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UNIVERSALITY AND THE CIRCULAR LAW FOR SPARSE

RANDOM MATRICES
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Stanford University

The universality phenomenon asserts that the distribution of the eigen-
values of random matrix with i.i.d. zero mean, unit variance entries does not
depend on the underlying structure of the random entries. For example, a plot
of the eigenvalues of a random sign matrix, where each entry is +1 or −1 with
equal probability, looks the same as an analogous plot of the eigenvalues of
a random matrix where each entry is complex Gaussian with zero mean and
unit variance. In the current paper, we prove a universality result for sparse
random n by n matrices where each entry is nonzero with probability 1/n1−α

where 0 < α ≤ 1 is any constant. One consequence of the sparse universality
principle is that the circular law holds for sparse random matrices so long as
the entries have zero mean and unit variance, which is the most general result
for sparse random matrices to date.

1. Introduction. Given an n by n complex matrix A, we define the empirical

spectral distribution (which we will abbreviate ESD), to be the following discrete
probability measure on C:

μA(z) :=
1

n
|{1 ≤ i ≤ n : Re(λi) ≤ Re(z) and Im(λi) ≤ Im(z)}|,

where λ1, λ2, . . . , λn are the eigenvalues of A with multiplicity. In this paper, we
focus on the case where A is chosen from a probability distribution on Mn(C), the
set of all n by n complex matrices, and thus μA is a randomly generated discrete
probability measure on C.

1.1. Background: Universality and the circular law. Suppose that An is an n

by n matrix with i.i.d. random entries, each having zero mean and unit variance.
The distribution of the eigenvalues of (1/

√
n)An approaches the uniform distri-

bution on the unit disk as n goes to infinity, a phenomenon known as the circular
law. The nonsparse circular law has been proven in many special cases by many
authors, including Mehta [20] (Gaussian case), Girko [13, 14], Edelman [11] (real
Gaussian case), Bai [2] and Bai and Silverstein [1] [continuous case with bounded
(2+ δ)th moment, for δ > 0], Götze and Tikhomirov [15] (sub-Gaussian case) and
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[16] [bounded (2 + δ)th moment, for δ > 0], Pan and Zhao [23] (bounded 4th mo-
ment) and Tao and Vu [32] [bounded (2 + δ)th moment, for δ > 0]. The following,
due to Tao and Vu [34], Theorem 1.10, is the current best result, requiring only
zero mean and unit variance (see also [33]).

THEOREM 1.1 (Nonsparse circular law ([34], Theorem 1.10)). Let Xn be the

n by n random matrix whose entries are i.i.d. complex random variables with mean

zero and variance one. Then the ESD of 1√
n
Xn converges (both in probability and

in the almost sure sense) to the uniform distribution on the unit disk.

There has also been recent interest in generalizations of the circular law to ran-
dom matrix ensembles where finite variance is relaxed (see [3]) and where some
dependence among the entries is allowed (see [4, 6]).

Proving convergence in the almost sure sense is, in general, harder than proving
convergence in probability, and in the current paper, we will focus exclusively on
convergence in probability. See Section 1.4 toward the end of the Introduction for
a description of convergence in probability and in the almost sure sense for the
current context.

In [34], Tao and Vu ask the following natural question: what analog of Theo-
rem 1.1 is possible in the case where the matrix is sparse, where entries become
more likely to be zero as n increases, instead of entries having the same distribu-
tion for all n? One goal of the current paper is to provide an answer to this question
in the form of Theorem 1.6 (see below), which proves the circular law for sparse
random matrices with i.i.d. entries. In Figure 1, parts (b) and (d) give examples of
the nonsparse circular law for Bernoulli and Gaussian random variables, and parts
(a) and (c) give examples of the sparse circular law for Bernoulli and Gaussian
random variables.

The mathematical literature studying the eigenvalues of sparse random matrices
is distinctly smaller than that for nonsparse random matrices (there are, however,
some nonrigorous approaches from a physics perspective, e.g., [12]). Most authors
in mathematics and physics have focused on studying the eigenvalues in the sym-
metric case, including [9, 18, 21, 22, 24, 27–30]. There has been, however, some
recent and notable progress for nonsymmetric sparse random matrices. Götze and
Tikhomirov [15, 16] provide sparse versions for their proofs of the circular law
with some extra conditions. In [15] they use the additional assumptions that the
entries are sub-Gaussian and that each entry is zero with probability ρn where
ρnn

4 → ∞ as n → ∞, and in [16] they use the additional assumption that the en-
tries have bounded (2+ δ)th moment. The strongest result in the literature for non-
symmetric sparse random matrices is due to Tao and Vu [32] who in 2008 proved
a sparse version of the circular law with the assumption of bounded (2 + δ)th mo-
ment (note that [32] proves almost sure convergence, rather than convergence in
probability as shown by [15, 16]).
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(a) (b)

(c) (d)

FIG. 1. The four figures above illustrate that the circular law holds for Bernoulli and Gaussian

random matrix ensembles in both the sparse and nonsparse cases. Each plot is of the eigenvalues of

a 2,000 by 2,000 random matrix with i.i.d. entries. In the first column [parts (a) and (c)] the matrices

are sparse with parameter α = 0.4, which means each entry is zero with probability 1 − 1
n0.6 , and

in the second column [parts (b) and (d)] the matrices are not sparse (i.e., α = 1). In the first row,
both matrix ensembles are Bernoulli, so each nonzero entry is equally likely to be −1 or 1, and

in the second row, the ensembles are Gaussian, so the nonzero entries are drawn from a Gaussian

distribution with mean zero and variance one.

THEOREM 1.2 ([32], Theorem 1.3). Let α > 0 and δ > 0 be arbitrary positive

constants. Assume that x is a complex random variable with zero mean and finite

(2 + δ)th moment. Set ρ = n−1+α and let An be the matrix with each entry an i.i.d.
copy of 1√

ρ
Iρx, where Iρ is a random variable independent of x, and Iρ takes the

value 1 with probability ρ and the value 0 with probability 1 −ρ. Let μ(1/(σ
√

n))An

be the ESD of 1
σ
√

n
An, where σ 2 is, as usual, the variance of x. Then μ(1/

√
σn)An

converges in the almost sure sense to the uniform distribution μ∞ over the unit

disk as n tends to infinity.
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In this paper, we prove a sparse circular law without the bounded (2 + δ)th
moment condition, with our work being motivated by the proof in [34] of the
(nonsparse) circular law in the general zero mean, unit variance case.

There has been much recent interest in demonstrating universal behavior for
the eigenvalues of various types of random matrices. The following theorem is a
fundamental result from [34]. For a matrix A = (aij )1≤i,j≤n, we will use ‖A‖2
to denote the Hilbert–Schmidt norm, which is defined by ‖A‖2 = traceAA∗ =
(
∑

1≤i,j≤n |aij |2)1/2.

THEOREM 1.3 (Universality principle [34]). Let x and y be complex random

variables with zero mean and unit variance. Let Xn := (xij )1≤i,j≤n and Yn :=
(yij )1≤i,j≤n be n × n random matrices whose entries xij , yij are i.i.d. copies of x

and y, respectively. For each n, let Mn be a deterministic n × n matrix satisfying

sup
n

1

n2 ‖Mn‖2
2 < ∞.(1)

Let An := Mn + Xn and Bn := Mn + Yn. Then μ(1/
√

n)An
− μ(1/

√
n)Bn

converges

in probability to zero.

The universality principle as proven in [34], Theorem 1.5, also includes an ad-
ditional hypothesis under which μ(1/

√
n)An

− μ(1/
√

n)Bn
converges almost surely

to zero (see [34] for details). In [34], Tao and Vu suggest the project of extend-
ing their universality principle for random matrices to the case of sparse random
matrices. In this paper, we will follow the program developed in [34] and prove a
universality principle for sparse random matrices.

1.2. New results for sparse random matrices. We begin by defining the type
of sparse matrix ensemble that we will consider in this paper.

DEFINITION 1.4 (Sparse matrix ensemble). Let 0 < α ≤ 1 be a constant, and
let Iρ be the random variable taking the value 1 with probability ρ := n−1+α and
the value 0 with probability 1 − ρ. Let x be a complex random variable that is
independent of Iρ . The n by n sparse matrix ensemble for x with parameter α is
defined to be the matrix Xn where each entry is an i.i.d. copy of 1√

ρ
Iρx.

The main result of the current paper is the following:

THEOREM 1.5 (Sparse universality principle). Let 0 < α ≤ 1 be a constant,
and let x be a random variable with mean zero and variance one. Let Xn be the

n by n sparse matrix ensemble for x with parameter α, and let Yn be the n by n

matrix having i.i.d. copies of x for each entry (in particular, Yn is not sparse). For

each n, let Mn be a deterministic n by n matrix such that

sup
n

1

n2
‖Mn‖2

2 < ∞,(2)
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and let An := Mn + Xn and Bn := Mn + Yn. Then, μ(1/
√

n)An
− μ(1/

√
n)Bn

con-

verges in probability to zero.

Figure 2 gives an illustration of Theorem 1.5 with nontrivial Mn for sparse
and nonsparse Bernoulli and Gaussian ensembles. In [25], a method is given for

(a) (b)

(c) (d)

FIG. 2. The four plots above illustrate that the universality principle holds for Bernoulli and Gaus-

sian random matrix ensembles in both the sparse and nonsparse cases. Each plot is of the eigenvalues

of a 10,000 by 10,000 random matrix with of the form Mn + Xn, where Mn is a fixed, nonrandom

matrix, and Xn contains i.i.d. entries. For each of the four plots, 1√
n
Mn is the diagonal matrix

with the first ⌊n/4⌋ diagonal entries equal to −1 −
√

−1, the next ⌊n/6⌋ diagonal entries equal to

1.2 − 0.8
√

−1, the next n/12 diagonal entries equal to 1.5 + 0.3
√

−1 and the remaining entries

equal to zero. In the first column [parts (a) and (c)] the matrices Xn are sparse with parameter

α = 0.5, which means each entry is zero with probability 1 − 1
n0.5 , and in the second column [parts

(b) and (d)] the matrices Xn are not sparse (i.e., α = 1). In the first row, both matrix ensembles are

Bernoulli, so each nonzero entry of Xn is equally likely to be −1 or 1, and in the second row, the

ensembles are Gaussian, so the nonzero entries of Xn are drawn from a Gaussian distribution with

mean zero and variance one.
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predicting the eigenvalue distributions of a random matrix plus a deterministic
matrix and also of a random matrix multiplied by a deterministic matrix.

