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We consider first passage percolation on the configuration model with
n vertices, and general independent and identically distributed edge weights
assumed to have a density. Assuming that the degree distribution satisfies a
uniform X2 logX-condition, we analyze the asymptotic distribution for the
minimal weight path between a pair of typical vertices, as well the number of
edges on this path namely the hopcount.

Writing Ln for the weight of the optimal path, we show that Ln −
(logn)/αn converges to a limiting random variable, for some sequence αn.
Furthermore, the hopcount satisfies a central limit theorem (CLT) with
asymptotic mean and variance of order logn. The sequence αn and the norm-
ing constants for the CLT are expressible in terms of the parameters of an
associated continuous-time branching process that describes the growth of
neighborhoods around a uniformly chosen vertex in the random graph. The
limit of Ln − (logn)/αn equals the sum of the logarithm of the product of
two independent martingale limits, and a Gumbel random variable. So far, for
sparse random graph models, such results have only been shown for the spe-
cial case where the edge weights have an exponential distribution, wherein
the Markov property of this distribution plays a crucial role in the technical
analysis of the problem.

The proofs in the paper rely on a refined coupling between shortest path
trees and continuous-time branching processes, and on a Poisson point pro-
cess limit for the potential closing edges of shortest-weight paths between the
source and destination.
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1. Introduction and results.

1.1. Motivation. First passage percolation (FPP) is an important topic in mod-
ern probability theory, motivated by questions in a number of fields including dis-
ordered systems in statistical physics, where it arises as a building block in the
analysis of various interacting particle systems such as the contact process, branch-
ing random walk and various epidemic models.

Let us start by describing the basic model. Let G be a connected graph on
n vertices. Assign independent and identically distributed (i.i.d.) random edge
weights or lengths to the edges of the graph. These random edge weights generate
geodesics on the graph. Think of the graph as a disordered random system carry-
ing flow between pairs of vertices in the graph via shortest paths between them.
Choose two vertices in the graph uniformly at random amongst the n vertices. We
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will call these two vertices “typical” vertices. Two functionals of interest are the
minimal weight Ln of a path between the two vertices and the number of edges
Hn on the minimal path, often referred to as the hopcount. We assume that the
common distribution of the edge weights is continuous, so that the optimal paths
are a.s. unique and one can talk about objects such as the number of edges in the
optimal path.

This model has been studied intensively, largely in the context of the integer lat-
tice [−N,N]d (see, e.g., [20, 23, 30, 39]). For the power of this model to analyze
more complicated interacting particle systems, see [33] and [17] and the references
therein. In the modern context, FPP problems take on an added significance. Many
real-world networks (such as the Internet at the router level or various road and rail
networks) are entrusted with carrying flow between various parts of the network.
These networks have both a graph theoretic structure as well as weights on edges,
representing for example congestion. In the applied setting, understanding proper-
ties of both the hopcount and the minimal weight are crucial, since whilst routing is
done via least weight paths, the actual time delay experienced by users scales like
the hopcount (the number of “hops” a message has to perform in getting from the
source to the destination). Simulation-based studies (see, e.g., [14]) suggest that
random edge weights have a marked effect on the geometry of the network. This
has been rigorously established in various works [3, 8–10], in the specific situation
of exponential edge weights.

In this paper, we study the behavior of the hopcount and minimal weight in the
setting of random graphs with finite variance degrees and general continuous edge
weights. Since in many applications, the distribution of edge weights is unknown,
the assumption of general weights is highly relevant. From a mathematical point
of view, working with general instead of exponential edge weights implies that our
exploration process is non-Markovian. This is the first paper that studies FPP on
random graph models in this general setting. In a forthcoming paper [11], we will
show that, due to the flexible choice of degree distribution, our results carry over
to various other random graph models, including rank-1 inhomogeneous random
graphs as introduced in [13].

Organization of this section. We start by introducing the configuration model
in Section 1.2, where we also state our main result, Theorem 1.2. In Section 1.3,
we discuss a continuous-time branching process approximation, which is neces-
sary to identify the limiting variables in Theorem 1.2; this identification is done
in Theorem 1.3. In Section 1.4, we study some examples that allow us to relate
our results to existing results in the literature. We close with Section 1.5 where we
present a discussion of our results and pose some open problems.

Throughout this paper, we make use of the following standard notation. We let
a.s.−→ denote convergence almost surely,

L1−→ denote convergence in mean,
d−→

denote convergence in distribution, and
P−→ convergence in probability. For a
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sequence of random variables (Xn)n≥1, we write Xn = OP(bn) when |Xn|/bn

is a tight sequence of random variables, and Xn = oP(bn) when |Xn|/bn
P−→ 0,

as n→∞. We write D ∼ F to denote that the random variable D has distri-
bution function F . For nonnegative functions n �→ f (n), n �→ g(n), we write
f (n) = O(g(n)) when f (n)/g(n) is uniformly bounded, and f (n) = o(g(n))

when limn→∞ f (n)/g(n)= 0. Furthermore, we write f (n)=�(g(n)) if f (n)=
O(g(n)) and g(n)=O(f (n)). Finally, we say that a sequence of events (En)n≥1
occurs with high probability (w.h.p.) when P(En)→ 1.

1.2. Configuration model and main result. The configuration model (CM) is a
random graph with vertex set [n] := {1,2, . . . , n} and with prescribed degrees. Let
d= (d1, d2, . . . , dn) be a given degree sequence, that is, a sequence of n positive
integers with total degree

(1.1) �n =
∑
i∈[n]

di,

assumed to be even. The CM on n vertices with degree sequence d is constructed
as follows: start with n vertices and di half-edges adjacent to vertex i ∈ [n]. Ran-
domly choose pairs of half-edges and match the chosen pairs together to form
edges. Although self-loops may occur, these become rare as n→∞ (see e.g.
[12, 26]). We denote the resulting graph on [n] by CMn(d), with corresponding
edge set En.

Regularity of vertex degrees. Let us now describe our regularity assumptions
on the degree sequence d as n→∞. We denote the degree of a uniformly chosen
vertex V in [n] by Dn = dV . The random variable Dn has distribution function Fn

given by

(1.2) Fn(x)= 1

n

∑
j∈[n]

1{dj≤x},

where 1A denotes the indicator of the event A. We write log(x)+ = log(x) for
x ≥ 1 and log(x)+ = 0 for x ≤ 1. Then our regularity condition is as follows:

CONDITION 1.1 (Regularity conditions for vertex degrees).

(a) Weak convergence of vertex degree. There exists a cumulative distribution
function F of a discrete random variable D, taking values in N such that

(1.3) lim
n→∞Fn(x)= F(x),

for any continuity point x of F ; that is, Dn
d−→D.
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(b) Convergence of second moment.

(1.4) lim
n→∞E

[
D2

n

]= lim
n→∞

1

n

∑
j∈[n]

d2
j = E

[
D2],

where Dn and D have distribution functions Fn and F , respectively, and we as-
sume that

(1.5) ν = E
[
D(D − 1)

]
/E[D]> 1.

(a) Uniform X2 logX-condition. For every Kn→∞,

(1.6) lim
n→∞E

[
D2

n log (Dn/Kn)+
]= lim

n→∞
1

n

∑
j∈[n]

d2
j log (dj /Kn)+ = 0.

By Condition 1.1(c), the random degree Dn satisfies a uniform X2 logX-
condition. The degree of a vertex incident to a half-edge that is chosen uniformly
at random from all half-edges has the same distribution as the random variable D�

n

given by

(1.7) F�
n (x)= E[Dn1{Dn≤x}]/E[Dn], x ∈R,

which is the size-biased version of Dn. The latter random variable satisfies a uni-
form X logX-condition if and only if Dn satisfies a uniform X2 logX-condition.
As explained in more detail in Section 1.3 below, D�

n is closely related to a
branching-process approximation of neighborhoods of a uniform vertex, and Con-
dition 1.1(c) implies that this branching process satisfies a uniform X logX con-
dition. By uniform integrability, Condition 1.1(c) follows from the assumption
that limn→∞E[D2

n log (Dn)+] = E[D2 log (D)+]. Further, Condition 1.1(c) im-
plies that E[D2 log (D)+]<∞. 3

Note that Conditions 1.1(a) and (c) imply that E[Di
n]→ E[Di], i = 1,2. When

the degrees are random themselves, then the distribution function Fn as well as the
left-hand side of (1.4) and (1.6), are random and we assume that the convergence
in (1.3), (1.4) and (1.6) to the respective (deterministic) right-hand sides holds in

3Indeed, we claim that if limnE[D2
n log(Dn/Kn)+] = 0 for every Kn →∞, and if E[D2

n] →
E[D2], then lim supnE[D2

n log(Dn)]<∞ holds. To see this, note that E[D2
n]→ E[D2] implies that

for some M , uniformly in n, we have E[D2
n] ≤M .

If E[D2
n log(Dn)]→∞, then for all a > 0: E[D2

n log(Dn)]> a, for all n≥ n0(a). Take logKn =
a

2M
, then for n≥ n0(a)

E
[
D2

n log(Dn/Kn)+
]≥ E

[
D2

n log(Dn/Kn)
]
> E

[
D2

n log(Dn)
]−E

[
D2

n log(Kn)
]

> a −M · a

2M
= a/2,

which contradicts our assumption that limnE[D2
n log(Dn/Kn)+] = 0. �
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probability. Thus, in this case, we require that, with En[Di
n] = 1

n

∑
j∈[n] di

j (which
is now a random variable) and for every ε > 0 and i ∈ {1,2},

lim
n→∞P

(∣∣Fn(x)− F(x)
∣∣≥ ε

)= 0, ∀x ∈R,

(1.8)
lim

n→∞P
(∣∣En

[
Di

n

]−E
[
Di]∣∣≥ ε

)= 0.

A similar condition replaces (1.6).
Condition (1.5) is equivalent to the existence of a giant component in CMn(d);

see, for example, [28, 35, 36]. Let F be a distribution function of a random
variable D, satisfying (1.5) and E[D2 log (D)+] <∞. We give two canonical
examples in which Condition 1.1 holds. The first is when there are precisely
nk = 
nF(k)� − 
nF(k − 1)� vertices having degree k ≥ 1. The second is when
(di)i∈[n] is an i.i.d. sequence of random variables with distribution function F (in
the case that

∑
i∈[n] di is odd, we increase dn by 1, this does not affect the results).

Edge weights and shortest paths. Once the graph has been constructed, we
attach an edge weight ξe to every edge e, where (ξe)e∈En are i.i.d. continuous ran-
dom variables with density fξ : [0,∞)→ [0,∞) and corresponding distribution
function Fξ . Pick two vertices U1 and U2 at random from [n] and let 	12 denote
the set of all paths in CMn(d) between these two vertices. For any path π ∈ 	12,
the weight of the path is defined as

(1.9)
∑
e∈π

ξe.

Let

(1.10) Ln = min
π∈	12

∑
e∈π

ξe,

denote the weight of the optimal (i.e., minimal weight) path between U1 and U2
and let Hn denote the number of edges or the hopcount of this path. If the two
vertices are in different components of the graph, then we let Ln,Hn =∞. We are
ready to state our main result. Due to the complexity of the various constants and
limiting random variables arising in the theorem, we defer their complete descrip-
tion to the next section.

THEOREM 1.2 (Joint convergence of hopcount and weight). Consider the
configuration model CMn(d) with degrees d satisfying Condition 1.1, and with
i.i.d. edge weights distributed according to the continuous distribution Fξ . Then,
there exist constants α,γ,β ∈ (0,∞) and αn, γn with αn→ α,γn→ γ , such that
the hopcount Hn and weight Ln of the optimal path between two uniformly chosen
vertices, conditioned on being connected, satisfy

(1.11)
(

Hn − γn logn√
β logn

,Ln − 1

αn

logn

)
d−→ (Z,Q),



2574 S. BHAMIDI, R. VAN DER HOFSTAD AND G. HOOGHIEMSTRA

as n→∞, where Z and Q are independent and Z has a standard normal distri-
bution, while Q has a continuous distribution.

This is the first time that FPP on sparse random graphs with general edge
weights has been studied; for the particular case where the edge weights have an
exponential distribution; see, for example, [9].

In Remark 1.4 below, we will state conditions that imply that we can replace
αn and γn by their limits α and γ , respectively. Theorem 1.2 shows a remark-
able degree of universality. For CMn(d) satisfying Condition 1.1, the hopcount
always satisfies a central limit theorem with mean and variance proportional to
logn. Also, the weight of the shortest weight path between two uniformly chosen
vertices always is of order logn, and the fluctuations around logn/αn converge in
distribution. We will see that even the limit Q has a large degree of universality.
For this, as well as to define the parameters α,αn,β, γ, γn, we first need to describe
a continuous-time branching process approximation.

1.3. Continuous-time branching processes. In this section, we define the lim-
iting continuous-time branching process (CTBP) that describes the neighborhood
structure of first passage percolation on CMn(d). Define the size-biased distribu-
tion F� of the random variable D with distribution function F by

(1.12) F�(x)= E[D1{D≤x}]/E[D], x ∈R.

When Condition 1.1(a)–(b) holds, the function F� is the distributional limit as
n→∞ of F�

n in (1.7). Now let (BP�(t))t≥0 denote the following CTBP: (a) At
time t = 0, we start with one individual which we refer to as the original ancestor
or the root of the branching process.

(b) Each individual v in the branching process lives for a random amount of
time which has distribution Fξ , that is, the edge weight distribution, and then dies.
At the time of death, the individual gives birth to D�−1 children, where D� ∼ F�.
Lifetimes and number of offspring across individuals are independent.

Note that in the above construction, by Condition 1.1(b), if we let Xv =D�− 1
be the number of children of an individual, then the expected number of children
satisfies

(1.13) E[Xv] = E
[
D� − 1

]= ν > 1.

Further, by Condition 1.1(c), for D� ∼ F� (recall footnote 3),

(1.14) E
[
D� log

(
D�)

+
]
<∞.

The CTBP defined above is a standard Bellman–Harris process, with lifetime
distribution Fξ and offspring distributed as D� − 1 [4, 21, 24]. The Malthusian
parameter α of the branching process BP� is the unique solution of the equation

(1.15) μ̂(α)= ν

∫ ∞
0

e−αt dFξ (t)= 1.
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Since ν > 1, we obtain that α ∈ (0,∞). We also let αn be the solution to (1.15)
with ν replaced by

(1.16) νn = E
[
Dn(Dn − 1)

]
/E[Dn].

Clearly, αn→ α when Condition 1.1 holds, and further |αn − α| =O(|νn − ν|).
Standard theory (see, e.g., [4, 21, 24]) implies that under our assumptions on

the model, namely (1.13) and (1.14), there exists a random variable W� such that

(1.17) e−αt
∣∣BP�(t)

∣∣ a.s.,L1−→ W�.

Here, since E[D� log(D�)]<∞, the limiting random variable W� satisfies W� >

0 a.s. on the event of nonextinction of the branching process and is zero otherwise.
Thus, α measures the true rate of exponential growth of the branching process.

By (1.15), we can define the cumulative distribution function F̄ξ , often referred
to as the stable-age distribution, as

(1.18) F̄ξ (x)= ν

∫ x

0
e−αy dFξ (y).

Let ν̄ be the mean and σ̄ 2 the variance of F̄ξ , that is,

(1.19) ν̄ = ν

∫ ∞
0

xe−αx dFξ (x), σ̄ 2 = ν

∫ ∞
0

(x − ν̄)2e−αx dFξ (x).

Then ν̄, σ̄ 2 ∈ (0,∞), since α > 0. We also define F̄n,ξ to be the distribution func-
tion F̄ξ in (1.18) with ν and α replaced by νn and αn, and we let ν̄n and σ̄ 2

n be the
corresponding mean and variance.

We need a small variation of the above standard CTBP, where the root of the
branching process dies immediately giving birth to a D number of children where
D has distribution F , the original (i.e., non-size-biased) degree distribution as in
Condition 1.1(a). The details for every other individual in this branching process
remain unchanged from the original description, namely each individual survives
for a random amount of time with distribution Fξ giving rise to a D� − 1 number
of children where D� ∼ F�, the size-biased distribution function F� as in (1.12).
Writing |BP(t)| for the number of alive individuals at time t , it is easy to see here
as well that

(1.20) e−αt
∣∣BP(t)

∣∣ a.s.,L1−→ W̃ .

Further, conditionally on D = k,

W̃ d= W̃�,(1) + · · · + W̃�,(k),

where D ∼ F , and W̃�,(i) are i.i.d. with the distribution of the limiting random
variable in (1.17). Let W denote a random variable distributed as W̃ conditioned
to be positive, that is, for every x ≥ 0,

(1.21) P(W ≤ x)= P(W̃ ≤ x | W̃ > 0).



2576 S. BHAMIDI, R. VAN DER HOFSTAD AND G. HOOGHIEMSTRA

To simplify notation in the sequel, we will use (BP(t))t≥0 to denote a CTBP with
the root having offspring either one (as for the standard CTBP), D or D� − 1. It
will be clear from the context which setting we are in.

We are now in a position to identify the limiting random variable Q as well as
the parameters α,β, γ,αn, γn:

THEOREM 1.3 (Identification of the limiting variables). The parameters
α,αn,β, γn, γ in Theorem 1.2 satisfy that α is the Malthusian rate of growth de-
fined in (1.15) and αn is the solution to (1.15) with νn replacing ν, while

(1.22) γ = 1

αν̄
, γn = 1

αnν̄n

, β = σ̄ 2

ν̄3α
.

Further, Q can be identified as

(1.23) Q= 1

α

(− logW (1) − logW (2) −�+ c
)
,

where P(� ≤ x) = e−e−x
(so that � is a standard Gumbel random variable),

W (1),W (2) are two independent copies of the variable W in (1.21), also indepen-
dent from �, and c is the constant

(1.24) c= log
(
E[D](ν − 1)2/(ναν̄)

)
.

REMARK 1.4 (Asymptotic mean). In (1.11), we can replace αn and γn by their
limits α and γ precisely when γn = γ + o(1/

√
logn) and αn = α + o(1/ logn).

Since |αn− α| =O(|νn− ν|), |ν̄n− ν̄| =O(|νn− ν|), these conditions are equiv-
alent to νn = ν+ o(1/

√
logn) for γn and νn = ν+ o(1/ logn) for αn, respectively.

Theorem 1.3 implies that also the random variable Q is remarkably universal,
in the sense that it always involves two independent martingale limit variables
corresponding to the branching processes, and a Gumbel distribution.

Let Ln(i) denote the weight of the ith shortest path, so that Ln = Ln(1), and
let Hn(i) denote its length. Further, let H̄n(i) and L̄n(i) denote the re-centered
and normalized quantities as in Theorem 1.2. The same proof for the optimal path
easily extends to prove asymptotic results for the joint distribution of the weights
and hopcount of these ranked paths. To keep the study to a manageable length, we
shall skip a proof of this easy extension.

THEOREM 1.5 (Multiple paths). Under the conditions of Theorem 1.2, for
every m≥ 1,

(1.25)
((

H̄n(i), L̄n(i)
))

i∈[m]
d−→ (

(Zi,Qi)
)
i∈[m],
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as n → ∞, where Z1, . . . ,Zm are i.i.d. standard normals independently of
(Qi)i∈[m], with

(1.26) Qi = 1

α

(− logW (1) − logW (2) −�i + c
)
,

where (�i)i∈[m] are the ordered (minimal) points of an inhomogeneous Poisson
point process with intensity λ(t)= et .

