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We consider disordered systems of a directed polymer type, for which
disorder is so-called marginally relevant. These include the usual (short-
range) directed polymer model in dimension (2+ 1), the long-range directed
polymer model with Cauchy tails in dimension (1+1) and the disordered pin-
ning model with tail exponent 1/2. We show that in a suitable weak disorder
and continuum limit, the partition functions of these different models con-
verge to a universal limit: a log-normal random field with a multi-scale cor-
relation structure, which undergoes a phase transition as the disorder strength
varies. As a by-product, we show that the solution of the two-dimensional
stochastic heat equation, suitably regularized, converges to the same limit.
The proof, which uses the celebrated fourth moment theorem, reveals an in-
teresting chaos structure shared by all models in the above class.
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1. Introduction. Many disordered systems arise as random perturbations of a
pure (or homogeneous) model. Examples include the random pinning model [18],
where the pure system is a renewal process, the directed polymer model [12],
where the pure system is a directed random walk, the random field Ising model [9]
and the stochastic heat equation [5]. A fundamental question for such systems is:
Does addition of disorder alter the qualitative behavior of the pure model, such as
its large-scale properties and/or critical exponents?

If the answer is yes, regardless of how small the disorder strength is, then the
model is called disorder relevant. If, on the other hand, disorder has to be strong
enough to cause a qualitative change, then the model is called disorder irrelevant.
This difference can be understood heuristically via renormalization transforma-
tions [9, 19]: If one rescales space (coarse graining) and looks at the resulting
renormalized disordered system on larger and larger spatial scales, then one will
observe that the “effective” strength of disorder will asymptotically diverge if dis-
order is relevant, while it will vanish if disorder is irrelevant.

Whether a model is disorder relevant or irrelevant depends crucially on the spa-
tial dimension d and its correlation length exponent ν. A milestone in the study
of disordered systems in the physics literature is the Harris criterion [23], which
asserts that if d < 2/ν, then disorder is relevant, while if d > 2/ν, then it is irrel-
evant. In the critical case d = 2/ν, disorder is marginal and the Harris criterion is
inconclusive: disorder can be either marginally relevant or marginally irrelevant
depending on the finer details of the model.

Inspired by the study of an intermediate disorder regime for directed polymers
[2], we proposed in [11] a new perspective on disorder relevance. The key observa-
tion is that, if a model is disorder relevant, then it is possible to tune the strength of
disorder down to zero (weak disorder limit) at the same time as one rescales space
(continuum limit), so as to obtain a one-parameter family of disordered continuum
models, indexed by a macroscopic disorder strength parameter β̂ ≥ 0. In a sense,
such continuum models interpolate between the scaling limit of the pure model
(β̂ = 0) and the scaling limit of the original disordered model (β̂ =∞), allowing
one to study the onset of the effect of disorder.

The main step in the construction of such disordered continuum models is to
identify their partition functions. In [11], we formulated general conditions on the
pure model that are consistent with the Harris criterion d < 2/ν for disorder rele-
vance, which allowed us to construct explicitly the continuum partition functions.
However, the marginally relevant case (d = 2/ν in the Harris criterion) escapes
the framework proposed in [11].

In the present work, we develop a novel approach to study the continuum limit
of marginally relevant systems of directed polymer type, which include the usual
short-range directed polymer model on Z2, the long-range directed polymer model
on Z with Cauchy tails, and the pinning model with tail exponent α = 1/2. We
show that, surprisingly, there is a common underlying structure among all these
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marginally relevant models (see Section 3.2 and key Proposition 5.2), which leads
to a number of universal phenomena. More precisely:

• A properly defined replica overlap RN for each model diverges as a slowly
varying function (usually a logarithm) of the polymer length N →∞.

• If the disorder strength is sent to 0 as βN = β̂/
√

RN for fixed β̂ > 0, then the
partition function has a universal limit in distribution, irrespective of the model:

(1.1) ZN,βN

d−−−−→
N→∞ Z

β̂

d=
{

log-normal if β̂ < 1,

0 if β̂ ≥ 1,

with the log-normal variable depending on the parameter β̂ .
• A process-level version of (1.1) also holds: for β̂ < 1, the family of log par-

tition functions logZN,βN
(x), indexed by the starting point x of the polymer,

converges to a limiting Gaussian random field (depending on β̂) with an explicit
multi-scale covariance structure.

The transition from a nondegenerate limit Z
β̂

> 0 to a degenerate limit Z
β̂
= 0,

as β̂ increases, marks a transition from weak disorder to strong disorder. We em-
phasize that such a transition for marginally relevant models, in particular, the
(2+ 1)-dimensional directed polymer, is new and has not been anticipated. Previ-
ously, it was only known (see, e.g., [12]) that for the directed polymer in dimension
d + 1, there is a transition from weak to strong disorder at a critical βc(d), with
βc(d) > 0 when d ≥ 3 (corresponding to disorder irrelevance) and βc(d)= 0 when
d = 1,2 (corresponding to disorder relevance). (For d = 2, the polymer was shown
in [17] to be diffusive if βN � 1/

√
RN .)

Interestingly, our results show that in the marginal dimension d = 2, there is
still a transition on the finer scale of β = β̂/

√
RN , with critical value β̂c = 1. This

appears to be a special feature of marginality, since no such transition exists at any
finer scale of disorder in dimension d = 1 [2].

Another point worth remarking is that the explicitly identified critical point
β̂ = 1 is actually the point where the L2 norm of the partition functions blow up in
the limit. This is in contrast to the directed polymer in dimension d + 1 with d ≥ 3
(see, e.g., [8]), or the log-correlated Gaussian multiplicative chaos [30] which also
undergoes a weak to strong disorder transition. For these two models, their critical
points are strictly larger than their respective L2 critical points.

Our results unify different polymer models that are classified as marginally rel-
evant. However, beyond this universality, even more interesting is the method we
develop, which reveals a multi-scale and Gaussian chaos structure that is common
to all the models we consider. In particular, the partition functions can be approxi-
mated by a sum of stochastic integrals involving white noises in all possible dimen-
sions, which through resummation, can be seen as the exponential of a Gaussian
(see Section 4 for an outline of the main steps). The key technical ingredients in-
clude a nontrivial combinatorial argument (Proposition 5.2), and the application of
a version of the fourth moment theorem [14, 29] for Gaussian approximation.



UNIVERSALITY IN MARGINALLY RELEVANT DISORDERED SYSTEMS 3053

An interesting corollary of our results is that they link marginal relevant models
to a class of singular SPDEs at the critical dimension. In particular, they bring
new insights on how to define the solution of the two-dimensional stochastic heat
equation (2d SHE), which is formally written as

(1.2)
∂u(t, x)

∂t
= 1

2
�u(t, x)+ βẆ(t, x)u(t, x), u(0, ·)≡ 1,

for (t, x) ∈ [0,∞)×R
2, β > 0 and Ẇ is the space-time white noise.

