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Abstract Let K/k be an extension of number fields, and let P(t) be a quadratic
polynomial over k. Let X be the affine variety defined by P(t) = NK/k(z).
We study the Hasse principle and weak approximation for X in three cases. For
[K : k] = 4 and P(t) irreducible over k and split in K , we prove the Hasse principle
and weak approximation. For k = Q with arbitrary K , we show that the Brauer-
Manin obstruction to the Hasse principle and weak approximation is the only one. For
[K : k] = 4 and P(t) irreducible over k, we determine the Brauer group of smooth
proper models of X . In a case where it is non-trivial, we exhibit a counterexample to
weak approximation.
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1022 U. Derenthal et al.

1 Introduction

Let K/k be an extension of number fields of degree n. When can values of a polynomial
P(t) over k be represented by norms of elements of K ? To answer this natural question,
we study solutions (t, z) ∈ k × K of the equation

P(t) = NK/k(z). (1)

This question is closely related to the study of the Hasse principle and weak
approximation (see the end of this introduction for a review of this terminology) on a
smooth proper model Xc of the affine hypersurface X ⊂ A1

k × An
k with coordinates

(t, z) = (t, z1, . . . , zn) defined by (1), via a choice of a basis ω1, . . . , ωn of K over k,
with NK/k(z) = NK/k(z1ω1 + · · · + znωn).

Colliot-Thélène conjectured that the Brauer–Manin obstruction to weak approxi-
mation is the only one on Xc (see [3]). This conjecture is known in the case where P(t)
is constant, thanks to work of Sansuc [19]; if additionally K/k is cyclic, it is known that
the Hasse principle (proved by Hasse himself [15, p. 150]) and weak approximation
hold. Other known cases of Colliot-Thélène’s conjecture, in some cases leading to a
proof of the Hasse principle and weak approximation, include the class of Châtelet sur-
faces ([K : k] = 2 and deg(P(t)) ≤ 4) [8,9], a class of singular cubic hypersurfaces
([K : k] = 3 and deg(P(t)) ≤ 3) [5] and the case where K/k is arbitrary and P(t) is
split over k with at most two distinct roots [4,16,21]. Finally, if one admits Schinzel’s
hypothesis, then the conjecture is known for K/k cyclic and P(t) arbitrary [10,12].
See for example [3, Introduction] and [1, Section 1] for a more detailed discussion of
these results and the difficulties of this problem.

The obvious next challenge is the case where P(t) is an irreducible quadratic
polynomial. Browning and Heath-Brown recently obtained a positive result in this
direction: they proved the Hasse principle and weak approximation for [K : k] = 4
and deg(P(t)) = 2 with P(t) irreducible over k and split in K , with k = Q. Their main
result [1, Theorem 1] therefore answers a question raised in [4, Section 2] positively
in the case k = Q. In this paper, we extend their work in several directions, using a
variety of different techniques.

We give a very short proof of this result for an arbitrary number field k. It is
independent of the work of Browning and Heath-Brown and gives a simple geometric
proof of their result. More specifically, we show that an open subset of X is a smooth
fibration in 3-dimensional quadrics defined by quadratic forms of full rank over a
conic. The result follows by applying the theorem of Hasse–Minkowski to the base
and to the fiber.

Theorem 1 Let P(t) be a quadratic polynomial that is irreducible over a number field
k and split in K with [K : k] = 4. Then the Hasse principle and weak approximation
hold for the variety X ⊂ A5

k defined by (1).

If the ground field is Q, we can prove a much more general result based on the
analytic work of Browning and Heath-Brown in [1, Theorem 2] and the descent method
of Colliot-Thélène and Sansuc:
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Universal torsors and values of quadratic polynomials 1023

Theorem 2 Let k = Q and K be any number field. Let P(t) ∈ Q[t] be an arbitrary
quadratic polynomial. Then the Brauer–Manin obstruction to the Hasse principle and
weak approximation is the only obstruction on any smooth proper model of X ⊂ An+1

Q
defined by (1).

Let X be the variety defined by Eq. (1) and let U ⊂ X be the open subvariety given
by P(t) %= 0. We prove that the variety Y defined by [1, (1.5)] is the restriction TU
of a universal torsor T over X to U , or a product of TU with a quasi-split torus. For
the variety Y , [1, Theorem 2] proves weak approximation using sieve methods from
analytic number theory, inspired by work of Fouvry and Iwaniec [13]. While one step
in Browning’s and Heath-Brown’s deduction of [1, Theorem 1] from [1, Theorem 2]
leads to their restriction to [K : Q] = 4, the combination of their analytic work with
descent theory gives our more general Theorem 2. We also generalize Theorem 2 to a
large class of multivariate polynomials P(t1, . . . , t") ∈ Q[t1, . . . , t"].

Note that the descent argument in our proof of Theorem 2 follows the proof of [16,
Theorem 2.2]. As pointed out by the referee, the more sophisticated method of [4]
would allow the treatment of smooth proper models of X ⊂ An+1

Q defined by the more
general equation

cP(t)n = NK/Q(z)

for any n ≥ 1, with c ∈ Q×, quadratic P(t) ∈ Q[t] and any number field K . See also
[24].

Our Theorem 2 then leads naturally to the question in which cases there may be
a Brauer–Manin obstruction. We give a complete analysis for [K : k] = 4 and P(t)
irreducible over k = Q. If P(t) is split in K , there is no Brauer–Manin obstruction
to weak approximation by [1, Theorem 1] or our Theorem 1, so that it is not very
surprising that the Brauer group of a smooth proper model of X is trivial in this case.
Otherwise, the Brauer group is sometimes non-trivial:

Theorem 3 Let P(t) be a quadratic polynomial that is irreducible over a number
field k and has splitting field L, and let [K : k] = 4. Let Xc be a smooth proper model
of X ⊂ A5

k defined by (1).
The Brauer group Br(Xc) contains non-constant elements if and only if the exten-

sion K/k is not Galois, P(t) is not split in K and the extension K · L/k is Galois
with Gal(K · L/L) ∼= Z/4Z.

In Sect. 5, we prove a more detailed version of Theorem 3 that includes an explicit
description of the Brauer group in the non-trivial case (Theorem 4). The calculations
are quite involved and it seems unlikely that similar detailed results can be obtained
for higher degree extensions.

As a corollary, we get the validity of the Hasse principle and weak approximation in
some new cases when the Brauer group is trivial (Corollary 3). In Sect. 6, we use our
explicit description of the Brauer group in the case where it is non-trivial to produce a
counterexample to weak approximation (explained by the Brauer–Manin obstruction).

