patterns for αR;j (or αL;j) favored by the J and h terms

above. On a finite chain, the symmetry-related degeneracy

of the ferromagnetic phase is encoded through Z3 zero

modes bound to the ends of the system [87], similar to the

Majorana end states in a Kitaev chain [59]. The dimeriza-

tion appropriate for the paramagnetic phase, by contrast,

supports no such edge zero modes, consistent with the

onset of a unique ground state. In this representation Z3

parafermion criticality arising at J ¼ h corresponds to the

limit where these competing dimerizations balance, leaving

the system gapless. For the remainder of this section we

provide an overview of this well-understood critical point.

TheZ3 parafermion CFT has central charge c ¼ 4=5 and
is rational. One of the very useful properties of a rational

CFT is that a finite set of operators—dubbed primary

fields—characterizes the entire Hilbert space. That is, all

states in the Hilbert space can be found by acting with the

primary fields and the (possibly extended) conformal

symmetry generators on the ground state. With appropriate

boundary conditions, the theory admits independent left-

and right-moving conformal symmetries, and so it is useful

to consider purely chiral primary fields. These fields exhibit

nonlocal correlations; local operators are found by combin-

ing left and right movers in a consistent way.

When the conformal symmetry algebra is extended

by a spin-three current into the so-called “W3 algebra”

[111,113], the Z3 parafermion CFT possesses six right-

moving primary fields. These consist of the identity field

IR, the chiral parts of the spin field σR and σ†R, parafermion

fields ψR and ψ
†
R, and the chiral part ϵR of the “thermal”

operator. The left-moving sector contains an identical set of

fields, labeled by replacing R with L. The CFT analysis

yields the exact scaling dimensions of these operators—the

chiral spin fields each have dimension 1=15, the para-

fermions each have dimension 2=3, while ϵR=L has dimen-

sion 2=5.
Perturbing the critical Hamiltonian by the thermal

operator—which changes the ratio of J=h away from

criticality—provides a field-theory description of the clock

Hamiltonian’s gapped ferromagnetic and paramagnetic

phases. Note that in the Ising case, the thermal operator

is composed of chiral Majorana fields, which also form the

analogue of the parafermions ψR=L. The fact that here the

parafermions and thermal operator constitute independent

fields allows for additional relevant perturbations, which in

part underlies the interesting behavior we describe in this

paper. More precisely, perturbing the critical Hamiltonian

instead by ψLψR þ H:c: violates Z3 symmetry but still

results in two degenerate ground states that are not

symmetry related [114,115]; see Sec. VA for further

discussion. The analogous property in our quantum Hall

setup is intimately related to the appearance of Fibonacci

anyons.

All of the symmetries introduced earlier in the lattice

model are manifested in the CFT. Particularly noteworthy

are the Z3 and Z
dual
3 symmetries, whose existence is

actually more apparent in the CFT due to the independence

of the left- and right-moving fields. The former trans-

formation sends ψA → ei2π=3ψA and σA → ei2π=3σA, where
A ¼ L or R. (As usual, the conjugate fields acquire a phase
e−i2π=3 instead.) The dual transformation Z

dual
3 similarly

takes ψR → ei2π=3ψR and σR → ei2π=3σR but alters left

movers via ψL → e−i2π=3ψL and σL → e−i2π=3σL. Under
either symmetry, the fields ϵL and ϵR remain invariant,

which is required in order for the Hamiltonian to preserve

both Z3 and Z
dual
3 for all couplings J and h.

The relation between the lattice operators and primary

fields at the critical point provides valuable insight into the

physical content of the CFT. Reference [116] establishes

such a correspondence by appropriately matching the spin

and symmetry properties carried by a given microscopic

operator and the continuum fields. This prescription yields

the following familiar expansions for the lattice order and

disorder parameters:

σj ∼ σ
†
Rσ

†
L þ � � � ; μj ∼ σ

†
RσL þ � � � ; (25)
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where the ellipses denote terms with subleading scaling

dimension. One can similarly express the thermal operator

as

σ†jσjþ1 þ H:c: ∼ 1 − ϵRϵL þ � � � : (26)

Most crucial to us here is the expansion of the Z3

generalized Majorana operators [116], which will form

the fundamental low-energy degrees of freedom in our

quantum Hall construction:

αR;j ∼ aψR þ ð−1ÞjbσRϵL þ � � � ; (27a)

αL;j ∼ aψL þ ð−1ÞjbσLϵR þ � � � ; (27b)

with a and b denoting real constants. [The phases in the

definition of αR=L in Eqs. (20) and (20b) are paramount in

this lattice operator-CFT field correspondence.] The above

equations endow clear meaning to the parafermion fields—

they represent long-wavelength fluctuations in the gener-

alized Majorana operators at the critical point. Importantly,

however, these lattice operators also admit an oscillating

component involving products of σ and ϵ fields, which in

fact yield a slightly smaller scaling dimension than the

parafermion fields. In Sec. V, we will use the link between

ultraviolet and infrared degrees of freedom encapsulated in

Eqs. (27a) and (27b) to controllably explore the phase

diagram for coupled critical chains.

The physical meaning of the chiral primary fields is

further illuminated by their fusion algebra, which describes

how the fields behave under operator products. This

property is constrained strongly but not entirely by com-

mutativity, associativity, and consistency with the Z3

symmetries. Any fusion with the identity of course is

trivial. As a more enlightening example, two parafermion

fields obey the fusion rule ψR × ψR ∼ ψ
†
R (and similarly for

ψL). That is, taking the operator product of two parafer-

mion fields contains something in the sector of the

conjugate parafermion (i.e., the conjugate parafermion

itself or some descendant field obtained by acting with

the symmetry generators on the parafermion). This fusion

is natural to expect, given the properties in Eq. (21)

exhibited by the lattice analogues αR=Lj. The complete

set of fusion rules involving ψR or ψL reads

ψ × I ∼ ψ ; ψ × ψ ∼ ψ†; ψ × ψ† ∼ I;

ψ × σ† ∼ ϵ; ψ × σ ∼ σ†; ψ × ϵ ∼ σ; (28)

here and below, the fields in such expressions implicitly all

belong to either the L or R sectors. Fusion rules for ψ†

R=L

simply follow by conjugation or by fusing again with ψR=L.

The remaining rules for fusion with σR=L are

σ× σ∼ σ†þψ†; σ× ϵ∼ σþψ ; σ× σ†∼ Iþ ϵ; (29)

with those for σ†R=L given by conjugation. A sum on the

right-hand side indicates that two particular fields can fuse

to more than one type of field, signaling degeneracies.

Finally, the chiral part of the thermal operator exhibits a

“Fibonacci” fusion rule

ϵ × ϵ ∼ I þ ϵ: (30)

Equation (30) is especially important: It underlies why the

“decorated” fractional quantum Hall setup to which we turn

next yields Fibonacci anyons with universal non-Abelian

statistics. (To be precise, we reserve ϵ and I for CFT

operators; the related Fibonacci anyon and trivial particle

that appear in the forthcoming sections will be respectively

denoted as ε and 1.)

IV. Z3 PARAFERMION CRITICALITY VIA

ν ¼ 2=3 QUANTUM HALL STATES

Our goal now is to illustrate how one can engineer the

nonlocal representation of the clock model in Eq. (24), and

with it a critical point described by the Z3 parafermion

CFT, using edge states of a spin-unpolarized ν ¼ 2=3
system in the so-called (112) state. As a primer,

Sec. IVA begins with an overview of the edge theory for

this quantum Hall phase (see Ref. [117] for an early

analysis). Section IV B then constructs Z3 generalized

Majorana zero modes from counterpropagating sets of

ν ¼ 2=3 edge states, while Sec. IVC hybridizes these

modes along a 1D chain to generate Z3 parafermion

criticality. Results obtained here form the backbone of

our coupled-chain analysis carried out in Sec. V. Note that

much of the ensuing discussion applies also to the bosonic

(221) state with minor modifications; this bosonic setup

will be briefly addressed later in Secs. VD and VI.

A. Edge theory

Edge excitations at the boundary between a spin-unpo-

larized ν ¼ 2=3 droplet and the vacuum can be described

with a two-component field ϕ⃗ðxÞ ¼ ½ϕ↑ðxÞ;ϕ↓ðxÞ�, where
x is a coordinate along the edge and the subscripts indicate

physical electron spin. In our conventions, ϕαðxÞ is

compact on the interval ½0; 2πÞ; hence, physical operators
involve either derivatives of ϕ⃗ or take the form eil⃗·ϕ⃗ for

some integer vector l⃗. Commutation relations between

these fields follow from an integer-valued K matrix that

encodes the charge and statistics for allowed quasiparticles

in the theory [118]. For the case of interest here we have

½ϕαðxÞ;ϕβðx0Þ� ¼ iπ½ðK−1Þαβ sgnðx − x0Þ þ iσ
y
αβ�; (31)

with

K ¼
�

1 2

2 1

�

: (32)
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The term involving the Pauli matrix σy corresponds to a

Klein factor as discussed below. Since det K < 0 the

ν ¼ 2=3 edge supports counterpropagating modes; these

can be viewed, roughly, as ν ¼ 1 and ν ¼ 1=3 modes

running in opposite directions.

In terms of the “charge vector” q⃗ ¼ ð1; 1Þ, the total

electron density for the edge is q⃗ · ∂xϕ⃗=ð2πÞ. Since we are
dealing with an unpolarized state, it is also useful to

consider the density for electrons with a definite spin

α ¼ ↑, ↓, which is given by

ρα ¼
∂xϕα

2π
: (33)

Equations (31) and (33) allow one to identify

ψα ¼ eiKαβϕβ (34)

as spin-α electron operators. Indeed, these operators add

one unit of electric charge and satisfy appropriate anti-

commutation relations. (Note that anticommutation

between ψ↑ and ψ↓ requires the Klein factor introduced

above.) One can further, with the aid of Eq. (33), define a

Hamiltonian incorporating explicit density-density inter-

actions via

H ¼
Z

x

1

4π

X

α;β¼↑;↓
ð∂xϕαÞVαβð∂xϕβÞ þ � � � ; (35)

where Vαβ is a positive-definite matrix describing screened

Coulomb interactions and the ellipsis denotes all other

allowed quasiparticle processes.

These preliminary definitions allow us to readily treat the

following more interesting setup. Suppose that one carves

out a long, narrow trench from the system as sketched in

Fig. 4, thus generating two identical (but oppositely

oriented) sets of ν ¼ 2=3 edge states in close proximity

to each other. To describe this “doubled” edge structure, we

employ fields ϕ⃗1 ¼ ðϕ1↑;ϕ1↓Þ for the top side of the trench
and ϕ⃗2 ¼ ðϕ2↑;ϕ2↓Þ for the bottom. The corresponding

electron densities for spin α are defined as

ρ1α ¼
∂xϕ1α

2π
; ρ2α ¼ −

∂xϕ2α

2π
; (36)

while the commutation relations read

½ϕ1αðxÞ;ϕ1βðx0Þ� ¼ iπ½ðK−1Þαβ sgnðx − x0Þ þ iσ
y
αβ�;

½ϕ2αðxÞ;ϕ2βðx0Þ� ¼ iπ½−ðK−1Þαβ sgnðx − x0Þ þ iσ
y
αβ�;

½ϕ1αðxÞ;ϕ2βðx0Þ� ¼ iπ½−ðK−1Þαβ þ iσ
y
αβ�: (37)

(The relative minus sign for the density on the bottom side

of the trench, along with the commutation relations above,

can be understood by viewing ϕ⃗1 and ϕ⃗2 as essentially the

same fields connected at the right end of the trench.) It

follows that the electron operators for the top and bottom

sides of the trench are respectively

ψ1α ¼ eiKαβϕ1β ; ψ2α ¼ eiKαβϕ2β : (38)

Similarly to Eq. (35), one can express the Hamiltonian

for the edge interface as

H ¼
Z

x

1

4π

X

α;β¼↑;↓
a;b¼1;2

ð∂xϕaαÞVaα;bβð∂xϕbβÞ þ δH: (39)

Of crucial importance here are the additional terms present

in δH. Since the interface carries identical sets of counter-

propagating modes, it is always possible for perturbations

to gap out the edges entirely. We will invoke two physically

distinct gapping mechanisms, similar to our earlier ν ¼ 1

setup: (i) spin-conserving electron tunneling across the

interface and (ii) spin-singlet Cooper pairing of electrons

on opposite sides of the trench, mediated by an s-wave
superconductor. These processes are schematically illus-

trated in Fig. 4 and lead to the following perturbations:

δH ¼
Z

x

−tðψ†

1↑ψ2↑ þ ψ
†

1↓ψ2↓ þ H:c:Þ

þ Δðψ1↑ψ2↓ − ψ1↓ψ2↑ þ H:c:Þ; (40)

where t andΔ are the tunneling and pairing amplitudes. It is

important to emphasize that in this setup tunneling and

pairing of fractional charges across the trench is not

possible—such processes are unphysical since the inter-

vening region separating the top and bottom sides by

Spin-unpolarized

FIG. 4. Spin-unpolarized ν ¼ 2=3 setup with a long, narrow

trench producing counterpropagating sets of edge states de-

scribed by fields ϕ⃗1 on the top and ϕ⃗2 on the bottom. One

way of gapping these modes is through electron backscattering

across the interface—which essentially “sews up” the trench. A

second gapping mechanism can arise if an s-wave superconduc-
tor mediates spin-singlet Cooper pairing of electrons from the top

and bottom sides of the trench, as illustrated above. These

processes lead to physically distinct gapped states that cannot

be smoothly connected, resulting in the formation of Z3 gener-

alized Majorana zero modes at domain walls separating the two.
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construction supports only electronic excitations. Later,

however, we will encounter edges separated by a ν ¼ 2=3
quantum Hall fluid, and in such a geometry interedge

fractional charge tunneling can arise.

Before discussing the fate of the system in the presence

of the couplings in δH, it is useful to introduce a basis

change to charge- and spin-sector fields:

θρ ¼
1

2
ðϕ1↑ þ ϕ1↓ − ϕ2↑ − ϕ2↓Þ;

ϕρ ¼
1

2
ðϕ1↑ þ ϕ1↓ þ ϕ2↑ þ ϕ2↓Þ;

θσ ¼
1

2
ðϕ1↑ − ϕ1↓ − ϕ2↑ þ ϕ2↓Þ;

ϕσ ¼
1

2
ðϕ1↑ − ϕ1↓ þ ϕ2↑ − ϕ2↓Þ: (41)

Here, ρþ ¼ ∂xθρ=π and Sþ ¼ ∂xθσ=π respectively denote

the total edge electron density and spin density, while ρ− ¼
∂xϕρ=π and S− ¼ ∂xϕσ=π are respectively the difference in

the electron density and spin density between the

top and bottom sides of the trench. Equations (32) imply

that the only nontrivial commutation relations among these

fields are

½θρðxÞ;ϕρðx0Þ� ¼ −
2πi

3
Θðx0 − xÞ;

½θσðxÞ;ϕσðx0Þ� ¼ 2πiΘðx0 − xÞ;
½ϕρðxÞ;ϕσðx0Þ� ¼ −2πi; (42)

where Θ is the Heaviside step function. (Contrary to the

first two lines, the third is nontrivial only because of Klein

factors.)

In this basis, δH becomes simply

δH ¼
Z

x

½4t cos θσ sinð3θρÞ − 4Δ cos θσ sinð3ϕρÞ�: (43)

The scaling dimensions of the operators above depend on

the matrix Vaα;bβ in Eq. (39) specifying the edge density-

density interactions. In the simplest case Vaα;bβ ¼ vδabδαβ,
both the tunneling and pairing terms have scaling dimen-

sion two and hence are marginal (to leading order).

Following Ref. [119] we have verified that upon tuning

Vaα;bβ away from this limit, t and Δ can be made

simultaneously relevant. Hereafter, we assume that both

terms can drive an instability, either because they are

explicitly relevant or possess “order-one” bare coupling

constants.

Suppose first that interedge tunneling dominates. In

terms of integer-valued operators M̂ and m̂, this coupling

pins

θσ ¼ πM̂;

θρ ¼
2π

3
m̂þ π

3
M̂ −

π

6
ðtunneling gapÞ; (44)

to minimize the energy, thus fully gapping the charge and

spin sectors. Note that both fields are simultaneously

pinnable since θσ and θρ commute with each other. If

the pairing term dominates, however, a gap arises from

pinning

θσ ¼ πM̂;

ϕρ ¼
2π

3
n̂þ π

3
M̂ þ π

6
ðpairing gapÞ; (45)

where n̂ is another integer operator. Both fields are

again simultaneously pinnable, but note that Eqs. (44)

and (45) cannot be simultaneously fulfilled in the same

region of space since ½θρðxÞ;ϕρðx0Þ� ≠ 0. Consequently, the

tunneling and pairing terms compete with one another

[120]. The physics is directly analogous to the competing

ferromagnetic and superconducting instabilities in a

quantum spin Hall edge; there, domain walls separating

regions gapped by these different means bind Majorana

zero modes [65]. Because of the fractionalized nature

of the ν ¼ 2=3 host system, in the present context

domain walls generate more exotic zero modes—as in

Refs. [58,79–81,83,85,86,121,122]—that will eventually

serve as our building blocks for a Z3 parafermion CFT.