1.4. Examples. We treat some examples of edge weight distributions that have
appeared in the literature and have been treated via distribution-specific tech-
niques.

(i) We start with exponential edge weights [3, 8–10]. In this case, it is imme-
diate from (1.15) and (1.18) that

α = ν − 1, ν̄ = σ̄ = 1/ν,

hence Theorems 1.2–1.3 show that Hn converges to a normal distribution, with
asymptotic mean and asymptotic variance both equal to ν

ν−1 logn. Furthermore,
Theorem 1.2 induces the convergence of the minimal weight in [9, 10]. Observe
that the random variable M , which appears in [9], (C.19), is equal to −�. In [10],
the special case of the Erdős–Rényi random graph with exponential edge weights
was tackled. There is a small error in the expression of the limiting random variable
in [10], (4.16).

(ii) By studying weights of the form ξe = 1+Ee/k, where (Ee) are i.i.d. ex-
ponentials with mean 1, and consecutively sending k→∞, one would expect to
obtain results which are close to limiting results on the graph distance between a
pair of uniformly chosen vertices in [n], conditioned to be connected. Indeed, the
results match up nicely with those in [18] for the Norros–Reittu model and [22]
for the CM. For the sake of brevity, we leave the derivation to the reader.

(iii) As a third example one can consider the CM with fixed degrees r , and
where each edge is given an edge weight Es, s > 0, where E ∼ Exp(1), a variant of
the weak disorder models in statistical physics [14]. One can formally consider the
case r = n− 1, although this does not satisfy the conditions of our theorem. Here
the CM with fixed degrees n−1 resembles a complete graph on [n] and the results
match up nicely with those in [7], namely, a central limit theorem for Hn with
asymptotic mean s logn and asymptotic variance s2 logn, while ns[Ln − 1

λ
logn]

converges in distribution, where λ= 	(1+1/s)s . We refer to [7] for the derivation
of these parameters.

1.5. Discussion. In this section, we give a brief discussion of our results, pos-
sible extensions and open problems.
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(a) Universality. Our results are universal in the sense that, as Theorems 1.2–
1.3 demonstrate, the CLT for the hopcount depends only on the first two moments
of the size-biased offspring distribution and on the edge weight distribution, but not
on any other property of the network model. Further, the form of the limit random
variable for the minimal weight has a universal form in terms of the martingale
limits of branching processes and a Gumbel random variable. Our conditions on
the edge weights (ξe)e∈En are very weak, giving a highly universal result. In many
other settings, such as lattice models or random graphs with infinite-variance de-
grees (see the next paragraph), such strong universality is not valid. The same ro-
bustness arises in the life-time distribution of age-dependent branching processes
(see the books by Harris or Jagers [21, 24]).

(b) Infinite-variance configuration model. In [9], we have investigated the CM
with exponential edge weights, but with i.i.d. degrees with P(D ≥ x)∼ cx−(τ−1)

and τ ∈ (2,3), so that E[D2] =∞. In this case, the result for Ln is markedly dif-
ferent, in the sense that Ln converges in distribution without re-centering. Further,
Hn satisfies a central limit with asymptotic mean and variance equal to a multi-
ple of logn. It would be of interest to investigate whether Hn always satisfies a
central limit theorem, and, if so, whether the order of magnitude of its variance is
always equal to that of its mean. See [5] for results showing that there are more
universality cases in the infinite-variance setting.

(c) The X logX-condition. In Condition 1.1(c), we assume that the degrees sat-
isfy a second moment condition with an additional logarithmic factor. This is
equivalent to the CTBP satisfying an X logX-condition (uniformly in the size n of
the graph). It would be of interest to investigate what happens when this condition
fails.

(d) Flooding and diameter. In [3], the flooding time and diameter have been
investigated in the context of the CM with exponential edge weights. These are
maxj∈[n] : Ln(U1,j)<∞Ln(U1, j), respectively maxi,j∈[n] : Ln(i,j)<∞Ln(i, j), where
Ln(i, j) is the minimal weight between the vertices i and j and U1 is, as before,
a randomly selected vertex. It would be of interest to investigate the flooding time
for general edge weights.

(e) Superconcentration and chaos. Analogous to various problems in statistical
physics such as random polymers or FPP on the lattice, our results suggest that the
FPP optimal path problem is chaotic. This means that there exists εn→ 0 such
that refreshing a fraction εn of the edge weights with new random variables with
the same distribution would entirely change the actual optimal path, in the sense
that the new optimal path would be “almost” disjoint from the original optimal
path; see, for example, [15]. Such questions have also arisen in computer science
wherein one is interested in judging the “importance” and fair price of various
edges in the optimal path; if an edge being deleted causes a large change in the
cost of the new optimal path, then that edge is deemed very valuable. These form
the basis of various “truth and auction mechanisms” in computer science (see, e.g.,
[6, 19, 34]).



UNIVERSALITY OF FIRST PASSAGE PERCOLATION 2579

(f) Pandemics, gossip and other models of diffusion. First passage percolation
models as well as models using FPP as a building block have started to play an
increasingly central role in the applied probability community in describing the
flow of materials, ranging from viral epidemics [16], gossip algorithms [2] and
more general finite Markov interchange processes [1]. Models with more general
edge weight distributions have also arisen in understanding the flow of informa-
tion and reconstruction of such information networks in sociology and computer
science; see [31, 32] for examples in this vast field.

Organization of this paper. In Section 2, we describe the coupling between
the first-passage percolation neighborhoods in CMn(d) and a CTBP. In Section 3,
we state our main technical result that describes a Poisson process limit for the
occurrence of short paths between U1 and U2 which then proves our main theorem.
In Section 4, we extend results for CTBPs, as proved in [21, 24, 38], to the case of
infinite-variance offspring distributions, using truncation. In Section 5, we prove
bounds on our coupling. In Section 6, we give a novel proof of the asymptotics
for the number of alive individuals in a CTBP in a given generation and with a
given residual lifetime. This proof is tailored to deal with CTBPs observed till
some time t that have an offspring distribution that depends on n where n→∞
and t = tn→∞ simultaneously. In Section 7, we prove our main technical result
on the Poisson process limit.

2. Coupling. In this section, we describe a coupling between FPP on CMn(d)

and continuous-time branching processes. We start with an informal description.

2.1. Informal description of shortest weight trees. The model CMn(d) with
edge set En together with i.i.d. lengths (also referred to as weights) (ξe)e∈En on the
edges was introduced in Section 1.2. Here, ξe ∼ Fξ , with density fξ . Our ultimate
goal is to calculate the limit distribution of the hopcount Hn and weight Ln of the
shortest path between a uniformly chosen pair of connected vertices U1 and U2,
when Condition 1.1 is satisfied.

To obtain a proper understanding of the shortest path between two vertices, we
imagine a liquid that percolates through the edges of the CM at rate one. We start
percolating the liquid simultaneously from both vertices U1 and U2 and we inter-
pret the edge weight ξe on edge e as the distance between the two vertices incident
to e. For any t ≥ 0, the set of half-edges that are currently being wetted by the liq-
uid, as well as the residual time to completely wet them, starting from Ui will be
informally denoted as the shortest weight tree SWT(i), i = 1,2. A precise definition
of these SWTs will be given in the next section. When the liquid has reached two
vertices that are incident to a connecting edge between the two SWTs, then a pos-
sible shortest path has been found. Since at that moment the connecting edge has
not yet been filled, we cannot be sure whether the given path between U1 and U2 is
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indeed the shortest one. Hence, we have to find all connecting edges between the
two SWTs and take the minimum of all these path weights to determine Ln and Hn.

In the mathematical description in the next section, we build the CM simulta-
neously with the liquid percolating through the edges. Since we will construct the
process sequentially, it is easier to index the sequence of new edge-weights added
to the system as (ξj )j≥1. The half-edges emanating from the wetted vertices are
called the alive half-edges AH(t) at time t . During the building process, we form
two SWTs consisting of “alive” half-edges and vertices attached to Ui , for i = 1,2.
In order to perform the building process properly, we put the i.i.d. weights (ξj )j≥1
on the half-edges instead of on the edges. Technically, one has to be extremely
careful in constructing the process in this fashion. Imagine a situation where the
liquid reaches both a and b for some edge e formed by merging the half-edges
e= (a, b). Assigning independent half-edge weights ξa and ξb is then not the same
as first passage percolation. Instead we put the weight on the half-edge that is found
first by the liquid. We initiate the construction by putting weights ξ1, . . . , ξdU1

on
the half-edges incident to U1 and weights ξdU1+1, . . . , ξdU1+dU2

on the half-edges
incident to U2. Of course, this creates a problem when these half-edges are paired
to one another, which we have to take into account properly.

We construct a sequence of epoch times (Tk)k≥0 that track when a decision
has to be made. Start with T0 = 0 and wait until the end point of the first of the
dU1 + dU2 half-edges is reached. This time is called T1 and successive times at
which further end points of “alive” half-edges are reached are called T2, T3, . . . .

At t = T1, we pair the exhausted half-edge, which we call r1, with one of the
�n − 1 other half-edges at random; the found half-edge is called Pr1 . The formed
edge (r1,Pr1) receives the weight of the exhausted half-edge r1 and we connect
the siblings of Pr1 to the newly found vertex. The sibling half-edges receive i.i.d.
weights from the sequence (ξj )j≥1, whereas the weights of the other “alive” half-
edges are updated by subtracting T1. We repeat the whole procedure by finding the
minimum of the “alive” half-edges, and after adding this minimal weight to T1 we
find the second epoch time T2. We continue this procedure until all half-edges are
attached to one of the SWTs.

In general, the formed edge (r1,Pr1) at time t = T1 receives a weight with
the correct distribution. However, this only occurs when r1 pairs with one of the
�n − (dU1 + dU2) so-called “free” half-edges, that is, half-edges connected to ver-
tices which are not yet wetted. When r1 pairs with one of its dUi

− 1 sibling half-
edges (and hence a self-loop occurs) or when r1 pairs with one of the dU3−i

half-
edges incident to vertex U3−i (and hence a “collision” edge occurs), then we do
not know what weight we should assign to the self-loop or collision edge, because
the half-edge to which r1 is paired is an alive half-edge and already had a weight.
In order to resolve this issue, in the next section, we shall make sure that a weight
is only assigned to one of the half-edges of an edge. This will be achieved by first
investigating whether a half-edge is paired to a “free” half-edge or to an “alive”
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half-edge. In particular, we will change the order in which half-edges are paired.
We are free to pair half-edges in any order we like and this property is used to
remove self-loops, edges that close a cycle and collision edges beforehand. This
way, all paths receive weights with the correct distribution, and after the comple-
tion of the entire construction we take the minimum of all connecting paths to find
Ln and Hn.

The removal of self-loops, edges that close a cycle and collision edges is done at
the epoch times T0, T1, T2, . . . . Conditionally on the number of “alive” half-edges
and “free” half-edges, we know the success probabilities of Bernoulli random vari-
ables that determine whether a pairing results in attaching to a “free” half-edge or
to an “alive” half-edge.

We will couple SWT(·) both to an n-dependent continuous-time branching pro-
cess (CTBP) denoted by BPn(·) and to a CTBP BP(·). This results in a cou-
pling (SWT(t),BPn(t),BP(t))t≥0 on the same probability space (�,F,P), where
SWT(t) consists of the alive half-edges that are connected to U1 and U2 by paths
of weights at most t , as well as their residual lifetimes, while BPn(t) contains
the same information for the n-dependent CTBP and BP(t) for the n-independent
CTBP.

Since there are a number of ingredients in this coupling, let us start by giving the
reader an intuitive mental picture of the key actors in this coupling. In the first step
of the coupling, which is explained in full detail in Section 2.2, we couple the for-
ward degrees in the SWT(t) to the number of offspring in the branching processes
BPn(t) and BP(t). On one and the same probability space (�,F,P), we introduce
sequences of random variables (B

(n)

k )k≥1, (Bk)k≥1, (Y
(n)

k )k≥1 and (X
(n)

k )k≥1, and a
sequence of stopping times (τk)k≥1.

The sequences (B
(n)

k )k≥1 and (Bk)k≥1 are i.i.d. and will be used as the number of
offspring in a branching process, where the first branching process depends on n,
while the second one is independent of n. In the coupling, there is a strong de-
pendence between B

(n)

k and Bk for any k. The sequence (Y
(n)

k )k≥1 will correspond
to the sequence of forward degrees, that is, the degree minus one, as the liquid in
SWT percolates through the graph, while X

(n)

k will be equal to Y
(n)

k minus the num-
ber of pairings that result in either a self-loop, a cycle or a collision edge. Using
the stopping times τk , the kth variable X

(n)

k will be successfully coupled to B(n)
τk

precisely when X
(n)

k = Y
(n)

k and Y
(n)

k = B(n)
τk

.
Since this coupling is not perfect, in the second step of the coupling per-

formed in Section 2.3, we discuss the evolution of the processes (SWT(t),BPn(t),

BP(t))t≥0, including the evolution of the children of the alive half-edges that are
miscoupled. Finally, in Section 2.4, we state the main bounds on our coupling.
After this high-level explanation, let us now give the details of our coupling con-
struction.

2.2. Coupling forward degrees of the SWT. In this section, we will give a pre-
cise definition of the coupling of the forward degrees in the SWT to the number
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of offspring in an n-dependent continuous-time branching process BPn and sec-
ondly to that in a continuous-time branching process BP that is independent of
n. As mentioned above, our purpose is to couple the forward degrees (Y

(n)

k )k≥1

and the reduced forward degrees (X
(n)

k )k≥1 to the number of offspring (B
(n)

k )k≥1

and (Bk)k≥1. Especially the definition of X
(n)

k involves additional work that un-
fortunately makes the coupling less transparent. In defining X

(n)

k , we will use that
pairing half-edges in CMn(d) can be done in any order. More specifically, to de-
cide whether one of the Y

(n)

k half-edges closes a cycle or connects the two SWT’s,
we use a test involving Bernoulli random variables. After completing this test for
all sibling half-edges involved, we can determine the number of half-edges that
resulted in closing a cycle or in a connecting edge, and hence define X

(n)

k equal to
Y

(n)

k minus this number. We now start with a procedure which abstractly formalizes
the way how we count the number of occurring self-loops, edges that close a cycle
or collision edges.

The idea is as follows. Consider a partition of a set [m] into A and B = Ac.
One can achieve a uniform draw from [m] in two steps, first by performing a
Bernoulli experiment with success probability pA = |A|/m; if the outcome of this
experiment is one, then we draw an object uniformly from A, otherwise we draw
a uniform object from B . In fact, we do not even have to actually draw the latter
uniform element. We will perform such a construction repeatedly, with A denoting
the set of alive half-edges at appropriate stopping times and where the set [m] is
recursively defined. When doing so, we can think of this as “testing” whether a
half-edge creates a self-loop, cycle or collision edge or whether it connects to a
“free” half-edge. This is formalized in the following procedure. We first need to
set up some notation.

The procedure takes as its input one nonempty set, the “alive” set AS =
{a1, a2, . . . , as} having s elements, and the size of the “free” set N. The elements
aj ∈ AS, j = 1,2, . . . , r for r ≤ s are special. We will view them as a list (namely
an ordered set) TS = (a1, a2, . . . , ar), of r elements. Abusing notation, the pro-
cedure initializes with AS(0) := AS, TS(0) := TS and N(0) := N and we will se-
quentially update these sets and this number as follows using a sequence of condi-
tionally independent Bernoulli random variables (βi)1≤i≤r and a sequence of sets
(Si )i≥1:

PROCEDURE 2.1 (Preprocessing the matchings).

(a) Initialization: Define the success probability and set S1 as

(2.1) p1 = |AS(0)| − 1

|AS(0)| +N(0)− 1
and S1 = AS(0) \ {a1} = {a2, . . . , as}.

Let β1 ∼ Bernoulli(p1).

(i) If β1 = 1, then select element b1 uniformly at random from the set S1 and
update the sets as AS(1) = AS(0) \ {a1, b1} and if b1 ∈ TS(0) then TS(1) =
TS(0) \ {a1, b1}, else TS(1)= TS(0) \ {a1}. We do not change N(1) := N(0).
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(ii) If β1 = 0, then we do not select any element from S1 and we update the sets
as AS(1)= AS(0) \ {a1} and TS(1)= TS(0) \ {a1}, while N(1)= N(0)− 1.

(b) Recursion: For k ≥ 1, we proceed recursively as above, taking the first el-
ement at the front of the list TS(k) which, abusing notation, we still call ak+1
[note, this element may not be ak+1 in TS(0), if that element is already drawn at a
previous time step] now defining

(2.2) pk+1 = |AS(k)| − 1

|AS(k)| +N(k)− 1
and Sk+1 = AS(k) \ {ak},

generating βk+1 ∼ Bernoulli(pk+1) and proceeding as in (i) and (ii) above, with
a1, b1,S1 replaced by ak+1, bk+1,Sk+1, respectively.

(c) Termination: We stop when the list equals the empty set, that is, TS(k)=∅.

Let us give a brief and informal sketch of how we use Procedure 2.1. Consider
the informal description in Section 2.1 of the liquid percolating through a network
started from two vertices U1 and U2 simultaneously. Assume that at some time t ,
the liquid from vertex Ui , where i = 1,2, hits a new vertex V . The set of half-
edges incident to V , called HEV , except the one used by V to connect to SWT(i),
are now deemed active since the flow has encountered this new vertex V . Write
AS= AH(1)(t) ∪ AH(2)(t) ∪ HEV for the collection of alive half-edges at this time,
and TS= (HEV ) for the set of half edges incident to V . Then the above procedure
tests for each one of these newly added half-edges whether it pairs to a half-edge
in AH(t), which corresponds to the “βk = 1” events, or instead connects to a new
half-edge not in SWT(1)(t)∪SWT(2)(t), which corresponds to the “βk = 0” events.
In the latter case, we actually do not connect the half-edge, but only record that the
half-edge is paired to a free half-edge, and thus decrease the number of free half-
edges N(k) by 1. Further note that in each “βk = 1” event, the new edge created
could either be (a) a self-loop or cycle when the half-edge pairs to an alive half-
edge in SWT(i)(t), namely the same cluster that sees V for the first time or (b)
arguably more importantly, creates a collision edge when it is paired to a half edge
in SWT(3−i)(t), the other cluster. These collision edges are the ones that potentially
create the shortest path.

Let us now turn to the precise definition of the probability space for the coupling
of the forward degrees of SWT and the associated branching processes. We start
on one and the same probability space (�,F,P) with the following ingredients:

(i) Two vertices U1 and U2 chosen at random from [n];
(ii) Label the �n half-edges by [�n] with the half-edges of vertex 1 labeled

1,2, . . . , d1, the half-edges of vertex 2 labeled d1 + 1, . . . , d1 + d2, etc. We will
require repeated draws with replacement from [�n], which results in an i.i.d. se-
quence (σi)i≥1. We will also require a second sequence of i.i.d. draws (σ̌i)i≥1 that
is independent of the draws (σi)i≥1;
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(iii) To each σi and σ̌i , we associate random variables B
(n)

i and B̌
(n)

i that corre-
spond to the forward degree of the vertices incident to the half-edges σi and σ̌i . To
each B

(n)

i and B̌
(n)

i , we associate random variables Bi and B̌i , whose distributions
only depend on B

(n)

i and B̌
(n)

i and not on any of the other randomness involved;
(iv) An i.i.d. sequence (ξi)i≥1 of edge-weights with distribution Fξ , and a sec-

ond sequence of i.i.d. weights (ξ̌i)i≥1, also with distribution Fξ , that is independent
of the edge-weights (ξi)i≥1;

(v) Recall that vertex j ∈ [n] had degree dj . Recall the uniform choices
b1, b2, . . . in Procedure 2.1 modulated by the values of the Bernoulli sequence
β1, β2, . . . . Analogously, we construct random variables (bj (1), . . . , bj (dj )), tak-
ing values in the set of half-edges [�n] modulated by a sequence of Bernoulli ran-
dom variables βj (1), . . . , βj (dj ). The distribution of both these random variables
will depend on (U1,U2, (σi)i≥1, (ξi)i≥1). The precise laws of these ingredients
will be specified as we sequentially apply Procedure 2.1 below.