Terminology For an algebraic variety Z defined over a number field k with algebraic
closure k, one says that the Hasse principle holds if

∏
v∈Ωk

Z(kv) %= ∅ (where Ωk
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1024 U. Derenthal et al.

is the set of places of k and kv is the completion of k at v) implies Z(k) %= ∅. One
says that weak approximation holds if Z(k) is dense in

∏
v∈Ωk

Z(kv) with the product
topology, via the diagonal embedding.

If Z is smooth and proper, one says that the Brauer–Manin obstruction to the Hasse
principle is the only one if (

∏
v∈Ωk

Z(kv))
Br(Z) %= ∅ implies that Z(k) %= ∅, and

that the Brauer–Manin obstruction to weak approximation is the only one if Z(k)

is dense in (
∏

v∈Ωk
Z(kv))

Br(Z). Here (
∏

v∈Ωk
Z(kv))

Br(Z) is the set of all (zv) ∈∏
v∈Ωk

Z(kv) satisfying
∑

v∈Ωk
invv(A(zv)) = 0 for each A in the Brauer group

Br(Z) = H2
ét(Z , Gm) of Z , where the map invv : Br(kv)→ Q/Z is the invariant map

from local class field theory.
The subgroup Br0(Z) of constant elements in the Brauer group is the image of the

natural map Br(k)→ Br(Z). The algebraic Brauer group Br1(Z) is the kernel of the
natural map Br(Z)→ Br(Z), where Z = Z ×k k.

2 Quadratic polynomials represented by a quartic norm

In this section, we give a very short proof of Theorem 1 that is independent of the work
of Browning and Heath-Brown [1] and generalizes it from Q to an arbitrary number
field k.

Proof of Theorem 1 Using a change of variables if necessary, we can assume that the
irreducible quadratic polynomial P(t) ∈ k[t] that is split in K (with [K : k] = 4) has
the form P(t) = c(t2 − a), with c ∈ k×, where a ∈ k× is not a square and

√
a ∈ K .

Write L = k(
√

a) ⊂ K .
Let U = {(t, z) : P(t) %= 0} ⊂ X . Let S ⊂ A2

k be the conic defined by the affine
equation NL/k(w) = c and let p : U → S be the morphism defined by

(t, z) ,→ (t −√a)−1 NK/L(z).

Theorem 1 holds by [8, Proposition 3.9], which is based on the theorem of Hasse–
Minkowski, since this is a smooth fibration in quadrics of dimension 3 over a base
satisfying weak approximation.

Indeed, the base S is a conic, where weak approximation holds, and the statement
regarding the fibers can be checked over an algebraic closure k of k. Here, we have

U = U ×k k ∼= {c(t2 − a) = u1u2u3u4} ⊂ A5
k
, S = S ×k k ∼= {w1w2 = c} ⊂ A2

k
,

with p mapping (t, u1, . . . , u4) ∈ U to ((t − √a)−1u1u2, (t + √a)−1u3u4) ∈ S.
Hence the fiber over (w1, w2) ∈ S is

{t −√a = w−1
1 u1u2, t +√a = w−1

2 u3u4} ⊂ A5
k
.

Eliminating t gives

{−2
√

a = w−1
1 u1u2 − w−1

2 u3u4} ⊂ A4
k
,
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Universal torsors and values of quadratic polynomials 1025

where the quadratic form in u1, . . . , u4 clearly has rank 4. Hence the fiber is a smooth
quadric of dimension 3. -.
Remark 1 The analog of Theorem 1 holds for global fields of positive characteristic
different from 2 as well. Indeed, it is not hard to see that our arguments and the proof
of [8, Proposition 3.9] remain valid for such fields.

3 Universal torsors

The basic strategy to prove Theorem 2 is based on the following result, which reduces
the problem of the Hasse principle and weak approximation on a variety to the same
questions on its universal torsors, where we have no Brauer–Manin obstructions. This
kind of result has been proved essentially by Colliot-Thélène and Sansuc in their semi-
nal paper [6]. However, they developed their theory under the simplifying assumption
that the varieties involved are proper. Skorobogatov developed a variant under less
stringent assumptions in [22]. Descent on open varieties also features in [11] and [3].
We will use the following variant:

Proposition 1 Let Z be a smooth, geometrically rational variety over a number field
k with algebraic closure k. Let Z = Z ×k k. Assume furthermore that k[Z ]× = k

×
,

that Pic(Z) is free of finite rank, that universal Z-torsors exist and that any universal
Z-torsor satisfies weak approximation. Then the Brauer–Manin obstruction to the
Hasse principle and weak approximation is the only one for any smooth proper model
Zc of Z.

The condition k[Z ]× = k
×

means that the only invertible regular functions on Z are
the constant ones. The proof of this proposition is straightforward; the key observation
is the fact that Z(Ak)

Br1(Z) is dense in (
∏

v Zc(kv))
Br(Zc) by [11, Proposition 1.1] (note

that Br(Zc) = 0), and the result then follows from descent theory and the implicit
function theorem.

The main result of this section is concerned with the existence of universal torsors
[6, (2.0.4)] over X as in (1) and their local description.

Let us first recall some more definitions. If k is a field and if A is an étale
k-algebra, then the k-variety RA/k(Gm,A) is defined via its functor of points: take
RA/k(Gm,A)(B) = (A ⊗k B)× functorially for every k-algebra B. The norm map
NA/k is defined as in [2, §12.2]. We denote the absolute Galois group of k by Γk .

Proposition 2 Let K/k be an extension of fields of degree n. Let P(t) be an irreducible
separable polynomial of degree r over k.

The variety X ⊂ An+1
k defined by (1) is smooth and geometrically integral, with

Pic(X) free of finite rank and k[X ]× = k
×

. Let U be the open subset of X defined by
P(t) %= 0. Then Pic(U ) = 0.

Let c ∈ k× be the leading coefficient of P(t), let L be the field k[t]/(P(t)) and let
η be the class of t in L. Let A = L ⊗k K . For any universal torsor T over X, there
exists a solution (ρ, ξ) ∈ L× × K× of the equation

cNL/k(ρ) = NK/k(ξ) (2)
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1026 U. Derenthal et al.

such that TU (its restriction to U) is isomorphic to the subvariety of A1
k× RA/k(Gm,A)

(with coordinates (t, z)) given by the equation

t − η = ρNA/L(z). (3)

Conversely, for any solution (ρ, ξ) ∈ L× × K× of (2), there is a universal torsor T
over X such that TU has such a description.

Using only the basic definitions, it is easy to see that one can specialize Eq. (3) as
follows in the two “extreme” cases:

(a) If P(t) splits completely in K , then TU is isomorphic to the sub-variety of A1
k ×

(RK/k(Gm,K ))r (with coordinates (t, x1, . . . , xr )) given by the equation

t − η = ρ

r∏

i=1

σ−1
i

(
NK/σi (L)(xi )

)
(4)

where σ1, . . . , σr is a set of representatives of Γk/ΓL .
(b) If P(t) remains irreducible in K , then TU is isomorphic to the subvariety of A1

k ×
RF/k(Gm,F ) (with coordinates (t, x)) given by the equation

t − η = ρNF/L(x) (5)

where F = L · K .