B. Z3 zero modes

As an incremental step toward this goal, we would like to

now capture these zero modes by studying an infinite array

of long domains alternately gapped by tunneling and

pairing, as displayed in Fig. 5 [123]; note the similarity

to the integer quantum Hall setup analyzed in Sec. IIB. (For

illuminating complementary perspectives on this problem,

see the references cited at the end of the previous para-

graph.) In each tunneling- and pairing-gapped segment, the

fields are pinned according to Eqs. (44) and (45), respec-

tively. Since θσ is pinned everywhere, in the ground-state

sector the integer operator M̂ takes on a common value

throughout the trench. (Nonuniformity in M̂ requires

energetically costly twists in θσ.) Conversely, the pinning

of θρ and ϕρ is described by independent operators m̂j and

n̂j in different domains—see Fig. 5 for our labeling

conventions. The commutation relations between the inte-

ger operators follow from Eqs. (42), which yield

½n̂j; m̂j0 � ¼
� 3

2π
i j > j0

0 j ≤ j0;
(46)

while all other commutators vanish.

The zero-mode operators of interest can be obtained

from quasiparticle operators eiðl⃗1·ϕ⃗1þl⃗2·ϕ⃗2Þ acting inside of a
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domain wall, simply by projecting into the ground-state

manifold. To project nontrivially, the dependence on the

field ϕσ must drop out since eiϕσ creates a kink in θσ that

costs energy. This condition is satisfied provided

l1↑ − l1↓ þ l2↑ − l2↓ ¼ 0. (47)

Projectionof the remaining fields is achievedby replacingθσ,

θρ, and ϕρ by their pinned values on the adjacent domains.

The complete set of projected quasiparticle operators

obeying Eq. (47) can be generated by eiðl⃗1·ϕ⃗1þl⃗2·ϕ⃗2Þ with

l1↑ ¼ l1↓ ¼ 1, l2↑ ¼ l2↓ ¼ 0 and l1↑ ¼ l1↓ ¼ 0,

l2↑ ¼ l2↓ ¼ 1. Crucially, these values of l⃗1;2 correspond to

charge-2e=3 quasiparticle operators acting on the top and

bottom edges of the trench, respectively. Suppose that P is

the ground-state projector while xj denotes a coordinate

inside of domain wall j. We then explicitly get

Pei½ϕ1↑ðxjÞþϕ1↓ðxjÞ�P ≡ ð−1ÞjαRj;
Pei½ϕ2↑ðxjÞþϕ2↓ðxjÞ�P ≡ ð−1Þjeiπ=3αLj; (48)

whereon the right sidewehave insertedphase factors for later

convenience and defined Z3 generalized Majorana zero-

mode operators

αR;2j−1 ¼ eið2π=3Þðn̂jþM̂−1Þeið2π=3Þm̂j−1 ðtop edgeÞ;
αR;2j ¼ eið2π=3Þðn̂jþM̂Þeið2π=3Þm̂j ðtop edgeÞ;

αL;2j−1 ¼ eið2π=3Þðn̂jþ1Þe−ið2π=3Þm̂j−1 ðbottom edgeÞ;
αL;2j ¼ eið2π=3Þn̂je−ið2π=3Þm̂j ðbottom edgeÞ:

(49)

Above, we denote whether a given zero-mode operator adds

charge 2e=3 (mod 2e) to the top or bottom edge. The

importance of the spatial separation between αRj and αLj
evident here is hard to overstate and will prove exceedingly

valuable in the following section. Equation (46) implies that

theZ3 zero-modeoperators in ourquantumHall setup satisfy

precisely the properties in Eqs. (21–23) introduced in the

quantum clock-model context. Once again, αRj and αLj are

not independent, but as we will see describing physical

processes for coupled trenches in a simple way requires

retaining both representations because of their spatial

separation.

The Z3 zero modes encode a ground-state degeneracy

that admits a simple physical interpretation. First, we note

that gauge-invariant quantities involve differences in the m̂j

or n̂j operators on different domains. Consider then the

quantity Aðx − x0Þ ¼ e
iπ
R

x0
x

ρþðx″Þdx″ ¼ ei½θρðx
0Þ−θρðxÞ�, where

again ρþ ¼ ∂xθρ=π denotes the total density. If x and x0

straddle a pairing-gapped domain in which n̂j is pinned,

then Eq. (44) yields a ground-state projection

PAðx − x0ÞP ¼ ei
2π
3
ðm̂j−m̂j−1Þ ¼ e−i

2π
3 α†R;2j−1αR;2j: (50)

Hence,

Qþ
j ≡

2

3
ðm̂j − m̂j−1Þ (51)

specifies the total charge (mod 2e) on the pairing-gapped

segment. A comparison with the more familiar case of

Majorana zero modes along a quantum spin Hall edge is

useful here. In that context, the Majoranas encode a twofold

degeneracy between even- and odd-parity ground states of

a superconducting-gapped region of the edge. Here the

physics is richer—a superconducting segment of the ν ¼
2=3 interface supports ground states with charge 0, 2=3, or
4=3 (mod 2e). From the density difference ρ− ¼ ∂xϕρ=π

between the top and bottom edges of the trench, one can

similarly define Bðx − x0Þ ¼ e
iπ
R

x0
x

ρ−ðx″Þdx″ ¼ ei½ϕρðx0Þ−ϕρðxÞ�.
With x and x0 now straddling an m̂j-pinned tunneling-

gapped region, one obtains

PBðx − x0ÞP ¼ ei
2π
3
ðn̂jþ1−n̂jÞ ¼ e−i

2π
3 α†R;2jαR;2jþ1: (52)

We thus see that

Spin-unpolarized

Spin-unpolarized

Domain wall 

FIG. 5. Schematic of a spin-unpolarized ν ¼ 2=3 system

hosting a trench in which the edge modes are alternately gapped

by electron backscattering t and Cooper pairing Δ. The integer

operators m̂i and n̂i in each domain characterize the pinning of

the charge-sector fields as specified in Eqs. (44) and (45).

Physically, m̂i − m̂i−1 quantifies the total charge (top plus

bottom) Qþ
i on the intervening superconducting-gapped region,

while n̂iþ1 − n̂i quantifies the charge difference (top minus

bottom) Q−
i on the intervening tunneling-gapped segment. The

remaining low-energy physics is captured by Z3 generalizations

of Majorana operators αR=L;j bound to each domain wall labeled

as above. These operators cycle the values of Q�
i on the domains

by adding charge 2e=3 (mod 2e) to the top and bottom trench

edges, as illustrated in the figure. Charge-2e=3 tunneling between
neighboring domain walls hybridizes these modes and can be

described by a 1D Hamiltonian [Eq. (57)] intimately related to the

three-state quantum clock model. The critical point of this

Hamiltonian, as in the clock-model context, is described by

Z3 parafermion conformal field theory.
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Q−
j ≡

2

3
ðn̂jþ1 − n̂jÞ (53)

represents the charge difference (again mod 2e) across

the trench in a tunneling-gapped region, which can

also take on three distinct values. If desired, one can

use these definitions to express m̂j ¼ 3
2

P

i≤jQ
þ
i and

n̂j ¼ 3
2

P

i<jQ
−
i ; these forms can then be used to rewrite

the Z3 zero-mode operators of Eq. (49) in terms of

physical quantities.

To avoid overcounting degeneracy, observe that due to

the nontrivial commutator in Eq. (46) one can specify either

the total charge Qþ
j on each superconducting segment or

the charge difference Q−
j on each tunneling-gapped region

—but not both simultaneously. Consequently, there exist

three ground states per pair of domain walls (neglecting

possible Hilbert-space constraints), yielding a quantum

dimension of
ffiffiffi

3
p

associated with each zero mode [124].

The action of the zero-mode operators on a given initial

state alters Q�
j by integer multiples of 2e=3, thereby

allowing one to cycle through the entire ground-state

manifold. More precisely, the modification of these charges

follows from

eiπðQ
þ
j
þ2=3Þ

αR=L;k ¼ αR=L;ke
iπQþ

j (54)

for k ¼ 2j − 1 or 2j, while

eiπðQ
−

j
�2=3Þ

αR=L;k ¼ αR=L;ke
iπQ−

j (55)

for k ¼ 2j or 2jþ 1. (At other values of k the zero modes

do not affect Q�
j .) Notice that αR;k and αL;k increment the

charge difference Q−
j in opposing directions because they

add quasiparticles to opposite sides of the trench.

One can now intuitively understand why two nontrivial

R=L representations exist for the Z3 zero modes whereas

the Majorana operators γj discussed in Sec. IIB are

uniquely defined, up to a sign. For concreteness, let us

work in a basis where the ground states are labeled by the

set of charges fQþ
j g on the superconducting regions. The

key point is that in the fractional quantum Hall case there

are two physically distinct processes that transform the

system from one such ground state to another. Namely, the

total charge on a given superconducting segment can be

incremented by adding fractional charge either to the upper

or lower trench edges. This distinction is meaningful since

fractional charge injected at one edge cannot pass to the

other because only electrons can tunnel across the trench.

These two processes are implemented precisely by αRj and

αLj, as illustrated in Fig. 5. By contrast, in the integer

quantum Hall case no such distinction exists. The Majorana

operators add one unit of electric charge (mod 2e) that can
readily meander across the trench, so that their representa-

tion is essentially unique.

Finally, we note a curious feature implicit in the zero

modes and ground states: Although a ν ¼ 2=3 edge

supports charge-e=3 excitations, they are evidently frozen

out in the low-energy subspace in which we are working.

The doubling of the minimal charge arises because the

spin sector is uniformly gapped throughout the trench.

Charge-e=3 excitations must therefore come in opposite-

spin pairs to circumvent the spin gap. As a corollary, one

cannot define an electron operator in the projected Hilbert

space since charge-e excitations are absent for the same

reason. This observation explains the Z3 structure arising

in the theory—along with the difference from the Z6

structure found in related studies of ν ¼ 1=3 Laughlin

states [79–81,86].

C. Z3 parafermion criticality

Imagine now that the size of each domain shrinks so that

quasiparticle tunneling between neighboring domain walls

becomes appreciable. Such processes lift the ground-state

degeneracy described above and can be modeled by an

effective Hamiltonian

Heff ¼ −JΔ
X

j

cosðπQþ
j Þ − Jt

X

j

cosðπQ−
j Þ (56)

with JΔ, Jt > 0. The first term reflects a fractional

Josephson coupling between adjacent superconducting

segments [59,79–81], mediated by charge-2e=3 tunneling

across the intervening tunneling-gapped region. This cou-

pling favors pinning m̂j to uniform values in all super-

conducting regions, resulting in Qþ
j ¼ 0 throughout.

Similarly, the second (competing) term represents a “dual

fractional Josephson” [125–128] coupling favoring uni-

form n̂j in tunneling-gapped regions and hence Q
−
j ¼ 0. In

terms of generalized Majorana operators defined in

Eq. (43), the effective Hamiltonian becomes

Heff ¼ −Jt
X

j

ðei2π=3α†R;2jþ1αR;2j þ H:c:Þ

− JΔ
X

j

ðei2π=3α†R;2jαR;2j−1 þ H:c:Þ; (57)

which exhibits precisely the same form as the Fradkin-

Kadanoff representation of the quantum clock model

in Eq. (24).

The connection to the quantum clock model can be

further solidified by considering how the various sym-

metries present in the former are manifested in our ν ¼ 2=3
setup. Appendix A discusses this important issue and

shows that all of these symmetries in fact have a transparent

physical origin (including the time-reversal operation T

that squares to unity). To streamline the analysis, we have

defined the generalized Majorana operators in Eqs. (49)

such that under each symmetry they transform identically

to those defined in the clock model.
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The Z3 and Z
dual
3 transformations, which send

αR=Lj → ei2π=3αR=Lj ðZ3Þ; (58a)

αR=Lj → e�i2π=3αR=Lj ðZdual
3 Þ; (58b)

warrant special attention. Clearly the Hamiltonian in

Eq. (57) preserves both operations. In our quantum Hall

problem these symmetries relate to physical electric

charges. More precisely, they reflect global conservation

of the “triality” operators

eiπQ
þ
tot ≡ e

iπ
P

j
Qþ

j ; eiπQ
−
tot ≡ e

iπ
P

j
Q−

j ; (59)

which generalize the notion of parity and take on three

distinct values. The trialities respectively constitute con-

served Z3 and Z
dual
3 quantities that specify (modulo 2e) the

sum and difference of the total electric charge on each side of

the trench. According to Eqs. (58a) and (58b), αRj and αLj
carry the same Z3 charge but opposite Zdual

3 charge; this

property is sensible, given that these operators increment the

charge onopposite trench edges [see alsoEqs. (54) and (55)].

The correspondence with the clock model allows us to

directly import results from Sec. III to the present setup.

Most importantly, we immediately conclude that the limit

JΔ ¼ Jt realizes a self-dual critical point described by a Z3

parafermion CFT. Furthermore, at the critical point the

primary fields relate to the lattice operators through

Eqs. (27a) and (27b), repeated here for clarity:

αRj ∼ aψR þ ð−1ÞjbσRϵL þ � � � ðtop edgeÞ; (60a)

αLj ∼ aψL þ ð−1ÞjbσLϵR þ � � � ðbottom edgeÞ: (60b)

An important piece of physics that is special to our ν ¼ 2=3
setup is worth emphasizing here. First, we note that ϵA, with

A ¼ R or L, represents an electrically neutral field that

modifies neither the total charge nor the charge difference

across the trench. This fact can be understood either from

the fusion rule ϵ × ϵ ∼ 1þ ϵ—which implies that ϵA carries

the same (trivial) charge as the identity—or by recalling

from Sec. III that ϵR=L remains invariant under both Z3 and

Z
dual
3 . It follows that ψR=L and σR=L must carry all of the

physical charge of the lattice operators αR=Lj. That is, like

their lattice counterparts, ψR and σR add charge 2e=3 to the
top edge of the trench, while ψL and σL add charge 2e=3 to
the bottom trench edge. In this sense the ψ and σ fields

inherit the spatial separation exhibited by αR=Lj. The next

section explores stacks of critical chains, and there this

property will severely restrict the perturbations that couple

fields from neighboring chains, ultimately enabling us to

access a superconducting analogue of the Read-Rezayi

state in a rather natural way.

V. FIBONACCI PHASE: A SUPERCONDUCTING

ANALOGUE OF THE Z3 READ-REZAYI STATE

Consider now the geometry of Fig. 6(a) in which a spin-

unpolarized ν ¼ 2=3 quantum Hall system hosts an array of

N trenches of the type studied in Sec. IV. Edge excitations

on the top and bottom of each trench can similarly be

described with fields ϕ1αðx; yÞ and ϕ2αðx; yÞ, where α

(a)

Fibonacci

phase

Gapped  phase?

Gapped  phase?

Critical phase

(b)

FIG. 6. (a) Multichain generalization of Fig. 5 in which a

sequence of trenches labeled by y ¼ 1; :::::; N is embedded in a

spin-unpolarized ν ¼ 2=3 quantum Hall system. Once again, the

edge modes opposite each trench are alternately gapped by

electron backscattering and Cooper pairing, with m̂iðyÞ and

n̂iðyÞ characterizing the pinned charge-sector fields in a given

domain [see Eqs. (44) and (45)]. We assume that the Z3

generalized Majorana operators bound to each domain wall

hybridize strongly within a trench and weakly between neighbor-

ing trenches. Underlying this hybridization is tunneling of 2e=3
charges, which can only take place through the fractional

quantum Hall fluid; examples of allowed and disallowed proc-

esses are illustrated above. (b) Phase diagram for this system of

weakly coupled chains starting from the limit where each chain is

tuned to a critical point described by Z3 parafermion conformal

field theory. The couplings λa=b represent interchain perturbations

defined in Eq. (67).
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denotes spin, x is a coordinate along the edges, and y ¼
1;…; N labels the trenches. In the charge- and spin-sector

basis defined in Eqs. (41), the nontrivial commutation

relations now read

½θρðx; yÞ;ϕρðx0; y0Þ� ¼
�

− 2πi
3
Θðx0 − xÞ y ¼ y0

− 2πi
3
Θðy0 − yÞ y ≠ y0;

½θσðx; yÞ;ϕσðx0; y0Þ� ¼
�

2πiΘðx0 − xÞ y ¼ y0

2πiΘðy0 − yÞ y ≠ y0;

½ϕρðx; yÞ;ϕσðx0; y0Þ� ¼ −2πi: (61)

For y ¼ y0, one simply recovers Eqs. (42). The additional

commutators for y ≠ y0 ensure proper anticommutation

relations between electron operators acting at different

trenches but play no important role in our analysis.