Relating the sparse case to the nonsparse case in the above theorem is quite use-
ful, since many results are known for random matrices with nonsparse i.i.d. entries,
including a number of results in [34]. One of the motivating consequences of The-
orem 1.5 is the following result, which is a combination of Theorems 1.5 and 1.1,
the nonsparse circular law proven in [34].

THEOREM 1.6 (Sparse circular law). Let 0 < α ≤ 1 be a constant, and let

x be a random complex variable with mean zero and variance one. Let Xn be the

sparse matrix ensemble for x with parameter α. Then the ESD for 1√
n
Xn converges

in probability to the uniform distribution on the unit disk.

An illustration of Theorem 1.6 appears in Figure 1. Note that the sparse circular
law (Theorem 1.6) does not hold when α = 0, since the probability of a row of all
zeroes approaches a constant as n → ∞, and thus with probability tending to 1 as
n → ∞, a constant fraction of the rows contain all zeroes. Reasoning in analogy
with the Hermitian case, where Wigner’s semicircle law holds so long as nρ → ∞
(see [36]), it seems possible that one might be able to prove the circular law in

the case where ρ = logn
n

(see [26] for further evidence). One might also consider
analogs of other models of sparseness that have been used in the Hermitian case;
for example, see [8, 35].

In the nonsparse case, Tao, Vu and Krishnapur [34] also give a number of ex-
tensions and generalizations, one of which is the circular law for shifted matrices,
including the case where the entries of a random matrix have constant, nonzero
mean.

THEOREM 1.7 (Nonsparse circular law for shifted matrices ([34], Corol-
lary 1.12)). Let Xn be the n by n random matrix whose entries are i.i.d. com-

plex random variables with mean 0 and variance 1, and let Mn be a deterministic

matrix with rank o(n) and obeying inequality (1). Let An := Mn + Xn. Then the

ESD of 1√
n
An converges (both in probability and in the almost sure sense) to the

uniform distribution on the unit disk.

Because Theorem 1.7 applies to nonsparse matrices of the form Mn + Xn, it
can be directly combined with the sparse universality principle of Theorem 1.5 to
yield the following result:

THEOREM 1.8 (Sparse circular law for shifted matrices). Let 0 < α ≤ 1 be a

constant, and let x be a complex random variable with mean 0 and variance 1.
Let Xn be the n by n sparse random matrix ensemble with parameter α, let
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Mn be a deterministic matrix with rank o(n) and obeying inequality (1) and let

An := Mn + Xn. Then the ESD of 1√
n
An converges in probability to the uniform

distribution on the unit disk.

An example of Theorems 1.7 and 1.8 appears in Figure 3.

(a) (b)

(c) (d)

FIG. 3. These six figures illustrate that the circular law holds for shifted sparse Bernoulli and

shifted nonsparse Bernoulli random matrix ensembles. Each plot is of the eigenvalues of an n by n

(with n as specified) random matrix of the form Mn + Xn, where Mn is a nonrandom diagonal

matrix with the first ⌊
√

n⌋ diagonal entries equal to 2
√

n and the remaining entries equal to zero,
and Xn contains i.i.d. random entries. In the first column [parts (a) n = 100, (c) n = 1,000 and (e)
n = 10,000] the matrices are sparse with parameter α = 0.4, which means each entry is zero with

probability 1 − 1
n0.6 , and in the second column [parts (b) n = 100, (d) n = 1,000 and (f) n = 10,000]

the matrices are not sparse (i.e., α = 1). The matrix ensembles are Bernoulli, so each nonzero entry

is equally likely to be −1 or 1. As n increases, the ESDs in both the sparse and nonsparse cases

approach the uniform distribution on the unit disk. Empirically, the small circle on the right, which

has roughly
√

n eigenvalues in and near it, shrinks until its contribution to the ESD is negligible (as

drawn, the small circle has radius n−1/4).
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(e) (f)

FIG. 3. (Continued).

The simple lemma below is an essential component for adapting arguments
from [34] to the sparse case, and illustrates a critical transition that occurs when
α = 0.

LEMMA 1.9. Let ξ be a complex random variable such that E|ξ | < ∞. Let X

be a sparse version of ξ , namely X := Iρξ/ρ, where ρ = n−1+α , where 0 < α ≤ 1
is a constant. Then

E
(
∣

∣1{X>n1−α/2}X
∣

∣

)

→ 0

as n → ∞.

PROOF. The key steps to this proof are using independence of Iρ and ξ , and
applying monotone convergence. We compute

E
(
∣

∣1{|X|>n1−α/2}X
∣

∣

)

= E
(
∣

∣1{|Iρξ |>nα/2}Iρξ/ρ
∣

∣

)

≤
1

ρ
E

(
∣

∣1{|ξ |>nα/2}Iρξ
∣

∣

)

= E
(∣

∣1{|ξ |>nα/2}ξ
∣

∣

)

.

Finally, E(|1{ξ>nα/2}ξ |) → 0 as n → ∞ by monotone convergence. �

REMARK 1.10. The proof of Lemma 1.9 illustrates that ρ = 1/n is a transi-
tion point for sparse random variables of the type Iρξ where the arguments for uni-
versality break down. Notably, the proof of Lemma 1.9 also works for α depend-
ing on n so long as α logn tends to infinity as n → ∞; for example, α = 1

log logn

is suitable. It would be interesting to see if the universality principle extends to
parameters α that tend slowly to zero as n → ∞.
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1.3. Further directions. There are a number of natural further directions to
consider with respect to the sparse universality principle Theorem 1.5. One natural
question is whether Theorem 1.5 can be generalized to prove almost sure conver-
gence in addition to proving convergence in probability. A result of Dozier and
Silverstein [7] is one of the ingredients used in [34] to prove almost sure conver-
gence; however, there does not seem to be a sparse analog of [7]. Proving a sparse
analog of [7] would be a substantial step toward proving a universality principle
with almost sure convergence (see Remark 2.4), though there may be other av-
enues as well. Finally, a general question of interest would be to study the rates
of convergence for the universality principle. Convergence seems reasonably fast
in the nonsparse case; however, empirical evidence indicates that convergence is
slower in the sparse case and may in fact depend on the underlying type of ran-
dom variables; see Figure 4 for an example. A bound on convergence rates in the
nonsparse case where the (2+δ)th moment is bounded is given in [32], Section 14.

1.4. Definitions of convergence and notation. Let X be a random variable tak-
ing values in a Hausdorff topological space. We say that Xn converges in proba-

bility to X if for every neighborhood NX of X, we have

lim
n→∞

Pr(Xn ∈ NX) = 1.

Furthermore, we say that Xn converges almost surely to X if

Pr
(

lim
n→∞

Xn = X
)

= 1.

If Cn is a sequence of random variables taking values in R, we say that Cn is
bounded in probability if

lim
K→∞

lim inf
n→∞

Pr(Cn ≤ K) = 1.

In the current paper, we are interested in how a randomly generated sequence of
ESDs μAn converges as n → ∞, and so we will put the standard vague topology
on the space of probability measures on C. In particular, if μn and μ′

n are randomly
generated sequences of measures on C, then μn − μ′

n converges in probability to
zero if for every smooth function with compact support f and for every ε > 0, we
have

lim
n→∞

Pr
(

∣

∣

∣

∣

∫

C

f dμn −
∫

C

f dμ′
n

∣

∣

∣

∣

≤ ε

)

= 1.

Furthermore, μn −μ′
n converges to zero almost surely if for every smooth function

with compact support f and for every ε > 0, the expression |
∫

C
f dμn−

∫

C
f dμ′

n|
converges to 0 with probability 1.

For functions f and g depending on n, we will make use of the asymptotic
notation f = O(g) to mean that there exists a positive constant c (independent
of n) such that f ≤ cg for all sufficiently large n. Also, we will use the asymptotic
notation f = o(g) to mean that f/g → 0 as n → ∞.
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(a) (b)

(c) (d)

FIG. 4. The four figures above indicate that the rates of convergence to the uniform distribution

on the unit disk for sparse Bernoulli and sparse Gaussian random matrix ensembles are apparently

not the same as each other, and that in particular the sparse Gaussian case converges more slowly

that the nonsparse case. Each plot is of the eigenvalues of a 2,000 by 2,000 random matrix with i.i.d.
entries. In the first column [parts (a) and (c)] the matrices are sparse with parameter α = 0.2, which

means each entry is zero with probability 1 − 1
n0.8 , and in the second column [parts (b) and (d)] the

matrices are not sparse (i.e., α = 1). In the first row, both matrix ensembles are Bernoulli, so each

nonzero entry is equally likely to be −1 or 1, and in the second row, the ensembles are Gaussian, so

the nonzero entries are drawn from a Gaussian distribution with mean zero and variance one.

1.5. Paper outline. Recall that the sparseness is determined by ρ := n−1+α .
In the remaining sections, we will follow the approach used in [34] to prove a
universality principle for sparse random matrices when α > 0. In Section 2, we
outline the main steps of the proof, highlighting a general result about convergence
of ESDs from [34] that essentially reduces the question of convergences of ESDs
to a question of convergence of the determinants of the corresponding matrices
(one of which is sparse, and the other of which is not). Section 3 gives a proof of a
sparse version of the necessary result on convergence of determinants based on a
least singular value bound for sparse matrices in [32] and two lemmas, which are
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proved in Sections 4 and 5, respectively. In Section 5, we make use of a complex
version of a result of Chatterjee [5] (namely, Theorem 5.6) which requires adapting
Krishnapur’s ideas in [34], Appendix C, to a sparse context ([34], Appendix C, is
dedicated to proving a universality principle for nonsparse random matrices where
the entries are not necessarily i.i.d.).