The proof of Proposition 2 is an adaptation of [16, Theorem 2.2] and will occupy
most of the remainder of this section. The k-variety X can be described by an equation
of the form

c
r∏

i=1

(t − ηi ) = u1 · · · un (6)

where η1, . . . , ηr are the embeddings of η in k. We note that X is smooth because
P(t) is separable. Consider the morphism p : X → A1

k given by (t, x) ,→ t . Over k,
it has precisely r reducible fibers Xi , for i = 1, . . . , r , over t = ηi . Each of these has
n irreducible components Di, j = {t = ηi , u j = 0} for j = 1, . . . , n. Let U0 be the
open subset of A1

k where P(t) %= 0 and let U = p−1(U0) ⊂ X . We have

U = U ×k k ∼= (A1
k
\ {η1, . . . , ηr })×Gn−1

m,k
,

so that Pic(U ) = 0.
We have k[X ]× = k

×
. Indeed, the generic fiber of X → A1

k
is Gn−1

m,k(t)
. Therefore,

any f ∈ k[X ]× has the form f = g(t)um1
1 · · · umn

n with g ∈ k(t) and m1, . . . , mn ∈ Z.
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Universal torsors and values of quadratic polynomials 1027

If g(t) has a root or pole in some t0 /∈ {η1, . . . , ηr }, then f or f −1 is not regular in a
point on p−1(t0). Otherwise, we have

g(t) = c′
r∏

i=1

(t − ηi )
ei

for some c′ ∈ k
×

and e1, . . . , er ∈ Z. Then

div( f ) =
r∑

i=1

n∑

j=1

(ei + m j )Di, j ,

so f ∈ k[X ]× if and only if e1 = · · · = er = −m1 = · · · = −mn . By (6), this is
equivalent to saying that f is a constant in k

×
.

By descent theory [6, Corollary 2.3.4], universal torsors over X exist if and only if
the exact sequence of Γk-modules

1 → k
× → k[U ]× → k[U ]×/k

× → 1 (7)

is split.
It is easy to see that the abelian group k[U ]×/k

×
is free of rank r +n−1, generated

by the classes of the functions t−η1, . . . , t−ηr , u1, . . . , un with an obvious Γk-action
and the relation

r∑

i=1

[t − ηi ]−
n∑

j=1

[u j ] = 0 (8)

because of the equation defining X .
The exact sequence (7) is split if and only if the classes can be lifted to k[U ]× in a

Γk-equivariant way, via a map

φ : k[U ]×/k
× → k[U ]×, [t − η] ,→ ρ−1(t − η), [u1] ,→ ξ−1u1 (9)

where ρ ∈ L× and ξ ∈ K×. Because of the unique relation (8), the pair (ρ, ξ) ∈
L× × K× defines such a splitting if and only if it satisfies (2).

We now want to apply [6, Theorem 2.3.1, Corollary 2.3.4] for the local description of
universal torsors over X . We will describe a morphism of tori d : M → T such that its
dual map of characters fits into the following commutative diagram of Γk-equivariant
homomorphisms.

0 −−−−→ T̂
d̂−−−−→ M̂ −−−−→ Pic(X) −−−−→ 0

∼
)i ∼

) j
∥∥∥

1 −−−−→ k[U ]×/k
× div−−−−→ DivX\U (X) −−−−→ Pic(X) −−−−→ 0
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1028 U. Derenthal et al.

Here, the second row is exact because Pic(U ) = 0 and k[X ]× = k
×

.
TheΓk-module k[U ]×/k

×
is isomorphic to the module of characters of the algebraic

k-torus T ⊂ RL/k(Gm,L)× RK/k(Gm,K ) with coordinates (z1, z2) given by

NL/k(z1) = NK/k(z2).

Indeed, the character group T̂ is the quotient of Z[Γk/ΓL ] ⊕ Z[Γk/ΓK ] with the
diagonal Γk-action by the relation

∑

σΓL∈Γk/ΓL

σΓL =
∑

γΓK∈Γk/ΓK

γΓK .

The isomorphism i : T̂ → k[U ]×/k
×

is given by

i(σΓL) = [t − σ (η)], i(γΓK ) = [γ (u1)].

The abelian group DivX\U (X) is free of rank rn, generated by Di, j for i = 1, . . . , r
and j = 1, . . . , n. There is a bijection Γk/ΓL × Γk/ΓK → {Di, j } defined by
(σΓL , γΓK ) ,→ {t = σ (η), γ (u1) = 0} that is compatible with the action ofΓk , acting
diagonally on the left hand side. Recalling A = L ⊗k K , this shows that DivX\U (X)

is isomorphic to the module of characters of the k-torus M = RA/k(Gm,A). Let
j : M̂ → DivX\U (X) be this isomorphism.

Consider the homomorphism div : k[U ]×/k
× → DivX\U (X) that maps a function

to its divisor. We have

div ([t − η]) =
n∑

j=1

D1, j , div ([u1]) =
r∑

i=1

Di,1.

Therefore, the abelian group Pic(X) is free of rank (r − 1)(n − 1), with a basis
consisting of the classes [Di, j ] for i = 1, . . . , r − 1 and j = 1, . . . , n − 1. Now div
induces a homomorphism on the character modules d̂ : T̂ → M̂ . The dual of this
homomorphism is then given by the morphism of k-tori

d : M → T, z ,→
(
NA/L(z), NA/K (z)

)
.

Let S be the Néron–Severi torus dual to the Γk-module Pic(X), so that we have an
exact sequence of tori

1 → S → M → T → 1.

This makes M into a T -torsor under S.
We now describe the map U → T induced by the splitting φ as in (9) by a choice

of (ρ, ξ) ∈ L× × K× satisfying (2). The induced map is given by

U → T, (t, x) ,→ (ρ−1(t − η), ξ−1x),
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and it is easy to see that the image is in T using the equation of X and the condition (2).
Therefore, the image of U in T is isomorphic to the subvariety of A1

k × T with
coordinates (t, z1, z2) defined by

t − η = ρz1.

By [6, Theorem 2.3.1, Corollary 2.3.4], any universal torsor TU over U is the
pullback of a torsor M from T to U . Our computations show that it is isomorphic
to the subvariety of A1

k × RA/k(Gm,A) with coordinates (t, z) defined by (4). This
completes the proof of Proposition 2. !