We assume that the sets of counterpropagating edge

modes opposite each trench are alternately gapped by the

Cooper-pairing and electron-backscattering mechanisms

discussed in Sec. IV. At low energies, the pinning of the

charge- and spin-sector fields in each gapped region is

again described by Eqs. (44) and (45). Using the labeling

scheme in Fig. 6(a), we denote the integer operators

characterizing θσ , θρ, and ϕρ in a given domain by

M̂ðyÞ, m̂jðyÞ, and n̂jðyÞ, respectively. [Note that M̂ðyÞ
depends only on y since the spin sector is gapped uniformly

in each trench.] It follows from Eqs. (61) that M̂ðyÞ
commutes with all integer operators while

½n̂jðyÞ; m̂j0ðy0Þ� ¼

8

<

:

3
2π
i y > y0;

3
2π
i y ¼ y0

0 y < y0.

and j > j0; (62)

The remaining low-energy degrees of freedom for the

system are captured by Z3 generalized Majorana operators

αR=L;jðyÞ bound to the domain walls; these operators are

defined precisely as in Eq. (49) upon appending a trench

label y to each operator. In the spirit of Ref. [97], we are

interested in the situation where these modes hybridize

strongly with their neighbors inside of a given trench and

secondarily with neighbors from adjacent trenches. Just as

for the Majorana case discussed in Sec. II, this weakly-

coupled chain approach allows us to use the formalism

developed for a single trench in Sec. IV to access nontrivial

2D phases.

Let the effective Hamiltonian describing this setup be

H ¼ Hintra þH⊥: (63)

The first term incorporates interactions between Z3 gen-

eralized Majorana operators within each trench and essen-

tially reflects N copies of the Hamiltonian in Eq. (57):

Hintra ¼ −

X

N

y¼1

�

Jt
X

j

½ei2π3 α†R;2jþ1ðyÞαR;2jðyÞ þ H:c:�

þ JΔ
X

j

½ei2π3 α†R;2jðyÞαR;2j−1ðyÞ þ H:c:�
�

: (64)

Here, JΔ and Jt denote superconducting and “dual” frac-

tional Josephson couplings, respectively, mediated by

charge-2e=3 tunneling across the domains.

Interchain couplings are encoded in H⊥ and similarly

arise from the tunneling of fractional charges between

adjacent trenches. Consider, for example, the perturbations

X

N−1

y¼1

X

j;j0
½ζjj0e−il⃗·ϕ⃗2ðxj;yÞeil⃗·ϕ⃗1ðxj0 ;yþ1Þ þ H:c:� (65)

with l⃗ ¼ ð1; 1Þ and xk corresponding to a coordinate in

domain wall k in a given chain. These terms transfer charge

2e=3 between the top edge of domain wall j0 on trench

yþ 1 and the bottom edge of domain wall j on trench y.
Such processes are indeed physical since the intervening

quantum Hall fluid supports fractionalized excitations. As

emphasized earlier 2e=3 tunneling across a trench is, by

contrast, not permitted since the charge would necessarily

pass through trivial regions that support only electrons. For

instance, hopping of charge-2e=3 quasiparticles from the

bottom edge of trench yþ 1 to the top edge of trench y is

disallowed for this reason. Figure 6(a) schematically

illustrates such physical and unphysical processes.

Symmetry partially constrains the tunneling coefficient

ζjj0 in Eq. (65). Specifically, enforcing charge conjugation

C (up to a Z
dual
3 transformation) allows one to take

ζjj0 ¼ ei2π=3ζ�
jj0 . We will further assume for simplicity that

ζjj0 depends only on j − j0, i.e., that the coupling strength

between domain walls on adjacent chains depends only on

their separation. The explicit dependence of ζjj0 on this

separation depends on microscopic details but should, of

course, be appropriately short ranged.

The action of Eq. (65) in the low-energy manifold can be

deduced by projecting onto the Z3 generalized Majorana

operators αR=L;jðyÞ using a trivial extension of Eqs. (48) to

the multichain case [129]. Using this procedure, one can

show that the quasiparticle hoppings in Eq. (65) generate

the following form of the interchain Hamiltonian:

H⊥ ¼ −

X

N−1

y¼1

X

j;j0
ð−1Þjþj0tj−j0 ½α†L;jðyÞαR;j0ðyþ 1Þ þ H:c:�

(66)

with tj−j0 real. The factor of ð−1Þjþj0 above reflects the

alternating sign between even and odd domain walls on the

right-hand side of the projection in Eqs. (48). We have

chosen to explicitly display this factor to distinguish from
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possible sign structure in tj−j0 , which encodes phases

acquired by quasiparticles upon tunneling from domain

wall j in one chain to j0 in another. Note also the

conspicuous absence of terms that couple α
†
R;jðyÞ with

αL;j0ðyþ 1Þ—which importantly are unphysical. As

stressed in Sec. IVB, αRj and αLj respectively add frac-

tionalized quasiparticles to the top and bottom edges of a

given trench. Consequently, such terms would implement

disallowed processes similar to that illustrated in Fig. 6(a).

Suppose that Jt ¼ JΔ so that in the decoupled-chain

limit each trench resides at a critical point described by aZ3

parafermion CFT. Again, this limit is advantageous since

arbitrarily weak intertrench couplings can dramatically

impact the properties of the coupled-chain system. At

low energies it is then legitimate to expand the lattice

operators αR=L;jðyÞ in terms of critical fields using

Eqs. (60a) and (60b). Inserting this expansion into the

interchain Hamiltonian yields

H⊥ ∼ −

X

N−1

y¼1

Z

x

½λaψ†
LðyÞψRðyþ 1Þ

þ λbσLðyÞϵRðyÞσ†Rðyþ 1ÞϵLðyþ 1Þ þ H:c:�; (67)

with real couplings

λa ¼ a2
X

j

ð−1Þjtj; λb ¼ b2
X

j

tj: (68)

Insight into the phases driven by these interchain pertur-

bations—both of which are relevant at the decoupled-chain

fixed point—can be gleaned by examining certain extreme

limits.

Consider first the case with λa ¼ 0, λb ≠ 0. Since λb
hybridizes both the right- and left-moving sectors of a given

chain with those of its neighbor, we conjecture that this

coupling drives a flow to a fully gapped 2D phase with no

low-energy modes “left behind.” It is unclear, however,

whether this putative gapped state smoothly connects to

that generated by moving each individual trench off of

criticality by turning on the thermal perturbation

HT ¼
P

y

R

x λTϵRðyÞϵLðyÞ, where λT ∼ Jt − JΔ. This in-

triguing question warrants further investigation but will not

be pursued in this paper.

Instead, we concentrate on the opposite limit λa ≠ 0,

λb ¼ 0, where a more immediately interesting scenario

arises. Here, the parafermion fields hybridize in a nontrivial

way—left movers from chain one couple only to right

movers in chain two, left movers from chain two couple

only to right movers in chain three, and so on. “Unpaired”

right- and left-moving Z3 parafermion CFT sectors thus

remain at the first and last chains, respectively. The

structure of this perturbation parallels the coupling that

produced spinless pþ ip superconductivity from critical

chains in the integer quantum Hall case studied in Sec. II

and furthermore closely resembles that arising in Teo and

Kane’s construction of Read-Rezayi quantum Hall states

from coupled Luttinger liquids [97]. In the present context,

provided λa gaps the bulk (which requires λa > 0 as

discussed below), the system enters a superconducting

analogue of the Z3 Read-Rezayi phase that possesses edge

and bulk quasiparticle content similar to its non-Abelian

quantum Hall cousin. For brevity, we hereafter refer to this

state as the “Fibonacci phase”—the reason for this nomen-

clature will become clear later in this section.

One can deduce rough boundaries separating the phases

driven by λa and λb from scaling. To leading order, these

couplings flow under renormalization according to

∂lλa=b ¼ ð2 − Δa=bÞλa=b; (69)

where l is a logarithmic rescaling factor and Δa ¼ 4=3,
Δb ¼ 14=15 represent the scaling dimensions of the

respective terms. The physics will be dominated by

whichever of these relevant couplings first flows to strong

coupling (i.e., values of order some cutoff Λ). Equating the

renormalization-group scales at which λa=b reach strong

coupling yields the following phase boundary:

jλ�bj ∝ jλ�aj8=5 (70)

with λ�a=b the bare couplings at the transition. Figure 6(b)

sketches the resulting phase diagram, which we expound

upon below.

Naturally, we are especially interested in the Fibonacci

phase favored by λa > 0 and flesh out its properties in the

remainder of this section. We do so in several stages. First,

Sec. VA analyzes the properties of a single “ladder”

consisting of left movers from one trench and right movers

from its neighbor. As we will see, this toy problem is

already extremely rich and contains seeds of the physics for

the 2D Fibonacci phase. Section VB then bootstraps off of

the results of Sec. VA to obtain the Fibonacci phase’s

ground-state degeneracy and quasiparticle content. The

properties of superconducting vortices in this state are

addressed in Sec. VC, and finally Sec. VD discusses the

edge structure between the Fibonacci phase and the vacuum

(as opposed to the interface with the ν ¼ 2=3 fluid).

A. Energy spectrum of a single ladder

Until specified otherwise, we study the critical trenches

perturbed by Eq. (67) assuming λb ¼ 0. This special case

allows us to obtain various numerical and exact analytical

results that will be used to uncover universal topological

properties of the Fibonacci phase that persist much more

generally. Tractability here originates from the fact that

with λb ¼ 0 one can rewrite the coupled-chain Hamiltonian

as H ¼
P

yH
y;yþ1
ladder , where the ladder Hamiltonian involves

only left-moving fields from trench y and right movers

from trench yþ 1. (Nonzero λb clearly spoils this decom-

position.) More explicitly, H
y;yþ1
ladder can be written as
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H
y;yþ1
ladder ¼ HL

CFTðyÞ þHR
CFTðyþ 1Þ

−

Z

x

½λaψ†
LðyÞψRðyþ 1Þ þ H:c:�; (71)

with HCFT terms describing the dynamics for the unper-

turbed left and right movers from trenches y and yþ 1,

respectively. Although the ladder Hamiltonians at different

values of y act on completely different sectors, the problem

does not quite decouple: There remains an important

constraint between their Hilbert spaces which will become

crucial in Sec. VB. For the rest of this subsection, we

explore the structure of H
y;yþ1
ladder for a single ladder. The

information gleaned here will then allow us to address the

full 2D problem.

Although λa as defined earlier is real, it will be useful to

now allow for complex values—not all of which yield

distinct spectra. Because correlators in the critical theory

with λa ¼ 0 are nonzero only when each of the total Z3

charges is trivial, perturbing around the critical point shows

that the partition function can only depend on the combi-

nations ðλaÞ3, ðλ�aÞ3, and jλaj2. Thus, Hamiltonians related

by the mapping λa → ei2π=3λa are equivalent. The physics

does, however, differ dramatically for λa positive and

negative [114,115]. For λa < 0, the model flows to another

critical point, which turns out to fall in the universality class

of the tricritical Ising model. In CFT language, this is an

example of a flow between minimal models via the Φ1;3

operator [130]; here the flow is from central charge

c¼4=5 to c¼7=10 theories. The solid lines in Fig. 7(a)

correspond to λa values for which the ladder remains

gapless. These results imply that the full coupled-chain

model with λa < 0 and λb ¼ 0 realizes a critical phase, as

denoted in Fig. 6(a).

For λa non-negative (and not with phase �π=3), the
spectrum of a single ladder is gapped. We focus on this case

from now on—especially the limit of λa real and positive

(modulo a phase of 2π=3), where the field theory is

integrable [114]. These special values are indicated by

dotted lines in Fig. 7(a). Integrability provides a valuable

tool for understanding the physics, as it allows one to obtain

exact results for the ladder spectrum. Namely, the spectrum

can be described in terms of quasiparticles with known

scattering matrices and degeneracies. References [131,114]

determined these properties via the indirect method of

finding the simplest solution of the integrability constraints

adhering to known properties of a Hamiltonian equivalent

to Eq. (71). This analysis is fairly technical, using tools

from the representation theory of quantum groups [132].

While this language is probably unfamiliar to most

condensed-matter physicists, the results are not: They

are the rules for fusing anyons. The connection between

the quasiparticle spectrum and scattering matrix of a

1þ 1D integrable quantum field theory and the fusing

and braiding of anyons in a 2þ 1D topological phase is

explained in depth in Ref. [133]. For the Z3 parafermion

case of interest here, the implications of integrability are

striking but quite simple to understand.

To illustrate the results, it is useful to first characterize

the Hilbert space for a critical clock chain reviewed in

Sec. III and then identify the (related but not identical)

Hilbert space for a single ladder. Consider for the moment

the familiar three-state quantum clock model. As discussed

(a)

(b)

(c)

FIG. 7. (a) Phase diagram of the “ladder” Hamiltonian in

Eq. (71) for complex λa. At λa ¼ 0, the ladder resides at a Z3

parafermion critical point. Along the three solid lines, the ladder

remains gapless but flows instead to the tricritical Ising point.

Everywhere else the system is gapped and exhibits two sym-

metry-unrelated ground states together with the Fibonacci kink

spectrum described in the main text. The dotted lines indicate

integrability. (b) Effective double-well Ginzburg-Landau poten-

tial of the ladder Hamiltonian, which provides an intuitive picture

for the ground-state degeneracy and Fibonacci kink spectrum.

The equal-depth wells represent the two ground-state sectors.

Excitations in these sectors are nondegenerate and correspond to

massive modes about the asymmetric well minima. Kinks and

antikinks interpolate between ground states, and turn out to have

the same energy as the oscillator excitations in one of the ground

states. This is the hallmark of the Fibonacci kink spectrum.

(c) Energy versus momentum obtained via the truncated con-

formal space approach for each superselection sector. (The ½ε1̄�
spectrum is identical to that of ½1ε̄� with k → −k.) Notice the two
ground states, the nearly identical single-particle bands in ½1ε̄�
and ½εε̄�, as well as the multiparticle continuum in all sectors.
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in Sec. III, the entire spectrum at the critical point can be

organized into sectors labeled by the chiral primary fields.

With periodic boundary conditions, the allowed left- and

right-moving Hilbert spaces correspond to conjugate pairs

HL
F
⊗ HR

F † , where F signifies one of the six fields I, ψ ,
ψ†, ϵ, σ, and σ†. Perturbing the critical clock model with a

perturbation δH ∝
R

xðψ
†
LψR þ H:c:Þ analogous to the λa

term in our ladder Hamiltonian mixes these sectors, but not

completely. Two decoupled sectors remain, which follows

from the fusion algebra described in Sec. III: The key

property here is that fusing with ψ or ψ† does not mix the

first three of the six fields above with the last three. Thus,

when the critical clock Hamiltonian is perturbed by δH, the
Hilbert space can still be divided into the following

“superselection” sectors:

½11̄� ¼ HL
I ⊗ HR

I ⊕HL
ψ ⊗ HR

ψ†⊕HL
ψ† ⊗ HR

ψ ;

½εε̄� ¼ HL
ϵ ⊗ HR

ϵ⊕HL
σ ⊗ HR

σ†
⊕HL

σ†
⊗ HR

σ : (72)

Next, we return to the ladder Hamiltonian given in

Eq. (71). In this case the superselection sectors above still

appear, but now the left- and right-moving Hilbert spaces

correspond to different trenches. For this reason the

constraints between the left and right movers are relaxed,

resulting in sectors not present in the periodic clock chain.

Specifically, there are two additional superselection sectors

given by

½1ε̄� ¼ HL
I ⊗ HR

ϵ⊕HL
ψ ⊗ HR

σ†
⊕HL

ψ† ⊗ HR
σ ;

½ε1̄� ¼ HL
ϵ ⊗ HR

I ⊕HL
σ ⊗ HR

ψ†⊕HL
σ†
⊗ HR

ψ ; (73)

where again L and R refer to different trenches. Note that

we forbid combinations such as HL
I ⊗ HR

ψ that would

require net fractional charge in the ν ¼ 2=3 strip between

the trenches; for a more detailed discussion, see Sec. VC.

The upshot of this perturbed CFTanalysis is that the Hilbert

space for a single ladder can be split into the four distinct

sectors defined in Eqs. (72) and (73).

Exploiting the integrability of the Hamiltonian in

Eq. (71) at λa > 0 both provides an intuitive way of

understanding the spectrum and reveals remarkable degen-

eracies among the sectors that are far from apparent a priori.

One important feature is that the integrable model admits

two degenerate ground states not related by any local

symmetry. (Actually, this property survives for rather

general λa—see below.) We confirm the presence of two

ground states by analyzing the spectrum numerically in two

complementary ways. The first method employs the den-

sity-matrix renormalization group on an integrable lattice

model; this analysis will be detailed elsewhere [116]. The

second method utilizes the truncated conformal space

approach (TCSA), which directly simulates the field theory

[134,135]. Here, the eigenstates and operator-product rules

of the CFTare used to characterize the Hilbert space and the

action of the perturbation on these states. By truncating the

Hilbert space, one obtains a finite-dimensional matrix that

can be diagonalized numerically. Results of this analysis

appear in Fig. 7(c), which displays the energy E versus

momentum k for three of the physical superselection

sectors (the spectrum of the fourth ½ε1̄� follows from that

of ½1ε̄�Þ. These plots clearly reveal a degeneracy between

the ground states in the ½11̄� and ½εε̄� sectors, and a gap to all
excited states. Since there is no symmetry of the fusion

algebra between the identity and ε sectors, however, gapped

excitations about the two ground states are not degenerate.

