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UNIVERSAL VECTORS FOR OPERATORS
ON SPACES OF HOLOMORPHIC FUNCTIONS

ROBERT M. GETHNER AND JOEL H. SHAPIRO

ABSTRACT. A vector x in a linear topological space X is called universal for

a linear operator T on X if the orbit {Tnx: n > 0} is dense in X. Our main

result gives conditions on T and X which guarantee that T will have universal

vectors. It applies to the operators of differentiation and translation on the

space of entire functions, where it makes contact with Pólya's theory of final

sets; and also to backward shifts and related operators on various Hubert and

Banach spaces.

1. Introduction. Suppose T is a continuous linear operator on a complete

metrizable linear topological space (henceforth an F-space) X. We say that x G X

is T-universal if its orbit {Tnx : n > 0} is dense in A, and T-cyclic if the linear

span of its orbit is dense. Cyclic vectors play an important role in the study of the

invariant subspace structure of an operator, and universal vectors are cyclic in the

strongest possible sense.

The main result of this paper, Theorem 2.2, gives hypotheses which guarantee

that T will have universal vectors. Its proof, which is based on the Baire Category

Theorem, actually provides a dense G¿ set of universal vectors. However this is no

surprise: it is easy to see (Proposition 2.1) that if T has any universal vectors, then

it has a dense Gg set of them.

Interest in Theorem 2.2 derives from the fact that it unifies, extends, and comple-

ments diverse results which have occurred in the literature of both classical function

theory and operator theory.

For example Ü(C), the space of entire functions taken in the compact-open

topology, is a separable F-space ([4, Chapter VII]) on which both the operator of

translation by a fixed complex number and that of complex differentiation satisfy

the hypotheses of Theorem 2.2. Thus we obtain at one stroke proofs of G. D.

Birkhoff's translation theorem [1, 2, 3]: There exists an entire function whose

translates are dense in H{C), and G. R. MacLane's differentiation theorem [10,

Theorem 7]: There exist entire functions f for which the sequence of successive

derivatives is dense in H{C). We get equally quick proofs of some generalizations

due to Luh [8], and Seidel and Walsh [15] of Birkhoff's theorem. We use our

results to complement existing work of Pólya [11] and Edrei and MacLane [6], by

showing that the "final set" L{f) of accumulation points of zeros of the sequence

of derivatives of an entire function is generically (meaning "except for a set of first
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282 R. M. GETHNER AND J. H. SHAPIRO

Baire category" ) the whole Riemann sphere. A detailed discussion of these matters

occupies the third section.

§4 contains applications to operator theory. Each backward shift of "Bergman

type" on Hubert space satisfies the hypotheses of Theorem 2.2, and thus has uni-

versal vectors, as does every multiple, by a scalar of modulus > 1, of the ordinary

backward shift. Our work also intersects that of Rolewicz [13], who showed that

on the sequence spaces lp (1 < p < oo) and en certain multiples of the backward

shift have universal vectors.

We wish to take this opportunity to thank Sheldon Axler, Paul Bourdon, Lech

Drewnowski, Lee Rubel, and Allen Shields for helpful discussions and useful refer-

ences to the literature.

2. Universal vectors. In all that follows, A is a separable F-space and T

a continuous linear operator on A. The topology of A is induced by a complete

translation-invariant metric d [14, Theorems 1.24 and 1.26, pp. 18-20]. For x G X

we write ||x|| = d{x,0), and let B{y,e) = {x G X: \\y — x\\ < e}, the open ball of

radius e with center at y. Before stating our main theorem, we record a simple,

but useful, "zero-one" law for universal vectors (cf. Duios-Ruis [18]).

2.1. PROPOSITION. IfT has a universal vector, then it has a dense Gg set

of universal vectors.

PROOF. Fix a countable dense subset {yk} of A. For positive integers N, j, and

k, set

F = F{j, JV,Jc) = {i6l: ||Tn:r - yd\\ < 1/fc for some n > N}.

Each of these sets, being a union of sets T~n{B{yj, 1/fc)} which are open by the

continuity of T, is itself open. The set of T-universal vectors is the intersection

of this countable collection of sets F: it is therefore a Gg subset of A. If x is a

universal vector, then so is every member of the dense orbit {Tnx}. This completes

the proof.