Remark 2 One can determine equations for universal torsors T over the smooth locus
Xsm of the variety X defined by (1) even if P(t) is not irreducible over k; note that
X is not smooth if P(t) is not separable. Then Pic(Xsm) is a finitely generated (but
not necessarily free) abelian group. So T will be a torsor over Xsm under the group of
multiplicative type that is dual to Pic(Xsm).

The result is as follows: assume that

P(t) = cP1(t)e1 · · · Pd(t)ed

for c ∈ k×, some irreducible monic polynomials Pi (t) ∈ k[t] and positive integers
ei . Write Li = k[t]/(Pi (t)) and let ηi be the class of t in Li . For i = 1, . . . , d,
consider the étale Li -algebra Ai = Li ⊗k K . Let U ⊂ Xsm be the open subvariety
given by P(t) %= 0. For any universal torsor T over Xsm, there exists a solution
(ρ1, . . . , ρd , ξ) ∈ L×1 × · · ·× L×d × K× of the equation

cNL1/k(ρ1)
e1 · · · NLd/k(ρd)ed = NK/k(ξ) (10)

such that TU is isomorphic to the subvariety of A1
k ×

∏d
i=1 RAi /k(Gm,Ai ) with coor-

dinates (t, z1, . . . , zd) given by the system of equations

t − ηi = ρi NAi /Li (zi ) for 1 ≤ i ≤ d.

Conversely, for any solution of (10), there is a universal torsor T over Xsm with such
a local description.

Note that [16, Theorem 2.2] is a special case of this result. The proof is an adaptation
of the proof of [16, Theorem 2.2] or Proposition 2.

In case that k is a number field, we can link the existence of universal torsors as
in Proposition 2 to the absence of Brauer–Manin obstructions on X . We have the
following general statement, suggested to us by the referee:

Lemma 1 Let X be a smooth, geometrically integral variety over a number field k
such that k[X ]× = k

×
. Assume that Pic(X) is a finitely generated abelian group.

If there is no Brauer–Manin obstruction to the Hasse principle on a smooth proper
model of X, then universal torsors over X exist.
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1030 U. Derenthal et al.

Proof Since Pic(X) is finitely generated, there exists an open subset U ⊂ X such
that Pic(U ) = 0. By [6, Proposition 2.2.8], universal X -torsors exist if and only if the
exact sequence

1 → k
× → k[U ]× → k[U ]×/k

× → 1

of Galois modules is split. The same result applies, of course, to any smooth proper
model Xc of X . Hence universal X -torsors exist if and only if universal Xc-torsors
exist; by [23, Proposition 6.1.4], this is the case when Xc(Ak)

Br(Xc) %= ∅. -.

4 Quadratic polynomials represented by a norm over Q

Let k = Q. As before, we can assume without loss of generality that P(t) = c(t2−a)

with c ∈ Q× and a ∈ Q, but now we do not assume that P(t) is split in K . Using the
deep work of Browning and Heath-Brown and our description of universal torsors, we
can prove the following result:

Proposition 3 If the quadratic polynomial P(t) is irreducible over Q, then each uni-
versal torsor over X ⊂ An+1

k defined by (1) satisfies weak approximation.

Proof Let T be a universal torsor over X , with TU as in Proposition 2. It is enough to
prove weak approximation on TU .

Assume that P(t) is split in K . Consider TU ⊂ A1
k × (RK/k(Gm,K ))2 defined by

Eq. (4) in the case r = 2. Let L = k(
√

a). For any σ ∈ Γk , we have σ (L) = L , and
for any x ∈ L , we have σ (x) = σ−1(x). Therefore, (4) can be rewritten as

t −√a = ρNK/L(x1) · σ
(
NK/L(x2)

)
,

where σ ∈ Γk with σ (
√

a) = −√a.
The variety given by this equation is isomorphic to the subvariety Y of A1

k ×
(RK/k(Gm,K ))2 defined by the equation

NK/k(w)(t −√a) = ρNK/L(y), (11)

via the substitution

w = x−1
2 , y = x1x−1

2

with inverse

x1 = w−1y, x2 = w−1

using NK/k(x2) = NL/k(NK/L(x2)) = NK/L(x2) · σ (NK/L(x2)). This is exactly [1,
equation (1.5)]. Weak approximation then holds on Y because of [1, Theorem 2].
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Universal torsors and values of quadratic polynomials 1031

Assume now that P(t) remains irreducible over K and write F = K · L , where
L = k(

√
a). Choose some σ ∈ ΓK such that σ /∈ ΓF = ΓL ∩ ΓK , so σ /∈ ΓL .

Therefore, σ is a representative of the non-trivial class both in ΓK /ΓF and in Γk/ΓL .
Let γ1, . . . , γn be a set of coset representatives of ΓL/ΓF . We claim that a set of

representatives of Γk/ΓF is given by γ1, . . . , γn, γ1σ, . . . , γnσ . Indeed, if γiσΓF =
γ jσΓF , then we have σ−1γ−1

j γiσ ∈ ΓF = ΓL ∩ ΓK . Using σ ∈ ΓK , this gives

γ−1
j γi ∈ σΓK σ−1 = ΓK , and we have γ−1

j γi ∈ ΓL by definition. Hence γ−1
j γi ∈

ΓL ∩ ΓK = ΓF , so γiΓF = γ jΓF , which implies i = j . Furthermore, if γiσΓF =
γ jΓF , then γ−1

j γiσ ∈ ΓF ⊂ ΓL , which contradicts the fact that γi , γ j ∈ ΓL , but
σ /∈ ΓL . Finally, γiΓF = γ jΓF only for i = j by construction. This proves the claim.

Therefore, NF/k(w) = NF/L(w)NF/L(σ (w)). We note that σ induces a k-
automorphism of the variety RF/k(Gm,F ): this is clear from the functor-of-points
description of RF/k(Gm,F ).

Using this observation, we see that the variety Y ′ ⊂ A1
k × (RF/k(Gm,F ))2 with

coordinates (t, w, y) defined by

NF/k(w)(t −√a) = ρNF/L(y)

(i.e. Eq. (11) with K replaced by F) is isomorphic to the product TU × RF/k(Gm,F )

with coordinates (t, x, y) subject to (5). The isomorphism is defined by the map

(t, w, y) ,→
(

t, (wσ (w))−1y, w
)

,

the inverse substitution being given by

(t, x, y) ,→ (t, y, xyσ (y)) .

Since Y ′ satisfies weak approximation by [1, Theorem 2] and since RF/k(Gm,F ) is
rational and therefore has non-trivial kv-points for any place v, this implies that TU
satisfies weak approximation. -.

Proof of Theorem 2 If P(t) is split over Q with two distinct roots, then Theorem 2 is
a special case of [16, Theorem 1.1]. If it is split over Q with one double root, U ⊂ X
as in Proposition 2 is a principal homogeneous space of a torus, and Theorem 2 holds
by [19].