2. Proof of Theorem 1.5. The following result was proven by Tao and Vu
[34], Theorem 2.1, and can be applied directly in proving Theorem 1.5. All loga-
rithms in this paper are natural unless otherwise noted.

THEOREM 2.1 ([34]). Suppose for each n that An,Bn ∈ Mn(C) are ensem-

bles of random matrices. Assume that:

(i) The expression

1

n2 ‖An‖2
2 +

1

n2 ‖B‖2
2(3)

is bounded in probability.
(ii) For almost all complex numbers z,

1

n
log

∣

∣

∣

∣

det
(

1√
n
An − zI

)
∣

∣

∣

∣

−
1

n
log

∣

∣

∣

∣

det
(

1√
n
Bn − zI

)
∣

∣

∣

∣

converges in probability to zero. In particular, for each fixed z, these determinants

are nonzero with probability 1 − o(1).

Then, μ(1/
√

n)An
− μ(1/

√
n)Bn

converges in probability to zero.

Note that a stronger version of the above theorem appears in [34], Theorem 2.1,
which additionally gives conditions under which μ(1/

√
n)An

−μ(1/
√

n)Bn
converges

almost surely to zero.
The lemma below is a sparse version of [34], Lemma 1.7.

LEMMA 2.2. Let Mn, An and Bn be as in Theorem 1.5. Then 1
n2 ‖An‖2

2 and
∫

C
|z|2 dμ(1/

√
n)An

(z) are bounded in probability, and the same statement holds

with Bn replacing An.

PROOF. Our proof is the same as the proof [34], Lemma 1.7, except that we
need to use a sparse version of the law of large numbers (which follows from,
e.g., [10], Theorem 2.2.6). By the Weyl comparison inequality for second moment
(see [34], Lemma A.2) it suffices to prove that 1

n2 ‖An‖2
2 is bounded in probability,

and by the triangle inequality along with inequality (2), it thus suffices to show that
1
n2 ‖Xn‖2

2 is bounded in probability. By the sparse law of large numbers and the fact

that E|x|2 < ∞, we see that 1
n2 ‖Xn‖2

2 is bounded in probability. The statement with
Bn replacing An is exactly [34], Lemma 1.7. �
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The proof of Theorem 1.5 is completed by combining Theorem 2.1 and Lem-
ma 2.2 with the following proposition:

PROPOSITION 2.3. Let 0 < α ≤ 1 be a constant, and let x be a random vari-

able with mean zero and variance one. Let Xn be the sparse matrix ensemble for x

with parameter α, and let Yn be the n by n matrix having i.i.d. copies of x for each

entry (in particular, Yn is not sparse). For each n, let Mn be a deterministic n by n

matrix satisfying inequality (2), and let An := Mn + Xn, and let Bn := Mn + Yn.
Then, for every fixed z ∈ C, we have that

1

n
log

∣

∣

∣

∣

det
(

1√
n
An − zI

)
∣

∣

∣

∣

−
1

n
log

∣

∣

∣

∣

det
(

1√
n
Bn − zI

)
∣

∣

∣

∣

(4)

converges in probability to zero.

One useful property of the determinant is that it may be computed in a number
of different ways. In particular, for a matrix M , we have

|det(M)| =
n

∏

i=1

|λi(M)| =
n

∏

i=1

σi(M) =
n

∏

i=1

dist(Ri,Span{R1, . . . ,Ri−1}),(5)

where λi(M) and σi(M) are the eigenvalues and singular values of M , respec-
tively, and where Ri denotes the ith row of M .

In the remainder of the current section, we will outline the program for prov-
ing Proposition 2.3 and describe the differences between our proof and the proof
of [34], Proposition 2.2. As in [34], we will prove Proposition 2.3 by writing the
determinant as a product of distances between the ith row of a matrix and the span
of the first i − 1 rows [thanks to (5)]. Proposition 2.3 can then be proven via three
main steps:

(1) A bound on the least singular value due to Tao and Vu [32] for sparse and
nonsparse random matrices is used to take care of terms very high-dimensional
subspaces (i.e., span of more than n − n1−α/6 rows).

(2) Talagrand’s inequality is used, along with other ideas from [34], to take care
of terms with high dimension [i.e., span of more than (1 − δ)n rows] not already
dealt with by the previous step. Some care must be taken in the sparse case with the
constant α in the exponent in order to use Talagrand’s inequality, which is where
the α/6 comes from in the previous step.

(3) A complex version of a result of Chatterjee [5] (namely Theorem 5.6) along
with new ideas in [34] are used to take care of the remaining terms. Here, the
sparse case differs substantially from the nonsparse case, in that we must use The-
orem 5.6 in place of a result due to Dozier and Silverstein [7] used in [34]. This
step, in general, follows Krishnapur [34], Appendix C, who investigates a univer-
sality principle for nonsparse random matrices with not necessarily i.i.d. entries,
since there Dozier and Silverstein’s result [7] cannot be applied.
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REMARK 2.4. It would be natural to investigate a version of Theorem 1.5
where convergence in the almost sure sense is proved rather than convergence
in probability. Typically, proving almost sure convergence is harder than proving
convergence in probability; however, the universality principle in [34] is proven
for both types of convergence, and so may provide a general approach to proving
a universality principle for sparse random matrices with almost sure convergence.
One of the steps in proving the universality principle of [34] in the almost sure
sense uses a result due to Dozier and Silverstein [7]. In [7], a truncation argument
is used that seems like it would need to be altered or replaced in order to prove a re-
sult for sparse random matrices. Another possible approach to proving a version of
Theorem 1.5 for almost sure convergence would be to prove an analog of Chatter-
jee’s [5], Theorem 1.1 (see Theorem 5.6) for almost sure convergence, though this
might require a very different type of argument than the one used in [5]. A sparse
version of the law of large numbers for almost sure convergence would also likely
be necessary in any case.

3. Proof of Proposition 2.3. By shifting Mn by zI
√

n [and noting that the
new Mn still satisfies inequality (2)], it is sufficient to prove that

1

n
log

∣

∣

∣

∣

det
(

1√
n
An

)∣

∣

∣

∣

−
1

n
log

∣

∣

∣

∣

det
(

1√
n
Bn

)∣

∣

∣

∣

converges to zero in probability.
Following the notation of [34], let X1, . . . ,Xn be the rows of An, and let

Y1, . . . , Yn be the rows of Bn. Let Z1, . . . ,Zn denote the rows of Mn, and note
that by inequality (2) we have that

n
∑

j=1

‖Zj‖2
2 = O(n2).

By re-ordering the rows of An, Bn and Mn if necessary, we may assume that the
rows Z⌈n/2⌉, . . . ,Zn have the smallest norms, and so

‖Zi‖2 = O
(√

n
)

for n/2 ≤ i ≤ n.(6)

This fact will be used in part of the proof of Lemma 3.2.
For 1 ≤ i ≤ n, let Vi be the (i − 1)-dimensional space generated by X1, . . . ,

Xi−1, and let Wi be the (i − 1)-dimensional space generated by Y1, . . . , Yi−1. By
standard formulas for the determinant [see (5)], we have that

1

n
log

∣

∣

∣

∣

det
(

1√
n
An

)
∣

∣

∣

∣

= 1

n

n
∑

i=1

log dist
(

1√
n
Xi,Vi

)

and

1

n
log

∣

∣

∣

∣

det
(

1√
n
Bn

)
∣

∣

∣

∣

= 1

n

n
∑

i=1

log dist
(

1√
n
Yi,Wi

)

.
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It is thus sufficient to show that

1

n

n
∑

i=1

log dist
(

1√
n
Xi,Vi

)

− log dist
(

1√
n
Yi,Wi

)

(7)

converges in probability to zero. We will start by proving somewhat weak upper
and lower bounds on dist( 1√

n
Xi,Vi) and dist( 1√

n
Yi,Wi) that hold for all i. For the

upper bound, note that by Chebyshev’s inequality we have Pr(‖Xi‖2 > n2) ≤ n−3,
and thus by the Borel–Cantelli lemma, we have with probability 1 that ‖Xi‖2 < n2

for all but finitely many n and for all i. This implies that, with probability 1,

dist
(

1√
n
Xi,Vi

)

≤ ‖Xi‖2 = nO(1)

for all but finitely many n and for all i; and the same bound also holds for
dist( 1√

n
Yi,Wi). To show a lower bound, define S

(i)
j := Span({X1, . . . ,Xi} \ {Xj }),

and define A
(i)
n to be the i by n matrix consisting of the first i rows of An. By [34],

Lemma A.4, we have

i
∑

j=1

dist
(

Xj , S
(i)
j

)−2 =
i

∑

j=1

σj

(

A(i)
n

)−2
,

and since Vi = S
(i)
i , we thus have the crude bound

dist(Xi,Vi)
−2 ≤ nσi

(

A(i)
n

)−2
.

By Cauchy interlacing (see [34], Lemma A.1), we know that σi(A
(i)
n ) ≥ σn(An),

and thus we have

1

n
σn(An) ≤ dist

(

1√
n
Xi,Vi

)

,

and by the same reasoning,

1

n
σn(Bn) ≤ dist

(

1√
n
Yi,Wi

)

.

Lower bounds on dist( 1√
n
Xi,Vi) and dist( 1√

n
Yi,Wi) will now follow from lower

bounds on the least singular values of An and Bn which were proven in [32].