A curious consequence of this result and Baire's Theorem is that if each mem-

ber of a countable collection of operators has a universal vector, then the whole

collection has a common universal vector. Thus, for example, the previously men-

tioned theorems of Birkhoff and MacLane, providing respectively translation- and

differentiation-universal entire functions, automatically provide a "doubly univer-

sal" entire function (see also [3] for the direct construction of a "triply universal"

entire function).

We now turn to our main result.

2.2. THEOREM. Suppose T is a continuous linear operator on a separable

F-space X. Suppose there exists a dense subset D of X and a right inverse S for

T {TS = identity on X) such that \\Tnx\\ -» 0 and \\Snx\\ -» 0 for every x G D.

Then X has T-universal vectors.

PROOF. By Baire's Theorem [14, p. 42] it is enough to prove that each of the

G0 sets F defined in the proof of Proposition 2.1 is dense in A.

To see this, fix F = F{j, N, k), and for ease of notation write e = 1/fc and y — yj.

Fix z in A and 6 > 0. We must find an x G F lying within 6 of z. Since D is dense

in A, we can choose yo and zq in D with ||z — zq\\ < 8/2, and \\y — yo 11 < £/2.
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Since the sequences Tn and Sn converge pointwise to zero on D, we may choose

a positive integer n such that simultaneously ¡|Tn2o|| < s/2, and ||Sni/o|| < 6/2.

Write x = Sny0 + z0- Then

||i - *|| < II* -M + \\zo - z\\ = \\Snyo\\ + \\zo - z\\ < 6/2 + 6/2,

so ||i — z\\ < 6, as desired. Moreover, since TS is the identity map on A, so is
TnSn. Thus

\\Tnx - y|| = \\TnSny0 -y + Tnz0\\ < \\y0 - y\\ + \\Tnz0\\ < e/2 + e/2 = e,

so x G F, and the proof is complete.

2.3. REMARKS, (a) The proof actually shows that for any fixed subsequence

in{j) '■ j > 0} of positive integers increasing strictly to oo, the sequence of vectors

{Tn^'x: j > 0} is dense in A for a dense Gg subset of x's. In fact Lech Drewnowski

has pointed out to us that the proof yields even more. Suppose D is a dense subset

of X and {Tj} is a sequence of continuous linear operators on X for which Tj —> 0

pointwise on D. Suppose for each j the operator Tj has a right inverse Sj, and

Sj —> 0 pointwise on D. Then the set {Tjx: j > 0} is dense in X for a dense Gg

set of vectors x G X.

(b) Theorem 2.2, and the remark above, continue to hold with almost the same

proof, if the sequences of T's and S's are assumed to converge to zero pointwise on

different dense subsets of A. However, none of the applications given here require

this generality.

Here is another variant of Theorem 2.2. It will also be useful in the next section:

its proof is a straightforward modification of the original one.

2.4. THEOREM. Suppose T is a continuous linear operator on a separable

F-space X, and Tn —> 0 pointwise on a dense subset Do of X. Suppose {yn} is a

sequence in X such that yn = Tnxn where xn —> 0 in X. Then the set of vectors

x G X for which liminf \\Tnx — yn\\ = 0 is a dense Gg subset of X.

PROOF. Let F{N,s) denote all x in A for which ||Tnx - yn|| < s for some

n > N: the set of vectors obeying the desired conclusion is then f)N f)k F{N, 1/fc),

so it is enough to prove that F = F{N,s) is a dense Gg. To do this, begin with

z, 8, and zo as in the proof of the Main Theorem, and as before, observe that for

sufficiently large n the vector x = xn + zo belongs to B{z, 8) n F.    D

3. Applications to function theory. Following Blair and Rubel [2, 3] and

Luh [8, 9] we call an entire function / universal if its sequence {/(") : n > 0} of

successive derivatives is dense in Ü(C).

3.1. MACLANE'S THEOREM [2, 10]. The universal entire functions form

a dense Gg subset of H{C).