Next, assume that P(t) is irreducible over Q. Assume that there is no Brauer–
Manin obstruction to the Hasse principle on a smooth and proper model of X . Then
Lemma 1 shows that universal torsors T over X exist. By Proposition 3, TU satisfies
weak approximation. Proposition 2 shows that k[X ]× = k

×
and that Pic(X) is free of

finite rank. Then an application of Proposition 1 gives the result. -.

Corollary 1 If the quadratic polynomial P(t) ∈ Q[t] is not split in the Galois closure
of K/Q, then the Hasse principle and weak approximation hold on any smooth proper
model of X ⊂ An+1

Q defined by (1).
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Proof By [25, Theorem 2.2], the smooth proper model Xc satisfies Br(Xc) =
Br0(Xc), so the result follows immediately from Theorem 2. -.

Finally, we generalize Theorem 2 to equations involving a multivariate polynomial
P(t1, . . . , t"), using techniques developed by Harari in [14]:

Corollary 2 Let P0, P1, P2 be polynomials in " − 1 variables t2, . . . , t" over Q of
arbitrary degree satisfying

gcd (P0(t2, . . . , t"), P1(t2, . . . , t"), P2(t2, . . . , t")) = 1.

Let K be an arbitrary number field of degree n = [K : Q]. Then the Brauer–Manin
obstruction to the Hasse principle and weak approximation is the only obstruction on
any smooth proper model of X ⊂ An+"

Q defined by the equation

t2
1 · P2(t2, . . . , t") + t1 · P1(t2, . . . , t") + P0(t2, . . . , t") = NK/Q(z).

Proof Consider the projection π : X → A"−1
Q defined by (t, z) ,→ (t2, . . . , t") and

consider the closed subset

F = {P0(t2, . . . , t") = P1(t2, . . . , t") = P2(t2, . . . , t") = 0}

of A"−1
Q , which is of codimension at least 2 by assumption.

The fibers of π over A"−1
Q \F are geometrically integral. The fiber over each rational

point in this set is defined by P(t1) = NK/Q(z) for some non-zero polynomial P(t1)
of degree at most 2. By Theorem 2 for quadratic P(t1), by rationality for linear P(t1)
and by [19] for constant P(t1), this has the property that the Brauer–Manin obstruction
to the Hasse principle and weak approximation is the only obstruction on any smooth
proper model. The generic fiber of π is a rational variety. Therefore, the result follows
by an application of [14, Théorème 3.2.1] (where we can check over k that condition
(*) of that result holds in our case). -.

5 Brauer groups for quartic norms

For X defined by (1) with K/k a quartic extension of number fields, we show in
this section that the Brauer group of a smooth proper model Xc of X is trivial in
certain cases. Then an application of Theorem 2 proves the Hasse principle and weak
approximation on X for k = Q. In other cases, we show that the Brauer group is non-
trivial. In the next section, we will also give an explicit example which illustrates the
fact that a non-trivial Brauer class can give rise to an obstruction to weak approximation
in this situation.

Recall that the Brauer group is a birational invariant of smooth, proper varieties:
therefore it suffices to study the Brauer group of a given (smooth) compactification
of X . Following the ideas developed in [4, Section 2], we will use a certain partial
compactification Y of X contained in a smooth proper model Xc. It suffices to consider
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this particular model. Note that the natural maps Br(Xc) → Br(Y ) → Br(X) are
injective.

A classical argument, based on the Hochschild–Serre spectral sequence (see [4,
Proposition 2.3]), gives an exact sequence of the form

0 → Br0(Y )→ Br(Y )→ H1(k, Pic(Y ))→ H3(k, k
×
). (12)

If k is a number field, then H3(k, k
×
) = 0. Let Γk be the abolute Galois group of k.

Let L be the splitting field of P(t).

Lemma 2 Consider the norm one torus T = R1
K/k(Gm,K ). Let T c be a smooth

compactification of T appearing in the construction of the partial compactification Y
of X as in [4, Section 2]. Then

0 → QL/ Resk/L(Qk)→ H1(k, Pic(Y ))→ H1(k, Pic(T c))

is exact, where

Qk = ker(H1(k, Q/Z)→ H1(K , Q/Z)),

QL = ker(H1(L , Q/Z)→ H1(K ⊗k L , Q/Z)).

Here, Resk/L : H1(k, Q/Z)→ H1(L , Q/Z) and all other maps are restriction maps.

Proof Because of [4, Proposition 2.5], we have the exact sequence

0 → H1(k, T̂ ⊗Z Z[Γk/ΓL ])/j∗H1(k, T̂ )→ H1(k, Pic(Y ))→X2
ω(T̂ )P → 0,

(13)

where j : Z → Z[Γk/ΓL ] is defined by 1 ,→ ∑
σΓL∈Γk/ΓL

σΓL . Furthermore, T̂ is
the character group of T and X2

ω(T̂ )P is a subgroup of X2
ω(T̂ ) [4, Définition 2.4].

By Shapiro’s lemma and the long exact sequence in Galois cohomology associated
to the short exact sequence 0 → Z → Z[Γk/ΓL ]→ T̂ → 0, the first term of (13) is
isomorphic to QL/ Resk/L(Qk) as above.

Furthermore, we have X2
ω(T̂ ) ∼= H1(k, Pic(T

c
)) for all smooth compactifications

T c of T by [7, Proposition 9.5]. This gives the result. -.

In the following result, a more detailed version of Theorem 3 stated in the intro-
duction, we determine the Brauer groups.

Theorem 4 Let k be a field of characteristic zero with H 3(k, k
×
) = 0. Let K/k

be a field extension of degree 4 with Galois closure K cl. Let P(t) be an irreducible
quadratic polynomial over k with splitting field L. Let Xc be a smooth proper model
of X ⊂ A5

k defined by (1).
If we are in the case that K/k is not Galois, that P(t) remains irreducible over K and

that K · L/k is Galois with Gal(K · L/L) ∼= Z/4Z, then we have Br(Xc)/ Br0(Xc) ∼=
Z/2Z. Moreover, a representative for the non-trivial element of Br(Xc)/ Br0(Xc) is
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given by CorL/k(t −
√

a,χ), where χ ∈ Hom(Gal(K · L/L), Q/Z) is a character
that is non-trivial in QL/ Resk/L(Qk).

Otherwise, Br(Xc) = Br0(Xc).

Proof We have the following mutually disjoint cases, where we will first show that
the Brauer group is trivial in cases (1)–(4); then we will show that it is non-trivial in
case (5).