Before using the above ingredients to construct SWT, let us first describe how
they are used to construct the offspring of the branching processes BPn and BP.
We define, for i ≥ 1,

(2.3) B
(n)

i =
n∑

j=1

(dj − 1)1{d1+···+dj−1<σi≤d1+···+dj },

that is, when σi chooses one of the half-edges incident to vertex j , B
(n)

i is the
forward degree (i.e., degree minus one) of that vertex j . Obviously, the sequence
(B

(n)

i )i≥1 is i.i.d. with common distribution given by

(2.4) g
(n)

k = P
(
B

(n)

i = k
)= k + 1

�n

n∑
j=1

1{dj=k+1}, k ≥ 0.

Note that g
(n)

k = P(D�
n = k + 1), where D�

n has the same distribution as the size-
biased version of Dn, the degree of a randomly selected vertex; see (1.7). Assum-
ing Condition 1.1, we have that g

(n)

k → gk , as n→∞, where

(2.5) gk = (k + 1)fk+1∑∞
j=1 jfj

, k ≥ 0,

and where fj = F(j)− F(j − 1).
We next construct an i.i.d. sequence (Bi)i≥1 with common distribution (2.5) by

using the already constructed (B
(n)

i )i≥1 sequence as follows: For each i ≥ 1, Bi

depends only on B
(n)

i and is generated via the conditional distribution

(2.6) P
(
Bi = k | B(n)

i = l
)= p

(n)

kl∑∞
j=0 p

(n)

j l

,
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where

(2.7) p
(n)

kl =

⎧⎪⎪⎨⎪⎪⎩
min

{
gk, g

(n)

k

}
, for k = l,

(gk −min{gk, g
(n)

k })(g(n)

l −min{gl, g
(n)

l })
1
2
∑∞

j=0 |gj − g
(n)

j |
, for k �= l.

It is easy to check that (Bi)i≥1 is an i.i.d. sequence of random variables having
probability mass function (gk)k≥0 in (2.5). In fact, the joint distribution (p

(n)

kl )k,l≥0
is the one that maximizes the coupling probability between the two probability
mass functions (gk)k≥0 and (g

(n)

k )k≥0 (alternatively, the coupling that minimizes
the total variation distance between the two distributions [40]).

Let us now proceed to the more involved construction of the shortest weight
tree SWT using the above probabilistic ingredients. The main ingredient of our
construction are the continuous-time processes of “alive” half-edges (AH(t))t≥0
and “free” half-edges (F(t))t≥0. We also introduce two new random sequences
(Y

(n)

k )k≥1 and (X
(n)

k )k≥0. We will need an additional superscript i to denote whether
Y

(n)

k and/or X
(n)

k belongs to the SWT of Ui, i = 1,2. The continuous-time processes
(AH(t))t≥0 and (F(t))t≥0 only change at random times T0 = 0 < T1 < T2 < · · ·
and therefore a full description of the continuous-time evolution can be given by
a specification of how the random times above are constructed and how these pro-
cesses “jump” at each of these times.

At time t = T0, we start by testing whether any of the dUi
half-edges incident to

Ui, i = 1,2, are paired to one another. This is performed vertex by vertex, and we
start with U1. Let us define HEj , for j ∈ [n], as the set of dj half-edges that belong
to vertex j . We define Y

(n,1)

0 as the number of half-edges incident to U1, that is,

(2.8) Y
(n,1)

0 = dU1
= |HEU1

|.
Now put AS= HEU1 , TS= (AS), where the parentheses (·) indicate that we con-
sider a list instead of a set, and N= �n − dU1

, and apply Procedure 2.1 to remove
all half-edges from the total set of dU1

half-edges that are part of a self-loop. We
then define RHEU1

as the set of unpaired half-edges after the self-loops incident to
U1 are removed and

(2.9) X
(n,1)

0 = |RHEU1
|,

as the number of unpaired half-edges of U1 after the self-loops have been removed.
We attach i.i.d. weights to each of the half-edges in RHEU1

by taking the first X
(n,1)

0
weights from (ξi)i≥1.

We continue with the dU2
half-edges incident to U2, and test whether they

are paired to one of the X
(n,1)

0 remaining half-edges incident to U1, or any of
the dU2

half-edges incident to U2. We do this by applying Procedure 2.1 with
AS= RHEU1

∪HEU2
, TS= (HEU2) and

(2.10) N= �n − dU1
− dU2

−X
(n,1)

0 ,
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which equals the total number of half-edges that are still available to be connected
to (noting that the ones that are paired to the half-edges incident to U1 are no longer
available). The subtraction of X

(n,1)

0 in (2.10) originates from the fact that X
(n,1)

0 free
half-edges are claimed to match the reduced forward degree. A self-loop is formed
when during this test a half-edge is paired to one of the dU2 sibling half-edges.
A so-called collision edge is formed when during this test a half-edge is paired to
one of the X

(n,1)

0 remaining half-edges incident to vertex U1. The weight of this
collision edge is the weight of the half-edge incident to U1, which it has already
obtained in the previous step. A collision produces a path between vertices U1 and
U2, which possibly is the minimal weight path between U1 and U2. We define
RHEU2

as the set of unpaired half-edges incident to vertex U2 after the removal of
the self-loops and collision edges. Furthermore, we define

(2.11) Y
(n,2)

0 = dU2
,

and

(2.12) X
(n,2)

0 = |RHEU2
|,

that is, X
(n,2)

0 denotes the number of unpaired half-edges of vertex U2 after the test
for collision edges and self-loops has been performed. We attach i.i.d. weights to
each of the half-edges in RHEU2

by taking the first X
(n,2)

0 available weights from the
i.i.d. sequence (ξi)i≥1 (note that the first X

(n,1)

0 weights have already been assigned
to the half edges in RHEU1

). By construction, the remaining X
(n,1)

0 + X
(n,2)

0 half-
edges incident to the vertices U1,U2 are paired to fresh vertices, that is, vertices
distinct from U1 and U2.

For the moment, we collect the possible collision edges at time T0, together
with their weights, which is equal to the weight of the half-edge incident to U1
that forms one half of the collision edge, and continue with the description. All
half-edges that are not paired to one of the other dU1

+ dU2
− 1 half-edges incident

to either U1 or U2 together form the set AH(0), the set of active half-edges at
time 0, that is,

(2.13) AH(0)= RHEU1
∪RHEU2

.

For y ∈ AH(0), we define the height H(y)= 1 and its index I (y)= i, if the half-
edge y is connected to Ui , i = 1,2, and R0(y) for the weight with distribution Fξ

that the half edge received earlier. This initiates the construction with

(2.14) SWT(0)= (
y,H(y), I (y),R0(y)

)
y∈AH(0),

and we let SWT(i)(0) = (y,H(y),R0(y))y∈AH(0),I (y)=i , be the subset of SWT(0)

that is connected to vertex Ui, i = 1,2.
After the above initialization, let us now describe how to construct the pro-

cess SWT(t)= SWT(1)(t) ∪ SWT(2)(t) and SWT(i) with i = 1,2, for general t > 0.
Abusing notation, we call SWT(i)(t) the shortest path tree emanating from vertex
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Ui . Using the information (SWT(i)(s))0≤s≤t , we can construct the genealogical tree
representing how the liquid percolates from the source Ui but this process contains
much more information including edge lengths encountered by the process. As for
t = 0, the process SWT(t) has a set of “alive” half-edges AH(t), which we formally
define below. For y ∈ AH(t), we record its index I (y) ∈ {1,2} if y ∈ SWT(I (y)) and
we let H(y) denote the graph distance of y to UI(y) [viewing (SWT(i)(s))s∈[0,t]
as a tree]. Further, for y ∈ AH(t), we let Rt(y) denote the residual lifetime of y at
time t . Then we let

(2.15) SWT(t)= (
y,H(y), I (y),Rt(y)

)
y∈AH(t),

denote the set of alive half-edges together with their indices, their heights and
residual lifetimes. At a later state, we will also define BPn(t) and BP(t), the CTBP
analogs of SWT(t).

We next recursively define the evolution of (SWT(t))t≥0. Define T1 =
miny∈AH(0) R0(y) and denote the half-edge equal to the argument of this minimum
by y�

0 , hence R0(y
�
0) = miny∈AH(0) R0(y). Since the distribution of the weights

(lifetimes) admits a density fξ , y�
0 is a.s. unique. Now set

(2.16) AH(t)= AH(0), 0≤ t < T1,

that is, the active set remains unchanged during the interval [0, T1). This defines
the shortest weight tree in (2.15) for 0≤ t < T1, where I (y) and H(y) are defined
above and Rt(y)= R0(y)− t,0≤ t < T1, denotes the remaining lifetime of half-
edge y at time t .

At time t = T1, we continue by describing the pairing of the half-edge y�
0 with

z0 = Py�
0

and at this place we will introduce the coupling between Y
(n)

1 and B
(n)

1
[see (2.3)]. For a half-edge y, let Vy denote the vertex incident to it. By construc-
tion, z0 = Py�

0
is chosen such that Vz0 is not equal to Ui, i = 1,2. This is achieved

by taking

(2.17) τ1 =min{m≥ 1 : Vσm �=U1,Vσm �=U2},
and we define

(2.18) Y
(n)

1 = B(n)

τ1
and z0 = στ1 .

When τ1 = 1, we see that Y
(n)

1 = B
(n)

1 , while when τ1 > 1, the forward degree Y
(n)

1
of the chosen vertex Vz0 is not successfully coupled to the random variable B

(n)

1 .
At time t = T1, we remove y�

0 from the set AH(t−). Then, for each of the
dVz0
− 1 other half-edges incident to vertex Vz0 we test, using Procedure 2.1, with

(2.19) AS= AH(t−)∪ (
HEVz0

\ {z0}), TS= (
HEVz0

\ {z0}),
and

(2.20) N= �n − dU1
− dU2

− dVz0
− ∣∣AH(0)

∣∣,
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which again has the interpretation of the number of available half-edges at the time
of finding Vz0 , whether it is part of a self-loop or paired to a half-edge from the
set AH(t−). All half-edges incident to Vz0 that are part of a self-loop or incident
to AH(t−) are removed from vertex Vz0 ; we also remove the involved half-edges
from the set AH(t−). For all the remaining sibling half-edges x of z0, we do the fol-
lowing: x is added to AH(t−), I (x)= I (y�

0), H(x)=H(y�
0)+ 1, while RT1(x) is

the next available i.i.d. lifetime from the sequence (ξi)i≥1. This constructs AH(T1).
We now set

AH(t)= AH(T1), T1 ≤ t < T2,

where T2 = T1 + miny∈AH(T1) RT1(y), and where the minimizing half-edge is
called y�

1 .
We continue using induction, by defining AH(t) and SWT(t) during the random

interval [Tk, Tk+1) for k ≥ 1, given that the processes are defined on [0, Tk). By
construction, we know that zk−1 = Py�

k−1
is chosen such that Vzk−1 is not equal to

Ui, i = 1,2 or one of the previously chosen vertices Vzj
,1≤ j ≤ k− 2 (for k = 1,

the latter is an empty condition). Therefore, we take

(2.21) τk =min
{
m≥ τk−1 + 1 : Vσm /∈ {U1,U2,Vz0, . . . , Vzk−2}

}
,

and we define

(2.22) Y
(n)

k = B(n)

τk
and zk−1 = στk

.

When τk = τk−1 + 1, we see that Y
(n)

k = B
(n)

τk−1+1, while for τk > τk−1 + 1, the for-

ward degree Y
(n)

k of the chosen vertex Vzk−1 is not coupled to the random variable
B

(n)

τk−1+1 and we call the vertex Vzk−1degree-miscoupled. At time t = Tk , we re-
move y�

k−1 from the set AH(t−). Then, for each of the dVzk−1
− 1 other half-edges

incident to vertex Vzk−1 , we use Procedure 2.1, with

(2.23) AS= AH(t−)∪ (
HEVzk−1

\ {zk−1}), TS= (
HEVzk−1

\ {zk−1}),
and

(2.24) N= �n − dU1
− dU2

−
k−1∑
j=0

dVzj
− ∣∣AH(Tk−1)

∣∣,
to test whether it is part of a self-loop or paired to a half-edge from the set AH(t−).
It is part of Procedure 2.1 that all half-edges incident to Vzk−1 that are part of a
self-loop or incident to AH(t−) are removed from vertex Vzk−1 ; we also remove
the involved half-edges from the set AH(t−). We will discuss the role of the half-
edges incident to Vzk−1 that are paired to half-edges in AH(t−) in more detail
below.

We sequentially order the remaining siblings half-edges of zk−1 in an arbitrary
order. In this order, we do the following: Let x be one such half-edge of Vzk−1 , then
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add x to AH(t−), and set I (x)= I (y�
k−1) and H(x)=H(y�

k−1)+ 1, while RTk
(x)

is the next in line of the i.i.d. sequence (ξi)i≥1. This constructs AH(Tk). We now
set

(2.25) AH(t)= AH(Tk), Tk ≤ t < Tk+1,

where Tk+1 = Tk + miny∈AH(Tk) RTk
(y), and where the minimizing half-edge is

called y�
k .

For t ∈ [Tk, Tk+1), we define SWT(t) by (2.15), where Rt(y)= RTk
(y)− (t −

Tk), Tk ≤ t ≤ Tk+1. Finally, we denote the number of the dVzk−1
− 1 other half-

edges incident to vertex Vzk−1 that do not form a self-loop and that are not paired
to a half-edge from the set AH(t−) by X

(n)

k . We say that the vertex Vzk−1 is success-
fully degree-coupled to the corresponding individual in a branching process that
has offspring B

(n)

τk−1+1 (this will show up again in the next section) when both

(2.26) Y
(n)

k = B
(n)

τk−1+1 and X
(n)

k = Y
(n)

k ,

and otherwise we call it degree-miscoupled.
We finally denote S

(n)

k = |AH(Tk)|, so that S
(n)

0 =X
(n,1)

0 +X
(n,2)

0 , while S
(n)

k satis-
fies the recursion

(2.27) S
(n)

k = S
(n)

k−1 + Y
(n)

k − 2(Y
(n)

k −X
(n)

k )− 1, k ≥ 1.

This describes the evolution of (SWT(t))t≥0.

Cycle edges and collision edges. At time Tk, k ≥ 1, we find the half-edge y�
k−1

that is paired to zk−1 = Py�
k−1

, and for each of the other half-edges x incident to
Vzk−1 , we check, using Procedure 2.1, whether or not a self-loop has been formed
or whether or not Px ∈ AH(Tk−). The newly found half-edges that are paired to
already alive half-edges in AH(Tk−) are special. Indeed, the edge (x,Px) creates
a cycle when I (x) = I (Px), while (x,Px) completes a path between U1 and U2
when I (x) = 3− I (Px). Precisely the latter edges can create the shortest-weight
path between U1,U2. Let us describe these collision edges in more detail.

At time Tk and when we create a collision edge consisting of x and Px , then we
record

(2.28)
(
Tk, I (x),H(x),H(Px),RTk

(Px)
)
,

where

(2.29) I (x)= I
(
y�
k−1

)
, H(x)=H

(
y�
k−1

)+ 1.

Order the times at which collision edges occur as (T
(col)
j )j≥1, and let (xj ,Pxj

) be
the corresponding collision edge (so that Pxj

is in the other SWT as xj ). If multiple
collision edges are created at the same time, then order them arbitrarily. We will
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see that the probability of such events in the time scale of interest converges to
zero as n→∞. Write

(2.30) C := (
T

(col)
j , I (xj ),H(xj ),H(Pxj

),R
T

(col)
j

(Pxj
)
)
j≥1,

for the collection of all collision edges collected by the process.
It is possible (albeit unlikely) that multiple half-edges incident to Vzk−1 create

collision edges, and if so, we collect all of them in the list in (2.30). With some
abuse of notation we denote the j th collision edge by (xj ,Pxj

); here, Pxj
is an

alive half-edge and xj the half-edge which pairs to Pxj
. Note that, at the time

t of creation of the collision edge, the weight of the half-edge has already been
assigned to the half-edge Pxj

, and the half-edge Pxj
has residual lifetime equal to

Rt(Pxj
).

The weight of the (a.s. unique) path between U1 and U2 that passes through the
edge (xj ,Pxj

) equals 2T
(col)
j + R

T
(col)
j

(Pxj
) and its hopcount is equal to H(xj )+

H(Pxj
)+ 1, so that the shortest weight equals

(2.31) Ln =min
j≥1

[
2T

(col)
j +R

T
(col)
j

(Pxj
)
]
.

Let I � denote the minimizer of j �→ 2T
(col)
j +R

T
(col)
j

(Pxj
), then

(2.32) Hn =H(xI�)+H(PxI� )+ 1.

Of course, (2.31) and (2.32) need a proof, which we give now.
Proof that Ln in (2.31), and Hn in (2.32) yield the minimal weight and hopcount,

respectively. Observe that the weight of each path between U1 and U2 with weight
L can be written in the form L= 2T

(col)
i +R

T
(col)
i

(Pxi
), for some i ≥ 0. Indeed, let

(i0 =U1, i1, i2, . . . , ik =U2) form a path with weight L, and denote the weight on
(ij−1, ij ) by ξej

, for 1≤ j ≤ k. For k = 1, we obviously find ξe1 = 2T0 + ξe1 . For
general k ≥ 1, take the maximal j ≥ 0 such that ξe1 +· · ·+ ξej

≤ L/2. Then, since

L=∑k
s=1 ξes , we have that

∑j
s=1 ξes ≤

∑k
s=j+1 ξes , so that

L= 2
j∑

s=1

ξes +
[

k∑
s=j+1

ξes −
j∑

s=1

ξes

]
,

which is of the form L= 2T
(col)
j +R

T
(col)
j

(y), for some j ≥ 0 and some half-edge y.

Note that in the construction of the SWTs, instead of putting weight on the edges,
we have given weights to half-edges instead. In the representation (2.31), full edge
weight is given to the active half-edges and weight 0 to the ones to which they
are paired. At time T

(col)
j when a collision edge has been found, the path-weight

of the edges belonging to the same vertex Ui as half-edge y∗ add up to T
(col)
j , the

path-weight of all completed edges connected to 3−Ui together with the residual
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lifetime R
T

(col)
j

(Px) of the half-edge Px has to be added to T
(col)
j in order to yield

the total weight of the path between U1 and U2.
The proof of (2.32) follows because the number of edges of the path between

U1 and U2 that passes through the collision edge (xj ,Pxj
) is equal to the sum of

the heights of the vertices incident to xj , Pxj
, respectively, and we add 1 for the

edge (xj ,Pxj
) itself. This completes the proof of the claim.