LEMMA 3.1 (Least singular value bound for sparse random matrices [32]).
Let 0 < α ≤ 1 be a constant, and let x be a random variable with mean zero and

variance one. Let Xn be the sparse matrix ensemble for x with parameter α, and

let Yn be the n by n matrix having i.i.d. copies of x for each entry (in particular,
Yn is not sparse). For each n, let Mn be a deterministic n by n matrix satisfying
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inequality (2), and let An := Mn + Xn, and let Bn := Mn + Yn. Then with proba-

bility 1 we have

σn(An), σn(Bn) ≥ n−O(1)

for all but finitely many n.

PROOF. Paraphrasing [34], proof of Lemma 4.1, the proof follows by com-
bining [32], Theorem 2.5 (for the nonsparse matrix) and [32], Theorem 2.9 (for
the sparse matrix) each with the Borel–Cantelli lemma, noting that the hypotheses
of [32], Theorem 2.5, and [32], Theorem 2.9, are satisfied due to [32], Lemma 2.4,
and inequality (2). �

Thus, with probability 1 we have
∣

∣

∣

∣

log dist
(

1√
n
Xi,Vi

)
∣

∣

∣

∣

,

∣

∣

∣

∣

log dist
(

1√
n
Yi,Wi

)
∣

∣

∣

∣

≤ O(logn)(8)

for all but finitely many n. In light of inequality (8), the following two lemmas
suffice to prove that the quantity in display (7) converges in probability to zero.

Recall that α is the parameter used to determine the sparseness of the sparse
matrix ensemble.

LEMMA 3.2 (High-dimensional contribution). For every ε > 0, there exists a

constant 0 < δε < 1/2 such that for every 0 < δ < δε we have with probability 1
that

1

n

∑

(1−δ)n≤i≤n−n1−α/6

∣

∣

∣

∣

log dist
(

1√
n
Xi,Vi

)
∣

∣

∣

∣

= O(ε)

for all but finitely many n.

Note that Lemma 3.2 with Yi (which is not sparse) replacing Xi and with Wi

replacing Vi was proven in [34], Lemma 4.2, with 0.99 replacing 1 − α/6. Alter-
natively, the nonsparse case follows from our proof of Lemma 3.2 if one sets α = 1
(giving an exponent of 5/6 in place of the exponent 0.99 used in [34], Lemma 4.2).
Also, note that for all sufficiently large n, we may assume that (6) holds for all i

relevant to Lemma 3.2 above.

LEMMA 3.3 (Low-dimensional contribution). For every ε > 0, there exists

0 < δ < ε such that with probability at least 1 − O(ε) we have
∣

∣

∣

∣

1

n

∑

1≤i≤(1−δ)n

log
(

dist
(

1√
n
Xi,Vi

))

− log
(

dist
(

1√
n
Yi,Wi

))∣

∣

∣

∣

= O(ε)

for all but finitely many n.
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To complete the proof of Proposition 2.3, one may combine Lemma 3.2 ([34],
Lemma 4.2) (which is the nonsparse analog of Lemma 3.2) and Lemma 3.3. In
particular, given ε3.2 > 0 in Lemma 3.2, we need the δ3.3 in Lemma 3.3 to be
smaller than δε3.2 . This may be accomplished by choosing ε3.3 from Lemma 3.3 to
be smaller than δε3.2 given by Lemma 3.2.

4. Proof of Lemma 3.2. Following [34], we will prove Lemma 3.2 in two
parts, splitting the summands into cases where the log is positive and where the log
is negative. The proof below follows the proof of [34], Lemma 4.2, closely, and
we have included it in detail to make explicit the role of α, which determines the
sparseness of the matrix An. One place where particular care must be taken with
sparseness parameter α is in a truncation argument needed to apply Talagrand’s
inequality (see Section 4.3). There, we have made frequent use of the assumption
that α is a positive constant, though it is possible that a very slowly decreasing α

could also work; see Lemma 1.9 and Remark 1.10.

4.1. Positive log component. In this section, we will use the notation

log+(x) := max{log(x),0}.
By the Borel–Cantelli lemma, the desired bound on the positive log component

may be proven by showing
∞
∑

n=1

Pr
(

1

n

∑

(1−δ)n≤i≤n−n1−α/6

log+ dist
(

1√
n
Xi,Vi

)

≥ ε

)

< ∞.

We will use the crude bound log+ dist( 1√
n
Xi,Vi) ≤ log+ (

‖Xi‖2√
n

). Note that if

2m0 ≤ ‖Xi‖2√
n

< 2m0+1, then m0 ≤ log2(
‖Xi‖2√

n
) < m0 + 1, and so

∞
∑

m=0

1{‖Xi‖2≥2m
√

n} = m0 + 1 > log2

(‖Xi‖2√
n

)

.

Thus,

1

n

∑

(1−δ)n≤i≤n−n1−α/6

log+ dist
(

1√
n
Xi,Vi

)

(9)

≤
∞
∑

m=0

1

n

∑

(1−δ)n≤i≤n−n1−α/6

1{‖Xi‖2≥2m
√

n}.

If the left-hand side of inequality (9) is at least ε for a given n, then we must
have for some m ≥ 0 that

1

n

∑

(1−δ)n≤i≤n−n1−α/6

1{‖Xi‖2≥2m
√

n} ≥
2ε

(100 + m)2 .(10)
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We now have two cases to consider. For the first case, assume that the small-
est m satisfying inequality (10) satisfies m ≥ n1/5. Then for inequality (10) to be
satisfied, there exists some 1 ≤ i ≤ n such that ‖Xi‖2 ≥ 2n1/5√

n. By Chebyshev’s

inequality and equation (6), we have that Pr(‖Xi‖2 ≥ 2n1/5√
n) ≤ O( 1

22n1/5 ), and

thus the probability of such an i existing is at most f (n) := 1 − (1 − c2−2n1/5
)n,

where c is some constant. It is not hard to show that f (n)n2 → 0 as n → ∞, and
thus, for all sufficiently large n, we have the probability that there exists an i such
that ‖Xi‖2 ≥ 2n1/5√

n is at most ε/n2. Since this probability is summable in n, we
have proved inequality (9) in the first case.

For the second case, assume that the smallest m satisfying inequality (10) satis-
fies 0 ≤ m < n1/5. In this case we will use Hoeffding’s inequality.

THEOREM 4.1 (Hoeffding’s inequality [17]). Let β1, . . . , βk be independent

random variables such that for 1 ≤ i ≤ k we have

Pr
(

βi − E(βi) ∈ [0,1]
)

= 1.

Let S :=
∑k

i=1 βi . Then

Pr
(

S ≥ kt + E(S)
)

≤ exp(−2kt2).

The random variables βi will be 1{‖Xi‖2≥2m
√

n}, and thus we need to control
Pr(‖Xi‖2 ≥ 2m

√
n) in order to bound E(S). By (6) and Chebyshev’s inequality,

we have that

Pr
(

‖Xi‖2 ≥ 2m
√

n
)

≤ O

(

1

22m

)

.(11)

We will take k = n − n1−α/6 − (1 − δ)n, so we have that limn→∞
k
n

= δ. Also, δε

sufficiently small so that δε < ε
20,000C

, where C is the implicit constant in inequal-
ity (11). If we take t = n

k
( ε
(100+m)2 ), we can compute that

kt

n
+

1

n
E(S) ≤

ε

(100 + m)2 +
2δεC

22m
≤

2ε

(100 + m)2

for all sufficiently large n (the second inequality follows by taking n sufficiently
large so that k/n ≤ 2δ < 2δε). Thus, by Hoeffding’s inequality and taking n suffi-
ciently large, we have

Pr
(

1

n

∑

(1−δ)n≤i≤n−n1−α/6

1{‖Xi‖2≥2m
√

n} ≥
2ε

(100 + m)2

)

≤ exp
( −nε2

δ(100 + m)4

)

≤ max
{

exp
( −nε2

δ(200)4

)

, exp
(−n1/5ε2

16δ

)}

,
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where the last inequality follows from our assumption in this second case that
0 ≤ m ≤ n1/5. Thus, we have shown for all sufficiently large n and any 0 ≤ δ < δε

that

Pr
(

1

n

∑

(1−δ)n≤i≤n−n1−α/6

log+ dist
(

1√
n
Xi,Vi

)

≥ 0
)

≤ max
{

exp
( −nε2

δ(200)4

)

, exp
(−n1/5ε2

16δ

)}

.

Finally, we note that the bounds from the two cases sum to at most

ε/n2 + max
{

exp
( −nε2

δ(200)4

)

, exp
(−n1/5ε2

16δ

)}

,

which is summable in n, thus completing the proof for the positive log component.

4.2. Negative log component. In this section, we will use the notation
log−(x) := max{−log(x),0}.

By the Borel–Cantelli lemma, it suffices to show that

∞
∑

n=1

Pr
(

1

n

∑

(1−δ)n≤i≤n−n1−α/6

log− dist
(

1√
n
Xi,Vi

)

≥ ε

)

< ∞.(12)

Following the approach in [34], our main tool is the following lemma.

PROPOSITION 4.2. Let 0 < α ≤ 1 be a constant, let 1 ≤ d ≤ n − n1−α/6, let

0 < c < 1 be a constant and let W be a deterministic d-dimensional subspace

of C
n. Let X be a row of An. Then

Pr
(

dist(X,W) ≤ c
√

n − d
)

≤ 6 exp(−nα/2)

for all n sufficiently large with respect to c and α.

We will give the proof of Proposition 4.2 in Section 4.3. The proof of the nega-
tive log component of Lemma 3.2 can be completed by using Proposition 4.2 and
following the proof of Lemma 4.2 of [34], which we paraphrase below.

Taking c = 1/2 in Proposition 4.2 and conditioning on Vi , we have that for each
(1 − δ)n ≤ i ≤ n − nα/6 that

Pr
(

dist
(

1√
n
Xi,Vi

)

>

√
n − i + 1

2
√

n

)

≥ 1 − O(exp(n−α/2)).