PROOF. The hypotheses of Theorem 2.2 are satisfied with A = Ü(C), D the

set of holomorphic polynomials, T the operator of complex differentiation, and S

the integration operator defined for zq fixed in C by

Sf{z)= f f{ç)dç       {fGH{C),zGC).       D
J zo

If / is an entire function and a G C, let fa denote the translate of / by a:

fa{z) = f{z + a)        {zGC).
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3.2. BIRKHOFF'S THEOREM [l]. For each a € C there is a dense Gg set of

entire functions f such that the translates {fna : n = 1,2,... } are dense in H{C).

PROOF. We are going to apply Theorem 2.2 to A = Ü(C) with T the operator

of translation by a {Tf = fa for each / G Ü(C)), and S the operator of translation

by — a. The problem is to find a dense set on which the powers of these operators

tend pointwise to zero. For this, we may without loss of generality, assume that a

is real. Then, for each pair of integers k > 0 and m > 0, define the entire function

fm,k by
fm,k{z) = z^z/k)-1 sm{z/k)}m+1        {z G C).

For m and fc fixed, both Tnfm^ and <Sn/m,fc —> 0 in Ü(C) as n —* oo. Thus

{Tn} and {Sn} tend pointwise to zero on the linear span D of these functions. It

remains to show that D is dense in Ü(C). This is so because, if m > 0 is fixed,

then fm,k{z) —* zm uniformly on compact subsets of C as fc —> oo. Thus all the

hypotheses of Theorem 2.2 are fulfilled, and the proof is complete.

3.3. REMARKS, (a) The same argument, with Drewnowski's Remark 2.3 replac-

ing Theorem 2.2, proves the following generalization, due to Luh [8] of Birkhoff's

theorem. If E is any unbounded set of real numbers, then there is a dense Gg set

of entire functions f for which the sequence {fa- ol G E} is dense in Ü(C). S.

M. Duios-Ruis [17] has constructed universal entire functions satisfying prescribed

growth conditions.

(b) There are non-Euclidean analogues of Birkhoff's theorem for the unit disc

U, and hence for any simply connected domain. In [15], Seidel and Walsh prove

the following. Suppose {an} is a sequence of points in U with an —> 1. For each n

let <pn be the conformai automorphism of U defined by

<Pn{z) = {an - z)/{l - ânz)        {z G U).

Then there exists a function f G H{U) for which the sequence of non-Euclidean

translates {/ o <pn : n > 0} is dense in H{U).

This result follows easily from Remark 2.3: noting that each conformai auto-

morphism defined above is its own inverse, we can set Tn = Sn = composition with

<p„. Let D denote the linear span of the functions

fm,k{z) = zm{l - zk)/{l + zk)        {zGU,m>0,k> 0).

Then for fixed m as fc —> oo the sequence fm^ tends to the function zm uniformly

on compact subsets of U, so D is dense in H{U). Since <pn —► 1 uniformly on

compact subsets of U, and each member of D is holomorphic in a neighborhood of

1 and vanishes at 1, it follows that Tn —> 0 pointwise on D. Thus the hypotheses

of Remark 2.3 are satisfied, and the theorem of Seidel and Walsh is proved.

Luh [9] has proved other results of this type.

3.4. Final sets. Pólya [11, 12] initiated the study of the final set of a function

meromorphic in the plane. This is the set L{f) of points of the Riemann sphere

C*, each neighborhood of which contains zeros of infinitely many derivatives of /.

Pólya showed that if / is not entire, then its final set is determined completely

by its poles, and consists of a union of rays, lines, and line segments. However

Edrei and MacLane [6] showed that for entire functions the situation is much more

complicated: every closed subset of C* that contains oo is the final set of some

entire function. By contrast, the next result shows that generically L{f) — C*.
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3.5. COROLLARY.    L{f) = C* for all f in a dense Gg subset of H{C).

PROOF. In fact the dense Gg subset is the collection of universal entire functions.

Suppose / G H{C) is universal. Fix zo G C. Since / is universal, some subsequence

of its derivatives converges uniformly on compact subsets to the entire function

z — zo, so by Hurwitz's theorem [3, Chapter VII, p. 152], each disc centered at

zo contains zeros of all but finitely many members of this subsequence. Thus

zo G L{f). This shows that C C L{f), hence also oo G L{f). The proof is
complete.