2.3. Coupling: Process level. In the above, we have described the coupling
between reduced forward degrees (X

(n)

i )i≥1 in SWT and i.i.d. random variables
((B

(n)

i ,Bi))i≥1, where (B
(n)

i )i≥1 has marginal distribution (2.4) and (Bi)i≥1 has
marginal distribution (2.5), and they are coupled as in (2.6)–(2.7). We have used
this coupling to describe the evolution of (SWT(t))t≥0, and at the end of this pro-
cess, we know of each vertex that is found by the liquid, whether it is success-
fully degree-coupled or not. As long as no degree-miscouplings occur, this can be
thought of as a coupling between SWT and two CTBPs with lifetimes having dis-
tribution Fξ and offsprings (B

(n)

i )i≥1 and (Bi)i≥1, respectively, but the evolutions
will start to diverge as soon as degree-miscouplings start to appear. We now extend
this coupling.

Recall that the SWT(i) consists of half-edges and their attributes, connected to
Ui , for i = 1,2. We aim to couple each SWT(i), i = 1,2, to an independent CTBP
BP(i)

n , so that SWT is coupled to BPn which consists of two independent CTBPs,
that is, BPn = (BP(1)

n ,BP(2)
n ), as well as to an n-independent limiting CTBP BP

that also consists of two independent CTBPs, that is, BP = (BP(1),BP(2)). If Y
(n)

k

is the forward degree of vertex Vzk−1 , then I (y�
k−1) indicates to which SWT the

vertex belongs. We recall that we say that the vertex Vzk−1 in the SWT is degree-
miscoupled to the corresponding individual (which we also refer to as vertex) if

(2.33) Y
(n)

k �= B
(n)

τk−1+1 or if X
(n)

k �= Y
(n)

k .

Vertices that are degree-miscoupled will appear both in the SWT as well as in the
CTBP BPn. However, after being degree-miscoupled, the evolution of vertices in
the CTBP and SWT diverge, as we explain now. For the SWT, we say that an alive
half-edge is miscoupled if the shortest-weight path to the vertex incident to that
half-edge uses at least one degree-miscoupled vertex. In particular, the evolution
of the SWT is such that half-edges of degree-miscoupled vertices are by definition
attached to miscoupled half-edges. The same is true for the CTBP BPn, that is,
offspring of degree-miscoupled individuals are by definition miscoupled.

The weights assigned to half-edges incident to miscoupled vertices in the SWT
and individuals in the CTBP are independent. For this, we have introduced a sec-
ond sequence of i.i.d. weights (ξ̌i)i≥1 that is independent of the edge-weights of
correctly coupled half-edges (ξi)i≥1. Each time that a half-edge is found by the
SWT, we perform Procedure 2.1 and the coupling to the CTBPs BPn and BP.
When, instead, a half-edge is found by (one of the) CTBPs only, we pair it to a
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uniformly chosen half-edge chosen from [�n] without replacement. These choices
are determined by the i.i.d. sequence (σ̌i)i≥1, and, from these, the random variables
B̌

(n)

i and B̌i are obtained as explained in (2.3) and (2.6)–(2.7). We use the variables
B̌

(n)

i for the evolution of BPn, and B̌i for the evolution of BP. Thus, the evolution
of miscoupled individuals in the CTBPs BPn and BP is completely independent of
the evolution of SWT. When differences arise in BPn and BP, also their evolutions
are mutually independent.

We close this section by defining the sets of alive individuals in the coupling of
the random variables (SWT(t),BPn(t),BP(t))t≥0. Both BPn(t) as well as BP(t)

each have their sets of alive individuals that we denote by AIn(t) and AI(t), re-
spectively. For BPn(t), we can think of these alive individuals as corresponding to
repeated draws of half-edges. By our coupling, these sets of alive individuals in
BPn(t) and BP(t) are effectively coupled to the alive half-edges in AH(t). The suc-
cessfully coupled half-edges in SWT(t) and BPn(t) at time t form AH(t)∩ AIn(t),
the successfully coupled individuals in BPn(t) and BP(t) form AIn(t) ∩ AI(t). We
note that each alive half-edge, individual y in AH(t), AIn(t) and AI(t) has a residual
lifetime Ry(t), as well as an index I (y) indicating which subtree y is an element
of and a height H(y) denoting the generation of y. Similarly to (2.15), we then
define

BPn(t)= (
y, I (y),H(y),Rt(y)

)
y∈AIn(t),

(2.34)
BP(t)= (

y, I (y),H(y),Rt(y)
)
y∈AI(t).

This completes the coupling of the FPP processes (SWT(t),BPn(t),BP(t))t≥0
and defines the probability space (�,F,P) on which this coupling of (SWT(t),

BPn(t),BP(t)) lives. We let (Ft )t≥0 be the filtration generated by all the random-
ness used in the construction up to time t , that is, Ft contains all the information
needed to construct (SWT(s),BPn(s),BP(s))s∈[0,t]. Under this coupling law, we
can speak of convergence in probability, and we shall frequently do this in the
sequel.

Summary of the coupling. For completeness and future references, we resume
how differences arise in the coupling. Degree-miscouplings arise due to three ef-
fects:

(1) MISC-miscouplings occur between the forward degree Y
(n)

k (which are not
i.i.d. due to draws being without replacement) and the i.i.d. draws (B

(n)

i )i≥1, be-
cause τk > τk−1 + 1;

(2) cycle-events occur referring to self-loops or cycles that makes X
(n)

k < Y
(n)

k .
In these cases, we remove the self-loop or the edge that gives rise to a cycle from
the set of alive half-edges. This amounts to removing up to at most Y

(n)

k − X
(n)

k

half-edges incident to vertex Vzk−1 , as well as up to at most Y
(n)

k −X
(n)

k half-edges
to which they are paired from SWT.



UNIVERSALITY OF FIRST PASSAGE PERCOLATION 2593

(3) collision edges are found. In this case, precisely one of the vertices to which
the collision edge is incident is degree-miscoupled. We want to emphasize here
that the degree-miscoupling caused by finding the collision edge at time T

(col)
j does

not effect the coupling of the shortest-weight paths. When the collision edge is
removed, we are left with two paths connecting Ui to one of the vertices incident
to the two half-edges of which the collision edge consists. It should be checked
that at any time prior to T

(col)
j each of these paths is not miscoupled, that is, does

not contain any earlier degree-miscoupled vertices, since otherwise the path is not
necessarily present in the random graph.

In all these three cases, the vertices involved are called degree-miscoupled, and
any further offspring of degree-miscoupled vertices (in the SWT or in the CTBP)
are called miscoupled. Thus, any miscoupling gives rise to a tress of miscoupled
children half-edges in the SWT, respectively, offspring in the CTBP.

2.4. Main coupling results. We consider the process coupling (SWT(t),

BPn(t),BP(t))t≥0 defined in the previous section, as well as the associated fil-
tration (Ft )t≥0. We recall that BPn(t) = (BP(1)

n (t),BP(2)
n (t)) are two independent

CTBPs starting with offspring distribution Dn in the first generation and off-
spring law B(n) = D�

n − 1 in the second and further generations, and BP(t) =
(BP(1)(t),BP(2)(t)) which are two independent CTBPs starting with offspring dis-
tribution D in the first generation and offspring distribution B = D� − 1 in the
second and further generations. For this coupling (SWT(t),BPn(t),BP(t))t≥0,
we let AH(t)�AIn(t) denote the set of miscoupled half-edges at time t . With a
slight abuse of notation, we write |SWT(t)| = |AH(t)| and |SWT(t)�BPn(t)| =
|AH(t)�AIn(t)|. Finally, we denote the set of all miscoupled half-edges and indi-
viduals up to time t by

(2.35)
⋃

s∈[0,t]
SWT(s)�BPn(s).

In this section, we state two key propositions concerning the coupling. Proposi-
tion 2.2(a) shows that there exists some sn→∞ such that, w.h.p., there are no
miscouplings up to time sn. In Proposition 2.2(b) and Proposition 2.3, we investi-
gate the size of SWT(t) for t close to tn = logn/(2αn).

PROPOSITION 2.2 (Coupling the SWT to a BP).

(a) There exists sn→∞ such that, for the coupling defined in Sections 2.2–2.3,

(2.36) P
((

SWT(s)
)
s∈[0,sn] =

(
BPn(s)

)
s∈[0,sn] =

(
BP(s)

)
s∈[0,sn]

)= 1− o(1).

Consequently, with W (i)
sn
= e−αnsn |SWT(i)(sn)|, i = 1,2,

(2.37) lim
ε↓0

lim
n→∞P

(
W (1)

sn
∈ [ε,1/ε],W (2)

sn
∈ [ε,1/ε] |W (1)

sn
W (2)

sn
> 0

)= 1.
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(b) Let tn = logn/(2αn). For the coupling of (SWT(s))s≥0 and (BPn(s))s≥0

defined in Sections 2.2–2.3, there exist sequences εn→ 0 and Bn→∞ such that,
conditionally on Fsn , and for every t ≤ tn +Bn,

(2.38) P

(∣∣∣∣ ⋃
s∈[0,t]

SWT(s)�BPn(s)

∣∣∣∣≥ εn

√
n
∣∣∣Fsn

)
P−→ 0.

The proof of Proposition 2.2 is deferred to Section 5. We warn the reader to be-
ware for confusion between the (large) constant Bn and the i.i.d. random variables
(Bi)i≥1. Fix the deterministic sequence sn→∞ from Proposition 2.2. Now let

(2.39) tn = 1

2αn

logn, t̄n = 1

2αn

logn− 1

2αn

log
(
W (1)

sn
W (2)

sn

)
.

Note that eαntn = √n; it will turn out that both |SWT(i)(tn)|, for i = 1,2, are of
order

√
n. Further, it will turn out that collision edges start to appear when these

clusters grow to be of this size. Consequently, the variable tn denotes the typi-
cal time at which collision edges start appearing, and the time t̄n incorporates for
stochastic fluctuations in the size of the SWTs.

For i ∈ {1,2}, k ≥ 0, and s, t ≥ 0, we define

(2.40)
∣∣SWT(i)

k [t, t + s)
∣∣= ∣∣{y ∈ AH(t) : I (y)= i,H(y)= k,Rt (y) ∈ [0, s)

}∣∣,
as the number of alive half-edges at time t that (i) are in the SWT of vertex Ui ,
(ii) have height k, and (iii) have remaining (or residual) lifetime at most s. We
further write

(2.41)
∣∣SWT(i)

≤k
[t, t + s)

∣∣= ∣∣{y ∈ AH(t) : I (y)= i,H(y)≤ k,Rt(y) ∈ [0, s)
}∣∣,

for the number of alive half-edges that have height at most k. To formulate the CLT
for the height of vertices, we will choose

(2.42) kn(t, x)= t

ν̄n

+ x

√
t
σ̄ 2

ν̄3 ,

where ν̄n, ν̄ and σ̄ 2 are defined in (1.19).
Define the residual life-time distribution FR to have density fR given by

(2.43) fR(x)=
∫∞

0 e−αyfξ (x + y)dy∫∞
0 e−αy[1− Fξ (y)]dy

= αν

ν − 1

∫ ∞
0

e−αyfξ (x + y)dy.

Below, we let � denote the standard normal distribution function. Finally, for a
half-edge y ∈ AH(t), we let X�

y = dVy − 1.
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PROPOSITION 2.3 (Ages and heights in SWT). Fix j ∈ {1,2}, and num-
bers x, y, t ∈ R, s1, s2 > 0, all independent of n. Then, conditionally on Fsn and
W (1)

sn
W (2)

sn
> 0:

(a)

e−2αntn
∣∣SWT(j)

≤kn(tn,x)[t̄n + t, t̄n + t + s1)
∣∣∣∣SWT(3−j)

≤kn(tn,y)[t̄n + t, t̄n + t + s2)
∣∣

(2.44)
P−→ e2αt�(x)�(y)FR(s1)FR(s2),

(b)

e−2αntn
∣∣SWT(j)

≤kn(tn,x)[t̄n + t, t̄n + t + s1)
∣∣∑

v

X�
v1{v∈SWT

(3−j)
≤kn(tn,y)[t̄n+t,t̄n+t+s2)}

(2.45)
P−→ νe2αt�(x)�(y)FR(s1)FR(s2).

The proof of Proposition 2.3 is deferred to Section 6.

3. Main ingredient: Poisson point process limit. In this section, we state
our main result that implies Theorems 1.2–1.3. To state this result, we need some
additional definitions.

Recall the collection of collision edges C from (2.30). Here, the j th collision
edge is given by (xj ,Pxj

), where Pxj
is an alive half-edge and xj the half-edge

which pairs to Pxj
. Rescaling time by t̄n [see (2.39)], we define

T̄
(col)
j = T

(col)
j − t̄n, H̄

(or)
j = H(xj )− tn/ν̄n√

σ̄ 2tn/ν̄3
,

(3.1)

H̄
(de)
j = H(Pxj

)− tn/ν̄n√
σ̄ 2tn/ν̄3

,

and write the random elements (�j )j≥1 with �j ∈ S := R × {1,2} × R × R ×
[0,∞), by

(3.2) �j = (
T̄

(col)
j , I (xj ), H̄

(or)
j , H̄

(de)
j ,R

T
(col)
j

(Pxj
)
)
.

Then, for sets A in the Borel σ -algebra of the space S , we define the point process

(3.3) �n(A)=∑
j≥1

δ�j
(A),

where δx gives measure 1 to the point x. Let M(S) denote the space of all simple
locally-finite point processes on S equipped with the vague topology (see, e.g.,
[29]). On this space, one can naturally define the notion of weak convergence of
a sequence of random point processes �n ∈M(S). This is the notion of conver-
gence referred to in the following theorem.
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THEOREM 3.1 (PPP limit of collision edges). Consider the distribution of the
point process �n ∈M(S) defined in (3.3) conditioned on Fsn and W (1)

sn
W (2)

sn
> 0,

for sn as in Proposition 2.2. Then, as n→∞, �n converges in distribution to a
Poisson Point Process (PPP) � with intensity measure

λ(dt × i × dx × dy × dr)
(3.4)

= 2νfR(0)

E[D] e2αt dt ⊗ {1/2,1/2} ⊗�(dx)⊗�(dy)⊗ FR(dr).

Theorem 3.1 will be proved in Section 7. In order to reduce our main theorems
to PPP convergence in Theorem 3.1, we rely on the fact that T̄

(col)
1 is tight. This

tightness is the content of the next proposition.

PROPOSITION 3.2 (Tightness of appearance of first collision edge). The se-
quence of random variables (T̄

(col)
1 )n≥1 is tight.

We will prove Proposition 3.2 at the end of Section 5.

Completion of the proof of Theorems 1.2 and 1.3. Let us now prove Theo-
rem 1.2 subject to Theorem 3.1 and Proposition 3.2. Recall (2.31)–(2.32). First of
all, by (3.1), (3.2), (2.31) and (2.32),

(3.5)
(Hn − 1

αnν̄n
logn√

σ̄ 2

ν̄3α
logn

,Ln − 1

αn

logn

)

is a continuous function of the point process �n, and, therefore, by the continu-
ous mapping theorem, the above random vector converges in distribution to some
random limit (Z,Q).

Recall that I � denotes the minimizer of i �→ 2T
(col)
i + R

T
(col)
i

(Pxi
). By (2.31),

the weight Ln as well as the value of I �, are functions of the first and the last
coordinates of �n. The hopcount Hn is a function of the third and the fourth,
instead. By the product form of the intensity in (3.4), we obtain that the limits
(Z,Q) are independent. Therefore, it suffices to study their marginals.

We start with the limit distribution of the hopcount. By (3.1), (2.32) and (2.39),

(3.6)
Hn − 1

αnν̄n
logn√

σ̄ 2

ν̄3α
logn

= 1

2

√
2H̄

(or)
I � + 1

2

√
2H̄

(de)
I � + oP(1).

By Theorem 3.1, the random variables (H̄
(or)
I � , H̄

(de)
I � ), converge to two independent

standard normals, so that also the left-hand side of (3.6) converges to a standard
normal.
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The limit distribution of the weight Ln is slightly more involved. By (2.31)
and (2.39),

Ln − 1

αn

logn= Ln − 2tn = Ln − 2t̄n − 1

αn

log
(
W (1)

sn
W (2)

sn

)
(3.7)

=− 1

αn

log
(
W (1)

sn
W (2)

sn

)+min
i≥1

[
2T̄

(col)
i +R

T
(col)
i

(Pxi
)
]
.

By Proposition 2.2, (W (1)
sn

,W (2)
sn

)
d−→ (W (1),W (2)), which are two independent

copies of the random variable in (1.21). We will prove that, conditionally on

Fsn and W (1)
sn
W (2)

sn
> 0, also mini≥1[2T̄

(col)
i + R

T
(col)
i

(Pxi
)] d−→mini≥1[2πi + Ri],

where (πi)i≥1 is a PPP with intensity 2νfR(0)
E[D] e2αt dt , and (Ri)i≥1 are i.i.d. random

variables with distribution function FR independently of (πi)i≥1. This implies that

(W (1)
sn

,W (2)
sn

,mini≥1[2T̄
(col)
i +R

T
(col)
i

(Pxi
)]) d−→ (W (1),W (2),mini≥1[2πi+Ri]), so

that also

(3.8) Ln − 1

αn

logn
d−→− 1

α
log

(
W (1)W (2)

)+min
i≥1
[2πi +Ri].

In order to prove that, conditionally on Fsn and W (1)
sn
W (2)

sn
> 0, mini≥1[2T̄

(col)
i +

R
T

(col)
i

(Pxi
)] d−→ mini≥1[2πi + Ri], let L(K) denote the points in the PPP for

which the first coordinate is in [−K,K] and the fifth coordinate is in [0,K]. Then
Theorem 3.1 implies that, conditionally on Fsn and W (1)

sn
W (2)

sn
> 0,

(3.9) min
i∈L(K)

[
2T̄

(col)
i +R

T
(col)
i

(Pxi
)
] d−→ min

i∈L(K)
[2πi +Ri].

Below, we show by direct calculation that M =mini≥1[2πi + Ri] ≤K with high
probability, so that also

(3.10) lim
K→∞ lim sup

n→∞
P
(∃i such that T̄

(col)
i ≤K,R

T
(col)
i

(Pxi
)≤K

)= 1.

Proposition 3.2 proves that

(3.11) lim
K→∞ lim inf

n→∞ P
(
T̄

(col)
1 ≥−K

)= 1.

We conclude that

lim
K→∞ lim inf

n→∞ P
(

min
i∈L(K)

[
2T̄

(col)
i +R

T
(col)
i

(Pxi
)
]

(3.12)
=min

i≥1

[
2T̄

(col)
i +R

T
(col)
i

(Pxi
)
])= 1.

The conditional convergence of mini≥1[2T̄
(col)
i + R

T
(col)
i

(Pxi
)] d−→ mini≥1[2πi +

Ri] now follows from (3.12) and (3.9).
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We next identify the distribution of M = mini≥1[2πi + Ri]. First, (2πi)i≥1

forms a Poisson process with intensity νfR(0)
E[D] eαt dt . According to [37], Exam-

ple 3.3 on page 137, the point process (2πi+Ri)i≥1 is a nonhomogeneous Poisson
process with mean-measure the convolution of μ(−∞, x] = ∫ x

−∞
νfR(0)
E[D] eαt dt and

FR . Hence, P(M ≥ x) equals the Poisson probability of 0, where the parameter of
the Poisson distribution is (μ ∗ FR)(x), so that

(3.13) P(M ≥ x)= exp
{
−νfR(0)

E[D] eαx
∫ ∞

0
FR(z)e−αz dz

}
.