1. P(t) is split over K , i.e. L ⊂ K ,
2. P(t) is irreducible over K cl,
3. P(t) is irreducible over K and split in K cl, with K cl %= K · L .
4. P(t) is irreducible over K and split in K cl, with K cl = K · L and Gal(K cl/L) ∼=

Z/2Z× Z/2Z.
5. P(t) is irreducible over K and split in K cl, with K cl = K · L and Gal(K cl/L) ∼=

Z/4Z.

We can assume without loss of generality that P(t) = c(t2 − a), where a ∈ k× is
not a square and c ∈ k×.

Case (1). If the extension K/k is Galois in this case, the statement follows from results
in [25]: we refer to [25, Proposition 1.2(d)] for the case Gal(K/k) ∼= Z/4Z and to
[25, Proposition 2.6] for the much harder case Gal(K/k) ∼= Z/2Z× Z/2Z.

If K/k is not Galois in case (1), then since K ⊃ L = k(
√

a), there exist u, v ∈ k
such that K = L(

√
u + v

√
a). The minimal polynomial of

√
u + v

√
a over k is

t4 − 2ut2 + u2 − av2, with roots ±
√

u ± v
√

a in K cl. Since K/k is not Galois,√
u − v

√
a is not in K and hence d = u2 − av2 is not a square in k×; in particular,

v %= 0. On the other hand, K (
√

d)/k is Galois and hence it is the Galois closure of
K/k. Since Gal(K (

√
d)/k) is a subgroup of S4 of order 8, it must be the 2-Sylow

subgroup D4 in S4. We now show that H1(k, Pic(Y )) = 0.
The group H1(k, Pic(T

c
)) (where again T = R1

K/k(Gm,K )) is trivial, for example
by [17, Proposition 1] (although full details are not given there: these can be found in
unpublished work of Sansuc, see [20]). Since

t4 − 2ut2 + u2 − av2 = (t2 − (u + v
√

a))(t2 − (u − v
√

a))

is a factorization into coprime polynomials over L , we have

K ⊗k L = L[t]/((t2 − (u + v
√

a))(t2 − (u − v
√

a))) = K ⊕ K ′

with K ′ = L(
√

u − v
√

a). Since K %= K ′, we have K ∩ K ′ = L . Therefore, in
Lemma 2,

QL = ker(H1(L , Q/Z)→ H1(K , Q/Z)⊕ H1(K ′, Q/Z))

= ker(H1(L , Q/Z)→ H1(K ∩ K ′, Q/Z)) = 0,

so that H1(k, Pic(Y )) = 0. Of course this implies Br(X) = Br0(X) by the short exact
sequence (12).
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Case (2). In this case, P(t) is irreducible over the Galois closure K cl of the non-Galois
extension K/k. The result then follows immediately from [25, Theorem 2.2].
Case (3). In this case, we know that K cl %= K · L and that P(t) is irreducible over K ,
but split over the Galois closure K cl, so K · L ! K cl. Since [K · L : k] = 8, we have
Gal(K cl/k) ∼= S4. Again by [17, Proposition 1], the group H1(k, Pic(T

c
)) is trivial,

so it is enough to prove the triviality of

QL = ker(H1(L , Q/Z)→ H1(K · L , Q/Z)).

Non-triviality of this kernel would mean that there exists a non-trivial cyclic extension
of L contained in K ·L . But Gal(K cl/L) ∼= A4 since it has index 2 in Gal(K cl/k) ∼= S4.
Therefore, the Galois group of such an extension would be a normal subgroup of index
2 or 4 in A4, which does not exist. Therefore QL = 0 and Br(Xc) = Br0(Xc).

Cases (4) and (5). In these cases, K cl = K · L has degree 8 over k. As in the part of
case (1) where K/k is not Galois, we have Gal(K cl/k) ∼= D4, with K/k not Galois
and L ⊂ K cl.

The group D4 has five subgroups of order 2, exactly one of which is normal; and it
has three normal subgroups of order 4; moreover, any non-normal subgroup of order 2
is contained in exactly one normal subgroup of order 4, the normal subgroup of order
2 is contained in all normal subgroups of order 4. In the subfield lattice of K cl/k, we
have the following intermediate fields, where we mark the normal extensions of k by
a box, and K is any one of the non-normal extensions:

K cl

!!!!!!!
""" ### $$$$$$$$

K K ′
%%%

K0

!!!!!!!!
$$$$$$$$ K ′′
&&

& K ′′′

L ′

'''''''' L0 L ′′

(((((((((

k

(14)

This diagram shows that L = L ′ in the non-Galois part of case (1), L = L ′′ in case (4)
with Gal(K cl/L) ∼= Z/2Z×Z/2Z, and L = L0 in case (5) with Gal(K cl/L) ∼= Z/4Z.
In all three cases, Gal(K cl/k) ∼= D4 implies that H1(k, Pic(T

c
)) = 0, as we have

seen in case (1).
In the two cases L = L ′′ and L = L0, the polynomial P(t) remains irreducible

in K , and hence we have K ⊗k L ∼= K (
√

a) = K · L = K cl, so the group QL ∼=
H1(K cl/L , Q/Z) has order 4. Furthermore, Qk has order 2 because the diagram
shows that there is only one non-trivial cyclic extension of k contained in K , namely
L ′. Since L ∩ K = k, the restriction map Resk/L sends Qk injectively into QL , and
we conclude that H1(k, Pic(Y )) ∼= Z/2Z. Now the short exact sequence (12) implies
that the quotient Br(Y c)/ Br0(Y c) – and therefore also Br(Xc)/ Br0(Xc) – injects into
Z/2Z.

By [4, Remark on p. 76], we know that Br(Y )/ Br0(Y ) is generated by the element
B = CorL/k(t −

√
a,χ) ∈ Br(k(X)), where χ ∈ QL with χ %∈ Qk .
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Case (4). For L = L ′′, we will show that B is ramified at t = ∞. This implies that
Br(Xc) = Br0(Xc). In case (5) with L = L0, we will show below that B extends to a
non-trivial element of Br(Xc).

We consider the quadratic extension (K cl)ker(χ) of L associated to χ . If this were
K0, then this subfield of K cl/L would come from the subfield L ′ of K/k, so χ would
be trivial in QL/ Resk/L(Qk), contrary to our choice of χ . So we may assume that
(K cl)ker(χ) = K ′′ in diagram (14).

The variety YK ′′ = Y ×k K ′′ contains an open affine K ′′-subvariety V defined by

NK cl/K ′′(z1)NK cl/K ′′(z2) = c(t2 − a) and t %= 0.

Let W be the smooth affine K ′′-variety defined by

NK/K ′′(z′1)NK/K ′′(z′2) = c(1− at ′2).