This property too is readily apparent from our TCSA

numerics in Fig. 7(c).

To understand the situation more intuitively, it is useful

to imagine a Ginzburg-Landau-type effective potential

following Refs. [136,137], where the same spectrum as

the ladder Hamiltonian arises (but starting from a different

model). Two non-symmetry-related vacua together with the

low-lying excitations can be described by a double-well

potential, where the two wells have the same depth but

exhibit different curvature as in Fig. 7(b). In the figure, Φ is

roughly the field ðσ þ σ†Þ, with σ defined in Sec. III [138].

From this effective potential, one can understand the four

sectors in the ladder spectrum as follows. Two of the sectors

½11̄� and ½εε̄� correspond to the degenerate minima and

massive fluctuations thereabout. The different curvature of

the wells leads to nondegenerate massive modes—similar

to our TCSA numerical data where ½εε̄� exhibits the smaller

gap. In fact, there “one-particle” states occur, whereas the

gap in the ½11̄� sector is about twice as large and appears to
consist of a multiparticle continuum. The remaining two

sectors correspond to “kinks” interpolating between the

ground states. A kink is a field configuration where the field

takes on one minimum to the left of some point in space and

a different minimum on the right; the excitation energy is

then localized at the region where the field changes. There

are two possible configurations, related by parity, and we

will label these here as kinks and antikinks. It is natural to

expect that these parity conjugates occur in the ½1ε̄� and ½ε1̄�
sectors. This expectation is indeed consistent with our

numerical work displayed in Fig. 7(c).

Aside from the two ground states, there exists another

remarkable degeneracy between two very different quasi-

particle excitations: The gap in the ½εε̄� sector is the same as

the minimum kink or antikink energy [131,114]. One can

see this either directly from the numerics in Fig. 7(c) or

from an analysis exploiting integrability. The latter shows

that the kink, antikink, and “oscillator” excitation in the ½εε̄�
sector exhibit identical dispersion as well. The entire

spectrum is then built up from these fundamental excita-

tions. For instance, the lowest excited states in the ½11̄�
sector form a two-particle continuum originating from

kink-antikink pairs (as opposed to another species of

single-particle excitations), consistent with the numerically

determined spectrum.
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Even though there are three flavors of excitations, the

number of states in the spectrum with N quasiparticles

actually grows more slowly than 3N . (By “quasiparticle,”

we mean a localized excitation that takes the form of either

a kink, an antikink, or an oscillator mode.) The reason is

that the spatial order in which different excitation flavors

occur is constrained. Viewing the problem in terms of the

double-well potential described above, the following rules

are evident. Going (say) left to right, a kink can be followed

by an antikink or an oscillator excitation, an oscillator can

be followed by an antikink or another oscillator, and an

antikink can only be followed by a kink. Because of these

restrictions, the number of states grows asymptotically with

N as φN , where again φ≡ ð1þ
ffiffiffi

5
p

Þ=2 is the golden ratio.

We therefore dub the features described here as the

“Fibonacci kink” spectrum.

Integrability turns out to provide a sufficient but not

necessary condition for these striking degeneracies. We

have verified numerically using the TCSA method that the

two symmetry-unrelated ground states and the Fibonacci

kink spectrum persist even for λa lying away from the

dashed lines in Fig. 7(a) that mark the integrable points

[116]. For instance, with λa ¼ eiπ=5 the spectra are nearly

indistinguishable from those in Fig. 7(c). Hence, for almost

all λa (the exception occurring where the the system is

critical), the ladder Hamiltonian realizes a gapped phase

with the properties noted above. It is useful to comment that

one can, in principle, spoil this structure: Terms such as

σLðyÞσRðyþ 1Þ þ H:c: break the degeneracies—but are

nonlocal in our setup and thus do not reflect physical

perturbations.

We should emphasize here that the preceding discussion

applies only to a single ladder Hamiltonian defined in

Eq. (71). By itself, this 1D model does not support

Fibonacci anyons as stable excitations in any meaningful

sense. Nevertheless, the tantalizing similarities are by no

means accidental. In fact, the remarkable Fibonacci kink

spectrum should be viewed as a precursor to both the

topological order and Fibonacci anyons that do appear in

the full 2D coupled-trench system. This will be elucidated

in the next subsection, which uses the results obtained here

to deduce the ground-state degeneracy and particle content

of the Fibonacci phase.

B. Ground-state degeneracy and quasiparticle content

We now show that in the 2D Fibonacci phase, the

coupled-chain system exhibits a twofold ground-state

degeneracy on a torus. Consider N parallel trenches labeled

by y, coupled to their neighbors via λa > 0. (We continue to

assume λb ¼ 0.) To form the torus geometry, each chain

is itself periodic, and the first and last chains at y ¼ 1, N
couple as well. The system is therefore described by

H ¼ P

N
y¼1H

y;yþ1
ladder with periodic boundary conditions along

the x and y directions; the ladder Hamiltonian is defined in

Eq. (71) and was studied for a single y in the last

subsection.

Given that for a single ladder Eq. (71) already exhibits a

twofold ground-state degeneracy, one might naively expect

a 2N-fold degeneracy for the full N-trench system. This

conclusion is incorrect, however, as such naive counting

ignores Hilbert-space constraints between the left and right

movers within a given trench. In particular, combinations

HR
F
ðyÞ ⊗ HL

F 0ðyÞ with F ∈ fI;ψ ;ψ†g and F 0 ∈ fϵ; σ; σ†g
(or vice versa) are forbidden for any physical boundary

conditions on trench y [139]. Here, we have explicitly

denoted that HR=L correspond to the same chain y to avoid

possible confusion with the previous subsection (where the

right- and left-moving Hilbert spaces correspond to differ-

ent trenches). Thus, the allowed CFT superselection sectors

in each chain must have either F , F 0 ∈ fI;ψ ;ψ†g, or F ,

F 0 ∈ fϵ; σ; σ†g; in other words,

CFT sectorRðyÞ ∼ CFT sectorLðyÞmodψ : (74)

Note that this set includes sectors such asHR
I ðyÞ ⊗ HL

ψðyÞ,
which are physical since fractional charges can hop

between trenches.

Now recall from Sec. VA that the ground states for a

single ladder occur in the sectors ½11̄� and ½εε̄� as defined in
Eq. (72), where again HR and HL correspond to chains y
and yþ 1. In order for the 2D coupled-trench system to

reside in a ground state, the superselection sectors between

adjacent chains must therefore match; i.e.,

CFT sectorLðyÞ ∼ CFT sectorRðyþ 1Þ†: (75)

Combining with Eq. (74), this constraint locks the Hilbert

spaces of every chain together, yielding two ground states

as claimed. We label the ground states as j1i and jεi, which
denote the corresponding sectors in the chains.

Our aim next is to unambiguously identify the anyon

content of our coupled-chain phase. The Fibonacci kink

spectrum identified in the ladder problem in Sec. VA

already strongly hints that a Fibonacci anyon is present,

although we will derive this explicitly in what follows. To

do so, it will be instructive to review a few facts regarding

topological states on a cylinder (instead of a torus). On an

infinite cylinder, the ground-state degeneracy equals the

number of anyon types. For every anyon α, there is an

associated ground state jαi, the set of which forms an

orthogonal basis for the ground-state Hilbert space.

Physically, these states are defined with a fixed anyon

charge at infinity, or equivalently, as eigenstates of Wilson-

loop or anyon-flux operators around the circumference of

the cylinder. (They are also referred to as “minimally

entangled states” [140].) Anyon excitations are trapped at

the domain wall between ground states that are consistent

with the fusion rules. More precisely, using y as a

coordinate in the infinite direction of the cylinder, let the
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wave function for y > 0 be jαþi and for y < 0 be jα−i.
At least one anyon must be trapped on the circle y ¼ 0,

with total topological charge β satisfying the fusion

relation α− × β ∼ αþ þ � � �.
Applying this discussion to our setup, we now consider an

infinite number of trenches, each forming a ring around the

cylinder. This geometry gives us an infinite number of chains

labeled by y ∈ Z, coupled via Eq. (71). By the same logic as

for the torus geometry, there are again two ground states j1i
and jεi that arise from a different superselection sector on

each chain. Keep inmind that, for the time being, 1 and ε are

merely labels derived from the coupled-chain construction;

we have not yet made the association with anyons.

Recall in our argument for the two ground states that

Eq. (74) is an unyielding requirement that follows from the

boundary condition, while Eq. (75) follows from ener-

getics. Hence, when studying excited states, we can relax

the second condition on specific ladders where localized

excitations exist. Let us examine the three flavors of

fundamental ladder excitations—kink, antikink, and

oscillator—identified in Sec. VA. Suppose first that there

is a single kink between trenches y ¼ 0, 1—i.e., that the

corresponding ladder resides in the ½1ε̄� sector defined in

Eq. (73). The chains then lie in the 1 sector for y ≤ 0 and

the ε sector for y ≥ 1. For an antikink, the sectors are ε and

1 for y ≤ 0 and y ≥ 1, respectively. Finally, for an oscillator

excitation every chain must be in the ε sector. (That

excitation type exists only in the ½εε̄� ladder sector.)
Since the three excitations possess the same mass and

dispersion, it is natural to identify all of these as the same

nontrivial anyon (which we label as • for the time being).

The discussion above then implies that a • anyon can occur

at a domain wall between jεi and j1i on the cylinder, or

simply between two jεi regions—but not between two j1i
states. Accordingly, the allowed fusion channels follow as

1 × • ∼ ε and ε × • ∼ 1þ ε, whereas 1 × • → 1 is forbid-

den. We can rewrite these rules as a tensor Na
•;b with integer

entries, where Na
•;b ¼ 1 if b × • → a is admissible and zero

otherwise. In the basis of 1 and ε ground states, the fusion

matrix for the excitation is

Na
•;b ¼

�

0 1

1 1

�

a

b

(76)

with the dominant eigenvalue, or quantum dimension, equal

to the golden ratio: dε ¼ φ≡ ð1þ
ffiffiffi

5
p

Þ=2. Hence, in addi-

tion to being associated with CFT sectors, we can identify 1

as the trivial anyon and ε ¼ • as the Fibonacci anyon.

We further corroborate this result through numerical

evaluation of the “topological entanglement entropy.”

Suppose that we partition the cylinder between chains yc
and yc þ 1 as illustrated schematically in Fig. 8(a). The

entanglement entropy is given by SE ¼ −Try>yc ½ρ log ρ�,
where ρ ¼ Try≤yc jΨihΨj is the reduced density matrix that

comes from a partial trace of the wave function jΨi. For a
ground state of any gapped system, this quantity scales

linearly with the cylinder circumference Lx: SE ∼ sLx −

γ þ � � � (up to terms that decay exponentially with Lx). The

slope s is identical for all ground states of the same

Hamiltonian but depends on nonuniversal microscopic

details. By contrast, the intercept γ defines the topological

entanglement entropy [141,142]—a universal topological

invariant of the ground state used in the computation. This

invariant can be further decomposed as γ ¼ logðD=dΨÞ,
where dΨ is the quantum dimension of the quasiparticle

corresponding to the state jΨi, and D is the “total quantum

dimension” of the phase [141–143].
In the geometry illustrated in Fig. 8(a), the only con-

tribution to entanglement comes from the left movers of
chain y ¼ yc and right movers of chain y ¼ yc þ 1, as all
other degrees of freedom decouple at λb ¼ 0. Hence, the
entanglement entropy arising from a bipartition of the
cylinder is equivalent to that arising from a bipartition of a
single ladder into left and right movers. (This setup bears
much resemblance to the Affleck-Kennedy-Lieb-Tasaki
spin-one chain [144]. There, each spin fractionalizes into
a pair of spin-1

2
’s, and in the ground state the “right” spin-1

2
for a given site forms a singlet with the “left” spin-1

2
at the

next site over. An entanglement cut between two adjacent
sites thus breaks apart exactly one spin singlet into its left
and right spin-1

2
’s.)

We use our TCSA simulations of Eq. (71) to evaluate SE
for the two ground states j1i and jεi; the data appear in

Fig. 8(b). By fitting SE versus Lx for ground state j1i
(which corresponds to d1 ¼ 1), we extract the total quan-

tum dimension D ¼ 1.9� 0.1. One can, in principle,

perform a similar fit for the other ground state jεi to
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4 8 12
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3
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FIG. 8. (a) Bipartition of the superstructure that cuts between

two chains on a cylinder. (b) Entanglement entropy SE of the j1i
(red dots) and jεi (blue dots) ground states of the 2D Fibonacci

phase as a function of the cylinder circumference Lx, computed

numerically via the truncated conformal space approach. Fitting

SE for state j1i to the form sLx − γ at large Lx, we extract the

intercept−γ ≈ −0.65; see the solid line in the figure. This yields a

total quantum dimensionD ≈ 1.9 for the Fibonacci phase. Taking

the difference SE½jεi� − SE½j1i� ¼ log dε, we deduce the quantum
dimension dε ≈ 1.62 ≈ φ, which confirms that ε corresponds to

the Fibonacci anyon.
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extract dε=D. However, a far more precise value for dε
follows from the difference δSE ≡ SE½jεi� − SE½j1i� of
entanglement entropies for the two ground states; the
linear term in Lx cancels here, leaving δSE ¼
logðdε=d1Þ. In this way, we obtain quantum dimension
dε ¼ 1.619� 0.002. These values are in excellent agree-
ment with those of a Fibonacci-anyon model with just

one nontrivial particle, for which D ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

d2
1
þ d2ε

q

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ φ2
p

≈ 1.902 and dε ¼ φ ≈ 1.618.
The ground-state degeneracy on the torus, fusion rules,

and topological entanglement entropy computed above are
sufficient in this case to uniquely identify the 2D topo-
logical phase that the system enters. Indeed, there are only
two topological phases of fermions with twofold ground-
state degeneracy on the torus [145]. The nontrivial particle
can be either a semion or a Fibonacci anyon. We can
distinguish between these possibilities with either the
fusion rules or topological entanglement entropy; both
indicate that our coupled-trench system supports the
Fibonacci anyon—which justifies the name “Fibonacci
phase” christened here.
Given the particle types and fusion rules, the universal

topological properties of this phase can be determined by
solving the pentagon and hexagon identities; they may be
summarized as follows. (For a concise review, see Ref.
[146].) The Fibonacci phase admits only the two particle
types deduced above: the trivial particle 1 and a Fibonacci
anyon ε. They have topological spins θ1 ¼ 1, θε ¼ e4πi=5

and satisfy the fusion rule ε × ε ∼ 1þ ε [147]. As a result
of this fusion rule, the dimension of the low-energy Hilbert
space of (nþ 1) ε particles with total topological charge 1
is the nth Fibonacci number Fn, which grows asymptoti-
cally as φn=

ffiffiffi

5
p

; thus, its quantum dimension is dε ¼ φ, as
we saw previously. (This is the same quantity that enters the
formulas for the entanglement entropy used above.) When
two Fibonacci anyons are exchanged, the resulting phase
acquired is either Rεε

1
¼ e−4πi=5 or Rεε

ε ¼ e3πi=5, depending
on the fusion channel of the two particles denoted in the
subscript. The result of an exchange can thereby be
deduced if we can bring an arbitrary state into a basis in
which the two ε particles in question have a definite fusion
channel. This basis change can be accomplished with the F
symbols. The only nontrivial one is

Fεεε
ε ¼

�

φ−1 φ−1=2

φ−1=2 −φ−1

�

(77)

written in the basis f1; εg for the central fusion channel.
From these relatively simple rules follows a remarkable
fact: These anyons support universal topological quantum
computation [148,149].

While the aforementioned analysis was carried out

for λb ¼ 0, the gapped topological phase that we have

constructed must be stable up to some finite λb. Rough

phase boundaries for this state were estimated earlier; see

Fig. 6(a). However, directly exploring the physics with

λb ≠ 0, either analytically or numerically, is highly non-

trivial since we then lose integrability and can no longer

distill the problem into individual ladders with a Hilbert-

space constraint. Progress could instead be made by

employing density-matrix renormalization-group simula-

tions to map out the phase diagram more completely, which

would certainly be interesting to pursue in follow-up work.

C. Superconducting vortices

Since the Fibonacci phase arises in a superconducting

system, it is also important to investigate the properties of

h=2e vortices—despite the fact that, unlike Fibonacci

anyons, they are confined. Before turning to this problem,

it will be useful to briefly recall the corresponding physics

in a spinless 2D pþ ip superconductor [54,150–152]. One

way of understanding the nontrivial structure of vortices

there is by considering the chiral Majorana edge states of a

pþ ip superconductor on a cylinder. Finite-size effects

quantize their energy spectrum in a manner that depends

on boundary conditions exhibited by the edge Majorana

fermions. With antiperiodic boundary conditions the spec-

trum is gapped, while in the periodic case an isolated zero

mode appears at each cylinder edge. Threading integer

multiples of h=2e flux through the cylinder axis toggles

between these boundary conditions, thereby creating and

removing zero modes. This reflects the familiar result that

h=2e vortices in a planar pþ ip superconductor bind

Majorana zero modes and consequently form Ising anyons.