Let � have a Gumbel distribution, that is, P(� ≤ x) = e−e−x
, x ∈ R, then,

from (3.13),

(3.14) M =min
i≥1

(2πi +Ri)
d=−α−1�− α−1 log

(
νfR(0)B/E[D]),

with B = ∫∞
0 FR(z)e−αz dz. In the following lemma, we simplify these constants:

LEMMA 3.3 (The constant). The constants B = ∫∞
0 FR(z)e−αz dz and fR(0)

are given by

(3.15) B = ν̄/(ν − 1), fR(0)= α/(ν − 1).

Consequently, the constant c in the limit variable (1.23) equals

(3.16) c=− log
(
νfR(0)B/E[D])= log

(
E[D](ν − 1)2/(ανν̄)

)
.

PROOF. According to (2.43) and (1.15),

(3.17) fR(0)= αν

ν − 1

∫ ∞
0

e−αyfξ (y) dy = α/(ν − 1).

For B , we use partial integration and substitution of (2.43). This yields

B =
∫ ∞

0
FR(z)e−αz dz= 1

α

∫ ∞
0

fR(z)e−αz dz

= ν

ν − 1

∫ ∞
0

e−αz
∫ ∞

0
e−αyfξ (y + z) dy dz(3.18)

= ν

ν − 1

∫ ∞
0

sfξ (s)e
−αs ds = 1

(ν − 1)

∫ ∞
0

sF̄ξ (ds)= ν̄/(ν − 1).

This completes the proof of Theorems 1.2 and 1.3 subject to Theorem 3.1 and
Proposition 3.2. �
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4. Height CLT and residual lifetime for CTBP. In this section, we set the
stage for the proof of Proposition 2.3 for CTBPs. We make use of second mo-
ment methods similar to the ones in [21, 24, 25, 38], but with a suitable truncation
argument to circumvent the problem of infinite-variance offspring distributions.

As in the first part of Section 1.3, we consider a (standard) CTBP process [21],
Chapter 6, with lifetime distribution Fξ admitting a density fξ , and random off-
spring X =Xv , satisfying (1.13) and the X logX condition in (1.14). We define

(4.1) η= ν

∫ ∞
0

e−2αs dFξ (s) and mj =Kη−j , j ≥ 1,

for some K > 1. Note that η ∈ (0,1), since α is such that ν
∫∞

0 e−αs dFξ (s) =
1. The truncated CTBP BP( �m) has for each individual in generation j offspring
(X ∧mj) instead of X.

We denote the number of alive individuals in the CTBP at time t by |BP(t)|. By
|BPk(t)|, |BPk[t, t + s)|, we denote the number of alive individuals in generation
k at time t , number of alive individuals in generation k at time t with residual
lifetime at most s, respectively. We warn the reader that |BPk(t)| refers to the
number of individuals in generation k, and not to the n-dependence. When dealing
with n-dependent CTBPs, we will use the notation |BPn,k(t)| instead.

Here, the generation of the first individual equals 0, and the generation of its off-
spring is equal to 1, etc. For the truncated process BP( �m)(t), we define, analogously
to the definitions above, |BP( �m)(t)|, |BP( �m)

k (t)|, and |BP( �m)

k [t, t + s)|. Furthermore,

∣∣BP( �m)

≤k
[t, t + s)

∣∣= k∑
j=0

∣∣BP( �m)

j [t, t + s)
∣∣,

(4.2) ∣∣BP( �m)[t, t + s)
∣∣= ∞∑

j=0

∣∣BP( �m)

j [t, t + s)
∣∣.

A key ingredient to the proof of Proposition 2.3 is Proposition 4.1 below.

PROPOSITION 4.1 (First and second moment CLT). Consider the branching
process BP(t) introduced above, with i.i.d. lifetimes Fξ admitting a density and
random offspring X satisfying ν = E[X] > 1, and E[X log(X)+] <∞. Choose
mj =Kη−j as in (4.1). Then, with A= (ν − 1)/(ανν̄):

(a)

lim
t→∞ e−αtE

[∣∣BP(t)
∣∣]=A,

(4.3)
lim

K→∞ lim sup
t→∞

e−αtE
[∣∣BP(t)

∣∣− ∣∣BP( �m)(t)
∣∣]= 0,

(b) there exists a constant C > 0, such that uniformly in t ∈ [0,∞),

(4.4) e−2αtE
[∣∣BP( �m)(t)

∣∣2]≤ CK,
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(c)

(4.5) lim
K→∞ lim

t→∞ e−αtE
[∣∣BP( �m)

≤k(t,x)[t, t + s)
∣∣]=A�(x)FR(s),

where FR is defined through (2.43) and k(t, x)= t/ν̄ + x

√
t σ̄ 2/(ν̄)3.

(d) Replace in the above statements BP by BPn, with offspring Xn, depend-

ing on n in such a way that Xn
d−→ X, νn = E[Xn] → E[X] and

limnE[Xn log(Xn/Kn)+] = 0, for any Kn →∞. Furthermore, now define mj

by mj = Knη
−j
n , with ηn = νn

∫∞
0 e−2αns dFξ (s), and replace k(t, x) by kn(t, x)

defined in (2.42). Then Part (a) and Part (c) hold with α = αn and t = tn and with
the limits replaced by limn→∞, for any sequence tn→∞. Similarly, under these
conditions and substitutions, Part (b) holds for all n≥ 1, with K replaced by Kn,
uniformly in t .

PROOF. We start by proving Proposition 4.1(a). The first claim of Part (a) is
proved in [21], Theorem 17.1.

We bound the first moment of the difference between the truncated and the
original branching process. Let ν(j) = E[(X ∧mj)]. We compute that for t > 0,

e−αtE

[ ∞∑
k=0

[∣∣BPk(t)
∣∣− ∣∣BP( �m)

k (t)
∣∣]]

(4.6)

= e−αt
∞∑

k=0

[
νk −

k∏
j=1

ν(j)

][
F�k

ξ (t)− F
�(k+1)
ξ (t)

]
,

with F�k
ξ denoting the k-fold convolution of Fξ , and where, by convention,

F�0
ξ (t) = 1 for every t ≥ 0. In order to bound the differences νk −∏k

j=1 ν(j), we
rely on the following lemma.

LEMMA 4.2 (Effect of truncation on expectation CTBP). Under the condi-
tions of Proposition 4.1, uniformly in k ≥ 1,

(4.7)

[
1−

k∏
j=1

ν(j)

ν

]
≤ (

log(1/η)
)−1E

[
X log (X/K)+

]= oK(1),

where oK(1) denotes a quantity that converges to zero as K→∞.

PROOF. Since ν(j) ≤ ν, for all j ≥ 1, it is easily shown by induction that

(4.8) 1−
k∏

j=1

ν(j)

ν
≤

k∑
j=1

(
1− ν(j)

ν

)
≤
∞∑

j=1

(
1− ν(j)

ν

)
.
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Now, using that ν > 1,

(4.9)
∞∑

j=1

(
1− ν(j)

ν

)
≤
∞∑

j=1

E[X1{X>mj }] = E

[
X

∞∑
j=1

1{mj<X}
]
,

and we note that the number of j for which mj = Kη−j < x is at most
[log (x/K)/ log (1/η)] ∨ 0. Therefore, the inequality in (4.7) holds. Since
E[X log (X/K)+] = oK(1), the equality in (4.7) follows. �

By Lemma 4.2 and (4.6),

e−αtE

[ ∞∑
k=0

[∣∣BPk(t)
∣∣− ∣∣BP( �m)

k (t)
∣∣]]= oK(1)e−αtE

[ ∞∑
k=0

∣∣BPk(t)
∣∣]

(4.10)
= oK(1),

which completes the proof of Proposition 4.1(a).
We continue with the proof of the second moment estimate in Proposi-

tion 4.1(b). We follow the proof in [38], keeping attention to the truncation. We
introduce the generating functions

(4.11) h(s)= E
[
sX], hj (s)= E

[
s(X∧mj )],

where mj is given by (4.1). Parallel to calculations in the proof of [38], Lemma 4,

E
[∣∣BP( �m)

∣∣2]= h′′1(1)
(
E
[∣∣BP( �m1)

∣∣])2 ∗ Fξ + h′1(1)E
[∣∣BP( �m1)

∣∣2] ∗ Fξ ,(4.12)

where �m1 = (m2,m3, . . .) is �m with the first element removed, and where for sim-
plicity of reading the argument t has been left out. Transforming to

(4.13)
∣∣BP

( �m)
(t)

∣∣= e−αt
∣∣BP( �m)(t)

∣∣,
we obtain, after multiplying both sides of (4.12) by e−2αt ,

E
[∣∣BP

( �m)∣∣2]= ηh′′1(1)

ν

(
E
[∣∣BP

( �m1)∣∣])2 ∗Q+ ηh′1(1)

ν
E
[∣∣BP

( �m1)∣∣2] ∗Q,(4.14)

where

F̄ξ (t)= ν

∫ t

0
e−αy dFξ (y),

(4.15)

Q(t)= η−1
∫ t

0
e−αy dF̄ξ (y)= η−1ν

∫ t

0
e−2αy dFξ (y),

and where we recall that η = ∫∞
0 e−αy dF̄ξ (y) < 1 and ν = h′(1). Iteration of

(4.14) yields

E
[∣∣BP

( �m)∣∣2]= ∞∑
j=1

f1 · · ·fj−1ej

(
E
[∣∣BP

( �mj )∣∣])2 ∗Q�j ,(4.16)
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where

(4.17) ej =
ηh′′j (1)

ν
, fj =

ηh′j (1)

ν
,

and where �mj = (mj+1,mj+2, . . .). Obviously, for t→∞,

(4.18) E
[∣∣BP

( �m)
(t)

∣∣]≤ E
[∣∣BP

( �mj )
(t)

∣∣]≤ E
[∣∣BP(t)

∣∣]→A,

by Part (a). Hence, provided that the sum
∑

j≥1 f1 · · ·fj−1ej converges, which we
will establish in Lemma 4.3 below, we have that, uniformly in t ,

(4.19) E
[∣∣BP

( �m)
(t)

∣∣2]≤ C

∞∑
j=1

f1 · · ·fj−1ej ,

for some constant C ≥A2.

LEMMA 4.3 (Effect of truncation on variance of CTBP). For mj = Kη−j ,
and with ν = E[X]> 1,

(4.20)
∞∑

j=1

f1 · · ·fj−1ej ≤ 2νK

1− η
.

PROOF. We bound fj ≤ η, and

(4.21) ej ≤ ηE
[
(X ∧mj)

2]= η
(
m2

jP(X > mj)+E
[
X21{X≤mj }

])
,

so that

(4.22)
∞∑

j=1

f1 . . . fj−1ej ≤
∞∑

j=1

m2
jP(X > mj)η

j +
∞∑

j=1

E
[
X21{X≤mj }

]
ηj .

We bound both terms separately. The first contribution equals

K2
∞∑

j=1

P
(
X > Kη−j )η−j =K2E

[ ∞∑
j=1

η−j1{Kη−j<X}

]
(4.23)

=K2E

[
η−a(X) − 1

1− η

]
,

where a(x)=max{j : Kη−j < x} = �log (x/K)/ log (1/η)�. Therefore, η−a(X) ≤
X/K , so that

(4.24)
∞∑

j=1

m2
jP(X > mj)η

j ≤ K2

1− η
E[X/K] = Kν

1− η
.
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The second contribution is bounded in a similar way as

∞∑
j=1

E
[
X21{X≤mj }

]
ηj = E

[ ∞∑
j=1

X2ηj1{X≤Kη−j }

]
(4.25)

= E

[
X2

∞∑
j=b(X)

ηj

]
= E

[
X2ηb(X)

1− η

]
,

where b(x)=min{j : Kη−j ≥ x}, so that ηb(X) ≤K/X. Therefore,

(4.26)
∞∑

j=1

E
[
X21{X≤mj }

]
ηj ≤ KE[X]

1− η
= Kν

1− η
.

�

Proposition 4.1(b) follows by combining (4.19) and (4.20).
For Proposition 4.1(c), we start by showing that

(4.27) e−αt
k(t,x)∑
j=0

E
[∣∣BPj [t, t + s)

∣∣]→A�(x)FR(s).

Observe that |BP[t, t + s)| = ∑∞
j=0 |BPj [t, t + s)| is the total number of alive

individuals at time t , with residual lifetime at most s, so that by applying [21],
Lemma 2, Appendix Chapter VI, on the renewal equation

E
[∣∣BP[t, t + s)

∣∣]
(4.28)

= Fξ (t + s)− Fξ (t)+ ν

∫ ∞
0

E
[∣∣BP(t − y, t + s − y)

∣∣]dFξ (y),

we readily obtain (compare the derivation of [21], Theorem 24.1),

lim
t→∞ e−αtE

[∣∣BP[t, t + s)
∣∣]= lim

t→∞ e−αt
∞∑

j=0

E
[∣∣BPj [t, t + s)

∣∣]=AFR(s),

with A= (ν − 1)/(ανν̄) as given in the proposition. For fixed s > 0, define

(4.29)
∣∣BP>m[t, t + s)

∣∣= ∞∑
j=m+1

∣∣BPj [t, t + s)
∣∣= ∞∑

j=m+1

e−αt
∣∣BPj [t, t + s)

∣∣.
Then (4.27) follows if we show that

(4.30) E
[∣∣BP>k(t,x)[t, t + s)

∣∣]→AFR(s)−AFR(s)�(x)=AFR(s)�(−x).

Conditioning on the lifetime (with cumulative distribution function equal to Fξ ) of
the first individual,

(4.31) E
[∣∣BPj [t, t + s)

∣∣]= ν

∫ t

0
E
[∣∣BPj−1[t − y, t + s − y)

∣∣]dFξ (y).
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Changing to BPj and F̄ξ and iteration of (4.31) yields

(4.32) E
[∣∣BP>k(t,x)[t, t + s)

∣∣]= ∫ t

0
E
[∣∣BP[t − y, t − y + s)

∣∣]dF̄
�(k(t,x)+1)

ξ (y),

where F̄
�j

ξ is the j -fold convolution of F̄ξ , and hence the distribution function of
the independent sum of j copies of a random variable each having cumulative
distribution function F̄ξ . This is the point where we will use the CLT. Take an
arbitrary ε > 0 and take t0 so large so that for t > t0,

(4.33)
∣∣E[∣∣BP[t, t + s)

∣∣]−AFR(s)
∣∣≤ ε.

Then ∣∣E[∣∣BP>k(t,x)[t, t + s)
∣∣]−AFR(s)�(−x)

∣∣
≤ εF̄

�(k(t,x)+1)

ξ (t)+AFR(s)
∣∣F̄ �(k(t,x)+1)

ξ (t)−�(−x)
∣∣(4.34)

+
∫ t

t−t0

∣∣E[∣∣BP[t − y, t − y + s)
∣∣]−AFR(s)

∣∣dF̄
�(k(t,x)+1)

ξ (y).

The last term vanishes since E[|BP[t, t+s)|] is uniformly bounded and F̄
�k(t,x)

ξ (t)−
F̄

�k(t,x)

ξ (t − t0)= o(1), as t→∞. Furthermore, with m= k(t, x)→∞,

(4.35) k(t, x)∼ t

ν̄
+ x

√
t
σ̄ 2

ν̄3 ⇐⇒ t ∼mν̄ − xσ̄
√

m.

As a result, by the CLT and the fact that ν̄ and σ̄ 2 are the mean and the variance of
the distribution function F̄ξ ,

(4.36) lim
t→∞ F̄

�k(t,x)

ξ (t)=�(−x).

Together with (4.34), this proves the claim in (4.30), and hence (4.27). Finally, we
use the second statement of Part (a) to show that

e−αt
k(t,x)∑
j=0

E
[∣∣BPj [t, t + s)

∣∣]− e−αt
k(t,x)∑
j=0

E
[∣∣BP( �m)

j [t, t + s)
∣∣]

(4.37)
≤ e−αt (E[∣∣BP(t)

∣∣]−E
[∣∣BP( �m)(t)

∣∣])→ 0,

as first t→∞ and then K→∞. This shows Proposition 4.1(c).
We continue with the proof of Proposition 4.1(a) for the n-dependent CTBP.

We denote the number of alive individuals at time t in the n-dependent CTBP by
|BPn(t)|. We then have to show that for any sequence tn→∞, as n→∞,

(4.38) e−αntnE
[∣∣BPn(tn)

∣∣]→A,
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where A= (ν− 1)/(ανν̄). Denote by ϕ(s)= ∫∞
0 e−syfξ (y) dy, the Laplace trans-

form of fξ , the density of the lifetime distribution Fξ . Then

(4.39)
∫ ∞

0
e−stE

[∣∣BPn(t)
∣∣]dt = 1− ϕ(s)

s(1− νnϕ(s))
.

This equation follows directly from [21], equation (16.1), with m replaced by νn

and is valid when the real part of s satisfies Re(s) > αn, where αn > 0 is defined as
the unique solution to νnϕ(αn)= 1 [compare (1.15)]. From the inversion formula
for Laplace transforms, we obtain

(4.40) E
[∣∣BPn(t)

∣∣]= 1

2πi

∫
	

est 1− ϕ(s)

s(1− νnϕ(s))
ds,

where 	 is the path (c0 − i∞, c0 + i∞), with c0 > αn. Since αn→ α and νn→
ν > 1 and ϕ(s) is the Laplace transform of a probability density, the function s(1−
νnϕ(s)) has a simple zero s = αn, but no other zeros in a small strip |Re(s)−αn|<
ε, for some ε > 0. It is then easy to conclude from Cauchy’s theorem, calculating
the residue at s = αn, that

E
[∣∣BPn(tn)

∣∣]= eαntn
1− ϕ(αn)

αn · (−νnϕ′(αn))

(
1+O

(
e−εtn

))
(4.41)

=Aneαntn
(
1+O

(
e−εtn

))
,

where

(4.42) An = νn − 1

αnν2
n

∫∞
0 ye−αnyfξ (y) dy

= νn − 1

αnνnν̄n

.

Since An→A, the claim (4.38) follows.
For the second statement in Proposition 4.1(a) for the n-dependent CTBP, we

replace the inequality in (4.7) by the equivalent n-dependent statement, uniformly
in k ≥ 1,

(4.43) 1−
k∏

j=1

ν
(j)
n

νn

≤ (
log(1/ηn)

)−1E
[
Xn log (Xn/Kn)+

]
.

Since limn→∞E[Xn log(Xn/Kn)+] = 0, as n→ ∞, the statement follows as
in (4.10).

For the n-dependent case of Proposition 4.1(b), we need to show that for all
n≥ 1 and uniformly in t ,

(4.44) e−2αntE
[∣∣BP( �m)

n (t)
∣∣2]≤ CKn,

for some constant C, and where Kn is the cut-off variable used in mj = Knη
−j
n .