The open subvariety of W defined by t ′ %= 0 is isomorphic to V by the map
(t ′, z′1, z′2) ,→ (1/t ′, z′1/t ′, z′2). Let D be the divisor of W defined by t ′ = 0. It is
easy to see that the divisor D is geometrically irreducible. Hence k ∩ K ′′(D) = K ′′,
where K ′′(D) is the function field of D. The local ring AD ⊂ K ′′(Y ) associated to the
divisor D is a discrete valuation ring and ordAD (t) = −1. We have κAD = K ′′(D).

The natural restriction map Resk/K ′′ : Br(Y )→ Br(YK ′′) factorizes as Resk/K ′′ =
ResL/K ′′ ◦Resk/L . We will exchange restriction and corestriction using the double
coset formula [18, Proposition I.1.5.6]. The coset decomposition is Gal(k/k) =
Gal(k/L) ∪ σ Gal(k/L) for some σ ∈ Gal(k/k) that is non-trivial on L . Applying
[10, Proposition 1.1.3] in the last step with vAD (t ±√a) = −1, we have

∂AD (Resk/K ′′(B)) = ∂AD (ResL/K ′′(Resk/L(CorL/k(t −
√

a,χ))))

= ∂AD ((t −√a, ResL/K ′′(χ)) + (t +√a, ResL/K ′′(χ
σ )))

= −ResL/κAD
(χ + χσ ) ∈ Hom(Gal(κ AD /κAD ), Q/Z).

By diagram (14), L ′ · K ′′ = K cl. Since χ corresponds to K ′′, we know that χσ

corresponds to its conjugate K ′′′, hence χ + χσ corresponds to K0. Since

κAD ∩ K0 = K ′′(D) ∩ k ∩ K0 = K ′′ ∩ K0 = L ,

we have

ResL/κAD
(χ + χσ ) %= 0 ∈ Hom(κ AD /κAD , Q/Z).

Therefore, Resk/K ′′(B) %∈ Br(Y c
K ′′), hence B %∈ Br(Xc).

Case (5). As discussed above in the context of case (4), it remains to show that B =
CorL/k(t−

√
a,χ) ∈ Br(k(X)) extends to Br(Xc). We have L = L0 in diagram (14).

It is sufficient to show that for any discrete valuation ring A of k(X) that corresponds
to a valuation that is trivial on k, with residue fieldκA, the residue map [10, §1.1] applied
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to B gives the zero map

∂A(B) ∈ H1(κA, Q/Z) = Hom(Gal(κ A/κA), Q/Z).

Let us therefore focus on proving the triviality of ∂A(B) for any such discrete
valuation ring A. Let g ∈ Gal(κ A/κA). We extend the embedding k ⊂ κA to an
embedding k ⊂ κ A, so that g acts also on k. Let K cl,g be the subfield of K cl fixed by
g, with cyclic Galois group Gal(K cl/K cl,g).

Since X is geometrically integral, X ×k K cl is an irreducible variety with function
field K cl(X). We can extend A to a discrete valuation ring AK cl of K cl(X) with
residue field κAK cl = κA · K cl. Indeed, the completion of k(X) for the given valuation
is isomorphic to κA((T )), where T is a uniformizer. The map k(X)→ κA((T )) gives
the natural map

K cl ⊗k k(X)→ K cl ⊗k κA((T )).

Composing with the natural map K cl ⊗k κA((T ))→ (K cl · κA)((T )), we have the
map

K cl ⊗k k(X)→ (K cl · κA)((T )).

Using K cl(X) = K cl ⊗k k(X), we get the map

K cl(X)→ (K cl · κA)((T ))

that is injective since both objects are fields. We can see that (K cl ·κA)((T )) is a discrete
valuation field and the valuation is given by the uniformizer T ; the valuation restricted
to K cl(X) induces a discrete valuation of K cl(X), and we denote the respective discrete
valuation ring by AK cl and the residue field by κAK cl . We have the induced map
AK cl → (K cl · κA)[[T ]]. Then we have the injection κAK cl → K cl · κA, since the
residue field of (K cl ·κA)[[T ]] is K cl ·κA. Since k(X) is dense in κA((T )), we conclude
that K cl(X) is dense in (K cl · κA)((T )), which implies that the map κAK cl → K cl · κA

is surjective. Therefore the map κAK cl → K cl · κA is an isomorphism.
For any intermediate field M of K cl/k, we have similarly the valuation ring AM of

M(X) with residue field κAM . We write Ag for AK cl,g .
To show that ∂A(B)(g) is zero for any g, we distinguish two cases:

(5.i) L %⊂ K cl,g ,
(5.ii) L ⊂ K cl,g .

Case (5.i). We assume that L %⊂ K cl,g . We note that Gal(K cl/K cl,g) is a cyclic
subgroup of D4. We see in diagram (14) that the only such subfields of K cl not
containing L = L0 are K , K ′, K ′′, K ′′′. In any case, L · K cl,g = K cl.
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By [10, Proposition 1.1.1], we have the commutative diagram

Br(k(X))
∂A−−−−→ H1(κA, Q/Z)

Resk/K cl,g

)
)ResκA/κAg

Br(K cl,g(X))
∂Ag−−−−→ H1(κAg , Q/Z).

Since κAg = κA · K cl,g , we have g ∈ Gal(κ A/κAg ). Hence

∂A(B)(g) = ResκA/κAg
(∂A(B))(g) = ∂Ag (Resk/K cl,g (B))(g).

By definition, we have Resk/K cl,g (B) = Resk/K cl,g (CorL/k(t −
√

a,χ)). Since
L ∩ K cl,g = k, we have Gal(k/k) = Gal(k/L) ·Gal(k/K cl,g). Exchanging restriction
and corestriction using [18, Proposition I.1.5.6] gives

Resk/K cl,g (B) = CorL·K cl,g/K cl,g (ResL/L·K cl,g (t −
√

a,χ)).

Since L · K cl,g = K cl, the projection formula for cup products gives

ResL/L·K cl,g (t −
√

a,χ) = (t −√a, ResL/K cl(χ)).

But ResL/K cl(χ) = 0 by definition of QL , hence Resk/K cl,g (B) = 0.

Case (5.ii). We assume that L ⊂ K cl,g . We work on X L = X ×k L . There are maps
X K cl → X L → X . Let AL = Ag ∩ L(X) be the corresponding discrete valuation
ring on L(X). Using the diagram

Br(k(X))
∂A−−−−→ H1(κA, Q/Z)

Resk/L

)
)ResκA/κAL

Br(L(X))
∂AL−−−−→ H1(κAL , Q/Z)

ResL/K cl,g

)
)ResκAL

/κAg

Br(K cl,g(X))
∂Ag−−−−→ H1(κAg , Q/Z)

we get the equality

∂Ag (Resk/K cl,g (B)) = ResκAL /κAg
(∂AL (Resk/L(B))).