Thus, the probability that

dist
(

1√
n
Xi,Vi

)

>

√
n − i + 1

2
√

n
(13)
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simultaneously for all (1 − δ)n ≤ i ≤ n − nα/6 is at least 1 − O(n−10) (in fact,
better bounds are possible, but this is sufficient).

Finally, choosing δε sufficiently small so that δε

2 log 4
δε

< ε, we can take the
log of inequality (13) and sum in i to get that the probability in the summand of
inequality (12) in at most O(n−10), and this is summable in n, completing the
proof of inequality (12).

4.3. Proof of Proposition 4.2. Recall that X has coordinates ai = Iρxi√
ρ

+ mi ,
where mi is a fixed element (it comes from the matrix Mn), xi is a fixed, mean
zero, variance 1 random variable (it does not change with n) and ρ = n−1+α where
0 < α ≤ 1 is a constant. The proof of Proposition 4.2 closely follows the proof of
Proposition 5.1 of [34], and we give the details below to highlight how the proof
must be modified to accommodate sparseness with parameter α. In particular, care
must be taken with the value of α in the following three steps: first, when reduc-
ing to the case where the sparse random variables are bounded (since sparseness
requires scaling by 1/n−1+α), second, when showing that the sparse random vari-
ables restricted to the bounded case still have variance tending to 1 as n → ∞, and
third, when applying Talagrand’s inequality where one must keep track of α in the
exponent on the upper bound.

PROOF OF PROPOSITION 4.2. First we reduce to the case where X has
mean 0. Let v = E(X). (Note that v is the row of Mn corresponding to X.)

Note that dist(X,W) ≥ dist(X − v,Span(W,v)). Thus, by changing constants
slightly (while still preserving 0 < c < 1) and replacing d by d + 1, it suffices to
prove Proposition 4.2 in the mean zero case.

The second step is reducing to a case where the coordinates of X are bounded.
In particular, we will show that, with probability at least 1 − 2 exp(−nα/2), all
but n0.8 of the coordinates of X take values that are less than n1/2−α/4. Let ti :=
1{|ai |≥n(1−α/2)/2}, and let T := ∑n

i=1 ti . If E(T ) = 0, then with probability 1 we have
that |ai | < n(1−α/2)/2, and we are done with the reduction to the case where the
coordinates are bounded. Thus, it is left to show this reduction in the case where
E(T ) > 0.

By Chernoff (see [31], Corollary 1.9) we know that for every ε > 0 we have

Pr
(

|T − E(T )| ≥ εE(T )
)

≤ 2 exp
(

−min
{

ε2

4
,
ε

2

}

E(T )

)

.

Since E(T ) > 0 by assumption, we may set ε := n0.8

E(T )
− 1. By Chebyshev’s in-

equality, we have Pr(|ai | ≥ n(1−α/2)/2) ≤ n−1+α/2 for all 1 ≤ i ≤ n, and thus
E(T ) = nE(ti) ≤ nα/2, which implies that ε ≥ n0.8−α/2 − 1 ≥ 2 for large n. Here
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we used the fact that 0 < α/2 ≤ 0.5. Using the Chernoff bound we have

Pr
(

T ≥ (1 + ε)E(T ) = n0.8)

≤ 2 exp
(

−
ε

2
E(T )

)

≤ 2 exp
(

−n0.8/2 + E(T )/2
)

≤ 2 exp
(

−n0.8/2 + nα/2/2
)

≤ 2 exp(−n0.8/4)

≤ 2 exp(−nα/2).

Thus, with probability at least 1 − 2 exp(−nα), there are at most n0.8 indices for
which |ai | ≥ n(1−α/2)/2. For a subset I ⊂ {1,2, . . . , n}, let EI denote the event that
I = {i : |ai | ≥ n1/2−α/4;1 ≤ i ≤ n}.

By the law of total probability, we have

Pr
(

dist(X,W) ≤ c
√

n − d
)

≤ 2 exp(−nα/2)

+
∑

I⊂{1,...,n}
|I |≤n0.8

Pr
(

dist(X,W) ≤ c
√

n − d|EI

)

Pr(EI ).

Thus, it is sufficient to show that

Pr
(

dist(X,W) ≤ c
√

n − d|EI

)

≤ 4 exp(−nα/2)

for each I ⊂ {1, . . . , n} such that |I | ≤ n0.8.
Fix such a set I . By renaming coordinates, we may assume that I = {n′ +

1, . . . , n} where n − n0.8 ≤ n′ ≤ n. The next step is projecting away the coordi-
nates in I . In particular, let π : Cn → C

n′
be the orthogonal projection onto the

first n′ coordinates, and note that

dist(X,W) ≥ dist(π(X),π(W)).

Thus, we can condition on an′+1, . . . , an, adjust c slightly (without changing the
fact that 0 < c < 1) and (abusing notation to henceforth let n stand for n′) see that
it is sufficient to show

Pr
(

dist(X,W) ≤ c
√

n − d||ai | < n1/2−α/4, for every 1 ≤ i ≤ n
)

≤ 4 exp(−nα/2).

LEMMA 4.3. Let ãi be the random variable ai conditioned on |ai | < n1/2−α/4.
Then ãi has variance 1 + o(1).
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PROOF. By definition

Var(ãi) = E(|ãi |2) − |E(ãi)|2

= E(|ai |2||ai | < n1/2−α/4) −
∣

∣E(ai ||ai | < n1/2−α/4)
∣

∣

2

=
1

Pr(|ai | < n1/2−α/4)
E

(

|ai |21{|ai |<n1/2−α/4}
)

−
1

Pr(|ai | < n1/2−α/4)2

∣

∣E
(

ai1{|ai |<n1/2−α/4}
)∣

∣

2
.

Note that ai = Iρxi√
ρ

, and so |ai | < n1/2−α/4 if and only if |Iρxi | < nα/4. Since xi

does not change with n, we see that Pr(|ai | < n1/2−α/4) = Pr(|Iρxi | < nα/4) → 1
as n → ∞. Also, by Lemma 1.9, we know that E(|ai |21{|ai |<n1/2−α/4}) →
E(|ai |2) = 1 and that E(ai1{|ai |<n1/2−α/4}) → E(ai) = 0. Thus, we have shown
that ãi has variance 1 + o(1). �

Next, we recenter ãi by subtracting away its mean, and we call the result ãi .
Note that this recentering does not change the variance. We will use the following
version of Talagrand’s inequality, quoted from [34], Theorem 5.2; see also [19],
Corollary 4.10:

THEOREM 4.4 (Talagrand’s inequality). Let D be the unit disk {z ∈ C, |z| ≤
1}. For every product probability μ on Dn, every convex 1-Lipschitz function

F : Cn → R, and every r ≥ 0,

μ
(

|F − M(F)| ≥ r
)

≤ 4 exp(−r2/8),

where M(F) denotes the median of F .

Let X̃ = (ã1, ã2, . . . , ãn), and let μ be the distribution on Dn given by
X̃/2n1/2−α/4. Let F(u) := 1

2 dist(u,W)2, and note that F is convex and 1-
Lipschitz, which follows since dist(u,W) is both convex and 1-Lipschitz [and
also using the fact that dist(u,W) ≤ 1, since 0 ∈ W ].

By Theorem 4.4 with r = 3nα/4, we have

Pr
(

|dist(X̃,W)2 − M(dist(X̃,W)2)| ≥ 12nα/4n1−α/2)

≤ 4 exp(−nα/2),

which implies that

Pr
(

dist(X̃,W)2 ≤ M(dist(X̃,W)2) − 12n1−α/4)

≤ 4 exp(−nα/2).(14)

Recall that F = 1
2 dist( X̃

2n1/2−α/4 ,W)2. Using Talagrand’s inequality (Theo-
rem 4.4) again, we will show that the mean of F is very close to the median of F .
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We compute

|E(F ) − M(F)| ≤ E|F − M(F)| =
∫ ∞

0
Pr

(

|F − M(F)| ≥ t
)

dt

≤
∫ ∞

0
4 exp(−t2/8) dt = 8

√
2π.

Thus, we have shown that

|E(dist(X̃,W)2) − M(dist(X̃,W)2)| ≤
(

32
√

2π
)

n1−α/2.(15)

LEMMA 4.5. E(dist(X̃,W)2) = (1 + o(1))(n − d).

PROOF. Let π := (πij ) denote the orthogonal projection matrix to W . Note
that dist(X̃,W)2 = ∑n

i=1
∑n

j=1 ãiπij ãj . Since ãi are i.i.d., mean zero random vari-
ables, we have

E(dist(X̃,W)2) = E(|ãi |2)
n

∑

i=1

πii = E(|ãi |2) tr(π).

The proof is completed by applying Lemma 4.3 and noting that the trace of π is
n − d . �

From inequality (14), we see that it is sufficient to show that

M(dist(X̃,W)2) − 12n1−α/4 ≥ c2(n − d).

Using inequality (15) and Lemma 4.5 we have for sufficiently large n that

M(dist(X̃,W)2) − 12n1−α/4

≥ E(dist(X̃,W)2) −
(

32
√

2π
)

n1−α/2 − 12n1−α/4

≥
(

c2 +
1 − c2

2

)

(n − d) −
(

32
√

2π
)

n1−α/2 − 12n1−α/4

≥ c2(n − d) +
(

1 − c2

2

)

n1−α/6 −
(

32
√

2π
)

n1−α/2 − 12n1−α/4

≥ c2(n − d),

where the last inequality follows from the fact that
(

1 − c2

2

)

n1−α/6 −
(

32
√

2π
)

n1−α/2 − 12n1−α/4

is a positive quantity for sufficiently large n. Combining the above computation
with inequality (14) completes the proof of Proposition 4.2. �
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5. Proof of Lemma 3.3. Lemma 3.3 follows directly from the slightly more
detailed statement in Lemma 5.1 given below. In this section, we will prove
Lemma 5.1 by adapting the proof of Lemma 4.3 of [34], with some changes.
The biggest difference with the proof of Lemma 4.3 of [34] is in the proof of
Lemma 5.3, where we must adapt the approach of Krishnapur from [34], Ap-
pendix C, to a sparse setting (see Lemma 5.5). This is one critical juncture where
it seems like it would take a new idea to prove almost sure convergence in place
of convergence in probability. One possible approach would be proving a sparse
version of [7] (which is used in [34] in the proof of almost sure convergence in the
nonsparse case). Other notable differences from the proof of Lemma 4.3 of [34]
are that we must use Proposition 4.2 in place of Proposition 5.1 of [34], and that
we kill keep track of a lower bound on δ, which simplifies some steps in the proof.