3.6. REMARK. The last proof shows a little more. For a G C let L{a,f)

denote the collection of sequential limit points of the a-points of the derivatives of

/, so in this notation the final set of / is now L{f, 0). Pólya [11] showed that if

/ is meromorphic in the plane and not entire, then L{a, f) = L{f) for all complex

numbers a. The proof above, with the function z — zo replaced by z — zo + a, yields:

for every aGC, L{a, f) = C* for every universal entire function f.

The work of this section shows that generically the sequence of derivatives of an

entire function behaves wildly. We close with an even stronger result of this type.

In what follows, D{w, r) denotes the open disc in the plane of radius r, centered at

w.

3.7. THEOREM. Suppose {pn} is an unbounded, increasing sequence of posi-

tive numbers for which

(1) limn-Vn/n = 0 (n-»oo).

Let F be the set of entire functions f such that

(2) for every open set V C C; f(n\V) D D{0,pn) for infinitely many n.

Then F is a dense Gg subset of H{C).

PROOF. We begin with a fixed disc A = D{w, e), and associate to it the sequence

of degree one monomials {gn} defined by

9n{z) = npn{z -w)        {zG C).

Let r(A) denote the set of entire functions / for which some subsequence of {/("' —

gn} tends to zero uniformly on compact subsets of the plane.

We claim that T(A) is a dense Gg subset of H{C). To see this, let

hn{z) = [nPn/{n + 1)\}{z - w)n+1        (z G C).

Then hn = gn for each n, and condition (1) above, along with Stirling's formula,

implies that hn —* 0 uniformly on compact subsets of C. Thus our claim fol-

lows from Theorem 2.4, with T — differentiation on H{C), Do = all holomorphic

polynomials, and {xn},{yn} replaced by {gn},{hn} respectively.

Now fix / € r(A). Then from the definition of T(A) and the fact that pn —► oo,

there is an infinite set E of positive integers n for which

(3) |/(") - gn\ < 1 on dA, and npne - pn > 1.

Fix n in E. We claim that /(n>(A) D I>(0,pn). To see this, fix a G D{0,pn),

and note that conditions (3) above guarantee that for every z G dA,

\{f(n){z) -a)- {gn{z) - a)\ < 1< npne - \a\ < \gn{z) - a\,

so by Rouché's Theorem [4, pp. 125-126], f^ takes the value a in A.
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So far we have shown that for each / e T(A); /(n)(A) D D{0,pn) for infinitely

many n. To finish the proof, note that the intersection of the sets T(A), as A runs

through all open discs in the plane having rational radii, and centers with rational

coordinates, is precisely the set of entire functions obeying condition (2). By the

work above, and Baire's Theorem, it is a dense Gg subset of #(C). This completes

the proof.

4. Backward shifts. In this section, ß = {ß{k): fc > 0} is a decreasing

sequence of positive numbers for which

(1) er = sup{ß{k)/ß{k + 1) : fc > 0} < oo.

Following [16] we denote by H2{ß) the space of power series f{z) = 2/(n)zn for

which
oo

ll/ltè = £l/(fc)l2/?(A0<oo.
k=0

Thus H2{ß) is a Hilbert space whose elements can be regarded as functions holo-

morphic on the unit disc U. We are going to study the backward shift operator B

defined on H2{ß) by

CO

B/(*) = £/(k + l)**       {f€H2{ß)).
fc=0

An easy computation shows that, thanks to condition (1) above, B is a bounded

linear operator on H2{ß), with norm equal to a.

4.1. THEOREM. H2{ß) has a B-universal vector if and only if ß{n) —► 0 as

n —> oo.

PROOF. Suppose the sequence ß does not tend to zero. Then, since it is mono-

tonically decreasing, 6 = inf ß{k) > 0. It is a routine exercise to show that for each

nonnegative integer n,

\\Bn\\ = supß{k)/ß{k + n) < ß{0)/8,
fc

so the orbit of each vector in H2 {ß) is bounded, hence no vector can be ß-universal.

Conversely, suppose ß{k) —► 0. The forward shift u defined by

oo

uf{z) = J2f(k)zk+1       {feH2{ß))
fc=0

is a bounded linear operator on H2{ß), and ||t¿n/||/3 —» 0 for every / G H2{ß)

because ß{k) —> 0. Thus the hypotheses of Theorem 2.2 are satisfied with A =

H2{ß), D = all holomorphic polynomials, T — B, and S = u. This completes the

proof.