Copying the derivation which leads to (4.16), we obtain

E
[∣∣BP

( �m)

n

∣∣2]= ∞∑
j=1

f
(n)

1 · · ·f (n)

j−1e
(n)

j

(
E
[∣∣BPn

( �mj )∣∣])2 ∗Qj�

n ,(4.45)
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where

(4.46) e
(n)

j =
ηnE[(Xn ∧mj)

2]
νn

, f
(n)

j =
ηnE[(Xn ∧mj)]

νn

,

and

(4.47) F̄n,ξ (t)= νn

∫ t

0
e−αny dFξ (y), Qn(t)= η−1

n νn

∫ t

0
e−2αny dFξ (y).

From the proof of Lemma 4.3, we readily obtain that

∞∑
j=1

f
(n)

1 . . . f
(n)

j−1e
(n)

j

(4.48)

≤
∞∑

j=1

m2
jP(Xn > mj)η

j
n +

∞∑
j=1

E
[
X2

n1{Xn≤mj }
]
ηj

n ≤
2Knνn

1− ηn

.

Since νn→ ν and ηn→ η, as n→∞, we find, by combining (4.45) and (4.48),
that given ε > 0, there is an n0 so that for n > n0, and uniformly in t ,

(4.49) e−2αntE
[∣∣BP( �m)

n (t)
∣∣2]≤ 2Kn(ν + ε)(A2 + ε)

(1− η− ε)
≤ CKn.

By enlarging the constant C, we see that (4.44) holds for all n≥ 1 and uniformly
in t .

Finally, we will give the proof of Proposition 4.1(c) for the n-dependent CTBP.
We denote by |BPn,j [t, t + s)| the number of individuals in generation j having
residual lifetime at most s at time t of the CTBP with offspring given by Xn. Then
we obtain similarly as in (4.32),

(4.50) E
[∣∣BPn,>k[t, t + s)

∣∣]= ∫ t

0
E
[∣∣BPn[t − y, t + s − y)

∣∣]dF̄
�(k+1)

n,ξ (y).

The expectation E[|BPn[t, t + s)|] satisfies the renewal equation

E
[∣∣BPn[t, t + s)

∣∣]
(4.51)

= Fξ (t + s)− Fξ (t)+ νn

∫ t

0
E
[∣∣BPn(t − y, t + s − y)

∣∣]dFξ (y).

For s > 0 fixed, we denote by

K̃n(v, s)=
∫ ∞

0
e−vtE

[∣∣BPn[t, t + s)
∣∣]dt,

(4.52)
f̃ (v, s)=

∫ ∞
0

e−vt [Fξ (t + s)− Fξ (t)
]
dt,
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the Laplace transforms of E[|BPn[t, t + s)|] and [Fξ (t + s)−Fξ (t)], respectively.
Then (4.51) yields K̃n(v, s)= f̃ (v, s)/(1− νnϕ(v)). From the inversion theorem
for Laplace transforms, we obtain [compare (4.40)],

(4.53) E
[∣∣BPn[t, t + s)

∣∣]= 1

2πi

∫
	

evt f̃ (v, s)

(1− νnϕ(v))
dv,

where 	 is the same path as in (4.40), so that from the theory of residues, for some
ε > 0,

E
[∣∣BPn[tn, tn + s)

∣∣]= eαntn f̃ (αn, s)

−νnϕ′(αn)

(
1+O

(
e−εtn

))
(4.54)

= eαntnAnFn,R(s)
(
1+O

(
e−εtn

))
,

with An defined in (4.42) and with

(4.55) Fn,R(s)= αnνn

νn − 1

∫ ∞
0

e−αny[Fξ (y + s)− Fξ (y)
]
dy.

Since An→ A and Fn,R(s)→ FR(s) for n→∞ [see (2.43) for the definition of
fR], we obtain that, for any sequence tn→∞,

lim
n→∞E

[∣∣BPn[tn, tn + s)
∣∣]= lim

n→∞ e−αntnE
[∣∣BPn[tn, tn + s)

∣∣]=AFR(s).

The n-dependent definition kn(tn, x) yields that m= kn(tn, x)→∞ implies tn ∼
mν̄n − xσ̄

√
m, so that since σ̄n→ σ̄ ,

(4.56) F̄
�kn(tn,x)
n,ξ (tn)→�(−x).

Since νn → ν, αn → α, we obtain, similarly as in (4.30) and for any sequence
tn→∞, that

E
[∣∣BPn,>kn(tn,x)[tn, tn + s)

∣∣]
(4.57)

=
∫ tn

0
E
[∣∣BPn[tn − y, tn − y + s)

∣∣]dF̄
�(kn(tn,x)+1)

n,ξ (y)→AFR(s)�(−x).

The remaining details of the proof follow from Part (a) and an argument as in
(4.37). �

5. Bounds on the coupling: Proof of propositions 2.2 and 3.2.

5.1. Some simple lemmas concerning miscouplings. In (2.26), we have cou-
pled the forward degrees in the SWT (Y

(n)

k )k≥1, as well as the (possibly) reduced
forward degrees (X

(n)

k )k≥1, to an i.i.d. sequence (B
(n)

k )k≥1 with distribution equal
to that of D�

n − 1 given in (2.5).
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We next investigate some simple consequences of this coupling. For this, it will
be useful to note that when Dn, having distribution function Fn in (1.2), satisfies
Condition 1.1(c), the maximal degree �n =maxi∈[n] di satisfies

(5.1) �n = o(
√

n/ logn).

Indeed, suppose that �n ≥ ε
√

n/ logn. Then, pick Kn = n1/4 to obtain that

E
[
D2

n log (Dn/Kn)+
]= 1

n

n∑
k=1

d2
k log

(
dk/n1/4)

+ ≥
�2

n

n
log

(
�n/n1/4)

(5.2)
≥ n−1(ε

√
n/ logn)2 log

(
n1/4/(logn)1/2)≥ ε2/8.

This is in contradiction to Condition 1.1(c), so we conclude that (5.1) holds.
On (�,F,P) we define the sigma-algebra Gk by

(5.3) Gk = σ
(
dU1

, dU2
, τj ,X

(n)

j , Y
(n)

j ,
(
B(n)

τi

)
i≤j

)
j≤k.

In the following lemma, we investigate the conditional probability of Y
(n)

k �=
B

(n)

τk−1+1 given Gk−1. In its statement, we recall the definition of S
(n)

k in (2.27).

LEMMA 5.1 (Miscoupling of forward degree). Assume that Condition 1.1(c)
holds. For all k ≤mn, and assuming that mn ≤√n logn,

(5.4) P
(
Y

(n)

k �= B
(n)

τk−1+1 | Gk−1
)≤ 1

�n(1− o(1))

(
S

(n)

0 +
k−1∑
s=1

(
Y (n)

s + 1
))= oP(1).

PROOF. We have that Y
(n)

k �= B
(n)

τk−1+1 precisely when we pair the half-edge
y�
k−1 to a half-edge of a previously chosen vertex. Now let Vz0, . . . , Vzk−2 be the

previously chosen vertices and let Y (n)
s = B(n)

τs
, for s ≤ k− 1, be the forward degree

of vertex Vzs−1, s ≤ k − 1. Then the total number of half-edges incident to chosen
vertices is at most

S
(n)

0 +
k−1∑
s=1

(
Y (n)

s + 1
)
.

By (5.1), �n = o(
√

n/ logn), so that

(5.5) S
(n)

0 +
k−1∑
s=1

(
Y (n)

s + 1
)≤ (k + 1)�n ≤ (mn + 1)�n = o(n).

From (5.5), it is clear that we draw each time from at least �n−o(n)= �n(1−o(1))

half-edges. This shows (5.4). �
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LEMMA 5.2 (Probability of drawing at least one alive half-edge). Assume that
Condition 1.1(c) holds. For all k ≤mn, and assuming that mn ≤√n logn,

(5.6) P
(
X

(n)

k < Y
(n)

k | Gk−1
)≤ E[Y (n)

k | Gk−1]
�n(1− o(1))

(
S

(n)

0 +
k−1∑
s=1

Y (n)

s

)
.

PROOF. Recall the definition of S
(n)

k in (2.27). We have that X
(n)

k < Y
(n)

k

when we pair at least one of the Y
(n)

k half-edges to a half-edge incident to
{U1,U2,Vz0, . . . , Vzk−2}. Since there are precisely Y

(n)

k half-edges that need to be
paired, and the number of half-edges incident to {U1,U2,Vz0, . . . , Vzk−2}, given
Gk−1, equals S

(n)

k−1, we find

(5.7) P
(
X

(n)

k < Y
(n)

k | Gk−1, Y
(n)

k

)≤ Y
(n)

k · S(n)

k−1

�n −∑k−1
s=1(Y

(n)
s − 1)− S

(n)

0 − 1
.

Clearly, S
(n)

k−1 ≤ S
(n)

0 +
∑k−1

s=1 Y (n)
s . Consequently, we obtain (5.6) from the tower-

property for conditional expectations. �

5.2. Proof of Proposition 2.2(a). The i.i.d. sequences (B
(n)

i )i≥1 and (Bi)i≥1

have probability mass functions (g
(n)

k )k≥0 and (gk)k≥0 given in (2.4) and (2.5),
respectively. Since (g

(n)

k )k≥0 and (gk)k≥0 are discrete distributions and since by
Condition 1.1, the distribution (g

(n)

k )k≥1 converges as n→∞ in distribution to
(gk)k≥1, it follows that

(5.8) dTV

(
B

(n)

1 ,B1
)= 1

2

∞∑
k=0

∣∣gk − g
(n)

k

∣∣→ 0,

where dTV denotes the total variation distance; see, for instance, [40], Theorem 6.1.
Take sn→∞ such that

(5.9) e2αsndTV

(
B

(n)

1 ,B1
)→ 0.

According to (1.20), and with i ∈ {1,2}, we obtain

(5.10) e−αsn
∣∣BP(i)(sn)

∣∣ a.s.−→ W̃ (i),

where W̃ (i) are two independent copies of W̃ . Since P(W̃ (i) <∞)= 1 and eαsn →
∞, we conclude that |BP(sn)| ≤ kn, w.h.p., if we take kn = �e2αsn�. If this kn

does not satisfy kn = o(
√

n), then we lower sn so that the corresponding value of
kn = �e2αsn� does satisfy kn = o(

√
n).

Recall the definition of Gk in (5.3). By Boole’s inequality,

(5.11) P
(
X

(n)

k �= B
(n)

k | Gk−1
)≤ P

(
X

(n)

k < Y
(n)

k | Gk−1
)+ P

(
Y

(n)

k �= B
(n)

k | Gk−1
)
.
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Using Lemmas 5.1–5.2, and by taking the expectation, a lower bound for the
probability of all forward-degree-couplings being successful during the first kn =
o(
√

n) pairings is

P

(
kn⋂

k=1

{
X

(n)

k = B
(n)

k

})= 1− P

(
kn⋃

k=1

{
X

(n)

k �= B
(n)

k

})

≥ 1− 1

�n(1− o(1))

kn∑
k=1

E

[
S

(n)

0 +
k−1∑
s=1

(
Y (n)

s + 1
)]

(5.12)

− 1

�n(1− o(1))

kn∑
k=1

E

[
E
[
Y

(n)

k | Gk−1
](

S
(n)

0 +
k−1∑
s=1

Y (n)

s

)]

≥ 1− ck2
n/n→ 1,

where we rely on the inequality

(5.13) E
[
Y

(n)

k | Gk−1
]≤ ∑

j∈[n]

dj (dj − 1)

�n − 2kn�n

= νn

(
1+ o(1)

)
,

whenever kn�n = o(n), which follows from (5.1).
The lower bound (5.12) implies that, w.h.p., the number of half-edges

(|AH(s)|)s∈[0,sn] is perfectly coupled to the number of (alive) individuals of the n-
dependent CTBP (|AIn(s)|)s∈[0,sn]. In turn, (5.9) shows that (BPn(s))s≤sn is w.h.p.
perfectly coupled to (BP(s))s≤sn . This proves Proposition 2.2(a).

We close this section by investigating moments of the size-biased random vari-
ables (Y

(n)

k )k≥1, which play a crucial role in the remainder of the paper.

LEMMA 5.3 (Moments of size-biased samplings). Assume that Condition
1.1(a)–(c) holds. For all k ≤ mn, and assuming that mn ≤ √n logn, and for any
Kn→∞ such that K2

n = o(n/mn),

E
[
Y

(n)

k 1{Y (n)
k ≤Kn} | Gk−1

]= (
1+ oP(1)

)
νn,(5.14)

E
[
Y

(n)

k 1{Y (n)
k >Kn} | Gk−1

]= oP(1).(5.15)

PROOF. We use the upper bound

(5.16) E
[
Y

(n)

k 1{Y (n)
k ≥a} | Gk−1

]≤ 1

�n(1− o(1))

∑
l∈[n]

dl(dl − 1)1{dl≥a},

where we again use that, since mn ≤√n logn,

(5.17) �n − S
(n)

0 −
k−1∑
j=1

Y
(n)

j ≥ �n − 2mn�n = �n

(
1− o(1)

)
.
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This provides the necessary upper bound in (5.14) by taking a = 0 and from the
identity νn =∑

l∈[n] dl(dl−1)/�n. For (5.15), this also proves the necessary bound,
since by Condition 1.1(c),

(5.18)
1

�n

∑
l∈[n]

dl(dl − 1)1{dl≥Kn} = o(1).

For the lower bound in (5.14), we bound, instead,

E
[
Y

(n)

k 1{Y (n)
k ≤Kn} | Gk−1

]
≥ 1

�n(1− o(1))

[∑
l∈[n]

dl(dl − 1)1{dl≤Kn}(5.19)

− ∑
l∈[n]

dl(dl − 1)1{dl≤Kn}1{l is chosen}
]
,

where the event “l is chosen” means that vertex l belongs to the set of already
chosen vertices U1,U2,Vz0, . . . , Vzmn−2 . The first term equals νn(1 + o(1)). The

second term is a.s. bounded by mnK
2
n/�n = o(1), since K2

n = o(n/mn). �

5.3. Completing the coupling: Proof of Proposition 2.2(b). In this section, we
use Proposition 4.1 to prove Proposition 2.2(b). In order to bound the difference be-
tween BP(t) and SWT(t), we will introduce several events. Let Bn,Cn, εn,mn,mn

denote sequences of real numbers for which Bn,Cn→∞ and εn→ 0 arbitrarily
slowly, and mn √n,mn!

√
n. Later in this proof, we will formulate precisely

how to choose these sequences.
Define the event An by

An =
{∣∣∣∣ ⋃

s∈[0,tn+Bn]
SWT(s)�BPn(s)

∣∣∣∣ < εn

√
n

}
,(5.20)

where we recall that SWT(s)�BPn(s) is the set of alive half-edges at time s that
are miscoupled, and where we recall further that an alive half-edge is miscoupled if
the shortest-weight path from the root to the vertex incident to that half-edge uses
at least one degree-miscoupled vertex. Similarly, an alive individual is miscoupled
if at least one of its ancestors is degree miscoupled. Note that when An holds, then
|⋃s∈[0,t] SWT(s)�BPn(s)|< εn

√
n for any t ≤ tn +Bn by monotonicity in t [see

Definition (2.35)].
In terms of the above notation, Proposition 2.2(b) can be reformulated as

(5.21) P
(
Ac

n |Fsn

)= oP(1).

Hence only a tiny fraction of the alive half-edges or individuals is miscoupled and
the alive half-edges that are not miscoupled are connected to the root via a path
containing only successfully coupled vertices.
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In order to prove (5.21), we introduce the following events:

Bn = {
Y (BP)(tn +Bn)≤mn

}∩ {
Y (SWT)(tn +Bn)≤mn

}
(5.22)

∩ {
Y (BP)(tn −Bn)≤mn

}∩ {
Y (SWT)(tn −Bn)≤mn

}
,

Cn = {∣∣SWT(t)
∣∣= ∣∣BPn(t)

∣∣,∀t ≤ tn −Bn

}
,(5.23)

Dn = {
�i such that Ti ≤ tn +Bn,X

(n)

i �= B
(n)

τi−1+1, dVzi
≥Cn

}
,(5.24)

where

(5.25) Y (BP)(t)= ∣∣{v : v ∈ BPn(s) for some s ≤ t
}∣∣,

denotes the total number of individuals ever born into the BPn before time t and

(5.26) Y (SWT)(t)= ∣∣{v : v ∈ AH(s) for some s ≤ t
}∣∣,

denotes the number of half-edges in the SWT that have ever been alive before time
t . Informally, on Bn, the total number of half-edges in SWT and individuals in the
CTBP are not too large. On Cn, there is no early degree-miscoupled vertex, while
on Dn, there is no degree miscoupling involving a vertex that has high degree, until
a late stage.

Obviously,

P
(
Ac

n |Fsn

)
≤ P

(
Bc

n |Fsn

)+ P
(
Cc

n ∩Bn |Fsn

)+ P
(
Dc

n ∩Bn ∩ Cn |Fsn

)
(5.27)

+ P
(
Ac

n ∩Bn ∩ Cn ∩Dn |Fsn

)
.

To bound conditional probabilitites of the form P(Ec
n |Fsn) as appearing in (5.21),

we note that it suffices to prove that P(Ec
n) = o(1), since then, by the Markov

inequality and for every ε > 0,

(5.28) P
(
P
(
Ec

n |Fsn

)≥ ε
)≤ E

[
P
(
Ec

n |Fsn

)]
/ε = P

(
Ec

n

)
/ε = o(1).

Thus, we are left to prove that

P
(
Bc

n

)= o(1), P
(
Cc

n ∩Bn

)= o(1),
(5.29)

P
(
Dc

n ∩Bn ∩ Cn

)= o(1), P
(
Ac

n ∩Bn ∩ Cn ∩Dn

)= o(1).

We will do so in the above order.

LEMMA 5.4 (Expected number of particles born). For all t ≥ 0,

(5.30) E
[
Y (BP)(t)

]= 2
(

1− E[Dn]Fξ (t)

νn − 1

)
+ νn

νn − 1
E
[∣∣BPn(t)

∣∣].
Moreover, when eαn(tn+Bn) = o(mn) and eαn(tn−Bn) = o(mn), then

(5.31) P
(
Bc

n

)= o(1).
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PROOF. Note that we grow two sets of alive half-edges and two BPs, which
explains the factor 2 in (5.30). As is well known, the expected number of descen-
dants in generation k of a BP equals νk

n , where νn denotes the mean offspring.
Here, we deal with a delayed BPn where in the first generation the mean number
of offspring equals E[Dn]; the factor F �k

ξ (t)−F
�(k+1)

ξ (t) represents the probability
that an individual of generation k is alive at time t . Together this yields

E
[∣∣BPn(t)

∣∣]= ∞∑
k=1

2E[Dn]νk−1
n

[
F �k

ξ (t)− F
�(k+1)

ξ (t)
]
,

(5.32)

E
[
Y (BP)(t)

]= 2+
∞∑

k=1

2E[Dn]νk−1
n F �k

ξ (t).

It is not difficult to deduce (5.30) from the two identities above.
To bound P(Bc

n), we note that we have to bound events of the form P(Y (BP)(t)≥
m) and P(Y (SWT)(t) ≥ m) for various choices of m and t . We use the Markov in-
equality and (5.30) to bound

(5.33) P
(
Y (BP)(t)≥m

)≤ E
[
Y (BP)(t)

]
/m≤ νn

m(νn − 1)
E
[∣∣BPn(t)

∣∣]+ 2

m
.