LEMMA 5.1. For every ε1 > 0 and for all sufficiently small ε2 > 0, where ε2
depends on ε1 and other constants, the following holds. For every δ > 0 satisfying

ε2
2 < δ ≤

ε2

40 log(1/ε2)
,

we have with probability 1 − O(ε1)
∣

∣

∣

∣

1

n

∑

1≤i≤(1−δ)n

log dist
(

1√
n
Xi,Vi

)

− log dist
(

1√
n
Yi,Wi

)∣

∣

∣

∣

= O(ε2)

for all but finitely many n.

As shown in [34], Section 6, it is sufficient to prove that with probability 1 −
O(ε1) we have

∣

∣

∣

∣

∣

1

n′

n′
∑

i=1

log
(

1√
n
σi(An,n′)

)

− log
(

1√
n
σi(Bn,n′)

)

∣

∣

∣

∣

∣

= O(ε2)(16)

for all but finitely many n, where n′ = ⌊(1 − δ)n⌋, where σi(A) denotes the ith
largest singular value of a matrix A, and where An,n′ denotes the matrix consisting
of the first n′ rows of An and Bn,n′ denotes the matrix consisting of the first n′

rows of Bn.
Proving (16) is equivalent to showing

∣

∣

∣

∣

∫ ∞

0
log t dνn,n′(t)

∣

∣

∣

∣

= O(ε2),(17)

where dνn,n′ is defined by the difference of the two relevant ESDs, namely

dνn,n′ = dμAn,n′A∗
n,n′/n′ − dμBn,n′B∗

n,n′/n′ .

Following [34], we can prove (17) by dividing the range of t into a few parts,
which follows from Lemma 5.2 (for large t), Lemma 5.3 (for intermediate-sized t)
and Lemma 5.4 (for small t).
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LEMMA 5.2 (Region of large t). For every ε1 > 0, there exist constants ε2 > 0
and Rε2 such that with probability 1 − O(ε1) we have

∫ ∞

Rε2

|log t ||dνn,n′(t)| ≤ ε2.

PROOF. By Lemma 2.2 and Lemma A.2 of [34], we have that
∫ ∞

0 t |dνn,n′(t)|
is bounded in probability. Thus, there exists a constant Cε1 depending on ε1 such
that with probability 1 − O(ε1) we have

∫ ∞

0
t |dνn,n′(t)| ≤ Cε1 .

Choose ε2 > 0 sufficiently small with respect to ε1 and Cε1 so that

1 ≥ 2Cε1ε2 log
(

1

ε2

)

.

Set Rε2 = ( 1
ε2

)2, and assume without loss of generality that Rε2 > e. Note that t
log t

is increasing for t ≥ Rε2 > e, and thus by the definition of ε2 we have

Cε1

ε2
log(t) ≤ t,

whenever t ≥ Rε2 . Thus, we have with probability 1 − O(ε1) that
∫ ∞

Rε2

|log t ||dνn,n′(t)| ≤
∫ ∞

0

ε2

Cε1

t |dνn,n′(t)| ≤ ε2.
�

LEMMA 5.3 (Region of intermediate t , namely ε2
2 ≤ t ≤ Rε2 ). Define a

smooth function ψ(t) which equals 1 on the interval [ε4
2,Rε2], equals zero out-

side the interval (ε4
2/2,2Rε2), is monotonically increasing on (ε4

2/2, ε4
2) and is

monotonically decreasing on (Rε2,2Rε2).
Then with probability 1 − O(ε1) we have

∣

∣

∣

∣

∫ ∞

0
ψ(t) log(t) dνn,n′(t)

∣

∣

∣

∣

= O(ε2),

so long as δ ≤ ε2
40 log(1/ε2)

.

The main step in this proof is applying Lemma 5.5, whereas in the analogous
step in the nonsparse case, [34] uses a result of Dozier and Silverstein [7], which
proves almost sure convergence of the relevant distributions (rather than conver-
gence in probability, which is the limit of Lemma 5.5). It would be interesting to
see if a sparse analog of [7] is possible, especially as it might be a step toward prov-
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ing a universality result for sparse random matrices with almost sure convergence
instead of convergence in probability.

PROOF OF LEMMA 5.3. Using [34], Lemma A.1, and the upper bound on δ,
it is possible to show that

∣

∣

∣

∣

∫ ∞

0
ψ(t) log(t) dνn,n′(t)

∣

∣

∣

∣

=
∣

∣

∣

∣

∫ ∞

0
ψ(t) log(t) dνn,n(t)

∣

∣

∣

∣

+ O(ε2).

(A possible alternative to the step above would be proving an analog of Lemma 5.5
for rectangular n by n′ matrices.)

By Lemma 5.5 (see Section 5.1), we know that dνn,n converges in probability
to zero, and thus

∣

∣

∣

∣

∫ ∞

0
ψ(t) log(t) dνn,n(t)

∣

∣

∣

∣

= O(ε2),

completing the proof. �

The last step in proving (17) and thus completing the proof of Lemma 5.1 is the
following lemma:

LEMMA 5.4 (Region of small t , namely 0 < t ≤ ε4
2 < δ2). With probability 1,

we have

∫ ε4
2

0
|log t ||dνn,n′(t)| = O(ε2),

so long as δ ≤ 1
2( ε2

log(1/ε2)
)1/4.

PROOF. The required upper bound on δ follows from the assumption that δ <
ε2

40 log(1/ε2)
. The proof is the same as the proof for Lemma 6.6 of [34], with the

small change that one must use Proposition 4.2 in place of Proposition 5.1 of [34].
�

5.1. Applying an approach of Chatterjee. In this subsection, we follow the
ideas used by Krishnapur in [34], Appendix C, where a central-limit-type theorem
due to Chatterjee [5] was used to prove a universality result for random matrices
with independent but not necessarily identically distributed entries. Lemma 5.5
below is analog of Lemma C.3 of [34]. Recall that Iρ is an i.i.d. copy of the random
variable taking the value 1 with probability ρ and the value 0 with probability
1 − ρ, where ρ = n−1+α where 0 < α ≤ 1 is a positive constant.
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LEMMA 5.5. Let x be a complex random variable with mean zero and vari-

ance one. Let X = (X
(0)
1,1,X

(1)
1,1,X

(0)
2,1,X

(1)
2,1, . . .) be an array of 2n2 real random

variables, where for each 1 ≤ i, j ≤ n we define X
(0)
i,j and X

(1)
i,j so that X

(0)
i,j +

√
−1X

(1)
i,j is an i.i.d. copy of xIρ/

√
ρ. Similarly, let Y = (Y

(0)
1,1 , Y

(1)
1,1 , Y

(0)
2,1 , Y

(1)
2,1 , . . .)

be another array of 2n2 real random variables, where for each 1 ≤ i, j ≤ n we de-

fine Y
(0)
i,j and Y

(1)
i,j so that Y

(0)
i,j +

√
−1Y

(1)
i,j is an i.i.d. copy of x (thus, the X

(k)
i,j are

sparse versions of the Y
(k)
i,j , which are not sparse). Let An(X) denote the n by n ran-

dom matrix having X
(0)
i,j +

√
−1X

(1)
i,j for the (i, j) entry, and similarly for An(Y).

Let μ(1/n)An(X)An(X)∗ and μ(1/n)An(Y)An(Y)∗ denote the ESDs of 1
n
An(X)An(X)∗

and 1
n
An(Y)An(Y)∗, respectively. Then μ(1/n)An(X)An(X)∗ −μ(1/n)An(Y )An(Y )∗ con-

verges in probability to zero as n → ∞.

PROOF. Our approach will be applying [5], Theorem 1.1, in a similar way to
[34], Lemma C.3.

Let Hn(X) :=
( 0

An(X)/
√

n
An(X)∗/

√
n

0

)

.

Note that the eigenvalues of Hn(X) with multiplicity are exactly the positive
and negative square roots of the eigenvalues with multiplicity of 1

n
An(X)An(X)∗.

Also, the same fact applies to Hn(Y) and 1
n
An(Y)An(Y)∗. We will now follow the

computation given in [5], Section 2.4. It is sufficient to show that μHn(X) −μHn(Y)

converges in probability to zero as n → ∞.
Let u, v ∈ R with v �= 0 and let z = u +

√
−1v. Define a function f : R2n2 → C

by

f (x) = 1

2n
tr

((

Hn(x) − zI
)−1)

.

Here x = (x
(k)
i,j )1≤i,j≤n;k∈{0,1}, where x

(0)
i,j corresponds to the real part (namely,

X
(0)
i,j or Y

(0)
i,j ) and x

(1)
i,j corresponds to the complex part (namely, X

(1)
i,j or Y

(1)
i,j ).

We will show that for every fixed complex z with Im(z) = v �= 0, we have
E(f (X)) − E(f (F )) → 0 as n → ∞, which implies that μHn(X) − μHn(Y) con-
verges in probability to zero as n → ∞.

Define G : R2n2 → C
(2n)2

by

G(x) =
(

Hn(x) − zI
)−1

.