Rigorously defining the solution of (1.2) remains a difficult open problem due
to ill-defined terms such as Ẇu. In special cases, such as the one-dimensional
SHE, it was shown in [5] that a solution can be defined by first mollifying Ẇ and
then sending the mollification parameter to zero. But there was no systematic ap-
proach to make sense of singular SPDEs until recent breakthroughs by Hairer [21,
22], through Regularity Structures, and by Gubinelli, Imkeller and Perkowski [20],
through Paracontrolled Distributions (see also Kupiainen [25] for field theoretic
approach). However, these approaches do not cover the critical dimension two for
the SHE, and the singular SPDEs that can be treated so far are all known as sub-
critical (or super-renormalizable in the physics literature [25]).

It turns out that the notion of sub-criticality for singular SPDEs matches with
the notion of disorder relevance, while criticality corresponds to the case where
the effect of disorder is marginal. To illustrate this fact for the SHE, consider the
change of variables

(t, x)= Tε(̃t, x̃) := (
ε−2 t̃ , ε−1x̃

)
,

which for small ε > 0 corresponds to a space-time coarse graining transformation.
Looking at (1.2), it is easily seen that ũ(̃t , x̃) := u(Tε(̃t, x̃)) formally solves the
SPDE

(1.3)
∂ũ

∂t̃
= 1

2
�ũ+ βε

d
2−1 ˙̃Wũ, ũ(0, ·)≡ 1,

where ˙̃W is a new space-time White noise obtained from Ẇ via scaling. Therefore,
coarse-graining space-time for the SHE has the effect of changing the strength of

the noise to ε
d
2−1β which, as ε → 0, diverges for d = 1 (disorder relevance), van-

ishes for d ≥ 3 (disorder irrelevance) and remains unchanged for d = 2 (marginal-
ity).

Since the difficulties in studying the regularity properties of an SPDE are re-
lated to small scale divergences, it is interesting to blow up space-time, that is,
consider the change of variables (t, x)= Tε−1 (̃t , x̃). This leads to a renormalized
equation which is just (1.3) with ε replaced by ε−1, hence blowing-up space time
produces an effective noise strength which behaves reciprocally with respect to
coarse-graining, that is, vanishes as ε → 0 for d = 1 and diverges for d ≥ 3. This
explains why the SHE with d = 1 can be analyzed by [20, 22, 25].
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Since the solution of the SHE can be interpreted as the partition function of
a continuum directed polymer via a generalized Feynman–Kac formula [5], our
result for the two-dimensional directed polymer implies a similar result for the 2d
SHE. More precisely, if we consider the mollified 2d SHE

(1.4)
∂uε

∂t
= 1

2
�uε + βεẆ

εuε, uε(0, ·)≡ 1,

where Ẇ ε is the space-mollification of Ẇ via convolution with a smooth prob-
ability density jε(x) := ε−2j (x/ε) on R

2, and the noise strength is scaled as

βε = β̂

√
2π

log ε−1 for some β̂ > 0, then for each (t, x) ∈ (0,∞)×R
2, uε(t, x) con-

verges (as ε → 0) in distribution to the same universal limit Z
β̂

in (1.1) as for the
other marginally relevant models.

We hope that the method we develop and the universal structure we have un-
covered opens the door to further understanding of marginally relevant models in
general, including both statistical mechanics models that are not of directed poly-
mer type, as well as critical singular SPDEs with nonlinearity. In particular, our
results suggest that for marginally relevant models there is a transition in the effect
of disorder on an intermediate disorder scale. Establishing this transition in gen-
eral, as well as understanding the behavior of the models at and above the transition
point, will be the key challenges next.

2. The models and our results. In this section, we define our models of inter-
est and state our main results. We will denote N := {1,2,3, . . .} and N0 :=N∪{0}.

2.1. The models. We first introduce the disorder ω. Let ω = (ωX) be a family
of i.i.d. random variables, indexed by X ∈ N or X = (x, n) ∈ Z

d ×N0, depending
on the model. Probability and expectation for ω will be denoted respectively by P

and E. We assume that

E[ω1] = 0, Var[ω1] = 1,

∃β0 > 0: λ(β) := logE
[
eβω1

]
<∞ ∀|β|< β0.

Next, we define the class of models we consider. We fix a reference probability
law P (which will typically be the law of a random walk or a renewal process)
representing the “pure” model. The disordered model is then a Gibbs perturbation
Pω

N,β of P, indexed by the parameters N ∈ N (polymer length), β ≥ 0 (disorder
strength) and the disorder ω:

dPω
N,β

dP
(·) := e

Hω
N,β(·)

Zω
N,β

for a suitable Hamiltonian Hω
N,β . The normalizing constant

Zω
N,β := E

[
e
Hω

N,β
]

is the disordered partition function and will be the focus of this paper.
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Different reference laws P and Hamiltonians Hω
N,β give rise to different mod-

els. The first class of models we will consider are directed polymers in random
environment on Z

d+1.

DEFINITION 2.1 (Directed polymers on Z
d+1). Let S = (Sn)n∈N0 be a random

walk on Z
d with i.i.d. increments. For (x, t) ∈ Z

d × N0, we denote by Px,t the
law of (Sn)n≥t started at x at time t , and we denote P := P0,0 for simplicity. The
partition function of the directed polymer in random environment is defined by

(2.1) Zω
N,β(x, t) := Ex,t

[
e
∑N

n=t+1(βω(n,Sn)−λ(β))]
with Zω

N,β := Zω
N,β(0,0).

We will also consider pinning models, which can be viewed as directed poly-
mers on Z

d+1 with disorder present only at x = 0 [i.e., ω(n, x)= 0 for x �= 0]. In
this case, what really matters are the return times of the random walk S to 0, which
form a renewal process.

DEFINITION 2.2 (Pinning models). Let (τ = (τn)n∈N0,Pt ) be a renewal pro-
cess started at t ∈N0, that is, Pt (τ0 = t)= 1 and (τn− τn−1)n∈N are i.i.d. N-valued
random variables. If t = 0, we write P= P0. The partition function of the pinning
model started at t ∈N0 equals

(2.2) Zω
N,β(t) := Et

[
e
∑N

n=t+1(βωn−λ(β))1{n∈τ }],
with Zω

N,β := Zω
N,β(0), where we have identified τ with the random set

{τ0, τ1, . . .} ⊂N0.

REMARK 2.3. In the pinning model, it is customary to have a bias parameter
h ∈R, that is, −λ(β) is replaced by −λ(β)+h in (2.2). In this paper, we set h= 0
because in the regime we are interested in, the effects of β and h can be decoupled.
This will be treated elsewhere.

Note that Zω
N,β in (2.1)–(2.2) has been normalized so that E[Zω

N,β] = 1 [due to
−λ(β)]. The key question we consider (in connection with disorder relevance) is
the following:

Q. Can one tune the disorder strength β = βN → 0 as N →∞ in such a way
that the partition function Zω

N,βN
converges in law to a nondegenerate random

variable?