We will deduce the properties of vortices in the

Fibonacci phase by similarly deforming our ν ¼ 2=3

quantum Hall setup into a cylinder as sketched in Fig. 9.

In principle, the physics can be analyzed by deriving the

influence of flux on boundary conditions for the Z3

parafermionic edge modes supported by this state, although

such an approach will not be followed here. Instead, we

develop a related adiabatic flux-insertion argument that

allows us to obtain the result with minimal formalism. We

proceed by first assuming that the Fibonacci phase is

bordered by “wide” ν ¼ 2=3 regions on the upper and

lower parts of the cylinder, as Fig. 9 indicates. This

assumption will allow us to separately address the effect

of flux on (i) the gapless Z3 parafermion modes at the

interface between the Fibonacci phase and ν ¼ 2=3 regions

and (ii) the outermost ν ¼ 2=3 edge states that border the

vacuum. One can then couple these sectors to determine the

final vortex structure. Following this logic, we will show

that in contrast to the pþ ip case, h=2e flux does not

introduce new topological anyons beyond the trivial and

Fibonacci particles already discussed. A vortex may,

however, provide a local potential that happens to trap a

deconfined Fibonacci anyon, although whether or not this

transpires is a nonuniversal question of energetics. (Note

that the same could be said for, say, an impurity, so one

should not attach any deep meaning to this statement.)
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Let us first consider a cylinder with no flux, in the limit

where each trench is tuned toZ3 parafermion criticality and

interchain coupling is temporarily turned off. For concrete-

ness, we also assert that each ν ¼ 2=3 edge contains no net
electric charge mod 2e. The sum and difference of the total

charge on the two sides of each trench Q�
tot [see Eq. (59)]

must also then vanish mod 2e. This constraint restricts

the possible CFT sectors present in the trenches to either

IR × IL or ϵR × ϵL; all other physical sectors contain the

wrong charge. Next, we adiabatically increase the flux

through the cylinder from 0 to h=2e [153]. Because of the

nontrivial Hall conductivity in the ν ¼ 2=3 fluids, charge

e=3 pumps from the bottom to the top edge of each

quantum Hall region in response to the flux insertion, as

Fig. 9 illustrates. The pumping leaves the total charge Qþ
tot

on each trench intact but alters the total charge difference

for each trench to Q−
tot ¼ −2=3 mod 2. The only allowed

sectors consistent with this charge arrangement are

ψR × ψ
†
L and σR × σ

†
L. Finally, we turn on the interchain

perturbation λa in Eq. (67) to enter the Fibonacci phase.

The CFT sectors in the bulk that are gapped by this

coupling will then clearly mix. However, the gapless right

movers from the top trench and left movers from the bottom

remain unaffected by λa; the former necessarily realizes

either ψR or σR, while the latter realizes ψ†
L or σ†L.

Focusing on the top half of the system, this argument

shows that an h=2e superconducting vortex traps an Abelian
ψ or non-Abelian σ particle at the interface between the

ν ¼ 2=3 fluid and the Fibonacci phase. Importantly, we must

additionally account for the quantum Hall edge at the top of

the cylinder, which also responds to the flux and influences

the structure of a vortex in a crucial way, as we will see.

Figure 9 shows that the flux induces charge þe=3 at the

uppermost cylinder edge. Together, we see that an h=2e
vortex gives rise to edge excitations hψ ; 1=3i or hσ; 1=3i
when the Fibonacci phase is bordered by a wide Abelian

quantumHall fluid. Here and below, hF ; qi indicates that the
interface between the ν ¼ 2=3 liquid and Fibonacci phase

traps particle typeF , while the quantum Hall edge bordering

the vacuum binds charge qmod 1. Recalling the 2e=3 charge
associated with ψ and σ, we conclude that the h=2e vortex

carries total charge emod 2e—which is not fractional. Next,

we discuss the fate of the ψ and σ particles at the Fibonacci-

phase boundary when we include coupling to the outer

quantum Hall edge.

If one assumes that the Z3 parafermion edge states and

outer ν ¼ 2=3 edge modes decouple, then the system can,

in principle, reside in six possible edge sectors: hI; 0i,
hψ ; 1=3i, hψ†; 2=3i, hϵ; 0i, hσ; 1=3i, and hσ†; 2=3i. (This
statement is independent of vorticity and simply tells one

which states have physical charge configurations.) Suppose

now that the pure quantum Hall region at the top of Fig. 9

shrinks to allow fractional charge tunneling between the

parafermion and ν ¼ 2=3 edge modes. Some of the edge

sectors above then mix and hence are no longer distinguish-

able. For instance, transferring e=3 charge from the vacuum

edge to the boundary of the Fibonacci phase can send

hσ; 1=3i → hϵ; 0i. In fact, only two inequivalent edge

sectors remain—the triplet hI; 0i, hψ ; 1=3i, and hψ†; 2=3i
that is associated with the identity particle and the remain-

ing set hϵ; 0i, hσ; 1=3i, and hσ†; 2=3i associated with the ε

non-Abelian anyon.

Applying the above discussion to vortices, we infer that

h=2e flux does not generically bind a ψ or σ in any

meaningful way once the parafermion and outer ν ¼ 2=3
edge modes hybridize. The vortex can trap a trivial or

Fibonacci anyon but exhibits no finer Z3 structure—which

is entirely consistent with the fact that it carries only

fermion parity. Which of the two particle types occurs in

practice depends on nonuniversal microscopic details,

although both cases are guaranteed to be possible because
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FIG. 9. Cylinder geometry used to deduce the properties of

h=2e superconducting vortices in the Fibonacci phase. We

initially assume that pure ν ¼ 2=3 quantum Hall states border

the Fibonacci phase from above and below. This results in two

types of well-defined boundaries: the Fibonacci phase-to-quan-

tum Hall interface, and the quantum Hall-to-vacuum edge.

Adiabatically inserting h=2e flux through the cylinder (which

is topologically equivalent to an h=2e vortex in the bulk of a

planar Fibonacci phase) pumps charge e=3 across each quantum

Hall region, as shown above. Because the charge difference

across the trenches then changes, the upper Fibonacci phase-to-

quantum Hall interface binds either a ψ or σ excitation that carries

charge 2e=3mod 2e. The upper quantum Hall-to-vacuum edge,

however, binds charge e=3 so that, in total, the vortex carries only
fermion parity. If one shrinks the pure quantum Hall regions so

that the two boundaries hybridize, ψ and σ lose their meaning

since other sectors mix in. The final conclusion is that an h=2e
vortex traps either a trivial particle or a Fibonacci anyon

depending on nonuniversal details, but does not lead to new

quasiparticle types.
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ε is deconfined. (If a vortex binds a trivial particle, one can

always bring in a Fibonacci anyon from elsewhere and

attach it to the vortex to obtain the ε case, or vice versa.)

In fact, a similar state of affairs occurs for any phase that

supports a Fibonacci anyon, including the Z3 Read-Rezayi

state. Because of the fusion rule ε × ε ∼ 1þ ε, the

Fibonacci anyon ε must carry the same local quantum

numbers (such as charge and vorticity) as the trivial

particle. Thus, any Abelian anyon A can fuse with the

neutral Fibonacci anyon to form a non-Abelian particle

with identical local quantum numbers: A × ε ∼Aε [154].

For example, in the case of the Z3 Read-Rezayi state at

filling ν ¼ 13=5, there are two anyons with electric charge

e=5: one Abelian and the other non-Abelian with quantum

dimension φ. The latter quasiparticle may be obtained by

fusing the former with a neutral Fibonacci anyon.

Equivalently, the former may be obtained from the latter

by fusing two non-Abelian e=5 quasiparticles with a −e=5
quasihole. Which of these e=5 excitations has the lowest

energy is a priori nonuniversal. Details of such energetics

issues are interesting but left to future work.

Finally, we remark that the Z3 structure at the edge

between the Fibonacci phase and the ν ¼ 2=3 state arises

solely from the fractional quantum Hall side. The corre-

sponding fractionally charged quasiparticles indeed do not

exist within the Fibonacci phase, as evidenced by the

absence of ψ or σ particles in the bulk. Our coupled-chain

construction provides an intuitive way of understanding

this result: 2e=3 excitations are naturally confined in the

Fibonacci phase since the trenches provide a barrier that

prevents fractional charge from tunneling between adjacent

quantum Hall regions. The Fibonacci anyon is neutral, by

contrast, and thus suffers no such obstruction.

D. Excitations of the edge between the

Fibonacci phase and the vacuum

Bulk properties strongly constrain the edge excitations of

a topological phase. In particular, the edge bordering the

vacuummust support as many anyon types as the bulk. This

correspondence is simplest when the bulk is fully chiral.

Edge excitations are then described by a CFT (possibly

deformed by marginal perturbations so that some of the

velocities are unequal) that exhibits precisely the same

number of primary fields as the bulk has anyon types.

These fields possess fractional scaling dimensions, and all

other fields have scaling dimensions that differ from these

by integers. Therefore, one can view an arbitrary field as

creating an anyon (via a primary operator) together with

some additional bosonic excitations. It is important to note

that the edge may have additional symmetry generators

beyond just the Virasoro generators derived from the

energy-momentum tensor. These additional symmetry

generators have their scaling dimensions fixed to 1

(Kac-Moody algebras) or some other integer (e.g., W

algebras) [155].

Since the Fibonacci phase has only two particle types 1

and ε, the minimal possible edge theory describing the

boundary with the vacuum has two primary fields that we

denote as 1 and ~ϵ. (The tilde is used to distinguish from

the field ϵ that lives at the boundary between the

Fibonacci phase and the parent quantum Hall fluid.)

At first glance, however, our quantum Hall-superconduc-

tor heterostructure appears to exhibit a much more

complicated edge structure than the quasiparticle content

suggests. The interface between the Fibonacci phase and

the spin-unpolarized ν ¼ 2=3 state is described by a Z3

parafermion CFT, and the boundary between the ν ¼ 2=3
state and the vacuum is described by a CFT for two

bosons with K matrix

K ¼
�

1 2

2 1

�

½fermionic ð112Þ state� (78)

The former CFT has six primary fields, while the latter

has three. One can obtain a direct interface between

the Fibonacci phase and vacuum by simply shrinking the

outer ν ¼ 2=3 fluid until it disappears altogether; the

resulting boundary is then naively characterized by a

product of these two edge theories. However, in the

previous subsection we argued that of the 18 primary

fields in the product CFT, only a subset of six are

physical from charge constraints, and these combine to

just two primary fields. Here we explicitly construct a

chiral CFT with exactly these two primary fields.

Furthermore, we demonstrate that upon edge

reconstruction, the Fibonacci-phase-to-vacuum interface

is described by this CFT combined with unfractionalized

fermionic edge modes, in precise correspondence with

the bulk quasiparticle types supported by the

Fibonacci phase.

It is useful to first examine the simpler case of a ν ¼ 2=3
state built out of underlying charge-e bosons. To describe

this setup one replaces the K matrix of Eq. (78) with

K ¼
�

2 1

1 2

�

½bosonic ð221Þ state�: (79)

For brevity, we refer to this bosonic quantum Hall phase as

the (221) state. Most of the preceding analysis, including

the appearance of a descendant Fibonacci phase, is

unchanged by this modification. However, by working

with a bosonic theory, we can appeal to modular invariance

to connect the bulk quasiparticle structure to the edge chiral

central charge cR − cL:

1

D

X

a

θad
2
a ¼ eð2πi=8ÞðcR−cLÞ; (80)

where a sums over the two anyon types and cR=L denote the
central charges for right or left movers. Using results from

Sec. VB—in particular, D ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ φ2
p

, d1 ¼ 1, dε ¼ φ,

and θ1 ¼ 1, θε ¼ e4πi=5—the chiral central charge follows
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as cR − cL ≡ 14=5mod 8. Thus, the minimal edge theory

describing the boundary with the vacuum is purely chiral

with cR ¼ 14=5 and cL ¼ 0. We now show that the bosonic

Fibonacci-phase-to-vacuum edge is consistent with these

scaling dimensions and central charges.

The key physical observation was made in the previous

subsection: Fractional charge and the resulting Z3 struc-

ture are features of the ν ¼ 2=3 state, not the Fibonacci

phase. Equivalently, not all of the excitations of the

combined Z3 parafermion CFT and the ð221Þ edge states

are allowed in the Fibonacci phase because we cannot

transfer fractional charge from one edge of the system to

the other via the bulk. Fractional charge can pass only

between the Fibonacci-phase-to-(221)-state and the (221)-

state-to-vacuum interfaces; together, these two edges

form the Fibonacci-to-vacuum edge. As such, the total

charge of the Fibonacci-phase-to-vacuum edge must be

an integer that dictates the set of physical operators that

appear.

In terms of the Z3 parafermion operators and the edge

fields ϕ↑;ϕ↓ of the (221) state, the most relevant operators

that transfer fractional charge within an edge are

ψeiϕ↑ ; ψeiϕ↓ ; ψe−iϕ↑−iϕ↓ ;

ψ†e−iϕ↑ ; ψ†e−iϕ↓ ; ψ†eiϕ↑þiϕ↓ : (81a)

Note that these fields all have scaling dimension one. There

are six additional dimension-one operators that add integer

charge to an edge:

eiϕ↑þ2iϕ↓ ; e2iϕ↑þiϕ↓ ; eiϕ↑−iϕ↓ ;

e−iϕ↑−2iϕ↓ ; e−2iϕ↑−iϕ↓ ; e−iϕ↑þiϕ↓ : (81b)

Finally, the two charge-current operators

i

ffiffiffi

3

2

r

∂ϕ↑;
i
ffiffiffi

2
p ∂ϕ↑ þ i

ffiffiffi

2
p

∂ϕ↓ (81c)

also have scaling dimension one. The 14 operators in

Eqs. (81a–81c) satisfy the Kac-Moody algebra for the Lie

group G2 at level one:

JaðzÞJbðwÞ ¼ δbā

ðz − wÞ2 þ
fabcJcðwÞ
z − w

þ � � � ; (82)

where fabc are the structure constants for the G2 Lie

algebra, normalized such that the Killing form

facdðfbcdÞ� ¼ 8δab. The two charge currents form the

Cartan subalgebra for G2, while the operators in

Eqs. (81a) and (81b) correspond to the nonzero roots of

G2 as follows:

In the axes, the vector l⃗ represents the argument of a given

(221)-state operator written as eil⃗·ϕ⃗ [e.g., l⃗ ¼ ð2; 1Þ for

e2iϕ↑þiϕ↓ ]. As an extension to the Virasoro algebra, this

Kac-Moody algebra has c ¼ 14=5 and only two primary

fields, the identity 1 and ~ϵ ¼ σ†eiϕ↑þiϕ↓ [156]. All other

fields of the CFT can be constructed by combining one of

the primaries with the generators in Eqs. (81); e.g., ϵ arises

from the operator product expansion between ~ϵ and

ψe−iϕ↑−iϕ↓ . The identity field has scaling dimension

h1 ¼ 0 and transforms trivially under the G2 action, while

the nontrivial field ~ϵ has scaling dimension h~ϵ ¼ 2=5 and

belongs in the seven-dimensional fundamental representa-

tion of G2. Here we can see that the bulk-edge correspon-

dence is consistent with our identification of the bulk as the

Fibonacci phase; for example, the topological spins of 1

and ε are related to the scaling dimensions of the fields 1

and ~ϵ via θ1;ε ¼ e2πih1;~ϵ .

We now return to the fermionic case, where the ν ¼ 2=3-
to-vacuum edge is characterized by the K matrix in

Eq. (78). The allowed operators that transfer charge in

the fermionic Fibonacci-phase-to-vacuum edge are once

again given by Eqs. (81). Unlike in the bosonic case,

however, these operators are nonchiral because the fer-

mionic ν ¼ 2=3 state supports counterpropagating edge

modes at the interface with the vacuum. Nevertheless,

they remain spin-one operators as in the bosonic setup.

Moreover, the fermionic Fibonacci-to-vacuum edge exhib-

its a phase that bears a simple relation to the bosonic edge,

as we now demonstrate.