According to (4.41), after conditioning on the offspring of the first individual,

(5.34) E
[∣∣BPn(tn)

∣∣]= 2E[Dn]Aneαntn
(
1+ o(1)

)
,

so that, since E[Dn]→ E[D],
(5.35) P

(
Y (BP)(tn)≥mn

)=�
(
eαntn/mn

)
.

The conditions on t and m in Lemma 5.4 have been chosen precisely so that
eαn(tn−Bn)/mn→ 0, and eαn(tn+Bn)/mn→ 0.

We continue with P(Y (SWT)(t) ≥m). We use the same steps as above, and start
by computing

(5.36) E
[
Y (SWT)(t)

]= 2+ 2
∞∑

k=0

F �k

ξ (t)E
[
P �

k

]
,

where P �
0 = �n/n and

P �
k =

∑
|π |=k,π⊆CMn(d)

(dπ − 1)/n, k ≥ 1,

is the sum of the number of half-edges at the ends of paths of lengths k in CMn(d),
from a uniformly selected starting point. Following [27], Proof of Lemma 5.1, we
find that

(5.37) E
[
P �

k

]= 1

n

∑
v0,...,vk

dv0

k∏
i=1

dvi
(dvi
− 1)

�n − 2i + 1
≤ E[Dn]νk

n,
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where the sum is taken over distinct vertices in [n]. Note that our definition of νn

in (1.16) deviates from the one given in [27], (2.3), which explains the difference
between the right-hand side of (5.37) and the result in [27]. We obtain, for νn ≥ 1,
which holds for n sufficiently large,

(5.38) E
[
Y (SWT)(t)

]≤ 2+ 2
∞∑

k=0

F �k

ξ (t)E[Dn]νk
n ≤ 2E[Dn] + νnE

[
Y (BP)(t)

]
,

and we can repeat our arguments for E[Y (BP)(t)]. �

LEMMA 5.5 (No early degree-miscoupling). When mn = o(
√

n), then

(5.39) P
(
Cc

n ∩Bn

)= o(1).

PROOF. On Bn, the inequality Y (SWT)(tn − Bn) ≤ mn holds. By (5.12), the
probability that there exists a degree-miscoupling before the draw of the mnth
half-edge is o(1) when mn = o(

√
n). �

LEMMA 5.6 (No late miscouplings of high degree). If mn ≤√n logn, and Cn

satisfies

(5.40)
m2

n

�n

∑
i∈[n]

d2
i 1{di≥Cn} = o(n),

then

(5.41) P
(
Dc

n ∩Bn ∩ Cn

)= o(1).

PROOF. On Bn, we have that Y (SWT)(tn + Bn) ≤ mn, and hence for a degree-
miscoupling, when Dc

n holds, one of the vertices i ∈ [n] with di ≥ Cn has to be
chosen twice during the first mn pairings. By Boole’s inequality and (5.40), an
upper bound for this probability is

(5.42) m2
n

∑
i∈[n]

d2
i

(�n − o(n))2 1{di≥Cn} =
m2

n

(�n − o(n))2 ·
�no(n)

m2
n

= o(1).
�

PROPOSITION 5.7 (Degree-miscoupled half-edges have small offspring). If
mn ≤√n logn and e2αnBnCnm

2
n/�n = o(εn

√
n), then

(5.43) P
(
Ac

n ∩Bn ∩ Cn ∩Dn

)= o(1).

PROOF. We split the proof into the contribution of the degree-miscoupled ver-
tices in |BPn(t) \ SWT(t)| and those in |SWT(t) \ BPn(t)|, t ≤ tn +Bn.
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A bound on |BPn(t) \ SWT(t)|. Recall that at time Tk , the vertex Vzk−1 is
degree-miscoupled when at least one of the equalities in (2.26) fails.

When Y
(n)

k �= B
(n)

τk−1+1, we can give an upper bound on the contribution to
BPn(·) of the tress of miscoupled individuals by drawing from the i.i.d. sequence
(B

(n)

i )i≥1. As a result, the total contribution to |BPn(t) \ SWT(t)|, t ≤ tn +Bn can
be bounded above by

(5.44) Y
(BP)

k (tn +Bn − Tk),

where, for different k ≥ 1, (Y
(BP)

k (t))t≥0 are independent CTBPs. On Cn, we
have that Tk ≥ tn − Bn so that tn + Bn − Tk ≤ 2Bn, while on Dn, each degree-
miscoupling starts with a vertex with degree at most Cn. Therefore, using (4.41),

(5.45) E
[
Y

(BP)

k (tn +Bn − Tk)1Cn∩Dn

]≤ CnAne2αnBn
(
1+ o(1)

)
.

On Bn, the expected number of miscouplings is at most O(m2
n/�n), hence

(5.46) E

[ ∑
{k : Tk≤tn+Bn}

Y
(BP)

k (tn +Bn − Tk)1Bn∩Cn∩Dn

]
≤O

(
m2

n

�n

)
Cne2αnBn.

By assumption, the right-hand side is o(εn

√
n). Therefore, by the Markov inequal-

ity,

P
({∣∣BPn(s)s∈[0,tn+Bn] \ SWT(s)s∈[0,tn+Bn]

∣∣≥ εn

√
n
}

(5.47)
∩Bn ∩ Cn ∩Dn ∩MISC

)= o(1),

where the intersection with MISC indicates that we only deal with degree-
miscouplings of the form Y

(n)

k �= B
(n)

τk−1+1.

When Y
(n)

k �= X
(n)

k , a self-loop or cycle-creating event occurs and the two half-
edges that form the last edge in the cycle are removed from SWT(t), but they are
kept in BPn(t). In case of a removal of a collision edge, only one individual is
kept in BPn(t). Whether one or two individuals are kept in the BPn(t) is of no
consequence for the argument below.

Again, on the event Bn, the expected number of degree miscouplings is bounded
by O(m2

n/�n). Furthermore, on the event Bn ∩ Cn, the expected offspring of the
half-edges involved in cycle-creating events is at most

(5.48) νnE
[
Y (BP)(2Bn)

]
,

where (Y (BP)(t))t≥0 is the total number of individuals that have ever been alive in
a CTBP where all individuals have i.i.d. offspring with law (g

(n)

k )k≥0. Indeed, we
have no information about the remaining lifetime of the half-edge involved in an
event that is caused by Y

(n)

k �=X
(n)

k . As a result, rather than waiting for the residual
life-time to be completed, we instantaneously take as offspring an i.i.d. draw from
(g

(n)

k )k≥0, and start the various BPn(t) from there (on the average there are νn

of these BPn). The total number of individuals ever alive only increases by this
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change. On the event Dn, we have that E[Y (BP)(2Bn)] ≤ CnAne2αnBn(1 + o(1)).
By assumption, m2

nCnAne2αnBn/�n = o(εn

√
n). Therefore, the total contribution

to |BPn(t) \ SWT(t)|, t ≤ tn + Bn, due to degree miscoupling events of the kind
Y

(n)

k �=X
(n)

k is oP(εn

√
n), as required.

A bound on |SWT(t) \ BPn(t)|. By construction the number of miscoupled
half-edges in SWT(s)s∈[0,t] at any time t is bounded from above by

(5.49)
MIS(t)∑
j=1

Y
(SWT)

j (t − Tj ),

where MIS(t) denotes the number of degree-miscoupled vertices and Y
(SWT)

j (t−Tj )

is the number of half-edges reached by the liquid during [Tj , t), and which are in
the tree with root Vzj−1 . On the event Cn, we have that T1 ≥ tn−Bn. Therefore, on
the event Cn,

(5.50)
∣∣SWT(t)t∈[0,tn+Bn] \ BPn(t)t∈[0,tn+Bn]

∣∣≤ MIS(tn+Bn)∑
j=1

Y
(SWT)

j (2Bn).

By the Markov inequality,

P
({∣∣SWT(t)t∈[0,tn+Bn] \ BPn(t)t∈[0,tn+Bn]

∣∣≥ εn

√
n
}∩Bn ∩ Cn ∩Dn

)

≤ (εn

√
n)−1E

[
1Bn∩Dn

MIS(tn+Bn)∑
j=1

Y
(SWT)

j (2Bn)

]
.

(5.51)

We rewrite

E

[
1Bn∩Dn

MIS(tn+Bn)∑
j=1

Y
(SWT)

j (2Bn)

]

≤ (
1+ o(1)

) ∑
j∈[n]

P(j is degree-miscoupled,Bn ∩Dn)E
[
Y (SWT)(2Bn)

]
(5.52)

≤ (
1+ o(1)

) ∑
j∈[n]

(
djmn

�n

)2
1{dj<Cn}E

[
Y (SWT)(2Bn)

]
,

where we use that, upon degree-miscoupling of vertex j , we redraw a vertex from
the size-biased distribution, for which the number of half-edges found before time
2Bn is equal to E[Y (SWT)(2Bn)](1 + o(1)) since mn ≤ √n logn and Bn occurs.
Since E[Y (SWT)(t)] ≤ 2E[Dn] + νnE[Y (BP)(t)], we obtain that

(5.53) E
[
Y (SWT)(2Bn)

]≤ νnAne2αnBn
(
1+ o(1)

)
.
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Therefore, we arrive at

E

[
1Bn∩Dn

MIS(tn+Bn)∑
j=1

Y
(SWT)

j (2Bn)

]
(5.54)

≤ νnAne2αnBn
(
1+ o(1)

) ∑
j∈[n]

(
djmn

�n

)2
1{dj<Cn}.

Bounding
∑

j∈[n] d2
j 1{dj<Cn} ≤ Cn�n, the right-hand side of (5.54) is bounded by

νnAe2αnBn(1+o(1))Cnm
2
n/�n = o(εn

√
n). Combining this with (5.51) proves that

|SWT(t)t∈[tn+Bn] \ BPn(t)t∈[tn+Bn]| = oP(εn

√
n) on Bn ∩ Cn ∩Dn. �

PROOF OF PROPOSITION 2.2(b). Take

(5.55) mn =
√

n/(log logn)α/2, mn =√n(logn)1/4,

and

(5.56) Bn = log log logn, Cn = n1/4, εn = 1/ logn.

By Condition 1.1(c) applied with Kn = √Cn/e, and using that log
√

Cn ≤
log(eDn/

√
Cn)+ when Dn ≥ Cn,

1

n

∑
i∈[n]

d2
i 1{di≥Cn} = E

[
D2

n1{Dn≥Cn}
]≤ E

[
D2

n log(e ·Dn/
√

Cn)+
log
√

Cn

]
(5.57)

= o
(
(logn)−1),

which verifies (5.40). All other conditions in Lemmas 5.4–5.6 and Proposition 5.7
are straightforward. Therefore, (5.21) follows, which completes the proof of
Proposition 2.2(b). �

We close this section with the proof of Proposition 3.2.

PROOF OF PROPOSITION 3.2. The fact that

(5.58) lim
K→∞ lim sup

n→∞
P
(
T̄

(col)
1 ≥K

)= 0,

follows from the PPP-convergence in Theorem 3.1. It thus suffices to prove that
P(T̄

(col)
1 ≤−K) satisfies the same asymptotics.

Recall the definition of T̄
(col)
1 in (3.1) and that of tn and t̄n in (2.39). Since

(W (1)
sn

,W (2)
sn

)
d−→ (W (1),W (2)), it suffices to prove that

(5.59) lim
K→∞ lim sup

n→∞
P
(
T

(col)
1 ≤ tn −K

)= 0.
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Recall the definition of Y (SWT)(t) in (5.26) and let Y
(SWT)

1 (t) and Y
(SWT)

2 (t) be the
corresponding objects for U1 and U2. We have at most Y

(SWT)

i (tn−K/2) half-edges
incident to SWT(i)(t) at any time t ≤ tn−K/2, for i = 1,2. When T

(col)
1 ≤ tn−K ,

one of the half-edges incident to SWT(2)(t) for some t ≤ tn−K/2 should be paired
with one of the at most Y

(SWT)

1 (tn −K/2) half-edges incident to SWT(1)(t), which
has probability at most

(5.60)
Y

(SWT)

1 (tn −K/2)

�n(1− o(1))
.

Since there are at most Y
(SWT)

2 (tn −K/2) half-edges incident to SWT(2)(t) at any
time t ≤ tn −K/2, we aim to show that, for i = 1,2,

(5.61) lim
K→∞ lim sup

n→∞
P
(
Y

(SWT)

i (tn −K/2)≥√ne−αnK/4)= 0.

Indeed, when Y
(SWT)

i (tn − K/2) ≤ √ne−αnK/4, for i = 1,2, the probability that
T

(col)
1 ≤ tn −K is at most

Y
(SWT)

1 (tn −K/2)Y
(SWT)

2 (tn −K/2)

�n(1− o(1))
≤
√

ne−αnK/4√ne−αnK/4

�n(1− o(1))
(5.62)

=O
(
e−αnK/2),

which proves (5.59). To prove (5.61), we use the Markov inequality

(5.63) P
(
Y

(SWT)

i (tn −K/2)≥√ne−αnK/4)≤ n−1/2eαnK/4E
[
Y

(SWT)

i (tn −K/2)
]
,

and use (5.38) followed by (5.30) and (5.34) to deduce that

(5.64) E
[
Y

(SWT)

i (tn −K/2)
]≤Aneαn(tn−K/2)(1+ o(1)

)=O(1)
√

ne−αnK/2.

Substituting (5.64) into (5.63) proves (5.61), and thus Proposition 3.2. �

6. Height CLT and stable age: Proof of Proposition 2.3. We first prove
Proposition 2.3(a). Throughout this proof, we abbreviate kn = kn(tn, x) as in
(2.42). The proof contains several key steps.

Reduction to a single BP. We start by showing that, in order for Proposi-
tion 2.3(a) to hold, it suffices to prove that for j ∈ {1,2}, x, t ∈ R and s > 0,
such that t + s < Bn, conditionally on Fsn and on W (1)

sn
W (2)

sn
> 0,

e−αntn
∣∣BP(j)

n,≤kn
[t̄n + t, t̄n + t + s)

∣∣ P−→ eαt�(x)FR(s)

√
W (j)/W (3−j),(6.1)

where we use (2.37) in Proposition 2.2(a) to see that
√
W (j)/W (3−j) ∈ [ε,1/ε]

w.h.p. Indeed, by Proposition 2.2(b) and the fact that e−αntn = �P(n
−1/2), (6.1)
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implies that for t + s < Bn,

e−αntn
∣∣SWT(j)

≤kn
[t̄n + t, t̄n + t + s)

∣∣
= e−αntn

∣∣BP(j)

n,≤kn
[t̄n + t, t̄n + t + s)

∣∣+ e−αntnoP(εn

√
n)(6.2)

P−→ eαt�(x)FR(s)

√
W (j)/W (3−j),

which proves Proposition 2.3(a) by the independence of the two CTBPs involved.

Using the branching property. To prove (6.1), we note that (BP(j)
n (s))s≥sn is

the collection of alive individuals in the different generations of a CTBP, starting
from the alive particles in BP(j)

n (sn). Then, conditionally on Fsn ,∣∣BP(j)

n,≤kn
[t̄n + t, t̄n + t + s)

∣∣
(6.3)

= ∑
i∈BP

(j)
n (sn)

kn−G
(j)
i∑

k=1

∣∣BP(i,j)

n,k [t̄n + t − sn −Ri, t̄n + t + s − sn −Ri)
∣∣,

where G
(j)

i is the generation of individual i ∈ BP(j)
n (sn), while Ri = Ri(sn) is its

remaining lifetime at time sn, and (BP(i,j)(t))t≥0 are i.i.d. CTBPs for different i,
for which the offspring for each individual has distribution (g

(n)

k )k≥0, and where
the branching process starts with one individual that dies immediately.

Truncating the branching process. We continue by proving that we can trun-
cate the branching process at the expense of an error term that converges to zero in
probability. We let BP(i,j, �m)

n denote the branching process BP(i,j)
n obtained by trun-

cating particles in generation l (measured from the root i) by ml = Knη
−l
n . We

take Kn→∞ such that Kne−αnsn = o(1). We first show that, as tn→∞, we can
replace e−αntn |BP(i,j)

n,≤kn
[t̄n, t̄n+ s)| by e−αntn |BP(i,j, �m)

n,≤kn
[t̄n, t̄n+ s)|, at the expense of

a oP(1)-term. Indeed, with

(6.4)
∣∣BP(i,j)

n (t)
∣∣= ∞∑

k=1

∣∣BP(i,j)

n,k (t)
∣∣, ∣∣BP(i,j, �m)

n (t)
∣∣= ∞∑

k=1

∣∣BP(i,j, �m)

n,k (t)
∣∣,

by the n-dependent version of Proposition 4.1(a) formulated in Proposition 4.1(d),
which we apply to each of the individuals born at time sn + Ri , and for each
sequence un→∞, we have that

e−αnunE
[∣∣BP(i,j)

n,≤kn
(un)

∣∣− ∣∣BP(i,j, �m)

n,≤kn
(un)

∣∣]
≤ e−αnunE

[∣∣BP(i,j)

n (un)
∣∣− ∣∣BP(i,j, �m)

n (un)
∣∣]= o(1).
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Therefore, using that the law of (BP(i,j)

n,≤kn
(t))t≥0 only depends on Fsn through

Ri, t̄n,

e−αntn
∑

i∈BP
(j)
n (sn)

kn−G
(j)
i∑

k=1

E
[∣∣BP(i,j)

n,k (t̄n + t − sn −Ri)
∣∣

− ∣∣BP(i,j, �m)

n,k (t̄n + t − sn −Ri)
∣∣|Fsn

]
≤ e−αntn

∑
i∈BP

(j)
n (sn)

E
[∣∣BP(i,j)

n,≤kn
(t̄n + t − sn −Ri)

∣∣(6.5)

− ∣∣BP(i,j, �m)

n,≤kn
(t̄n + t − sn −Ri)

∣∣|Ri, t̄n
]

= o(1)
∑

i∈BP
(j)
n (sn)

eαn(t̄n−tn+t−sn−Ri) = oP(1)e−αsn
∑

i∈BP
(j)
n (sn)

e−αRi ,

since the random variable |t̄n − tn| is tight, and assuming that sn→∞ so slowly
that sn|αn − α| = o(1). Since Ri ≥ 0,

(6.6) e−αsn
∑

i∈BP
(j)
n (sn)

e−αRi ≤ e−αsn
∣∣BP(j)

n (sn)
∣∣ d−→ W̃ (j) =OP(1),

by the “perfect” coupling between BPn and BP at time sn stated in Proposi-
tion 2.2(a), and using that [see (1.20)],

(6.7) e−αsn
∣∣BP(j)(sn)

∣∣ d−→ W̃ (j).

We conclude that

e−αntn
∣∣BP(j)

n,≤kn
[t̄n + t, t̄n + t + s)

∣∣
= e−αntn

∑
i∈BP

(j)
n (sn)

kn−G
(j)
i∑

k=1

∣∣BP(i,j, �m)

n,k [t̄n + t − sn −Ri, t̄n + t + s − sn −Ri)
∣∣(6.8)

+ oP(1).

A conditional second moment method: Expectation. We next use a conditional
second moment estimate on the sum on the right-hand side of (6.8), conditionally
on Fsn . By the n-dependent version of Proposition 4.1(c) formulated in Proposi-
tion 4.1(d), for t̄n→∞, and for each i ∈ BP(j)

n (sn),

(6.9) e−αnt̄nE
[∣∣BP(i,j, �m)

n,≤kn
[t̄n, t̄n + s)

∣∣]→A�(x)FR(s).