The answer depends crucially on the random walk S and the renewal process τ .
Assume that S and τ are in the domain of attraction of a stable law, with respective
index α ∈ (0,2] and α ∈ (0,1). Informally, this means that P(|S1| > n) ≈ n−α
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and P(τ1 > n) ≈ n−α (except for α = 2, where E[|S1|2] <∞ or, more generally,
x �→ E[|S1|21{|S1|≤x}] is slowly varying).

It was shown in [11] that question Q has an affirmative answer for directed poly-
mers on Z

1+1 with α ∈ (1,2] and for pinning models with α ∈ (1/2,1), which is a
manifestation of disorder relevance; while disorder is irrelevant for directed poly-
mers on Z

1+1 with α ∈ (0,1) and for pinning models with α ∈ (0,1/2). However,
the marginal cases:

(a) directed polymers on Z
2+1 with α = 2 (e.g., finite variance);

(b) directed polymers on Z
1+1 with α = 1 (e.g., Cauchy tails);

(c) pinning models with tail exponent α = 1/2 (e.g., the renewal arising from the
return times of the simple symmetric random walk on Z to the origin),

fall out of the scope of the method in [11].
In this paper, we develop a novel approach to answer question Q affirmatively

for marginally relevant models. Even though our techniques are of wider appli-
cability, we stick for simplicity to models of type (a)–(c) above. Let us state our
precise assumptions, in the form of local limit theorems, where we allow for arbi-
trary slowly varying function L(·). However, we suggest to keep in mind the basic
case when L(·) is constant, say L(·)≡ 1.

HYPOTHESIS 2.4 (Local limit theorem). Assume that the directed polymer in
Definition 2.1 and the pinning model in Definition 2.2 satisfy the following local
limit theorems, for some slowly varying function L:

(a) [d = 2] Directed polymer on Z
2+1 with α = 2 (short range).

(2.3) sup
x∈Z2

{
L(n)2nP(Sn = x)− g

(
x

L(n)
√

n

)}
−−−→
n→∞ 0,

where g(x) := 1
2π

e− 1
2 |x|2 denotes the standard Gaussian density on R

2.
(b) [d = 1] Directed polymer on Z

1+1 with α = 1 (long-range with Cauchy tails).

(2.4) sup
z∈Z

{
L(n)2nP(Sn = x)− g

(
x

L(n)2n

)}
−−−→
n→∞ 0,

where g(x) := 1
π

1
1+x2 denotes the Cauchy density on R.

(c) [d = 0] Pinning model with α = 1
2 .

(2.5) L(n)
√

nP(n ∈ τ)−−−→
n→∞ c ∈ (0,∞).

REMARK 2.5. Conditions (2.3)–(2.4) hold whenever S is an aperiodic ran-
dom walk on Z

d in the domain of attraction of the Gaussian (d = 2), respectively,
Cauchy (d = 1) distribution:

(2.6) L
(

Sn

φ(n)

)
weak−−−→
n→∞ g(x)dx with φ(n) := (

L(n)2n
)1/d

,
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by Gnedenko’s local limit theorem; cf. [7], Theorem 8.4.1 [we denote by L(·) the
law of a random variable].

Condition (2.5) holds whenever P(τ1 = n) ∼ c′L(n)

n3/2 as n →∞ ([16], Theo-
rem B).

REMARK 2.6 (2d simple random walk). When S is the simple symmetric ran-
dom walk on Z

2, due to periodicity, (2.3) still holds [with L(·)≡ 1] provided the
sup is restricted to the sub-lattice z ∈ {(a, b) ∈ Z

2 : a + b = n (mod 2)} (whose
cells have area 2) and g(·) is replaced by 2g(·). Consequently, relation (2.8) holds
with C = 2‖g‖2

2. Our main results Theorems 2.8, 2.12 and 2.13 below apply with
no further change.

A crucial common feature among all models (a)–(c) above concerns the so-
called expected replica overlap, defined for a general random walk S or renewal
process τ by

(2.7) RN :=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
E

[
N∑

n=1

1{Sn=S′n}
]
= ∑

1≤n≤N,x∈Zd

P(Sn = x)2,

E

[
N∑

n=1

1{n∈τ∩τ ′}
]
= ∑

1≤n≤N

P(n ∈ τ)2,

where S′ and τ ′ are independent copies of S and τ . For models satisfying Hypoth-
esis 2.4, a Riemann sum approximation using (2.3)–(2.5) yields

(2.8) RN ∼
N→∞ C

N∑
n=1

1

L(n)2n
where C =

{‖g‖2
2 (directed polymers),

c2 (pinning).

This shows that N �→RN is a slowly varying function (cf. [7], Proposition 1.5.9a),
a fact which plays a crucial in our analysis. Whether RN stays bounded or diverges
as N →∞ will determine whether disorder is relevant or irrelevant. This leads to
the following.

DEFINITION 2.7 (Marginal overlap condition). A directed polymer or a pin-
ning model is said to satisfy the marginal overlap condition, if RN →∞ as a
slowly varying function when N →∞, where RN is defined in (2.7).

Under Hypothesis 2.4, the marginal overlap condition is satisfied when
RN →∞, which by (2.8) holds if L(n) stays bounded, or more generally, does
not grow too fast as n→∞. We suggest the reader to keep in mind the basic case
L(n)≡ 1, for which RN ∼C logN .

Our main result, to be stated in the next subsection, is that question Q has an
affirmative answer for models of directed polymer type which satisfy Hypothe-
sis 2.4 and the marginal overlap condition. This is a signature of marginal disorder
relevance in the spirit of [11]. The recent results of Berger and Lacoin [3, 4] on
free energy and critical curves reinforce this picture.
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2.2. Results for directed polymer and pinning models. We are now ready to
state our main results: Theorem 2.8 on the convergence of partition function with
a fixed starting point; Theorem 2.12 on the joint limit of partition functions with
different starting points, where multi-scale correlations emerge; and Theorem 2.13
on the Gaussian fluctuations of the partition functions as a random field indexed
by the starting points.

THEOREM 2.8 (Limit of partition functions). Let Zω
N,β be the partition func-

tion of a directed polymer or a pinning model (cf. Definitions 2.1 and 2.2). Assume
that Hypothesis 2.4 holds and the replica overlap RN in (2.7) and (2.8) diverges
as N →∞. Then, defining

(2.9) βN := β̂√
RN

with β̂ ∈ (0,∞),

the following convergence in distribution holds:

(2.10) Zω
N,βN

d−−−−→
N→∞ Z

β̂
:=

⎧⎪⎪⎨⎪⎪⎩exp
(
σ

β̂
W1 −

σ 2
β̂

2

)
if β̂ < 1,

0 if β̂ ≥ 1,

where W1 is a standard Gaussian random variable and

(2.11) σ 2
β̂
:= log

1

1− β̂2
.