This phase occurs when the edge reconstructs such that

an additional nonchiral pair of unfractionalized modes

comes down in energy and hybridizes with the modes of

the ν ¼ 2=3-to-vacuum edge. In the limit where these

modes are gapless, the K matrix becomes
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Ke ¼

0

B

B

B

@

1 2 0 0

2 1 0 0

0 0 1 0

0 0 0 −1

1

C

C

C

A

: (84)

The ν ¼ 2=3-to-vacuum edge is then described by the

effective field theory

S ¼ 1

4π

Z

t;x

½Ke
IJ∂tϕI∂xϕJ − VIJ∂xϕI∂xϕJ� þ � � � : (85)

Here the ellipsis represents quasiparticle tunneling proc-

esses, indices I and J label the field components such that

ϕ1 and ϕ2 denote the original spin-up and spin-down

modes while ϕ3 and ϕ4 represent the new counterpropagat-

ing modes added to the edge, and VIJ is a symmetric matrix

that characterizes density-density interactions among all

four modes. If VIJ is small for I ¼ 1, 2 and J ¼ 3, 4, then

the additional ϕ3;4 fields generically acquire a gap because

one of the tunneling perturbations cosðϕ3 � ϕ4Þ will be

relevant [157]. However, when these off-diagonal entries in

VIJ are appreciable the edge can enter the new phase that

we seek.

To describe this phase, it is convenient to invoke a basis

change to ~Ke ¼ WKeWT and ~V ¼ WVWT , where

W ¼

0

B

B

B

@

1 0 1 0

0 1 −1 0

−1 1 −1 0

0 0 0 1

1

C

C

C

A

(86)

and

~Ke ¼

0

B

B

B

@

2 1 0 0

1 2 0 0

0 0 −1 0

0 0 0 −1

1

C

C

C

A

: (87)

Suppose, for the moment, that ~VIJ ¼ 0 for I ¼ 1, 2 and

J ¼ 3, 4. By comparing Eqs. (79) and (87) one sees that the

fermionic edge is then equivalent to the bosonic case

examined earlier, supplemented by two Dirac fermion

modes running in the opposite direction relative to the

chiral modes of the (221) state. This correspondence allows

us to immediately deduce that the fermionic Fibonacci-to-

vacuum edge is described by the G2 Kac-Moody theory at

level one together with two backward-propagating Dirac

fermions (or, equivalently, four backward-propagating

Majorana fermions). More generally, when ~VIJ is small

but nonzero for I ¼ 1, 2 and J ¼ 3, 4, theG2 theory and the

backward-propagating fermions hybridize through the

marginal couplings ~VIJ. Once again, we find a correspon-

dence between the bulk and the edge with the vacuum:

Both have Fibonacci anyons as well as fermionic

excitations [158].

VI. TOPOLOGICAL QUANTUM FIELD

THEORY INTERPRETATION

We will now provide an alternative topological quantum

field theory (TQFT) interpretation of the Fibonacci phase

introduced in the preceding sections. Although less con-

nected to microscopics, the perspective developed here cuts

more directly to the elegant topological properties enjoyed

by this state. Our discussion will draw significantly on the

earlier works of Gils et al. [90] and especially Ludwig et al.

[91]. As already mentioned in the Introduction, our con-

struction of the Fibonacci phase from superconducting

islands embedded in a ν ¼ 2=3 quantum Hall state bears

some resemblance to these studies. Starting from parent

non-Abelian systems, Refs. [90,91] investigated descend-

ant phases emerging in the interior of the fluid due to

interaction among a macroscopic collection of non-Abelian

anyons. We follow a similar approach, in that the domain

walls in our spatially modulated trenches correspond to

extrinsic non-Abelian defects [79–81,58,83] by virtue of

the Z3 zero modes that they bind; moreover, we likewise

hybridize these defects to access the (descendant)

Fibonacci phase within a (parent) ν ¼ 2=3 state. This

common underlying philosophy suggests a deep relation-

ship with Refs. [90,91].

Of course the most glaring difference stems from the

Abelian nature of our parent state. We will show below that

one can blur this (certainly important) distinction, however,

by developing a nonstandard view of the spin-unpolarized

ν ¼ 2=3 quantum Hall state—namely, as emerging from

some non-Abelian phase upon condensation of a boson that

confines the non-Abelian particles. Such an interpretation

might initially seem rather unnatural but provides an

illuminating perspective in situations where one can exter-

nally supply the energy necessary to generate these con-

fined non-Abelian excitations in a meaningful way. This is

indeed precisely what we accomplish by forcing super-

conducting islands into the ν ¼ 2=3 fluid to nucleate the

domain walls that trapZ3 zero modes. Wewill employ such

a picture to sharpen the connection with earlier work and, in

the process, develop a TQFT view of the Fibonacci phase

generated within a ν ¼ 2=3 state. In the discussion to

follow, we ignore the fermion present in the (112) state,

which leads to subtle consequences that we address at the

end of this section. [In fact, our conclusions will apply

more directly to the analogous bosonic (221) state.]

As a first step, we summarize the results from Ref. [91]

that will be relevant for our discussion. Consider a parent

non-Abelian phase described by an SUð2Þ4 TQFT. Table I
lists the properties of the gapped topological excitations of

this phase—including the SUð2Þ spin j, conformal spin h,
quantum dimension d, and nontrivial fusion rules for each

field. Ludwig et al. found that antiferromagnetically
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coupling a 2D array of non-Abelian anyons in this parent

state produces a gapped descendant phase described by an

SUð2Þ3 ⊗ SUð2Þ1 TQFT, as sketched in the left half of

Fig. 10. See Table II for the corresponding properties of

SUð2Þ3 and SUð2Þ1. The interface between these parent

and descendant phases supports a gapless
SUð2Þ3×SUð2Þ1

SUð2Þ4 edge

state, which exhibits central charge c ¼ 4=5 and ten fields

corresponding exactly to those of the so-called Mð6; 5Þ
minimal model. Note that this edge theory is distinct from

the Z3 parafermion CFT arising in our setup, which

possesses only six fields. Nevertheless, there are already

hints here of a relation with our present work: SUð2Þ4
supports non-Abelian anyons with quantum dimension

ffiffiffi

3
p

(like the non-Abelian defects in our trenches), and the

descendant SUð2Þ3 ⊗ SUð2Þ1 region supports a Fibonacci

anyon (as in our Fibonacci phase).

At this point, it is worth speculating on the field content

expected from a hypothetical TQFT describing our ν ¼
2=3 state with domain walls binding Z3 zero modes. First,

one should have Abelian fields Y1 and Y2 corresponding to

charge-2e=3 and 4e=3 excitations (which can live either on
the gapped regions of the trenches or in the bulk of the

quantum Hall fluid). Conservation of charge mod 2e
suggests the fusion rules Y1 × Y1 ∼ Y2, Y2 × Y2 ∼ Y1,

and Y1 × Y2 ∼ 1, where 1 denotes the neutral identity

channel. One also might expect non-Abelian fields ~X
corresponding to domain walls separating pairing- and

tunneling-gapped regions of the trenches. Recalling that the

Cooper-paired regions can carry charge 0, 2e=3, or 4e=3
mod 2e, the merger of two adjacent superconducting

islands in a trench should be captured by the fusion rule
~X × ~X ∼ 1þ Y1 þ Y2. From this perspective, ~X quite

clearly possesses a quantum dimension of d ¼
ffiffiffi

3
p

(con-

sistent with deductions based on ground-state counting),

since 1, Y1, and Y2 are Abelian fields with d ¼ 1. No other

fields are immediately evident. This picture cannot possibly

be complete, however, as there is no TQFTwith four fields

obeying these fusion rules [159].

The difficulty with identifying a TQFT using the preced-

ing logic stems from the fact that ~X differs fundamentally

FIG. 10. Boson condensation picture leading to a TQFT

interpretation of the Fibonacci phase. On the left, a parent

non-Abelian SUð2Þ4 phase hosts a descendant SUð2Þ3 ⊗
SUð2Þ1 state arising from interacting anyons within the fluid

[91]. Condensing a single boson throughout the system produces

the setup on the right in which an Abelian Z3 parent state gives

rise to a descendant phase described by a pure Fibonacci TQFT.

The latter system very closely relates to our spin-unpolarized

ν ¼ 2=3 state with superconducting islands that generate the

Fibonacci phase inside of the quantum Hall medium, in that the

quasiparticle content (modulo the electron) is identical. An even

more precise analogy occurs in the case where the Fibonacci

phase resides in a bosonic (221) quantum Hall state; here, the

TQFTs from the right side of the figure exactly describe the

universal topological physics.

TABLE I. Fields of SUð2Þ4, along with their corresponding

SU(2) label j, conformal spin h, quantum dimension d, and
nontrivial fusion rules. The chiral central charge associated with

SUð2Þ4 is c ¼ 2. The parent state on the left side of Fig. 10 is

described by this TQFT.

SUð2Þ4 c ¼ 2

Field 1 X Y X0 Z

j 0 1=2 1 3=2 2

h 0 1=8 1=3 5=8 1

d 1
ffiffiffi

3
p

2
ffiffiffi

3
p

1

Fusion rules

X × X ∼ 1þ Y X0 × X0 ∼ 1þ Y
X × Y ∼ X þ X0 X0 × Y ∼ X þ X0

X × Z ∼ X0 X0 × Z ∼ X
X × X0 ∼ Z þ Y Y × Z ∼ Y
Y × Y ∼ 1þ Y þ Z Z × Z ∼ 1

TABLE II. Properties of SUð2Þ3 and SUð2Þ1 topological

quantum field theories that describe the descendant phase on

the left side of Fig. 10. In the table, c is the chiral central charge, j
is an SU(2) spin label, h denotes conformal spin, d represents the

quantum dimension, and φ is the golden ratio.

SUð2Þ3 c ¼ 9=5

Field 1 ε0 ε ξ

j 0 1=2 1 3=2
h 0 3=20 2=5 3=4
d 1 φ φ 1

Fusion rules

ε × ε ∼ 1þ ε ε0 × ε0 ∼ 1þ ε

ε × ξ ∼ ε0 ε × ξ ∼ ε

ε × ε0 ∼ ξþ ε0 ξ × ξ ∼ 1

SUð2Þ1 c ¼ 1

Field 1 η

j 0 1=2
h 0 1=4
d 1 1

Fusion rule

η × η ∼ 1
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from the other fields in that it does not represent a

pointlike excitation. Rather, ~X occurs only at the end of a

“string” formed by a superconducting region within our

trenches; since these strings are physically measurable, ~X
is confined and exhibits only projective non-Abelian

statistics. One could—at least in principle—envision

quantum mechanically smearing out the location of the

superconductors to elevate ~X to the status of a deconfined

pointlike quantum particle belonging to some genuine

non-Abelian TQFT. Or by turning the problem on its

head, one can instead view confined excitations like ~X as

remnants of that non-Abelian TQFT after a phase tran-

sition. In the latter viewpoint, the mechanism leading to

the transition—and the accompanying confinement—is

boson condensation, which was described in detail by

Bais and Slingerland in the context of topologically

ordered phases [160].

To be precise, we will define a boson here as a field

possessing integer conformal spin and quantum dimension

d ¼ 1 [161]. Suppose that a boson B with these properties

condenses. When this happens the condensed boson is

identified with the vacuum 1, and any fields related to one

another by fusion with B are correspondingly identified

with each other. For instance, if A × B ∼ C then fields A
and C are equivalent in the condensed theory. The fate of

such fields that are related by the boson B depends on their

relative conformal spin. If their conformal spins differ by an

integer, they braid trivially with the new vacuum and

represent deconfined excitations. Otherwise it is no longer

possible to define in a gauge-invariant manner the con-

formal spin for that type of excitation; it braids nontrivially

with the new vacuum and therefore must be confined by a

physically measurable string.

Let us now apply this discussion to the parent SUð2Þ4
TQFT described earlier, assuming the Z field condenses.

(From Table I, we see that Z is the only nontrivial boson in

the TQFT.) The resulting theory was already discussed

extensively by Bais and Slingerland and will be briefly

summarized here. First of all, the fusion rules tell us that

condensation of Z identifies X and X0; anticipating a

connection with our ν ¼ 2=3 extrinsic defects, we will

label the corresponding excitation by ~X. Indeed, ~X is

confined (because the conformal spins of X and X0 differ
by a noninteger), possesses a quantum dimension of

ffiffiffi

3
p

,

and exhibits the same projective non-Abelian braiding

statistics as our quantum Hall domain-wall defects

[58,79–81]. As for the Y field, it can fuse into the vacuum

in two different ways when Z condenses (since Z → 1) and

so must split into two Abelian fields with conformal spin-

2=3mod 1 [160]. We will denote these two fields as Y1 and

Y2, as they exhibit the same characteristics as the charge-

2e=3 and 4e=3 excitations in our quantum Hall problem.

The properties of this “broken SUð2Þ4” theory [160],

including the confined ~X excitation, appear in Table III.

From the table, it is apparent that this condensed theory

reproduces exactly the structure anticipated from our

ν ¼ 2=3 setup decorated with superconducting islands that

generate Z3 zero modes. Hence the fusion rules and

braiding statistics for our parent state can be viewed as

inherited (projectively) from SUð2Þ4. Note, however, that
broken SUð2Þ4 is not a pure TQFT; focusing only on

deconfined excitations, we are left with a simple Z3

Abelian theory with only 1, Y1, and Y2.

So far, we have shown that the parent SUð2Þ4 theory

discussed by Ludwig et al. recovers the particle content of

our parent ν ¼ 2=3 system upon condensing the Z field.

Next we explore the fate of their descendant SUð2Þ3 ⊗
SUð2Þ1 phase upon boson condensation. Let us denote

fields from SUð2Þ3 ⊗ SUð2Þ1 as ðA;BÞ, where A and B
respectively belong to SUð2Þ3 and SUð2Þ1, and explore the
consequences of ðξ; ηÞ condensing. (According to Table II,

TABLE III. Field content and fusion rules for SUð2Þ4 upon

condensing the bosonic Z field listed in Table I. As in the other

tables, j is an SU(2) spin label, h denotes conformal spin, and d
represents the quantum dimension for each particle. The ~X field is

confined by the condensation and hence exhibits an ill-defined

conformal spin; this field obeys the same fusion rules and

projective non-Abelian statistics as the (also confined) domain-

wall defects in our ν ¼ 2=3 trenches. Additionally, Y1 and Y2

represent Abelian fields that correspond to charge-2e=3 and 4e=3
excitations in our quantum Hall setup. If one ignores the confined

excitation ~X, the remainder is a pure Abelian Z3 theory with only

1, Y1, and Y2 particles.

SUð2Þ4 with Z boson condensed

Field 1 X
∼

Y1 Y2

h 0 Ill-defined 1=3 1=3
d 1

ffiffiffi

3
p

1 1

Fussion rules

Y1 × Y2 ∼ 1 X
∼

× X
∼

∼ 1þ Y1 þ Y2

Y1 × Y1 ∼ Y2 X
∼

∼ Y1 ∼ X
∼

Y2 × Y2 ∼ Y1 X
∼

× Y2 ∼ X
∼

TABLE IV. The fields of Fib, along with their corresponding

conformal spin h, quantum dimension d, and nontrivial fusion

rule. This TQFT arises from SUð2Þ3 ⊗ SUð2Þ1 upon condensing

the boson ðξ; ηÞ in Table II and describes the topologically

ordered sector of the Fibonacci phase in our ν ¼ 2=3 setup.

Fib c ¼ 14=5

Field 1 ε

h 0 2=5
d 1 φ

Fusion rule

ε × ε ∼ 1þ ε
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this field is indeed bosonic.) Aside from the identity, we

need only consider three fields after condensation—ðε; 1Þ,
ðε; ηÞ, and ðξ; 1Þ—since all others are related to these by the

condensed boson. The latter two are, however, confined as

one can deduce by examining their conformal spin before

and after fusing with ðξ; ηÞ. The lone deconfined field that

remains is ðε; 1Þ, which is described by a pure Fibonacci

theory. Table IV summarizes the main features of this

TQFT, denoted here by “Fib.” This theory is analogous to

that describing the descendant Fibonacci phase that we

obtained by hybridizing arrays of Z3 zero modes in our

parent ν ¼ 2=3 system.

While it is not yet apparent, the condensation transitions

that we discussed separately in the parent and descendant

phases are, in fact, intimately related. This connection

becomes evident upon examining (from a particular point

of view) the structure of the Mð6; 5Þ minimal model

describing the boundary between the pure SUð2Þ4 and

SUð2Þ3 ⊗ SUð2Þ1 phases prior to the transitions.

Appendix B shows that at that boundary the Z and

ðξ; ηÞ bosons are identified, which is reasonable since their

SU(2) spin labels, conformal spins, and quantum dimen-

sions all match. Thus, one can move the Z boson smoothly

from the parent to the descendant region, where it

“becomes” ðξ; ηÞ—or vice versa. It follows that the tran-

sitions in the parent and descendant phases are not

independent but rather can be viewed as arising from the

condensation of a single common boson.

Figure 10 summarizes the final physical picture that we

obtain. The left-hand side represents the parent SUð2Þ4
with a descendant SUð2Þ3 ⊗ SUð2Þ1 setup analyzed by

Ludwig et al. [91], which exhibits quite different physics

from what we captured in this paper. Condensing a single

boson throughout that system leads to the parent Z3 with

descendant Fib configuration illustrated on the right side of

the figure. These parent and descendant states do, by

contrast, closely relate to our ν ¼ 2=3 quantum Hall setup

with superconducting islands that drive the interior into the

Fibonacci phase, in the sense that both systems exhibit the

same deconfined bulk excitations in each region. There are,

however, subtle differences between the system on the right

side of Fig. 10 and our specific quantum Hall architecture

that deserve mention.