4.2. EXAMPLES: BERGMAN SHIFTS. Suppose p is a finite, nonnegative

Borel measure on the half-open interval [0,1) which places positive mass on each

interval [a, 1) for 0 < a < 1. Let A2{p) denote the Bergman space of functions /

holomorphic in U for which

||/|ß = (1/2*) f r\f{re*e)\2d6dp{r) < oo.
Jo Jo
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Then A2{p) coincides (isometrically) with H2{ß) where ß is the moment sequence

(2) ß{k)= f r2kdp{r)        (fc = 0,l,2,...).
Jo

Because p places no mass at the point 1, the sequence ß decreases monotonically

to zero.

4.3.  PROPOSITION.     The backward shift B acts boundedly on A2{p).

PROOF. We must show that the moment sequence ß satisfies condition (1) stated

at the beginning of this section. Fix 0 < a < 1. Then

ß{k + 1) > f  r2k+2 dp{r) > a2k+2p{[a, 1)},
Ja

and

ß{k)< f r2k dp{r) + a~2 Í r2k+2 dm{r)
JO Ja

< a2kp{[0,a)} + a-2ß{k + 1) < a-2[p{[0,a)}/p{[a, 1)} + l]/3(fc + 1),

so condition (1) is satisfied with rj = a~2[p{[0,a)}/p{[a,l)} + 1], which is finite

because p{[a, 1)} > 0. This completes the proof.

4.4 COROLLARY. For every measure p as above, A2{p) has B- universal

vectors.

4.5. REMARKS, (a) Backward shift on H2. If ß = 1, then H2{ß) is the
ordinary Hardy space H2 of the unit disc. As pointed out in [5, Theorem 4.1.1], G.

Ts. Tumarkin showed that the set of B-cyclic vectors is a dense G g subset of H2.

Clearly B has no universal vector in H2 (Theorem 4.1), however: for every scalar

a of modulus > 1, H2 has aB-universal vectors. To see this, just apply Theorem

2.2 as in the proof of Theorem 4.1, but with T = aB and S = a~1u. Rolewicz

[13] has obtained this result by direct construction for the Banach spaces Co and

lp (1 < p < oo). Our methods apply in that setting as well.

(b) Weighted shifts. As described in [16] there is a unitary equivalence between

the backward shift B on the "weighted spaces" H2{ß), and weighted backward shifts

on the "unweighted" space H2. In this regard, our Theorem 4.1 complements a

result of Hilden and Wallen [7], who showed that every weighted backward shift has

a "supercyclic" vector. A supercyclic vector x for an operator T is one for which

the set {aTnx : a G C, n > 0} is dense in the whole space.

(c) Two-sided shifts. Suppose ß = {ß{k) : k G Z} is a two-sided sequence for

which supfc/?(fc + l)/ß{k) < oo and supfc ß{k)/ß{k + 1) < oo. Then on L2{ß), the

corresponding space of formal Laurent series, the naturally defined bilateral forward

and backward shifts, u and B respectively [16, §3], are bounded linear operators

inverse to each other. Theorem 2.2 applies directly to this situation, and shows

that: if ß{k) —» 0 os fc —> oo (resp. fc —► — oo), then B (resp. u) has a universal

vector.

ADDED IN PROOF. After this paper was accepted for publication, we discovered

that Theorem 2.2 had been proved earlier by Carol Kitai as Theorem 1.4 of her

unpublished doctoral dissertation Invariant closed sets for linear operators (Univer-

sity of Toronto, 1982). Kitai's dissertation contains many interesting results about
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universal vectors (which she terms orbital vectors). For example, she shows that

certain bilateral weighted shifts have universal vectors, yet are not surjective (The-

orem 1.10); hence they do not have the right inverse demanded by the hypotheses

of our Theorem 2.2. This leads to the study of necessary conditions for an operator

to have universal vectors (Chapters 2 and 4). She also studies supercyclic vectors

(Chapter 3); and observes that it is possible for an operator to have supercyclic

vectors, even though no scalar multiple of the operator has a universal vector.
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