Moreover, for β̂ < 1 one has limN→∞E[(Zω
N,βN

)2] = E[(Z
β̂
)2].

REMARK 2.9. Note that for β̂ < 1, Z
β̂

is log-normal. Let (Wt)t≥0 be a stan-
dard Brownian motion. We will in fact prove that

(2.12) Zω
N,βN

d−−−−→
N→∞ exp

(∫ 1

0

β̂√
1− β̂2t

dWt − 1

2

∫ 1

0

β̂2

1− β̂2t
dt

)
d= Z

β̂
.

This more involved expression for Z
β̂

hints at a remarkable underlying multi-scale
and chaos structure, which is common to all models that satisfy Hypothesis 2.4 and
the marginal overlap condition. The heuristics for this structure will be explained
in Section 3.

It is even possible to identify the limiting distribution of the whole process
(Zω

N,βN
)
β̂∈(0,1)

. Denoting by (W
(r)
t )t≥0,r∈N a countable family of independent

Brownian motions, we have the convergence in distribution of Zω
N,βN

as N →∞,

jointly for β̂ ∈ (0,1), to the process

(2.13)
∞∏

r=1

exp
(∫ 1

0
β̂r t

r−1
2 dW

(r)
t − 1

2

∫ 1

0
β̂2r t r−1 dt

)
d= Z

β̂
.

This can be extracted from the proof of Lemma 6.4, and we will omit the details.
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It is worth noting the nontrivial dependence of σ 2
β̂

on β̂; cf. (2.11). On the one

hand, it distinguishes from other scalings such as βN � 1/
√

RN , which lead to a
trivial behavior, and on the other hand it marks the transition from weak (Z

β̂
> 0)

to strong (Z
β̂
= 0) disorder.

REMARK 2.10. During the completion of this paper, Alberts, Clark and Kocić
showed in [1] that for the marginally relevant directed polymer model on the dia-
mond hierarchical lattice, with either edge or site disorder, there is also a transition
for the partition function in an intermediate disorder regime with some critical
value β̂c. Their proof relies on the recursive structure of the hierarchical lattice.
A difference with respect to our results is that, for β̂ ≤ β̂c, the partition function
converges to 1 and has Gaussian fluctuations. It would be interesting to apply our
approach to better understand the source of this difference.

REMARK 2.11. One may wonder whether the assumption of finite exponen-
tial moments E[eβω1]<∞ can be relaxed. Indeed, for the usual (short-range) di-
rected polymer model in dimension d = 1, in the intermediate disorder regime it is
enough to assume finite six moments, as conjectured in Alberts–Khanin–Quastel
[2] and proved by Dey–Zygouras [15]. The heuristic in dimension d = 1 is that
if P(ω1 > t) ∼ t−a , the typical maximum of the disorder random variables vis-

ited by the random walk by time N is N
3

2a . The intermediate disorder scaling in

dimension d = 1 is βN = β̂N−1/4, so one has βNN
3

2a → 0 when a > 6, allow-
ing for a truncation argument. In dimension d = 2, the typical maximum is N2/a ,
while βN = β̂/

√
logN , so βNN2/a →∞ irrespective of a. This suggests that in

the critical dimension d = 2, things are more subtle and we are reluctant to make
any claim.

Next, we study the partition functions Zω
N,β(X) as a random field, indexed by the

polymer’s starting position X= (x, t) ∈ Z
d ×N0 with d ∈ {1,2} (for directed poly-

mers), respectively, X = t ∈ N0 (for pinning models). Assuming Hypothesis 2.4
with a slowly varying L(·) and a divergent overlap RN , and recalling (2.6), we
define

(2.14) φ←
(|x|) :=min

{
n ∈N0 : φ(n)≥ |x|}=min

{
n ∈N0 : (nL(n)2)1/d ≥ |x|}.

By (2.6), φ←(|x|) is the time at which the random walk S has a fluctuation of order
|x|. Then, for each X= (x, t) ∈ Z

d ×N0 with d ∈ {0,1,2}, we set

(2.15) |||X||| :=
{
t if d = 0,

t ∨ φ←
(|x|) if d = 1,2.

We suggest to keep in mind the special case L(n)≡ 1, for which |||X||| = t ∨ |x|d .
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Theorem 2.8 gives the limiting distribution of the individual partition functions
Zω

N,βN
(X), and it is natural to ask about the joint distributions. In the special case

L(n)≡ 1, that is, RN ∼C logN , partition functions Zω
N,βN

(X) and Zω
N,βN

(X′) with

macroscopically distant starting points |||X − X′||| = N1+o(1) become asymptoti-
cally independent as N →∞, while an interesting correlation structure emerges
on all intermediate scales |||X − X′||| = Nζ+o(1), for any ζ ∈ (0,1). For general
slowly varying functions L(n), when RN is not necessarily logarithmic, interme-
diate scales are encoded by R|||X−X′|||/RN = ζ + o(1). This is the content of the

next theorem, where we use the shorthand notation :eY : = eY− 1
2Var[Y ].

THEOREM 2.12 (Multi-scale correlations). Let Zω
N,β(X) be the partition func-

tion of a directed polymer (or pinning) model started at X= (x, t) ∈ Z
d ×N0 (cf.

Definitions 2.1 and 2.2), such that Hypothesis 2.4 holds and the replica overlap
RN in (2.7)–(2.8) diverges as N →∞.

Consider a finite collection of space-time points (X(i)
N )1≤i≤r such that, as

N →∞,

∀1≤ k, l ≤ r: R
N−t

(k)
N

/RN = 1− o(1),

(2.16)
R|||X(k)

N −X(l)
N |||/RN = ζk,l + o(1) for some ζk,l ∈ [0,1].

Then, for βN = β̂/
√

RN with β̂ ∈ (0,1), the following joint convergence in distri-
bution holds:

(2.17)
(
Zω

N,βN

(
X(i)

N

))
1≤i≤r

d−−−−→
N→∞

(:eYi :)1≤i≤r ,

where (Yi )1≤i≤r are jointly Gaussian random variables with

(2.18) E[Yi] = 0, Cov[Yi ,Yj ] = log
1− β̂2ζi,j

1− β̂2
.

Lastly, we study Zω
N,βN

(X) as a space-time random field on the macroscopic
scale |||X||| ≈ N , showing that it satisfies a law of large numbers with Gaussian
fluctuations. For X= (x, t) ∈ Z

d ×N0, we define space-time rescaled variables as
follows [recall L(·) from Hypothesis 2.4 and φ(·) from (2.6)]:

(2.19) X̂N := (x̂N , t̂N ) :=
(

x

φ(N)
,

t

N

)
,

where pinning models correspond to d = 0 and we drop x. We first observe that
RNL(N)2 →∞ as N →∞, by (2.8) and [7], Proposition 1.5.9a. We are going to
show that one has

(2.20) Zω
N,βN

(X)≈ 1+ 1√
RNL(N)2

G(X̂N),
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where G(·) is a generalized Gaussian random field on R
d ×[0,1], with a logarith-

mically divergent covariance kernel [see (2.23) below]. To make (2.20) precise,
we fix a continuous test function ψ : Rd × [0,1] → R with compact support and
define

(2.21) J
ψ
N := 1

φ(N)dN

∑
X∈Zd×N0

{√
RNL(N)2

(
Zω

N,βN
(X)− 1

)}
ψ(X̂N),

where the pre-factor is the correct Riemann-sum normalization, in agreement with
(2.19). We can now formulate our next result.