First, the Abelian Z3 TQFT technically does not quite

describe the spin-unpolarized ν ¼ 2=3 state: The theory

must be augmented to accommodate the electron in this

fermionic quantum Hall phase [159]. Moreover, the edge

structure for the Z3 TQFT admits a chiral central charge

c ¼ 2, whereas the ν ¼ 2=3 state has c ¼ 0 (because there

are counterpropagating modes). Both of these issues are

relatively minor for the purposes of our discussion, how-

ever, and in any case can easily be sidestepped by

considering a bosonic parent system. In particular, as

alluded to earlier, the bosonic (221) state—which provides

an equally valid backdrop for the descendant Fibonacci

phase—exhibits a chiral central charge of c ¼ 2 and is

described by a Z3 TQFT with no modification. The Fib

TQFT denoted on the right side of Fig. 10 also does not

exactly describe our Fibonacci phase because our state

exhibits a local order parameter (and hence is not strictly

described by any TQFT). This difference poses a far more

minor issue than those noted above. Recall from Sec. VC

that superconducting vortices do not generate additional

nontrivial quasiparticles in the Fibonacci phase.

Consequently, the order-parameter physics “factors out”

and essentially decouples from the topological sector. More

formally, one can envision quantum disordering the super-

conductor by condensing vortices to eradicate the order

parameter altogether without affecting the quasiparticles

supported by the Fibonacci phase that we have con-

structed [162].

The TQFT perspective on our results espoused in this

section has a number of virtues. For one, it clearly

illustrates the simplicity underlying the end product of

our construction and also unifies several related works that

may, at first glance, appear somewhat distantly related.

Another benefit is that the condensation picture used

along the way naturally captures the confined non-

Abelian domain-wall defects supported by ν ¼ 2=3
trenches with superconductivity. More generally, viewing

Abelian phases as remnants of non-Abelian TQFTs as we

have done here may be useful in various other settings as a

way of similarly identifying nontrivial phases accessible

from interacting extrinsic defects.

VII. FIBONACCI PHASE FROM

UNIFORM TRENCHES

In Sec. II, we identified two closely linked routes to

spinless pþ ip superconductivity from an integer quantum

Hall system. The first utilized trenches with spatially

uniform Cooper-pairing and electron-backscattering per-

turbations present simultaneously; the second considered

trenches alternately gapped by pairing and backscattering,

yielding chains of hybridized Majorana modes. In either

case the trenches could be tuned to an Ising critical point, at

which interchain coupling then naturally generates

pþ ip superconductivity. To construct a superconducting

Z3 Read-Rezayi analogue (the Fibonacci phase), Secs. IV

and Vadopted the second approach and analyzed chains of

Z3 generalized Majorana modes nucleated in a ν ¼ 2=3
fractional quantum Hall fluid. This route enabled us to

exploit the results of Ref. [116], which derived the relation

between lattice and CFT operators at the Z3 parafermion

critical point for a single chain, to controllably study the 2D

coupled-chain system. Here we will argue that as in the

integer quantum Hall case the same physics can also be

obtained from spatially uniform ν ¼ 2=3 trenches. This

outcome is eminently reasonable since on the long length

scales relevant at criticality the detailed structure of the

trenches should become unimportant.
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The analysis proceeds in two stages. First, we will use

results from Lecheminant, Gogolin, and Nersesyan (LGN)

[163] to argue that a ν ¼ 2=3 trench with uniform pairing

and backscattering perturbations also supports a Z3 paraf-

ermion critical point. The relation between bosonized fields

and CFT operators at criticality will then be deduced by

coarse graining the corresponding relationship obtained in

Sec. IV in the spatially nonuniform case. At that stage our

results from Sec. V carry over straightforwardly, allowing

us to immediately deduce the existence of a Fibonacci

phase in the uniform-trench setup.

We start by reviewing the critical properties [163] for a

toy Hamiltonian of the form

HLGN ¼
Z

x

�

v

2π
½ð∂xϕÞ2 þ ð∂xθÞ2� þ u1 cosð3θÞ

þ u2 cosð3ϕÞ
�

; (88)

where the fields satisfy [164]

½θðxÞ;ϕðx0Þ� ¼ −
2πi

3
Θðx0 − xÞ: (89)

The u1;2 perturbations in HLGN are both relevant at the

Gaussian fixed point and favor locking θ and ϕ to the three

distinct minima of the respective cosines. Because of the

nontrivial commutator above, however, these terms com-

pete and favor physically distinct gapped phases—very

much like the tunneling and pairing terms in our quantum

Hall trenches. Using complementary nonperturbative meth-

ods, LGN showed that the self-dual limit corresponding to

u1 ¼ u2 realizes the same Z3 parafermion critical point as

the three-state quantum clock model [163].

To expose the connection to our quantum Hall setup,

consider the Hamiltonian introduced in Sec. IVA for a

single trench in a ν ¼ 2=3 fluid with backscattering and

Cooper pairing induced uniformly:

H ¼
Z

x

�

X

a¼ρ;σ

va

2π
½ð∂xϕaÞ2 þ ð∂xθaÞ2�

þ 4 cos θσ½t sinð3θρÞ − Δ sinð3ϕρÞ�
�

: (90)

As before ϕρ=σ and θρ=σ represent fields for the charge and

spin sectors, while t and Δ denote the tunneling and pairing

strengths. In writing the first line of H we have assumed a

particularly simple form for edge density-density inter-

actions that can be described with velocities vρ=σ. Upon
comparison of Eqs. (42) and (89) one sees that the charge-

sector fields obey the same commutation relation as those

in the model studied by LGN. Furthermore, modulo the

spin-sector parts, the u1;2 perturbations in Eq. (88) have the
same form as the tunneling and pairing terms above. These

similarities hint at common critical behavior for the two

models.

The simplest way to make this relation precise is to

include a perturbation that explicitly gaps the spin sector

(while leaving the charge sector intact). One such pertur-

bation arises from correlated spin-flip processes described

by δH ¼
R

xðΓψ†

1↑ψ
†

2↓ψ2↑ψ1↓ þ H:c:Þ, where ψ1α and ψ2α

are spin-α electron operators acting on the top and bottom

sides of the trench, respectively. In bosonized language this

term takes the form

δH ¼ uσ

Z

x

cosð2θσÞ: (91)

Suppose that the coupling uσ dominates over t and Δ and

drives an instability in which θσ is pinned by the cosine

potential above. At low energies the Hamiltonian H in

Eq. (90) that describes the remaining charge degrees of

freedom then maps onto the LGN Hamiltonian in Eq. (88).

Consequently, the self-dual critical point at which jtj ¼ jΔj
is likewise described by Z3 parafermion CFT.

For the following reasons, we believe that it is likely that

the same critical physics arises without explicitly invoking

the uσ perturbation. Recall that both t and Δ favor pinning

the spin-sector field θσ in precisely the same fashion but

gap the charge sector in incompatible ways [see Eqs. (44)

and (45)]. Suppose that we start from a phase in which

tunneling t gaps both sectors. Increasing Δ at fixed t must

eventually induce a phase transition in the charge sector.

Provided the spin sector remains gapped throughout, it

suffices to replace the cos θσ term in Eq. (90) by a constant

across the transition. The model then once again reduces to

HLGN and hence exhibits a Z3 parafermion critical point at

jtj ¼ jΔj. We stress that although it is difficult to make

rigorous statements about this nontrivial, strongly coupled

field theory, this outcome is nevertheless intuitively very

natural given our results for criticality in spatially modu-

lated trenches.

Our primary interest lies in “stacking” such critical 1D

systems to access new exotic 2D phases. Physical inter-

chain perturbations can easily be constructed in terms of

bosonized fields, as in Sec. V, although at the Z3 paraf-

ermion critical point these fields no longer constitute the

right low-energy degrees of freedom. An essential technical

step is identifying the correspondence between bosonized

and CFT operators at criticality so that one can systemati-

cally disentangle high- and low-energy physics. We will

now deduce this relationship for quasiparticle creation

operators that are relevant for interchain processes in our

ν ¼ 2=3 setup with uniform trenches.

To do so we first revisit the nonuniform system analyzed

in Sec. IV. By combining Eqs. (48), (60a), and (60b), we

obtain the following expansions valid at the parafermion

critical point:

UNIVERSAL TOPOLOGICAL QUANTUM COMPUTATION ... PHYS. REV. X 4, 011036 (2014)

011036-31



ei½ϕ1↑ðxjÞþϕ1↓ðxjÞ� ∼ að−1ÞjψR þ bσRϵL þ � � � ;
ei½ϕ2↑ðxjÞþϕ2↓ðxjÞ� ∼ eiπ=3½að−1ÞjψL þ bσLϵR� þ � � � :

(92)

We remind the reader that the operators on the left-hand

side create charge-2e=3 quasiparticles on the top and

bottom trench edges, at position xj in domain wall j.
[ϕ1=2α relates to the charge- and spin-sector fields through

Eqs. (41).] Moreover, on the right side a and b again denote

nonuniversal constants while the ellipses represent terms

with subleading scaling dimensions. Connection with the

uniform trench can now be made upon coarse graining the

expressions above—specifically, by averaging over sums

and differences of quasiparticle operators at adjacent

domain walls in a given unit cell. (Each unit cell contains

two domains, as shown in Fig. 5.) The oscillating terms

clearly cancel for the sum, leaving

ei½ϕ1↑ðxÞþϕ1↓ðxÞ� ∼ σRϵL þ � � � ;
ei½ϕ2↑ðxÞþϕ2↓ðxÞ� ∼ eiπ=3σLϵR þ � � � ; (93)

where x now denotes a continuous coordinate. One can

isolate the parafermion fields by instead averaging over

differences of quasiparticle operators at neighboring

domain walls, which yields

∂xe
i½ϕ1↑ðxÞþϕ1↓ðxÞ� ∼ ψR þ � � � ;

∂xe
i½ϕ2↑ðxÞþϕ2↓ðxÞ� ∼ eiπ=3ψL þ � � � : (94)

The extra derivatives on the left-hand side reflect the

fact that the parafermions acquire a relative minus sign

under parity P compared to the fields on the right sides of

Eqs. (93) [116]. More generally, the coarse-graining

procedure used here merely ensures that the quantum

numbers carried by the bosonized and CFT operators agree

with one another.

We are now in a position to recover the physics discussed

in Sec. V from a system of spatially uniform critical

trenches. Equations (93) and (94) allow us to construct

interchain quasiparticle hoppings that reproduce the λa;b
terms in Eq. (67). The effective low-energy Hamiltonians

in the two closely related setups are then identical—and

hence so are the resulting phase diagrams. In particular, as

Fig. 6(a) illustrates the uniform-trench system flows to the

Fibonacci phase if the interchain coupling λa > 0 domi-

nates. Determining the microscopic parameters (in terms of

the underlying electronic system) required to enter this

phase remains an interesting open issue, although such a

state is in principle physically possible in either setup that

we have explored.

VIII. SUMMARY AND DISCUSSION

The introduction to this paper provided a broad overview

of the main physical results derived here. Having now

completed the rather lengthy analysis, we will begin this

discussion with a complementary and slightly more tech-

nical summary.

Our setup begins with a spin-unpolarized ν ¼ 2=3
Abelian fractional quantum Hall state—also known as

the (112) state—as the backbone of our heterostructure.

The (112) state is a strongly correlated phase built from

spin-up and spin-down electrons partially occupying their

lowest Landau level. At the boundary with the vacuum, its

edge structure consists of a charge mode (described by

ϕ↑ þ ϕ↓) and a counterpropagating neutral mode

(described by ϕ↑ − ϕ↓). We first showed that a long

rectangular hole—a “trench”—in this fractional quantum

Hall system realizes a Z3 parafermion critical point when

coupled to an ordinary s-wave superconductor. This non-

trivial critical theory with central charge cL ¼ cR ¼ 4=5 is

well known from earlier studies of the three-state quantum

clock model, and moreover is important for characterizing

edge states of the Z3 Read-Rezayi phase whose properties

we sought to emulate. We presented two related construc-

tions. The first utilizes an alternating pattern of super-

conducting and nonsuperconducting regions in the trench,

as described in Sec. IV, to essentially engineer a nonlocal

representation of the three-state clock model. The second,

explored in Sec. VII, employs a “coarse-grained” variation

wherein the trench couples uniformly to a superconductor

throughout. Tuning to the Z3 parafermion critical point

follows by adjusting the coupling between domain walls

(in the case of modulated trenches) or electron tunneling

across the trench (in the uniform-trench setup). In both

scenarios, the neutral excitations are gapped out while the

charge modes provide the low-energy degrees of freedom.

One remarkable feature of our mapping is that we can

identify the relation between “high-energy” operators and

chiral fields describing low-energy physics near criticality,

given by Eqs. (27) for the lattice construction and Eqs. (93)

and (94) for the continuum version. This key technical step

enabled us to perform calculations parallel to those for the

coupled Majorana chains described in Sec. II—but at a

nontrivial strongly interacting critical point.

To construct a 2D non-Abelian phase reminiscent of the

Z3 Read-Rezayi state, we consider an array of these critical

trenches in the ν ¼ 2=3 quantum Hall fluid, with neighbor-

ing trenches coupled via charge-2e=3 quasiparticle hopping
(see Fig. 6 for the lattice setup). With the correspondence

between quasiparticle operators and CFT fields in hand, we

find that the second-most-relevant interchain coupling

corresponds to a term that couples the right-moving

parafermion field ψRðyÞ from trench y with the adjacent

left mover ψLðyþ 1Þ from trench yþ 1. This perturbation

gaps out each critical trench except for the first right mover

and the final left mover. The system then enters a stable 2D
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chiral topological state, as shown in Sec. V, which we

dubbed the Fibonacci phase. Since this phase exhibits a

bulk gap its topological properties are stable; therefore, it is

neither necessary to tune the individual chains exactly to

criticality nor to precisely set the most relevant interchain

coupling to zero.

We uniquely established the universal topological prop-

erties of the Fibonacci phase by identifying its twofold

ground-state degeneracy on a torus (which implies two

anyon species), fusion rules, and quantum dimensions via

the topological entanglement entropy. The quasiparticle

structure present here is elegant in its simplicity yet rich in

content, consisting of a trivial particle 1 and a Fibonacci

anyon ε obeying the simple fusion rule ε × ε ∼ 1þ ε. One

of the truly remarkable features of this state is that the

ability to exchange Fibonacci anyons, and to distinguish the

Fibonacci anyon from the vacuum, is sufficient to perform

any desired quantum computation in a completely fault-

tolerant manner [148,149].

The Fibonacci phase supports gapless edge excitations.

When this state borders the parent Abelian quantum Hall

fluid from which it descends [as in Fig. 1(b)], the edge

modes are described by a chiral Z3 parafermion CFT with

central charge c ¼ 4=5—exactly as in the Z3 Read-Rezayi

phase modulo the charge sector. The edge states arising at

the interface with the vacuum can be obtained upon

shrinking the outer Abelian quantum Hall liquid, thereby

hybridizing the parafermion and quantum Hall edge fields.

Thus, the Fibonacci-phase-to-vacuum edge is roughly the

product of the Abelian quantum Hall edge and the

parafermion theory. If the Fibonacci phase descends from

a bosonic analogue of the spin-unpolarized ν ¼ 2=3 state,

i.e., the bosonic (221) state, then the boundary with the

vacuum exhibits edge modes described by the G2 Kac-

Moody algebra at level one. This fully chiral edge theory

has central charge c ¼ 14=5, contains two primary fields

associated with the bulk excitations 1 and ε, and occurs also

in the pure Fibonacci topological quantum field theory

discussed in Sec. VI. If instead the Fibonacci phase

emerges out of the fermionic (112) state, then the corre-

sponding edge is not fully chiral and does not, in general,

admit a decomposition into independent left and right

movers. However, we find that the edge theory may be

reconstructed such that it factorizes into two left-moving

fermions with central charge cL ¼ 2 and a right-moving

sector identical to the bosonic case with central

charge cR ¼ 14=5.
Because of the superconductivity in our setup, the

Fibonacci phase admits gapless order-parameter phase

fluctuations but is otherwise fully gapped away from the

edge. Nevertheless, its low-energy Hilbert space consists of

a tensor product of states for a topologically trivial super-

conductor and those of a gapped topological phase. In this

sense the superconductivity is peripheral: It provides an

essential ingredient in our microscopic construction but

does not influence the Fibonacci phase’s universal topo-

logical properties. The separation of superconductivity and

topological properties here stands in stark contrast with the

case of a spinless pþ ip superconductor. There, an h=2e
superconducting vortex binds a Majorana zero mode and

thus exhibits many characteristics of σ particles (i.e., Ising

anyons), despite being logarithmically confined by order-

parameter energetics. If superconductivity is destroyed by

the condensation of double-strength h=e vortices, then the

h=2e vortex becomes a bona fide deconfined σ particle in

the resulting insulating phase. On the other hand, destroy-

ing superconductivity by condensing single-strength h=2e
vortices produces a trivial phase. The physics is completely

different in the Fibonacci phase, where an h=2e vortex

braids trivially with an ε particle. (Here we assume that the

vortex does not “accidentally” trap a Fibonacci anyon.)