Thus it suffices to show that ∂AL (Resk/L(B)) = 0 (independent of g).
We apply the double coset formula again: in this case, the coset decomposition

reduces to Gal(k/k) = Gal(k/L) ∪ σ Gal(k/L), for any σ ∈ Gal(k/k) that is non-
trivial on L . Therefore,
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Resk/L(B) = (t −√a,χ) + (t +√a,χσ ),

where χσ is obtained from χ via conjugation with σ . We note that X L is given by
c(t − √a)(t + √a) = NK cl/L(z) since K cl = K ⊗k L . By [10, Proposition 1.1.3],
we have

∂AL (Resk/L(B)) = vAL (t −√a) ResL/κAL
(χ) + vAL (t +√a) ResL/κAL

(χσ ).

(15)

If vAL (t −√a) = vAL (t +√a) = 0, then (15) vanishes.
If vAL (t −√a) > 0, then vAL (t +√a) = 0 since vAL (2

√
a) = 0. Therefore,

vAL (t −√a) = vAL (t −√a) + vAL (t +√a) = vAL (NK cl/L(z))− vAL (c).

Now vAL (c) = 0. Let M = κAL ∩ K cl. Then

K cl ⊗L M ∼=
[M :L]⊕

i=1

K cl

since K cl/L is Galois and M is totally split in K cl. Since AL is a discrete valuation
ring of L(X), we have L̂(X) ∼= κAL ((T )), where T is a uniformizer. Hence

L̂(X) ∩ K cl = κAL ∩ K cl = M.

We have

K cl ⊗L L̂(X) ∼= K cl ⊗L M ⊗M L̂(X) ∼=
[M :L]⊕

i=1

K cl ⊗M L̂(X).

Therefore,

vAL (NK cl/L(z)) = vAL (N
K cl⊗L L̂(X)/L̂(X)

(z))

=
[M :L]∑

i=1

vAL (N
K cl⊗M L̂(X)/L̂(X)

(zi ))

=
[M :L]∑

i=1

[K cl ⊗M L̂(X) : L̂(X)] · vAK cl (zi ).

This is a multiple of [K cl : M]. Indeed, since L̂(X) ∩ K cl = M , we know that
K cl ⊗M L̂(X) is an unramified field extension over L̂(X) of degree

[K cl ⊗M L̂(X) : L̂(X)] = [K cl : M],
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and vAK cl has values in Z. Since the order of ResL/κAL
(χ) divides [K cl : M], (15)

vanishes. The case vAL (t +√a) > 0 is analogous.
If vAL (t − √a) < 0, then vAL (t + √a) = vAL (t − √a) since vAL (2

√
a) = 0.

Since Gal(K cl/L) ∼= Z/4Z, it is easy to see that χσ = −χ . Hence (15) vanishes. This
completes the proof of ∂AL (Resk/L(B)) = 0 in case (5.ii), and therefore the proof of
the non-triviality of Br(Xc) in case (5). -.

Corollary 3 Let K/k be a quartic extension of number fields with k = Q. Let P(t) ∈
Q[t] be an irreducible quadratic polynomial with splitting field L.

If we are not in the case where K/k is not Galois, P(t) is irreducible over K and
K · L/k is Galois with Gal(K · L/L) ∼= Z/4Z, then the Hasse principle and weak
approximation hold on X ⊂ A5

Q defined by equation (1)

Remark 3 J.-L. Colliot-Thélène suggested an alternative method to prove Theorem 4
in case (1), which we will sketch here. The proof of Theorem 1 shows that Xc is
birational to a smooth, projective k-varietyU c equipped with a morphism p : U c → Sc

to a smooth, projective conic Sc over k, in such a way that the generic fibre of p is
a smooth quadric U c

k(S) in P4
k(S). One can then check that Br(U c

k(S))
∼= Br(k(S)) and

that Br(k) surjects onto Br(Sc). An explicit calculation with residues of elements of
Br(U c

k(S)) then allows one to conclude that Br(k) surjects onto Br(U c).

6 Failure of weak approximation

Finally, we give a concrete example of a Brauer-Manin obstruction to weak approxi-
mation caused by the non-trivial element of Br(Xc)/ Br0(Xc) described in Theorem 4.

Example 1 Let K = Q(
4√17) and let P(t) = t2 + 1. Let X ⊂ A5

Q be defined by
t2 + 1 = NK/Q(z). Then weak approximation does not hold on X .

Indeed, consider the adelic point (xv) ∈
∏

v X (kv) given by

xv = (tv, zv) =
{

(0, 1), v %= 17,

(7, z17), v = 17,

where z17 ∈ Q17(
4√17) is a solution of 72 + 1 = NQ17(

4√17)/Q17
(z17). Such a solution

exists: 50 is even a fourth power in Q17 by Hensel’s lemma, since 50 ≡ 24 (mod 17).
Let χ be a primitive character of the cyclic group Gal(K (i)/Q(i)) ∼= Z/4Z,

regarded as element of H2(Q(i), Z). Let B = CorQ(i)/Q(t − i,χ). By Theorem 4,
this defines a non-trivial element in Br(Xc). Since

∑

v∈ΩQ

invv(B((0, 1))) = 0 ∈ Q/Z,

it suffices to check that inv17(B(x17)) %= inv17(B((0, 1))). To do this concrete cal-
culation, one needs to fix an embedding of Q(i) into Q17. Let α ∈ Q17 be such that
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α2 +1 = 0 and α ≡ 4 (mod 17). Consider the embedding ια : Q(i)→ Q17 given by
i ,→ α. By functoriality, this gives an element χα ∈ H2(Q17, Z). The cup products

Q(i)∗ × H2(Q(i), Z)→ Br(Q(i))

and

Q∗17 × H2(Q17, Z)→ Br(Q17)

are compatible with the functorial maps induced by ια . If χ−α is the image of χ

via the embedding Q(i) → Q17 defined by i ,→ −α, then one easily checks that
χ−α = −χα ∈ H2(Q17, Z). Hence we get the equalities

B(x17)− B((0, 1))

= ResQ/Q17(CorQ(i)/Q(t − i,χ))(x17)− ResQ/Q17(CorQ(i)/Q(t − i,χ))((0, 1))

= (7− α,χα) + (7 + α,−χα)− (−α,χα)− (α,−χα)

= (7− α,χα) + ((7 + α)−1,χα)− (−α,χα)− (α−1,χα)

=
(

7− α

7 + α
,χα

)
− (−1,χα)

=
(
(7− α)2,χα

)

in which we used the double coset formula and the bilinearity of the cup product,
together with the fact that (7−α)(7+α) = 50 and−1 are fourth powers in Q17. Now
we only need to check that (7− α)2 is not a norm for the extension Q17(

4√17)/Q17,
but this is clear since (7− 4)2 = 9 is not a fourth power modulo 17.
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