THEOREM 2.13 (Fluctuations of the rescaled field). Let Zω
N,β(X) be the par-

tition function of a directed polymer or pinning model started at X ∈ Z
d ×N0 (cf.

Definitions 2.1 and 2.2), such that Hypothesis 2.4 holds and the replica overlap
RN in (2.7)–(2.8) diverges as N →∞.

Fix any continuous function ψ :Rd × [0,1]→R with compact support, and let
βN = β̂/

√
RN with β̂ < 1. Then J

ψ
N in (2.21) converges in distribution as N →∞

to a centered Gaussian random variable N(0, σ 2
ψ) with variance

(2.22) σ 2
ψ := β̂2

1− β̂2

∫
(Rd×[0,1])2

ψ(x, t)K
(
(x, t),

(
x′, t ′

))
ψ
(
x′, t ′

)
dx dt dx′ dt ′,

where the covariance kernel is given by

K
(
(x1, t1), (x2, t2)

)

:=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1

2

∫ 2−(t1+t2)

|t1−t2|
1

s
g

(
x1 − x2

s1/d

)
ds (directed polymers),∫ 1

t1∨t2

c2
√

s − t1
√

s − t2
ds (pinning).

(2.23)

REMARK 2.14. Observe that the kernel K diverges logarithmically near the
diagonal:

K
(
(x1, t1), (x2, t2)

)∼ C log
1

|(x1, t1)− (x2, t2)| as
∣∣(x1, t1)− (x2, t2)

∣∣→ 0.

Note that Gaussian fields with such logarithmically divergent covariance kernels
have played a central role in the theory of Gaussian multiplicative chaos (see,
e.g., [30]).

2.3. Results for the 2d stochastic heat equation. We now state the analogues
of Theorems 2.8, 2.12 and 2.13 for the 2d SHE

(2.24)
∂u

∂t
= 1

2
�u+ βuẆ , u(0, x)= 1 ∀x ∈R

2.
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To make sense of (2.24), we first mollify the space-time white noise Ẇ . Let
j ∈ C∞

c (R2) be a probability density on R
2 with j (x)= j (−x), and let J := j ∗j .

For ε > 0, let jε(x) := ε−2j (x/ε). The mollified noise Ẇ ε is defined formally by
Ẇ ε(t, x) := ∫

R2 jε(x − y)Ẇ (t, y)dy, so that∫
R×R2

f (t, x)Ẇ ε(t, x)dt dx

:=
∫
R×R2

(∫
R2

f (t, x)jε(y − x)dx

)
Ẇ (t, y)dt dy ∀f ∈ L2(

R×R
2).

For fixed x, the process t �→ ∫ t
0 Ẇ ε(s, x)ds is a Brownian motion with variance

‖j‖2
2. Then we consider the mollified equation (with Itô integration, and β = βε

possibly depending on ε)

(2.25)
∂uε

∂t
= 1

2
�uε + βεu

εẆ ε, uε(0, ·)≡ 1,

whose solution admits the generalized Feynman–Kac representation ([5], Section 3
and (3.22))

uε(t, x)= Ex

[
exp

{
βε

∫ t

0
Ẇ ε(t − s,Bs)ds

− 1

2
β2

εE

[(∫ t

0
Ẇ ε(t − s,Bs)ds

)2]}]
,

(2.26)

where Ex is expectation w.r.t. (Bs)s≥0, a standard Brownian motion in R
2 with

B0 = x and E denotes the expectation with respect to the White noise. By a time
reversal in Ẇ ε , we note that uε(t, x) has the same distribution [for fixed (t, x)] as

ũε(t, x) := Ex

[
exp

{
βε

∫ t

0
Ẇ ε(s,Bs)ds − 1

2
β2

ε E
[(∫ t

0
Ẇ ε(s,Bs)ds

)2]}]
= Ex

[
exp

{
βε

∫ t

0

∫
R2

jε(Bs − y)Ẇ (s, y)ds dy − 1

2
β2

ε t‖jε‖2
2

}]

= Eε−1x

[
exp

{
βε

∫ ε−2t

0

∫
R2

j (Bs̃ − ỹ) ˙̃W(̃s, ỹ) d̃s dỹ

− 1

2
β2

ε

(
ε−2t

)‖j‖2
2

}]
,

(2.27)

where in the last step we made the change of variables (εỹ, ε2s̃) := (y, s), and
˙̃W(̃s, ỹ) d̃s dỹ := ε−2Ẇ (ε2s̃, εỹ)d(ε2s̃)d(εỹ) is another two-dimensional space-

time white noise. (One can actually extend (2.27) so that the equality in law be-
tween uε(t, x) and ũε(t, x) holds jointly for all t ∈ [0,1] and x ∈ R

2; see (9.1)
below.)
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Relation (2.27) suggests that we can interpret ũε(t, x) as the partition function
of a directed Brownian polymer in R

2 in a white noise space-time random envi-
ronment at inverse temperature βε , with starting point ε−1x and polymer length
ε−2t . A consequence of our results for the short-range directed polymer on Z

2 is
the following analogue of Theorems 2.8 and 2.12, combined into a single theorem.
Let us agree that |||X||| := t ∨ |x|2.

THEOREM 2.15 (Limits of regularized solutions). Let uε(t, x) be the solu-

tion of the regularized 2d SHE (2.25), with βε = β̂

√
2π

log ε−1 for some β̂ ∈ (0,∞).

Following the notation in Theorem 2.12, consider a finite collection of space-time

points X(i)
ε = (x

(i)
ε , t

(i)
ε ), 1≤ i ≤ r , such that as ε→ 0,

∀i, j ∈ {1, . . . , r}: t (i)ε = εo(1),∣∣∣∣∣∣X(i)
ε − X(j)

ε

∣∣∣∣∣∣= ε2(1−ζi,j )+o(1) for some ζi,j ∈ [0,1].
Then for β̂ < 1, (uε(X(i)

ε ))1≤i≤r converge in joint distribution to the same limit
(:eYi :)1≤i≤r as in (2.17) as ε → 0, with E[(uε(X(i)

ε ))2] → E[(:eYi :)2]; while for
β̂ ≥ 1, uε(X(i)

ε )⇒ 0.