Condensation of h=2e vortices therefore simply leaves the

pure Fibonacci phase with no residual order-parameter

physics. It is interesting to note that richer physics arises

upon condensing nh=2e vortices, which yields the

Fibonacci phase tensored with a Zn gauge theory; this

additional sector is, however, clearly independent of the

Fibonacci phase.

A number of similarities exists between our Fibonacci

phase and previously constructed models that harbor

Fibonacci anyons. We have already emphasized several

parallels with the Z3 Read-Rezayi state. Teo and Kane’s

coupled-wire construction of this non-Abelian quantum

Hall phase is particularly close in spirit to this paper (and

indeed motivated many of the technical developments used

here). The Z3 Read-Rezayi state, however, certainly rep-

resents a distinct state of matter with different universal

topological properties. For instance, there the fields ψ and σ

(with appropriate bosonic factors) represent deconfined,

electrically charged quasiparticles, whereas the Fibonacci

anyon ε provides the only nontrivial quasiparticle in the

Fibonacci phase. Fibonacci anyons also occur in the exactly

soluble lattice model of Levin and Wen [165]. Important

differences arise here, too: Their model is nonchiral and has

the same topological properties as two opposite-chirality

copies of the Fibonacci phase constructed in this paper.

(See also the related works of Refs. [166,167] for loop-gas

models that may support such a nonchiral phase.) Finally,

recent unpublished work by Qi et al. accessed a phase with

Fibonacci anyons using Zn lattice operators as building

blocks, similar to those that arise in our spatially modulated

trenches [168]. It would thus be interesting to explore

possible connections with our study.

We now turn to several other outstanding questions and

future directions raised by our results, placing particular

emphasis on experimental issues.

Realizing non-Abelian anyons with universal braid

statistics in any setting carries great challenges yet corre-

spondingly great rewards if those challenges can be over-

come. Our proposal is no exception. The price that one
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must pay to realize Fibonacci anyons as we envision here is

that a fractional quantum Hall system must intimately

contact an s-wave superconductor. For several reasons,

however, accessing the Fibonacci phase may be less

daunting than it appears. First of all, Abelian fractional

quantum Hall states appear in manymaterials—and not just

in buried quantum wells such as GaAs. Among several

possible canvases, graphene stands out as particularly

promising due to the relative ease with which a proximity

effect can be introduced [169–171]. Graphene can also be

grown on metallic substrates [172]; if such a substrate

undergoes a superconducting transition, a strong proximity

effect may result.

Another point worth emphasizing is that weak magnetic

fields are not required, which is crucial given that our

proposal relies on the fractional quantum Hall effect. This

robustness stems from the fact that superconducting vor-

tices in the Fibonacci phase need not carry topologically

nontrivial particles. Assuming that Fibonacci anyons do not

happen to energetically bind to vortex cores—which again

they need not—then any field strength up to the (type-II)

superconductor’s upper critical fieldHc2 should suffice. By

contrast, in the case of a spinless pþ ip superconductor,

the density of vortices must remain low because they

necessarily support Majorana modes. Appreciable tunnel-

ing between these modes, which will arise if the spacing

between vortices becomes too small, therefore destabilizes

the Ising phase.

We also reiterate that preparing precisely the somewhat

elaborate, fine-tuned setups explored here is certainly not

necessary for accessing the Fibonacci phase. Many of the

features we invoked in our analysis—including the multi-

trench geometry and all of the fine-tuning that went with

it—served purely as a theoretical crutch that enabled us to

decisively show that our model supports this state and

identify its properties. The Fibonacci phase is stable to (at

least) small perturbations, and the extent of its stability

remains a very interesting open question. It seems quite

possible that this stability regime extends across a large

swath of the parameter space for a quantum Hall state

coupled to a superconductor. Hinting at this robustness is

the fact that the Fibonacci phase that we have constructed is

actually isotropic and translationally invariant in the long-

wavelength limit. Hence, it is even possible that a com-

pletely “smeared” Abelian quantum Hall-superconductor

heterostructure enters this phase even in the absence of

trenches. Although the methods used in this paper are not

applicable to this case, it may be possible to study such a

scenario by applying exact diagonalization or the density-

matrix renormalization group to small systems of electrons

in the lowest Landau level. Numerical studies along these

lines are analogous to previous studies of the fractional

quantum Hall effect but with the added wrinkle that U(1)

charge-conservation symmetry is broken. This almost

entirely untapped area seems ripe for discovery.

As a final remark on experimental realizations, we stress

that superconductivity may be altogether inessential—even

at the microscopic level. To see why, it is useful to recall

that the superconductors in our construction simply provide

a mechanism for gapping the edge states opposite a trench

that is “incompatible”with the gapping favored by ordinary

electronic backscattering. When balanced, these competing

terms thus drive the system to a nontrivial critical point that

we bootstrapped off of to enter the Fibonacci phase. In

beautiful theoretical studies, Refs. [58,83] showed that

similar incompatible gap-generating processes can arise in

certain quantum Hall bilayers without Cooper pairing; for

instance, if one cuts a trench in the bilayer, electrons can

backscatter by tunneling from “top to bottom” or “side to

side.” It may thus be possible to realize the Fibonacci phase

in a bilayer fractional quantum Hall setup by regulating the

interlayer and intralayer tunneling terms along trenches,

following Refs. [58,83]. Such an avenue would provide

another potentially promising route to Fibonacci anyons

that is complementary to the superconductor-quantum Hall

heterostructures that we focused on here.

Our construction naturally suggests other interesting

generalizations as well. The ν ¼ 2=3 state is not the

only spin-singlet fractional quantum Hall phase—

another can occur, e.g., at ν ¼ 2=5. These systems

may provide equally promising platforms for the

Fibonacci phase or relatives thereof. Moreover, our

construction is by no means limited to fermionic

quantum Hall phases. As we noted earlier the bosonic

(221) state, for instance, leads to nearly identical

physics (which is actually simpler in some respects).

By following a similar route to that described here, it

may be possible to build on these quantum Hall states

to construct other non-Abelian topological phases,

perhaps realizing Zk parafermions, SUð2Þk, or yet more

exotic phases.

To conclude, we briefly discuss the longer-term

prospects of exploiting our model for quantum compu-

tation. Quantum information can be encoded in a many-ε

state using either a dense or sparse encoding. There are

two states of three ε particles with total charge ε and also

two states of four ε particles with total charge 1, and

either set can be used as a qubit. The unitary trans-

formations generated by braiding are dense within the

projective unitary group on the many-anyon Hilbert

space and, therefore, within the unitary group on the

computational subspace [148,149]. However, this pre-

supposes that we can create pairs of Fibonacci anyons at

will, and braid and detect them—which is challenging

since they carry neither electric charge nor any flux. In

this respect, the rather featureless ε particles are analo-

gous to ψ particles in an Ising-anyon phase. This

analogy suggests the following approach. Consider the

case of a single Ising or three-state clock model on a

ring. If we make one of the bond couplings equal to −∞,
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then it breaks the ring into a line segment, and the spins

at the two ends are required to have opposite values. In

the Ising case, if one end is “spin-up,” the other is

therefore “spin-down,” and vice versa, forcing a ψ into

the chain. However, this particle is not localized and can

move freely. If we now couple many such chains, some

of which have ψ’s, then they can also move between

chains and annihilate. However, we can in principle trap

a ψ by reducing the gap at various locations. In the Z3

clock case, if one end of a chain is A, then the other end

is “not-A.” (Here we are calling the three states A, B, and
C.) This boundary condition forces an ε particle into a

single chain. It is plausible that when the chains are

coupled through their parafermion operators, these ε

particles will be able to move freely between chains.

They could then similarly be trapped by locally sup-

pressing the gap, as in the Ising case. Showing that this

scenario is correct or designing an alternate protocol for

manipulating Fibonacci anyons poses an important

challenge for future work.
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APPENDIX A: SYMMETRIES IN THE

QUANTUM HALL SETUP

The quantum clock model reviewed in Sec. III exhibits a

number of symmetries, preserving Z3 and Zdual
3 trans-

formations, translations Tx, parity P, charge conjugation C,
and a time-reversal transformation T . In this Appendix we

illustrate that each of these symmetries exhibits a physical

analogue in the quantum Hall architectures discussed in

Secs. IVand V. To this end consider the geometry of Fig. 5,

in which a single trench hosted by a ν ¼ 2=3 system yields

a chain of coupled Z3 generalized Majorana operators; the

Hamiltonian describing the hybridization of these modes is

given in Eq. (57). Below we identify the realization of the

clock-model symmetries in this specific setup. The results

apply straightforwardly to the multitrench case as well.

Note that we frequently make reference to the bosonized

fields and to the integer operators describing their pinning

induced by tunneling t or pairing Δ, defined in Sec. IV.

(i) In the limit where Δ ¼ t ¼ 0, the electron number on

each side of the trench is separately conserved. This is

reflected in independent global Uð1Þ symmetries that

send θρ → θρ þ a1 and ϕρ → ϕρ þ a2 for arbitrary

constants a1;2. Restoring Δ and t to nonzero values

breaks these continuous symmetries down to a pair of

discrete Z3 symmetries, which is immediately appar-

ent from Eq. (43). The remaining invariance under

ϕρ → ϕρ þ 2π=3, which transforms n̂j → 1þ n̂j, cor-
responds to the clock-model symmetry Z3; similarly,

the transformationθρ → θρ þ 2π=3 sends m̂j → 1þ m̂j

and corresponds to Z
dual
3 .

(ii) The symmetry Tx corresponds to a simple translation

along the trench that shifts m̂j → m̂jþ1 and n̂j → n̂jþ1.

(iii) In the clock model, parityP corresponds to a reflection

that interchanges the generalized Majorana operators

αRj and αLj. Since the analogous operators defined in

Eqs. (49) involve quasiparticles from opposite sides of

the trench, here the equivalent of P corresponds to a π

rotation in the plane of the quantum Hall system. We

seek an implementation of this rotation that leaves the

total charge and spin densities ρþ and Sþ invariant,

changes the sign of the density differences ρ− and S−,
and preserves the bosonized form of δH in Eq. (43).

The following satisfies all of these properties:

θρðxÞ → −θρð−xÞ − π=3, ϕρðxÞ→ ϕρð−xÞ þ 4π=3,
θσðxÞ → −θσð−xÞ, and ϕσðxÞ→ ϕσð−xÞ. (We have

included the factor of 4π=3 in the transformation of φρ

so that the generalized Majorana operators in our

quantum Hall problem transform as in the clock model

under P. This factor transforms all electron operators

trivially and thus corresponds to an unimportant global

gauge transformation.) Taking the rotation about the

midpoint of a pairing-gapped section, the integer

operators transform as M̂ → −M̂, m̂j → −m̂−j−1,

and n̂j → n̂−j þ M̂ þ 2 under this operation.

(iv) Charge conjugation C arises from a particle-hole

transformation on the electron operators ψ1α → ψ†
1α

and ψ2α → −ψ†
2α, which leaves the perturbations in

Eq. (40) invariant. In bosonized language, this oper-

ation maps θρ → −θρ − π=3, ϕρ → −ϕρ þ π=3,

θσ → −θσ, and ϕσ → −ϕσ . The integer operators in

turn transform as M̂ → −M̂, m̂j → −m̂j, and n̂j → −n̂j
under C. Note that it is easy to imagine adding perturba-

tions that violate this symmetry in the original edge

Hamiltonian (e.g., spin flips acting on one side of the

trench); however, such perturbations project trivially into

theground-statemanifold.Hence,oneshouldviewC asan
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emergent symmetry valid in the low-energy subspace in

which we are interested.

(v) Finally, for the equivalent of the clock-model sym-

metry T we need to identify an antiunitary trans-

formation exhibited by our ν ¼ 2=3 setup that squares
to unity in the ground-state subspace and swaps the

αRj and αLj operators. Physical electronic time re-

versal T ph composed with a reflection Ry about the

length of the trench (which can be a symmetry for

electrons in a magnetic field) has precisely these

properties—i.e., T ¼ T phRy. This operation trans-

forms the electron operators as ψ1α → iσ
y
αβψ2β and

ψ2α → iσ
y
αβψ1β and sends the bosonized fields to

θρ → θρ, ϕρ → −ϕρ þ π=3, θσ → −θσ , and

ϕσ → ϕσ þ π. The integer operators correspondingly

transform under T as M̂ → −M̂, m̂j → m̂j þ M̂, and

n̂j → −n̂j. Notice that whereas this composite oper-

ation squares to −1 when acting on the original

electron operators, in the projected subspace

ðT phRyÞ2 ¼ þ1 as desired.

APPENDIX B:Mð6;5Þ EDGE STRUCTURE

VIA BOSON CONDENSATION

This Appendix deals with the setup shown in the left side

of Fig. 10, in which a parent state described by an SUð2Þ4
TQFT hosts a descendant SUð2Þ3 ⊗ SUð2Þ1 phase [91];

see Tables I and II for summaries of the field content in

each region. Our specific goal is to substantiate the claim

made in Sec. VI that the Z and ðξ; ηÞ bosons supported in

the bulk of the parent and descendant states, respectively,

are equivalent at their interface. [We are again using

notation where fields from SUð2Þ3 ⊗ SUð2Þ1 are labeled

ðA;BÞ, with A in SUð2Þ3 and B in SUð2Þ1.] To meet this

objective we will describe how one can recover, via edge

boson condensation, the Mð6; 5Þ minimal model describ-

ing gapless modes at the interface between the parent and

descendant phases. As we will see, this viewpoint makes

the identification of the Z and ðξ; ηÞ bosons immediately

obvious.

First, observe that the gapless modes bordering SUð2Þ4
and SUð2Þ3 ⊗ SUð2Þ1 topological liquids are naively

captured by an SUð2Þ3 ⊗ SUð2Þ1 ⊗ SUð2Þ4 CFT, where

the overline indicates a reversed chirality. For concreteness

we will assume that the sector with an overline describes

left movers while others correspond to right movers.

Adopting similar notation as above, we describe fields

from the product edge theory as triplets of fields from the

constituent sectors, e.g., ðε; η; XÞ. (Note that this Appendix
will employ the same symbols for primary fields at the

interface and bulk anyons to facilitate the connection with

Sec. VI.) In total, 40 such triplets exist—far more than the

ten fields found in Mð6; 5Þ. Any nonchiral boson in this

edge theory can, however, condense at the interface, thereby

reducing the number of distinct deconfined fields. To avoid

possible confusion, we stress that in contrast to Sec. VI we

assume throughout this Appendix that the bulk properties of

the parent and descendant phases remain intact.

Ignoring chirality for the moment, we find only three

such bosonic combinations (i.e., triplets with integer

conformal spin and quantum dimension d ¼ 1). They

are ð1; 1; ZÞ, ðξ; η; 1Þ, and ðξ; η; ZÞ. The right- and left-

moving conformal dimensions of these fields are respec-

tively given by (0, 1), (1, 0), and (1, 1). Consequently, the

first two fields form chiral bosons and so cannot condense

without an accompanying bulk phase transition in the

parent or nucleated liquid—which again we preclude here.

The last field ðξ; η; ZÞ represents a nonchiral Z2 boson, and

when condensed results in the Mð6; 5Þ minimal model on

the edge, as we now argue.

To see this result note that one can divide the 40 fields of

SUð2Þ3 ⊗ SUð2Þ1 ⊗ SUð2Þ4 into sets of fields Ai and Bi

(with i ¼ 1; :::::; 20) related by fusion with the Z2 boson

ðξ; η; ZÞ which we now assume condenses. That is,

Ai × ðξ; η; ZÞ ∼ Bi;

Bi × ðξ; η; ZÞ ∼ Ai: (B1)

This identification reduces the number of fields from 40 to

20—still more than are present in the Mð6; 5Þ minimal

model. There is, however, an additional criterion that one

needs to consider. Namely, only when the conformal spins

of Ai and Bi match (mod 1) can a well-defined spin be

assigned to the new field Ai ≡ Bi following the condensa-

tion of ðξ; η; ZÞ; otherwise, those fields become confined.

One can readily verify that there are ten pairs of fields Ai

and Bi for which the conformal spins agree in the above

sense, and these deconfined fields correspond to the ten

fields of the Mð6; 5Þ minimal model.

This picture of Mð6; 5Þ as an SUð2Þ3 ⊗ SUð2Þ1 ⊗
SUð2Þ4 edge theory with ðξ; η; ZÞ condensed is very useful.
In particular, since ð1; 1; ZÞ × ðξ; η; ZÞ ∼ ðξ; η; 1Þ, it fol-

lows that the Z and ðξ; ηÞ bosons native to the parent and

descendant phases are indeed identified at their interface,

which is what we set out to show.
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