All eigenvalues of Hn(x) are real, and thus all eigenvalues of H(x) − zI are
nonzero (since v �= 0). Thus, G(x) is well defined. From the matrix inversion
formula, each entry of G(x) is a rational expression in x

(k)
i,j for 1 ≤ i, j ≤ n and

k ∈ {0,1}. Thus G is infinitely differentiable in each coordinate x
(k)
i,j .
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In the remainder of this section, we will use the shorthand G for G(x) and the
shorthand H for Hn(x). Our goal is to apply the approach used by Chatterjee in [5],
and we will first establish useful bounds on the partial derivatives of G.

Note that

∂G

∂x
(k)
i,j

= −G
∂H

∂x
(k)
i,j

G(18)

[this can be seen by using the product rule and differentiating both sides of the
equation (Hn(x) − zI)G = I ]. The following three formulas follow from (18) and
the fact that tr(AB) = tr(BA) for any two square matrices A and B , along with the
fact that all higher partial derivatives of H are zero.

∂f

∂x
(k)
i,j

= −1

2n
tr

(

∂H

∂x
(k)
i,j

G2
)

,

∂2f

∂x
(k1)
i1,j1

∂x
(k2)
i2,j2

=
1

2n

(

tr
(

∂H

∂x
(k1)
i1,j1

G
∂H

∂x
(k2)
i2,j2

G2
)

+ tr
(

∂H

∂x
(k2)
i2,j2

G
∂H

∂x
(k1)
i1,j1

G2
))

,

∂3f

∂x
(k1)
i1,j1

∂x
(k2)
i2,j2

∂x
(k3)
i3,j3

=
−1

2n

∑

σ∈S3

tr
(

∂H

∂x
(kσ(1))

iσ(1),jσ(1)

G
∂H

∂x
(kσ(2))

iσ(2),jσ(2)

G
∂H

∂x
(kσ(3))

iσ(3),jσ(3)

G2
)

,

where the last sum is over the six elements of S3, the symmetric group on 3 letters.
As in [5], Section 2.4, we will use the following facts to bound the partial

derivatives of f . Recall that for a matrix A, we define ‖A‖2 := tr(AA∗). Note
that |tr(AB)| ≤ ‖A‖2‖B‖2. Also, for A a k by k normal matrix with eigenval-
ues λ1, λ2, . . . , λk and B any square matrix, we have max{‖AB‖2,‖BA‖2} ≤
(max1≤i≤k λi)‖B‖2.

By the definition of G, it is clear that the absolute value of the largest eigenvalue

of G is at most |v|−1. Also, by the definition of H , it is clear that ∂H

∂x
(k)
i,j

is the

matrix having (
√

−1)kn−1/2 for the (n + i, j) entry, having (−
√

−1)kn−1/2 for
the (j, n + i) entry and having zero for all other entries.

Thus, for all 1 ≤ i, j ≤ n and k ∈ {0,1}, we have that

∣

∣

∣

∣

tr
(

∂H

∂x
(k)
i,j

G2
)∣

∣

∣

∣

≤
∥

∥

∥

∥

∂H

∂x
(k)
i,j

∥

∥

∥

∥

2
‖G2‖2

≤
√

2

n
|v|−2‖I‖2

≤ |v|−2
√

2,



UNIVERSALITY FOR SPARSE RANDOM MATRICES 1293

and so | ∂f

∂x
(k)
i,j

| < |v|−2

n
.

By similar means, we can compute
∣

∣

∣

∣

tr
(

∂H

∂x
(k1)
i1,j1

G
∂H

∂x
(k2)
i2,j2

G2
)

∣

∣

∣

∣

≤
∥

∥

∥

∥

∂H

∂x
(k1)
i1,j1

∥

∥

∥

∥

2

∥

∥

∥

∥

G
∂H

∂x
(k2)
i2,j2

G2
∥

∥

∥

∥

2

≤
√

2

n
|v|−3

√

2

n

≤
2|v|−3

n
,

which shows that | ∂2f

∂x
(k1)

i1,j1
∂x

(k2)

i2,j2

| ≤ 2|v|−3

n2 ; and

∣

∣

∣

∣

tr
(

∂H

∂x
(k1)
i1,j1

G
∂H

∂x
(k2)
i2,j2

G
∂H

∂x
(k3)
i3,j3

G2
)

∣

∣

∣

∣

≤
∥

∥

∥

∥

∂H

∂x
(k1)
i1,j1

∥

∥

∥

∥

2

∥

∥

∥

∥

G
∂H

∂x
(k2)
i2,j2

G
∂H

∂x
(k3)
i3,j3

G2
∥

∥

∥

∥

2

≤
√

2

n
|v|−1 1√

n
|v|−3

√

2

n

≤
2|v|−4

n3/2 ,

which shows that | ∂3f

∂x
(k1)

i1,j1
∂x

(k2)

i2,j2
∂x

(k3)

i3,j3

| ≤ 6|v|−4

n5/2 .

We will now apply a complex version of the main theorem from [5]. First, we
need the following definitions for a function h : RN → C. We define the derivative-

product degree with respect to h of a monomial of partial derivatives of h to
be the sum of the number of partial derivatives taken in each factor when the
monomial is written as a product of linear terms. We will use derivative-product

degree when the function h is understood. For example, the derivative-product
degree of ( ∂h

∂x
(k)
i,j

)3 = ( ∂h

∂x
(k)
i,j

)( ∂h

∂x
(k)
i,j

)( ∂h

∂x
(k)
i,j

) is 3, and the derivative product degree

of ( ∂3h

∂x
(k1)

i1,j1
∂x

(k2)

i2,j2
∂x

(k3)

i3,j3

)2( ∂2h

∂x
(k3)

i3,j3
∂x

(k4)

i4,j4

) = ( ∂3h

∂x
(k1)

i1,j1
∂x

(k2)

i2,j2
∂x

(k3)

i3,j3

)( ∂3h

∂x
(k1)

i1,j1
∂x

(k2)

i2,j2
∂x

(k3)

i3,j3

) ×

( ∂2h

∂x
(k3)

i3,j3
∂x

(k4)

i4,j4

) is 8. Define two quantities as follows:

λ2(h) := sup
x∈RN

{γ (x) : γ has derivative-product degree 2 with respect to h}

and let

λ3(h) := sup
x∈RN

{γ (x) : γ has derivative-product degree 3 with respect to h}.
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THEOREM 5.6. Let N be a positive even integer, let X = (X1, . . . ,XN ) and

Y = (Y1, . . . , YN ) be lists of real-valued random variables such that for 1 ≤ ℓ ≤
N/2, the random variables X2ℓ−1 and X2ℓ are each independent of all Xj such

that 1 ≤ j ≤ N and j /∈ {2ℓ − 1,2ℓ}, and similarly the random variables Y2ℓ−1

and Y2ℓ are each independent of all Yj such that 1 ≤ j ≤ N and j /∈ {2ℓ − 1,2ℓ}.
Assume further that

E(Xj ) = E(Yj ) for all 1 ≤ j ≤ N,

E(X2
j ) = E(Y 2

j ) for all 1 ≤ j ≤ N,(19)

E(X2ℓ−1X2ℓ) = E(Y2ℓ−1Y2ℓ) for all 1 ≤ ℓ ≤ N/2.

Let h : RN → R have continuous partial derivatives of order 1, 2 and 3, includ-

ing mixed partial derivatives. If we set U = h(X) and V = h(Y), then for any

thrice differentiable g : R → R and any K > 0,

|Eg(U) − Eg(V )|

≤ C1(g)λ2(h)

N−1
∑

i=1
i odd

(

E(X2
i + |XiXi+1| + X2

i+1; |Xi | + |Xi+1| > K)

+ E(Y 2
i + |YiYi+1| + Y 2

i+1; |Yi | + |Yi+1| > K)
)

+ C2(g)λ3(h)

N−1
∑

i=1
i odd

(

E(|Xi |3 + X2
i |Xi+1| + |Xi |X2

i+1 + |Xi+1|3;

|Xi | + |Xi+1| ≤ K)

+ E(|Yi |3 + Y 2
i |Yi+1| + |Yi |Y 2

i+1 + |Yi+1|3;

|Yi | + |Yi+1| ≤ K)
)

,

where C1(g) = ‖g′‖∞ + ‖g′′‖∞ and C2(g) = ‖g′‖∞ + 3‖g′′‖∞ + ‖g′′′‖∞.

We prove Theorem 5.6 in the Appendix.
Theorem 5.6 requires h to be a real-valued function; thus we will apply The-

orem 5.6 to Re(f ) and Im(f ) separately. We will give the application to Re(f )

below, noting that the same argument applies with Im replacing Re.
Given g : R → R a thrice differentiable function, set U = Re(f (X)) and V =

Re(f (Y)), where X and Y are as in the statement of Lemma 5.5 (notationally,
set N = 2n2 and define Xℓ by X1+2n(i−1)+2(j−1)+k := X

(k)
i,j ). Note that from the

assumption in Lemma 5.5 that the X
(k)
i,j are sparse versions of the Y

(k)
i,j , the hy-

potheses in (19) are automatically satisfied. Also, the independence hypotheses in
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Theorem 5.6 follow from the definitions of X
(k)
i,j and Y

(k)
i,j in Lemma 5.5. Finally,

noting that λr(Ref ) ≤ λr(f ), and noting that for our function f we have

λ2(f ) = sup
{ |v|−4

n2 ,
2|v|−3

n2

}

and

λ3(f ) = sup
{ |v|−6

n3 ,
2|v|−5

n3 ,
6|v|−4

n5/2

}

,

we may apply Theorem 5.6 to get

|Eg(U) − Eg(V )|
≤ C1(g)λ2(h)

(20)

×
n

∑

i=1

n
∑

j=1

(

E
((

X
(0)
i,j

)2 +
∣

∣X
(0)
i,j X

(1)
i,j

∣

∣ +
(

X
(1)
i,j

)2;
∣

∣X
(0)
i,j

∣

∣ +
∣

∣X
(1)
i,j

∣

∣ > K
)

+ E
((

Y
(0)
i,j

)2 +
∣

∣Y
(0)
i,j Y

(1)
i,j

∣

∣ +
(

Y
(1)
i,j

)2;
∣

∣Y
(0)
i,j

∣

∣ +
∣

∣Y
(1)
i,j

∣

∣ > K
))

+ C2(g)λ3(h)(21)

×
n

∑

i=1

n
∑

j=1

(

E
(∣

∣X
(0)
i,j

∣

∣

3 +
(

X
(0)
i,j

)2∣

∣X
(1)
i,j

∣

∣ +
∣

∣X
(0)
i,j

∣

∣

(

X
(1)
i,j

)2 +
∣

∣X
(1)
i,j

∣

∣

3;

∣

∣X
(0)
i,j

∣

∣ +
∣

∣X
(1)
i,j

∣

∣ ≤ K
)

+ E
(
∣

∣Y
(0)
i,j

∣

∣

3 +
(

Y
(0)
i,j

)2∣

∣Y
(1)
i,j

∣

∣ +
∣

∣Y
(0)
i,j

∣

∣

(

Y
(1)
i,j

)2 +
∣

∣Y
(1)
i,j

∣

∣

3;
∣

∣Y
(0)
i,j

∣

∣ +
∣

∣Y
(1)
i,j

∣

∣ ≤ K
))

.