REMARK 2.16. Applying Hopf–Cole transformation to (2.25), we note that
hε(t, x) := loguε(t, x) is the solution of the regularized 2d KPZ equation

(2.28)
∂hε

∂t
= 1

2
�hε + 1

2

∣∣∇hε
∣∣2 + βεẆ

ε − β2
ε ε−2‖j‖2

2, hε(0, ·)≡ 0,

where the last term −β2
ε ε−2‖j‖2

2 is the Itô correction. Theorem 2.15 can there-
fore be reformulated for the 2d KPZ equation, showing that when β̂ ∈ (0,1), the
solution hε has pointwise Gaussian limits as ε→ 0.

Here is the analogue of Theorem 2.13.

THEOREM 2.17 (Fluctuations of the solution field). Let uε(t, x) be as in The-
orem 2.15 with β̂ ∈ (0,1). Let ψ : R2 × [0,1] → R be continuous with compact
support, and let

(2.29) Jψ
ε :=

√
log ε−1

2π

∫
R2×[0,1]

(
uε(t, x)− 1

)
ψ(x,1− t)dx dt.

Then J
ψ
ε converges in distribution as ε→ 0 to the same Gaussian random variable

N(0, σ 2
ψ) as in Theorem 2.13 for the directed polymer model on Z

2+1.

REMARK 2.18. For simplicity, we have formulated our results for the 2d SHE
with uε(0, ·)≡ 1. However, it can be easily extended to general u(0, ·). As it will
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become clear in the proof (or the heuristics in Section 3), for β̂ < 1, the limit
of uε(t, x) depends only on the white noise Ẇ in an infinitesimal time window
[t − o(1), t] as ε → 0 (for directed polymer of length N , the partition function
similarly depends only on the disorder in a time window [1,N1−o(1)]). Therefore,
if we set the noise to be zero in the time window [0, t − o(1)], then apply the
Feynman–Kac formula (2.26) first from time t to t − o(1), and then to 0, then we
will see that the limit of uε(t, x) depends on the initial condition only via a factor
Ex[uε(0,Bt )].

REMARK 2.19. Bertini–Cancrini [6] showed that if in (2.25), βε :=√
2π

log ε−1 + λ
(log ε−1)2 for some λ ∈ R, which corresponds to a finer window around

β̂ = 1 in our notation, then uε is tight in a suitable space of distributions, and the
two-point function E[uε(t, x)uε(t, y)] converges to a nontrivial limit. However,
they could not identify the limit of uε . Combined with our result that uε(t, x)

converges in probability to 0 for each x ∈ R
2 when β̂ = 1, this suggests that the

random measure uε(t, x)dx may have a nontrivial limit as ε→ 0, which is singu-
lar w.r.t. the Lebesgue measure.

REMARK 2.20. We note a formal connection between the 2d SHE and Gaus-
sian multiplicative chaos (GMC), which typically considers random measures
Mβ(dx) := eβXx−β2

E[X2
x ]/2 dx on [0,1]d for some Gaussian field (Xx)x∈[0,1]d .

When the covariance kernel of X is divergent on the diagonal, X is a general-
ized function and to define Mβ(dx), one first replaces X by its mollified version
Xε and defines Mε

β(dx) and then takes the limit ε → 0 (see [30] for a survey).
For the 2d SHE, the exponential weight in (2.26) can be seen as the analogue of
eβXε

x−β2
E[(Xε

x)2]/2 for the mollified Gaussian field Xε , except now the Gaussian
field Xε is indexed by C([0, t],R2) endowed with the Wiener measure. As ε→ 0,
its covariance kernel Kε(·, ·) can be seen to diverge logarithmically in probability,
if it is regarded as a random variable defined on C([0, t],R2)2 endowed with the
product Wiener measure. We note that shortly after the completion of this paper,
Mukherjee et al. [27] used techniques from GMC to prove the existence of a weak
to strong disorder transition for the SHE in d ≥ 3.

3. Heuristics. In this section, we illustrate the core of our approach, empha-
sizing the main ideas and keeping the exposition at a heuristic level. In Section 3.1,
we recall the approach developed in [11] to deal with the disorder relevant regime,
then in Sectiion 3.2 we explain how it fails for marginally relevant models and how
does the marginal overlap condition arise.

3.1. Heuristics for disorder relevant regime. For simplicity, we use the pin-
ning model to illustrate the general approach developed in [11] to identify limits
of partition functions in a suitable continuum and weak disorder limit.
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We first rewrite the partition function (2.2) for t = 0: since ex1{n∈τ } = 1 +
(ex − 1)1{n∈τ } for all x ∈R, we get

(3.1) Zω
N,β = E

[
N∏

n=1

(1+ βηn1{n∈τ })
]

where ηn := eβωn−λ(β) − 1

β
.

A binomial expansion of the product in (3.1) then yields (setting n0 = 0)

Zω
N,β = 1+

N∑
k=1

βk
∑

1≤n1<···<nk≤N

k∏
j=1

qnj−nj−1

k∏
i=1

ηni

where qn := P(n ∈ τ).

(3.2)

We have thus rewritten Zω
N,β as a multi-linear polynomial of the i.i.d. random

variables (ηn)n∈N, sometimes called a polynomial chaos expansion.
Assume for simplicity that the underlying renewal process τ satisfies

(3.3) P(τ1 − τ0 = n)∼ C

n1+α
as n→∞

for some C > 0 and α ∈ (0,1), which implies the local limit theorem ([16], Theo-
rem B).

(3.4) qn := P(n ∈ τ)∼ C̃

n1−α
= α sin(πα)

Cπ
· 1

n1−α
.

Recalling (3.1), we have E[ηn] = 0, and by Taylor’s expansion,

(3.5) Var[ηn] ∼ 1 as β → 0.

Since the “influence” of each ηn on Zω
N,β is small, we can apply a Lindeberg

principle (see, e.g., [11, 26, 28]) to replace (ηn)n∈N by i.i.d. standard Gaussian
random variables without changing the limiting distribution of Zω

N,β as N →∞.
Standard i.i.d. Gaussian (ηn)n∈N can be defined from a white noise W(dt) on

[0,∞), with

(3.6) ηn :=
√

N

∫ n+1
N

n
N

W(ds), n ∈N.

Setting ti := ni/N for each i ∈N, the series (3.2) then becomes a series of stochas-
tic integrals

Zω
N,β ≈ 1+

N∑
k=1

(
βN

1
2
)k ∫ · · ·

∫
0<t1<···<tk<1

k∏
j=1

q�Ntj �−�Ntj−1�
k∏

i=1

W(dti)

(3.7)

≈ 1+
N∑

k=1

(
C̃βNα− 1

2
)k ∫ · · ·

∫
0<t1<···<tk<1

k∏
j=1

(tj − tj−1)
α−1

k∏
i=1

W(dti),

where we have applied (3.4) that qNt ∼ C̃(Nt)α−1.
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In the disorder relevant regime α ∈ (1/2,1), we note that g(t) := tα−1 is square-
integrable in t ∈ [0,1] and the stochastic integrals in (3.7) are all well defined. In
particular, in the weak disorder limit:

(3.8) βN := β̂

C̃Nα− 1
2

with β̂ ∈ (0,∞),

relation (3.7) suggests that as N →∞, the partition function Zω
N,βN

converges in
law to

(3.9) ZW

β̂
:= 1+

∞∑
k=1

β̂k
∫
· · ·

∫
0<t1<···<tk<1

k∏
j=1

(tj − tj−1)
α−1

k∏
i=1

W(dti).