Observe that also m= kn− kn→∞, with kn = o(
√

logn), implies tn ∼mν̄n−
xσ̄
√

m, so that we can conclude from (4.56) that (6.9) also holds with kn replaced
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by kn − kn, as long as kn = o(
√

logn). As a result, when t̄n + t − sn −Ri
P−→∞

and kn = o(
√

logn) and for each i,

e−αn(t̄n+t−sn−Ri)E
[∣∣BP(i,j, �m)

n,≤kn−kn
[t̄n + t − sn −Ri, t̄n + t + s − sn −Ri)

∣∣ |Fsn

]
= e−αn(t̄n+t−sn−Ri)

(6.10)
×E

[∣∣BP(i,j, �m)

n,≤kn−kn
[t̄n + t − sn −Ri, t̄n + t + s − sn −Ri)

∣∣ |Ri, t̄n
]

=A�(x)FR(s)
[
1+ oP(1)

]
.

Further, we use the general theory of vertex characteristics in [24], Theo-
rem 6.10.1, to conclude that

(6.11)
∑

i∈BP
(j)
n (sn)

e−αn(sn+Ri) P−→ W̃ (j)/A.

Indeed, consider Z(t)=∑
i∈BP(t) e−αRi =∑

i 1[τ̃i≤t≤τ̃i+ξi ]e−α(ξi+τ̃i−t), where the
second sum is taken over all individuals and where τ̃i , ξi are the birthtime and
lifetime of individual i, respectively. Then Ri = ξi + τ̃i − t , for i ∈ BP(t), and
with the terminology of [24], Section 6.9, Z(t) = Zχ(t) =∑

i χi(t − τ̃i ), where
the random characteristic χi of individual i is defined by

(6.12) χi(t)= 1[0,ξi ](t)e−α(ξi−t).

According to the aforementioned [24], Theorem 6.10.1,

(6.13) e−αtZχ(t)
a.s.−→ cgW̃/k(∞),

where cg = ∫∞
0 e−αuE[χ(u)]du/

∫∞
0 e−αuuμ(du), k(∞) = ∫∞

0 e−αu[1 −
Fξ (u)]du/

∫∞
0 e−αuuμ(du) and where μ(t)= νFξ (t). This yields cg = 1/ν, and

k(∞) = (ν − 1)/(αν2ν̄), so that cg/k(∞) = 1/A. The w.h.p. “perfect” coupling
between (BPn(s))s≤sn with (BP(s))s≤sn stated in Proposition 2.2(a) and using that
we may take sn→∞ so slowly that sn(α − αn) = o(1) implies that (6.13) im-
plies (6.11).

This yields that, conditionally on Fsn and W (1)
sn
W (2)

sn
> 0, and when G

(j)

i =
oP(
√

logn) (which happens w.h.p. when sn is sufficiently small),

e−αntn
∑

i∈BP
(j)
n (sn)

E

[kn−G
(j)
i∑

k=1

∣∣BP(i,j, �m)

n,k [t̄n + t − sn −Ri, t̄n + t + s − sn −Ri)
∣∣]

=Aeαt�(x)FR(s)
[
1+ oP(1)

] ∑
i∈BP

(j)
n (sn)

eαn(t̄n−tn−sn−Ri)

(6.14)
P−→ eαt�(x)FR(s)

√
W (j)/W (3−j),
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by (6.11), again taking sn → ∞ sufficiently slowly, and since eαn(tn−t̄n) =√
W (j)

sn W
(3−j)
sn

P−→√W (j)W (3−j) [see (2.39)]. Notice that in (6.14), we condition

on W (j)
sn > 0, so that the limit W̃ (j) has to be replaced by W̃ (j) | W̃ (j) > 0 which is

equal in distribution to W (j).

A conditional second moment method: Variance. We next bound, conditionally
on Fsn , the variance of the sum on the right-hand side of (6.8). By conditional
independence of (BP(i,j)

n )i≥1,

e−2αntn Var

( ∑
i∈BP

(j)
n (sn)

kn−G
(j)
i∑

k=1

∣∣BP(i,j, �m)

n,k [t̄n + t − sn −Ri,

t̄n + t + s − sn −Ri)
∣∣ ∣∣∣Fsn

)
(6.15)

= e−2αntn
∑

i∈BP
(j)
n (sn)

Var

(kn−G
(j)
i∑

k=1

∣∣BP(i,j, �m)

n,k [t̄n + t − sn −Ri,

t̄n + t + s − sn −Ri)
∣∣ ∣∣∣Fsn

)
.

We bound

Var

(kn−G
(j)
i∑

k=1

∣∣BP(i,j, �m)

n,k [t̄n + t − sn −Ri, t̄n + t + s − sn −Ri)
∣∣ ∣∣∣Fsn

)

≤ E

[(kn−G
(j)
i∑

k=1

∣∣BP(i,j, �m)

n,k (t̄n + t − sn −Ri)
∣∣)2 ∣∣∣Fsn

]
(6.16)

≤ E
[∣∣BP(i,j, �m)

n (t̄n + t − sn −Ri)
∣∣2 |Fsn

]
= E

[∣∣BP(i,j, �m)

n (t̄n + t − sn −Ri)
∣∣2 |Ri, t̄n

]
.

By the n-dependent version of Proposition 4.1(b) formulated in Proposition 4.1(d),
for each n≥ 1,

(6.17) sup
t≥0

{
e−2αntE

[∣∣BP(i,j, �m)

n (t)
∣∣2]}≤ CKn.

As a result,

e−2αntn Var

( ∑
i∈BP

(j)
n (sn)

kn−G
(j)
i∑

k=1

∣∣BP(i,j, �m)

n,k [t̄n + t − sn −Ri,
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t̄n + t + s − sn −Ri)
∣∣ ∣∣∣Fsn

)

≤ e−2αntn
∑

i∈BP
(j)
n (sn)

E
[∣∣BP(i,j, �m)

n (t̄n + t − sn −Ri)
∣∣2 |Ri, t̄n

]
(6.18)

≤ CKne−2αntn
∑

i∈BP
(j)
n (sn)

e2αn(t̄n+t−sn−Ri)

= CKne2αn(t̄n−tn)e−2αnsn+2αnt
∑

i∈BP
(j)
n (sn)

e−2αnRi

=OP(1)Kne−2αnsn
∑

i∈BP
(j)
n (sn)

e−2αnRi ,

since e2αn(t̄n−tn)+2αnt =OP(1). We can bound this further as in (6.6) and (6.7) by

Kne−2αnsn
∑

i∈BP
(j)
n (sn)

e−2αnRi ≤Kne−αnsn
(
e−αnsn

∣∣BP(j)

n (sn)
∣∣)

(6.19)
=OP(1)Kne−αnsn,

which is oP(1) precisely when Kne−αnsn = o(1). Since we are free to choose Kn,
we can choose it such that Kne−αnsn = o(1) indeed holds. By (6.18) and (6.19), the
sum on the right-hand side of (6.8) is, conditionally on Fsn , concentrated around
its asymptotic conditional mean given in (6.14). As a result, (6.1) follows. This
completes the proof of Proposition 2.3(a).

PROOF OF PROPOSITION 2.3(b). In order to prove Proposition 2.3(b), we
compare the statement of Proposition 2.3(b) with that of Proposition 2.3(a). Let

m= |SWT(j)

≤k(tn,y)[t̄n+ t, t̄n+ t+s2)|, so that m
P−→∞ on the event that W (1)

sn
W (2)

sn
>

0, and consider the sum
∑m

i=1 X�
i , where X�

i = dVi
− 1 are forward degrees of free

vertices after time t̄n + t , that is, from the vertices [n], we remove the set Sm of
all vertices of which at least one half-edge appeared in (SWT(s))s≤t̄n+t . We will
prove that, conditionally on Ft̄n+t with t < Bn,

(6.20)
1

mνn

m∑
i=1

X�
i

P−→ 1,

and then the proof of Proposition 2.3(b) follows from the proof of Proposi-
tion 2.3(a), the fact that νn→ ν, and because Fsn ⊂Ft̄n+t .

Without loss of generality, we may assume that Bn in (5.22) holds, so that
t < Bn implies that |Sm| ≤mn, where mn =√n(logn)1/4 as in (5.55). As a result
the sequence (di)i∈[n]\Sm satisfies Condition 1.1 whenever (di)i∈[n] does. Hence,
Lemma 5.3 holds with Y

(n)

i replaced by X�
i , so that in particular, from the Markov
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inequality, conditionally on Ft̄n+t and for every sequence Kn →∞ satisfying
K2

n = o(n/mn),

(6.21)
1

m

m∑
i=1

X�
i 1{X�

i >Kn}
P−→ 0.

We use a conditional second moment method on
∑m

i=1 X�
i 1{X�

i≤Kn}, conditionally
on Ft̄n+t . By (5.14) in Lemma 5.3,

(6.22) E

[
m∑

i=1

X�
i 1{X�

i≤Kn}
∣∣∣Ft̄n+t

]
=mνn

(
1+ oP(1)

)
.

This gives the asymptotics of the first conditional moment of
∑m

i=1 X�
i 1{X�

i≤Kn}.
For the second moment, we start by bounding the covariances. We note that, for
1≤ i < j ≤m,

Cov
(
X�

i 1{X�
i≤Kn},X

�
j1{X�

j≤Kn} |Ft̄n+t

)
= E

[
X�

i 1{X�
i≤Kn}

(
E
[
X�

j1{X�
j≤Kn} |Ft̄n+t ,X

�
1, . . . ,X

�
i

]
(6.23)

−E
[
X�

j1{X�
j≤Kn} |Ft̄n+t

]) |Ft̄n+t

]
.

By (5.14) in Lemma 5.3, as well as the fact that i ≤mn,

E
[
X�

j1{X�
j≤Kn} |Ft̄n+t ,X

�
1, . . . ,X

�
i

]−E
[
X�

j1{X�
j≤Kn} |Ft̄n+t

]= oP(1),(6.24)

so that also

(6.25) Cov
(
X�

i 1{X�
i≤Kn},X

�
j1{X�

j≤Kn} |Ft̄n+t

)= oP(1).

Further, a trivial bound on the second moment together with (5.14) in Lemma 5.3
yields that

(6.26) Var
(
X�

i 1{X�
i≤Kn} |Ft̄n+t

)≤KnE
[
X�

i |Ft̄n+t

]=Knνn

(
1+ oP(1)

)
.

As a result, whenever Knνn = o(m2), and K2
n = o(n/mn),

(6.27) Var

(
m∑

i=1

X�
i 1{X�

i≤Kn}
∣∣∣Ft̄n+t

)
= oP

(
m2),

which together with (6.22) proves that, conditionally on Ft̄n+t ,

(6.28)
1

mνn

m∑
i=1

X�
i 1{X�

i≤Kn}
P−→ 1.

Together with (6.21), this proves (6.20), as required. �
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7. The PPP limit for collision edges: Proof of Theorem 3.1. Recall that
(Ft )t≥0 is the filtration generated by all the randomness used in the construction
up to time t , that is,

Ft = σ
((

SWT(s),BPn(s),BP(s)
)
s∈[0,t]

)
.

We will investigate the number of collision edges (xi,Pxi
) with I (xi)= j ∈ {1,2},

H(xi)≤ kn(tn, x), H(Pxi
)≤ kn(tn, y) and R

T
(col)
i

(Pxi
) ∈ [0, s) created in the time

interval [t̄n + t, t̄n + t + ε), where ε > 0 is small. We let I = [a, b) × {j} ×
(−∞, x] × (−∞, y] × [0, s] be a subset of S , and we prove that

(7.1) P
(
�n(I)= 0 |Fsn

) P−→ exp
{
−
∫ b

a

2νfR(0)

E[D] e2αt�(x)�(y)FR(s) dt

}
.

By [29], Theorem 4.7, this proves the claim.
We split

(7.2) I =
N⋃

�=1

I (ε)

� ,

where I (ε)

l = [t (ε)

�−1, t
(ε)

� )× {j} × (−∞, x] × (−∞, y] × [0, s), with t
(ε)

� = a + �ε

and ε = (b − a)/N , with N ∈ N. We will let ε ↓ 0 later on. For a fixed ε > 0,
we say that a collision edge (xi,Pxi

) is a first round collision edge when there
exists l ∈ [N ] and a half-edge y ∈ AH(t

(ε)

l−1) such that y is found by the liquid in
the time interval I (ε)

� , y is paired to the half-edge Py whose sibling half-edge xi

is paired to Pxi
∈ AH(t

(ε)

�−1) with I (y) = j �= I (Pxi
) = 3 − j . We call all other

collision edges second round collision edges. The second round collision edges
are such that a half-edge y is found by the liquid in the interval I (ε)

� (the first
round), y is paired to the half-edge Py , one of the sibling half-edges xi of y is
then also found by the liquid in the time interval I (ε)

� (the second round) and is
paired to a half-edge Pxi

, whose sibling half-edge z is paired to Pz ∈ AH(t
(ε)

�−1)

with I (xi)= j �= I (Pz)= 3− j . When ε > 0 is quite small, the latter seems less
likely, which is why we start with the first round collision edges.

Denote the point processes of first and second round collision edges by �(FR)
n

and �(SR)
n , so that �n =�(FR)

n +�(SR)
n . The next two lemmas investigate the point

processes �(FR)
n and �(SR)

n :

LEMMA 7.1 (PPP limit for the first round collision edges). For every s ≥ 0,
x, y ∈R, j ∈ {1,2}, ε > 0 and � ∈ [N ], as n→∞,

(7.3) P
(
�(FR)

n

(
I (ε)

�

)= 0 |F
t
(ε)
�−1

) P−→ exp
{
− 2ν

E[D]e
2αt

(ε)
�−1�(x)�(y)FR(s)FR(ε)

}
.
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PROOF. The number of half-edges z ∈ AH(t̄n + t
(ε)

�−1) that are found by the
liquid having I (z)= j,H(z)≤ kn(tn, x) and residual lifetime R

t̄n+t
(ε)
�−1

(z) ∈ [0, ε)

is equal to

(7.4)
∣∣SWT(j)

≤kn(tn,x)

[
t̄n + t

(ε)

�−1, t̄n + t
(ε)

�−1 + ε
)∣∣.

Fix such a half-edge z, and note that it is paired to Pz that has X�
z = dVPz

− 1
sibling half-edges. For each of these half-edges, we test whether it is paired to a
half-edge in AH(t̄n + t

(ε)

�−1) or not. Therefore, the total number of tests performed
in the time interval [t (ε)

�−1, t
(ε)

� ) is equal to

(7.5)
∑
z

X�
z1{z∈SWT

(j)
≤kn(tn,x)[t̄n+t

(ε)
�−1,t̄n+t

(ε)
� )}.

By construction, we test whether these half-edges are paired to half-edges that
are incident to the SWT or not. Each of these edges is paired to a half-edge w ∈
AH(t̄n+ t

(ε)

�−1) with I (w)= 3− j (and thus creating a collision edge) and H(w)≤
kn(tn, y) and R

t̄n+t
(ε)
�−1

(w) ∈ [0, s) with probability equal to

(7.6)
1

�n − o(n)

∣∣SWT(3−j)

≤kn(tn,y)

[
t̄n + t

(ε)

�−1, t̄n + t
(ε)

�−1 + s
)∣∣.

Therefore, for ε > 0, conditionally on F
t̄n+t

(ε)
�−1

, the probability that none of the

half-edges found in the time interval in between [t̄n + t
(ε)

�−1, t̄n + t
(ε)

� ) creates a
collision edge is asymptotically equal to∏

v∈SWT
(j)
≤kn(tn,x)[t̄n+t

(ε)
�−1,t̄n+t

(ε)
� )

(
1− 1

�n − o(n)

× ∣∣SWT(3−j)

≤kn(tn,y)

[
t̄n + t

(ε)

�−1, t̄n + t
(ε)

�−1 + s
)∣∣)X�

v

(7.7)

P−→ exp
{
− ν

E[D]e
2αt

(ε)
�−1�(x)�(y)FR(s)FR(ε)

}
,

where we use (2.45), that e2αntn = n−1, and that �n = nE[Dn] with E[Dn] →
E[D]. The factor 2 in (7.3) is caused by the two possibilities j ∈ {1,2}. �

LEMMA 7.2 (A bound on the second round collision edges). For x, y ∈ R,
j ∈ {1,2}, ε > 0 and � ∈ [N ], as n→∞,

(7.8) P
(
�(SR)

n

(
I (ε)

�

)≥ 1 |F
t
(ε)
�−1

)=OP(1)FR(ε)Fξ (ε).

PROOF. By analogous arguments as above, the expected number of second
round collision edges is of order

(7.9) OP(1)e2αt�(x)�(y)FR(s)FR(ε)Fξ (ε),
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since one of the half-edges z that is found by the liquid in the time interval [t̄n +
t
(ε)

�−1, t̄n + t
(ε)

� ) needs to satisfy that one of the dVPz
− 1 half-edges has weight at

most ε, and which, upon being found, needs to create a collision edge. �

Now we are ready to complete the proof of Theorem 3.1. We use that

P
(
�n(I)= 0 |Fsn

)= E

[
N∏

�=1

P
(
�n

(
I (ε)

�

)= 0 |F
t
(ε)
�−1

) ∣∣∣Fsn

]
.(7.10)

We start with the upper bound, for which we use that

P
(
�n

(
I (ε)

�

)= 0 |F
t
(ε)
�−1

)
≤ P

(
�(FR)

n

(
I (ε)

�

)= 0 |F
t
(ε)
�−1

)
(7.11)

P−→ exp
{
− 2ν

E[D]e
2αt

(ε)
�−1�(x)�(y)FR(s)FR(ε)

}
,

by Lemma 7.1. We conclude that, for n large,

P
(
�n(I)= 0 |Fsn

) ≤ E

[
N∏

�=1

exp
{
− 2ν

E[D]e
2αt

(ε)
�−1�(x)�(y)FR(s)FR(ε)

} ∣∣∣Fsn

]

= exp

{
−

N∑
�=1

2ν

E[D]e
2αt

(ε)
�−1�(x)�(y)FR(s)FR(ε)

}
(7.12)

→ exp
{
− 2ν

E[D]fR(0)

∫ b

a
e2αt�(x)�(y)FR(s) dt

}
,

since limε↓0 FR(ε)/ε = fR(0), and the Riemann approximation

(7.13) ε

N∑
�=1

e2αt
(ε)
�−1 →

∫ b

a
e2αt dt.

This proves the upper bound.
For the lower bound, we instead bound

P
(
�n(I)= 0 |Fsn

)≥ E

[
N∏

�=1

P
(
�(FR)

n

(
I (ε)

�

)= 0 |F
t
(ε)
�−1

) ∣∣∣Fsn

]
(7.14)

−E

[(
N∑

�=1

P
(
�(SR)

n

(
I (ε)

�

)≥ 1 |F
t
(ε)
�−1

))∧ 1
∣∣∣Fsn

]
.

The first term has already been dealt with, the second term is, by Lemma 7.2,
bounded by

(7.15) E

[(
OP(1)

N∑
�=1

FR(ε)Fξ (ε)

)
∧ 1

∣∣∣Fsn

]
= oP(1),
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as ε ↓ 0, by dominated convergence, since FR(ε)= εfR(0)(1+ o(1)) and Fξ (ε)=
o(1).
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