Choose K = ε
√

n, where ε > 0 is a small positive constant. The double-sum term
in (21) is bounded by ε times a constant depending only on g and v [here, we used
that E(|X|3; |X| ≤ K) ≤ KE(X2) for any real random variable X]. Also, using the
fact that ab ≤ 1

2(a2 + b2) for any positive real numbers a and b, the double-sum
term in (20) is bounded by another constant depending only on g and v times the
quantity

1

n2

n
∑

i=1

n
∑

j=1

E
((

X
(0)
i,j

)2 +
(

X
(1)
i,j

)2;
∣

∣X
(0)
i,j

∣

∣ +
∣

∣X
(1)
i,j

∣

∣ > ε
√

n
)

+ E
((

Y
(0)
i,j

)2 +
(

Y
(1)
i,j

)2;
∣

∣Y
(0)
i,j

∣

∣ +
∣

∣Y
(1)
i,j

∣

∣ > ε
√

n
)

.

Since the random variables Y
(k)
i,j do not change with n, it is clear from mono-

tone convergence that E((Y
(0)
i,j )2 + (Y

(1)
i,j )2; |Y (0)

i,j |+|Y (1)
i,j | > ε

√
n) → 0 as n → ∞.
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Thus, it is sufficient to show that E((X
(k)
i,j )2; |X(k)

i,j | > ε
√

n) → 0 as n → ∞. Recall

that X
(0)
i,j +

√
−1X

(1)
i,j is an i.i.d. copy of XIρ/

√
ρ, where X is a complex random

variable with mean zero and variance one, and note that |X(0)
i,j | + |X(1)

i,j | > ε
√

n

implies that
√

|X(0)
i,j |2 + |X(1)

i,j |2 > ε
√

2n/3. We have that

E

(
∣

∣

∣

∣

XIρ√
ρ

∣

∣

∣

∣

2

;
∣

∣

∣

∣

XIρ√
ρ

∣

∣

∣

∣

> ε
√

2n/3
)

≤ E

(
∣

∣

∣

∣

XIρ√
ρ

∣

∣

∣

∣

2

; |X| > ε
√

2ρn/3
)

= E
(

|X|2; |X| > ε
√

2ρn/3
)

,

where the last equality follows by the independence of Iρ and X. Finally, by mono-
tone convergence again, we see that E(|X|2; |X| > ε

√
2ρn/3) → 0 as n → ∞,

completing the proof. �

APPENDIX: A COMPLEX VERSION OF CHATTERJEE’S
INVARIANCE THEOREM

In this Appendix, we prove Theorem 5.6, which is a version of [5], Theorem 1.1,
for the complex numbers. In order to prove the result in the complex case, we
treat the real and complex parts of each random variable as separate, possibly
dependent real random variables. The fact that the real and complex parts of a
random variable may depend on each other introduces some complications. Our
approach is modeled on that in [5], with the main differences being that we use the
Lindeberg argument on pairs of random variables, rather than on single random
variables, and also we also use two-dimensional Taylor expansions.

PROOF OF THEOREM 5.6. Let � := g ◦h, which is a function from R
N → R.

Later in the proof we will apply the two-dimensional version of Taylor’s theorem
to � , and so to start we will establish bounds on the partial derivatives of � .

We will use the notation ∂(i1,i2,...,ik)� as shorthand for ∂k�
∂xi1 ∂xi2 ··· ∂xik

. Note that

the order of the coordinates (i1, i2, . . . , ik) is unimportant for 1 ≤ k ≤ 3 since �

has continuous partial derivatives (including mixed partials) by assumptions on h

and g.
Note that ∂i�(x) = g′(h(x)) ∂ih(x), and so taking further partial derivatives

one can compute that

∂ij�(x) = g′′(h(x)) ∂ih(x) ∂jh(x) + g′(h(x)) ∂ijh(x).

Thus, supx∈RN 1≤i,j≤N |∂ij�(x)| ≤ C1(g)λ2(h).
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Taking further partial derivatives, one can compute that

∂i,j,k�(x) = g′′′(h(x)) ∂ih(x) ∂jh(x) ∂kh(x)

+ g′′(h(x)) ∂ikh(x) ∂jh(x) + g′′(h(x)) ∂ih(x) ∂jkh(x)

+ g′′(h(x)) ∂kh(x) ∂ijh(x) + g′(h(x)) ∂ijkh(x).

Thus, supx∈RN 1≤i,j,k≤N ≤ C2(g)λ3(h).
For 1 ≤ i ≤ N and i odd, define

Zi := (X1, . . . ,Xi−1,Xi,Xi+1, Yi+2, . . . , YN ),

Wi := (X1, . . . ,Xi−1,0,0, Yi+2, . . . , YN )

with Z−1 := (Y1, . . . , YN ) and ZN−1 := (X1, . . . ,XN ). Also, for 1 ≤ i ≤ N and i

odd, define

Ri := �(Zi) − �(Wi) − Xi ∂i�(Wi) − Xi+1 ∂i+1�(Wi)

−
X2

i

2
∂ii�(Wi) −

X2
i+1

2
∂i+1,i+1�(Wi)

− XiXi+1 ∂i,i+1�(Wi),

Ti := �(Zi−2) − �(Wi) − Yi ∂i�(Wi) − Yi+1 ∂i+1�(Wi)

−
Y 2

i

2
∂ii�(Wi) −

Y 2
i+1

2
∂i+1,i+1�(Wi)

− YiYi+1 ∂i,i+1�(Wi).

Note that by Taylor’s theorem in two dimensions and bounds on the partials
of � , we have for odd i that

|Ri | ≤ C1(g)λ2(h)(X2
i + |XiXi+1| + X2

i+1),

|Ri | ≤ C1(g)λ2(h)(Y 2
i + |YiYi+1| + Y 2

i+1)

using second order bounds, and that

|Ri | ≤ C2(g)λ3(h)(|Xi |3 + X2
i |Xi+1| + |Xi |X2

i+1 + |Xi+1|3),

|Ti | ≤ C2(g)λ3(h)(|Yi |3 + Y 2
i |Yi+1| + |Yi |Y 2

i+1 + |Yi+1|3)
using third order bounds.

We now make use of the Lindeberg principle, writing |E(g(U)) − E(g(V ))| in
terms of a telescoping sum involving Zi .

|E(g(U)) − E(g(V ))|

=
∣

∣

∣

∣

∣

N−1
∑

i=1
i odd

E
(

�(Zi) − �(Zi−2)
)

∣

∣

∣

∣

∣
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=
∣

∣

∣

∣

∣

N−1
∑

i=1
i odd

E

(

�(Wi) + Xi ∂i�(Wi) + Xi+1 ∂i+1�(Wi)

+
X2

i

2
∂ii�(Wi) +

X2
i+1

2
∂i+1,i+1�(Wi)

+ XiXi+1 ∂i,i+1�(Wi) + Ri

)

− E

(

�(Wi) + Yi ∂i�(Wi) + Yi+1 ∂i+1�(Wi)

+
Y 2

i

2
∂ii�(Wi) +

Y 2
i+1

2
∂i+1,i+1�(Wi)

+ YiYi+1 ∂i,i+1�(Wi) + Ti

)

∣

∣

∣

∣

∣

=
∣

∣

∣

∣

∣

N−1
∑

i=1
i odd

E(Ri) − E(Ti)

∣

∣

∣

∣

∣

.

Note that in the above there is lots of cancellation, for example,

EXiXi+1 ∂i,i+1�(Wi) − EYiYi+1 ∂i,i+1�(Wi) = 0

by the independence assumptions along with the assumption that EXiXi+1 =
EYiYi+1.

To complete the proof we bound Ri and Ti using second order bounds when
they are small and using third order bounds when they are large, arriving at
∣

∣

∣

∣

∣

N−1
∑

i=1
i odd

E(Ri) − E(Ti)

∣

∣

∣

∣

∣

≤ C1(g)λ2(h)

N−1
∑

i=1
i odd

(

E(X2
i + |XiXi+1| + X2

i+1; |Xi | + |Xi+1| > K)

+ E(Y 2
i + |YiYi+1| + Y 2

i+1; |Yi | + |Yi+1| > K)
)

+ C2(g)λ3(h)

N−1
∑

i=1
i odd

(

E(|Xi |3 + X2
i |Xi+1| + |Xi |X2

i+1 + |Xi+1|3;

|Xi | + |Xi+1| ≤ K)

+ E(|Yi |3 + Y 2
i |Yi+1| + |Yi |Y 2

i+1 + |Yi+1|3;
|Yi | + |Yi+1| ≤ K)

)

. �
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