The limit ZW

β̂
can then be used to define a continuum disordered pinning model

[10].
For the marginal case α = 1/2, the above approach breaks down because 1/

√
t

just fails to be square-integrable in [0,1] and the stochastic integrals in (3.7) be-
come undefined. Nevertheless, for each k ∈ N, we note that the second moment
of the kth term in (3.2) diverges as N →∞, which hints at marginal relevance of
disorder.

For directed polymer models, exactly the same phenomenon appears. The ap-
proach of [11] sketched above applies to the short-range directed polymer on Z1+1

and the long-range directed polymer on Z
1+1 with tail exponent α ∈ (1,2), and

breaks down exactly at the marginal cases, which include the short-range directed
polymer on Z

2+1 and the long-range directed polymer on Z
1+1 with tail exponent

α = 1.

3.2. Heuristics for marginal relevant regime. We now sketch the heuristics
behind our proof of Theorem 2.8. Again, we use the pinning model to illustrate
our approach, focusing on the marginal case where the renewal process satisfies
(3.3) with α = 1/2.

For simplicity, while retaining the key features, we assume that (ηn)n∈N are i.i.d.
standard normal, and in light of (3.4), we assume for simplicity that qn = 1/

√
n.

Then Zω
N,β in (3.2) simplifies to

(3.10) ZN = 1+
N∑

k=1

βk
N

∑
1≤n1<···<nk≤N

k∏
j=1

ηnj√
nj − nj−1

.

The first observation, which follows from a direct calculation, is that for each
k ∈N, the associated inner sum in ZN has second moment

E

[( ∑
1≤n1<···<nk≤N

k∏
j=1

ηnj√
nj − nj−1

)2]

= ∑
1≤n1<···<nk≤N

k∏
j=1

1

nj − nj−1
∼ (logN)k ∼Rk

N ,
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where RN is the expected replica overlap defined in (2.7) and satisfies the marginal
overlap condition. This suggests that if there is a nontrivial weak disorder limit for
ZN , then we should choose βN := β̂/

√
RN for some β̂ > 0. Furthermore, note that

E[Z2
N ] → (1− β̂2)−1 for β̂ ∈ (0,1) and E[Z2

N ] →∞ for β̂ ≥ 1, with a transition
occurring at β̂c = 1.

We assume from now on βN := β̂/
√

logN ∼ β̂/
√

RN in (3.10) with β̂ ∈ (0,1),
so that

ZN = 1+
N∑

k=1

β̂kZ
(k)
N

with Z
(k)
N := 1

(logN)
k
2

∑
1≤n1<···<nk≤N

k∏
j=1

ηnj√
nj − nj−1

.

(3.11)

To prove Theorem 2.8, that ZN converges in law to a log-normal random variable,
we will identify the limit of Z

(k)
N for each k ∈ N, where an interesting structure

appears. Below are the key observations.
(A) An elementary observation. Let (W(t))t≥0 be a standard Brownian motion

on R. For any δ > 0, let Wδ(t) :=W(δt)/
√

δ, which is another standard Brown-
ian motion correlated with W . A simple covariance calculation then shows that as
δ ↓ 0, W and Wδ become asymptotically independent. Such asymptotic indepen-
dence due to separation of scales also extends to higher-dimensional white noise,
which will be crucial in our analysis.

(B) Identifying the time scale. Next, we identify the intrinsic time scale appear-
ing in the limit of Z

(1)
N , and Z

(k)
N in general. Note that for any 0 ≤ a < b ≤ 1,

1√
logN

∑Nb

n=Na
ηn√
n

converges in distribution to a Gaussian random variable with

mean zero and variance b − a. Therefore, to approximate the sum in Z
(1)
N by a

stochastic integral, we should make the change of variable n=Na , which gives

(3.12)
1√

logN

Nb∑
n=Na

ηn√
n
≈

∫ b

a
W(1)(ds) ∀0≤ a < b ≤ 1,

where W(1) is a standard Brownian motion. In particular, Z
(1)
N ≈ ∫ 1

0 W(1)(ds) =
W

(1)
1 . This indicates that the correct time scale is exponential t →Nt , rather than

linear t →Nt .
(C) Identifying the structure. Finally, we identify the limit of Z

(2)
N , where the

key structure already emerges. An L2 calculation shows that as N →∞, we can
relax the range of summation:

Z
(2)
N = 1

logN

∑
0<n<m≤N

ηnηm√
n
√

m− n

≈ 1√
logN

∑
0<n1≤N

ηn1√
n1

(
1√

logN

∑
0<n2≤N

ηn1+n2√
n2

)
.

(3.13)
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Using the approximation (3.12) with n1 =: Ns1 and similarly for the sum over
n2 =:Ns2 ,

Z
(2)
N ≈

∫ 1

0
dW(1)

s1

(
1√

logN

∑
0≤n2≤N

ηNs1+n2√
n2

)

≈
∫ 1

0
W(1)(ds1)

∫ 1

0
W(2;s1)(ds2),

(3.14)

where given s1, W(2;s1) is a standard Brownian motion with

(3.15)
1√

logN

Ns1+Ns2∑
n=Ns1

ηn√
n
≈W(2;s1)(s2).

To understand the relation between W
(1)
s1 and W

(2;s1)
s2 and make sense of the

stochastic integral in (3.14), we distinguish between the cases s2 < s1 and s2 > s1.

• Case s2 < s1: In this case, Ns2 � Ns1 , and observation (A) shows that in the
limit N →∞, the white noise (W(2;s1)(ds2))0≤s2≤s1 becomes asymptotically
independent of (W(1)(ds1))0≤s1≤1. Indeed, by (3.12) and (3.15), we note that
the increments of W(2;s1) in a small time window [s2, s2 +�] is defined from
ηn with n ∈ [Ns1 +Ns2,Ns1 +Ns2+�], which is an infinitesimal window con-
tained in the range of indices [Ns1,Ns1+�] used to define the increments of
W(1) on [s1, s1 + �]. In other words, the white noise (W(2;s1)(ds2))0≤s2≤s1

is effectively obtained by sampling W(1)(ds1) in an infinitesimal window in
[s1, s1 +�]. A covariance calculation as in (A) shows that in the limit N →∞,
W(1)(ds1) and W(2;s1)(ds2) are independent for all a, s1 ∈ [0,1] and b ∈ [0, s1].
Furthermore, using the fourth moment theorem, it can be shown that

(3.16)
(
�(ds1,ds2) :=W(1)(ds1) ·W(2;s1)(ds2)

)
0≤s2<s1≤1

is a two-dimensional white noise, independent of (dW
(1)
s1 )0≤s1≤1.

• Case s2 > s1: In this case, Ns1 � Ns2 as N →∞. Therefore, the range of in-
dices [Ns1 +Ns2,Ns1 +Ns2+�] essentially coincide with [Ns2,Ns2+�], which
are the indices of η used to define respectively the increments of W(2;s1) and
W(1) in a small window [s2, s2 +�]. This implies that in the limit N →∞, we
have W(2;s1)(ds2)=W(1)(ds2).

By the above considerations, we can now rewrite the approximation (3.14) as

(3.17) Z
(2)
N ≈

∫
0≤s2<s1≤1

�(ds1,ds2)+
∫

0≤s1<s2≤1
W(1)(ds1)dW(1)(ds2),

where the first term is a normal random variable with mean zero and variance 1/2,
independent of the second term, which can be rewritten as∫ 1

0
W(1)(ds2)

(∫ s2

0
W(1)(ds1)

)
=

∫ 1

0
W(1)(s2)W

(1)(ds2)= (W(1)(1))2 − 1

2
.
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When we consider the limit of Z
(k)
N for k ≥ 3, similar separation of scales ap-

pears when we make the change of time scale ni = Nsi . The limit of Z
(k)
N admits

a decomposition similar to (3.17) (but more complicated), involving independent
white noises of various different dimensions up to dimension k.

So far, we focused on pinning models, but everything can be extended to di-
rected polymer models, whose partition function admits a polynomial chaos ex-
pansion analogous to (3.2); see (4.1) below. Remarkably, the structure is the same
as for the pinning model: If we make the change of time variable ni = Nai and a
change of space variable zi = xin

1/d
i [assuming L(·)≡ 1 in Hypothesis 2.4], then

similar to (3.12), Z(1)
N can be approximated by

∫ 1
0
∫
Rd W(1)(dt dx) for a white noise

W(1) on R
d ×[0,∞). Concerning Z

(2)
N , in analogy with (3.14), for each s1 > 0 and

x1 ∈ R
d , we have an independent white noise (W(2;s1,x1)(ds2 dx2))s2∈[0,s1],x2∈Rd ,

which is effectively obtained by sampling W(1) in an infinitesimal space-
time window around (s1, x1), while (W(2;s1,x1)(ds2 dx2))s2>s1,x2∈Rd =
(W(1)(ds2 dx2))s2>s1,x2∈Rd .

4. Proof steps for Theorem 2.8. Since the proof of Theorem 2.8 [for
β̂ ∈ (0,1)] is long and modular, we list here the proof steps. These contain four
approximations (A1)–(A4), plus one key step (K) which identifies the building
blocks of the limiting partition function. The local limit theorems (2.3)–(2.5) in
Hypothesis 2.4 will only be used in the approximation step (A3). The other steps
only use the marginal overlap condition, that is, RN is a divergent slowly varying
function.

The proof steps are the same for pinning (d = 0) and directed polymer models
(d = 1,2), so we follow a unified notation. The starting point is a polynomial
chaos expansion for the partition function of directed polymers, in analogy with
(3.1)–(3.2) for pinning:

Zω
N,βN

= 1+
N∑

k=1

β̂kZ
(k)
N (βN = β̂/

√
RN),

(4.1)

where Z
(k)
N = 1

Rk/2
N

∑
1≤n1<···<nk≤N

z1,z2,...,zk∈Zd

k∏
j=1

qnj−nj−1(zj − zj−1)

k∏
i=1

η(ni,zi ),

with n0 := 0, z0 := 0 and

(4.2) qn(z) := P(Sn = z), η(n,z) = η
(N)
(n,z) :=

eβNω(n,z)−λ(βN) − 1

βN

.

Note that relation (4.1) applies also to the pinning model, if we view it as a directed
polymer on Z

0 := {0} (cf. Hypothesis 2.4) and identify qn(0) with qn = P(n ∈ τ).
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As a preliminary step, we can approximate Zω
N,βN

from (4.1) in L2 (uniformly

in N ) by Z
ω,K
N,βN

:= 1+∑K
k=1 β̂kZ

(k)
N if K is large, but fixed, since for β̂ ∈ (0,1),

lim
K→∞

∥∥Zω
N,βN

−Z
ω,K
N,βN

∥∥2
2 = lim

K→∞

N∑
k=K+1

β̂2k
∥∥Z(k)

N

∥∥2
2

≤ lim
K→∞

∞∑
k=K+1

β̂2k = 0,

(4.3)

where we used the fact that ‖Z(k)
N ‖2

2 ≤ 1, as one checks by (4.1) and (2.7) [see
(6.4) below]. We can therefore focus on identifying the limit Z

ω,K
N,βN

as N →∞,
and send K →∞ later.

Our first step is to approximate Z
(k)
N in (4.1) as follows.

(A1) For each k ∈N, define Ẑ
(k)
N by enlarging the range of summation for Z

(k)
N in

(4.1), allowing the time increments n1, n2−n1, . . . , nk −nk−1 to vary freely
in {1, . . . ,N}, and show that ‖Z(k)

N − Ẑ
(k)
N ‖2

2 → 0 as N →∞.

Note that this allows us to replace Z
ω,K
N,βN

by

(4.4) Z
(A1)
N,βN

:= 1+
K∑

k=1

β̂kẐ
(k)
N with

∥∥Zω,K
N,βN

−Z
(A1)
N,βN

∥∥2
2 −→

N→∞ 0.

Let us now consider M arbitrary and for each Ẑ
(k)
N partition the range {1, . . . ,N}

for each variable n1, n2 −n1, . . . , nk −nk−1 into M blocks I1, I2, . . . , IM , defined
by (with t0 := 0)

(4.5) Ii := (ti−1, ti] with ti := tN,M
i :=min

{
m ∈ {1, . . . ,N} :Rm ≥ i

M
RN

}
.

Note that for RN = logN we have Ii = (N
i−1
M ,N

i
M ]. We can then write

Ẑ
(k)
N = 1

M
k
2

∑
1≤i1,...,ik≤M

�
N;M
i1,...,ik

where �
N;M
i1,...,ik

:=
(

M

RN

)k/2
(4.6)

× ∑
n1−n0∈Ii1

n2−n1∈Ii2 ,...,nk−nk−1∈Iik

z1,z2,...,zk∈Zd

k∏
j=1

qnj−nj−1(zj − zj−1)

k∏
i=1

η(ni ,zi ),

where (n0, z0)= (0,0).
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REMARK 4.1. The intervals (Ii)1≤i≤M encode the right time scale, as ex-
plained in (B) in Section 3.2, because Rti −Rti−1 ∼ 1

M
RN . The sum over i1, . . . , ik

in Ẑ
(k)
N in (4.6) corresponds to a discretization of the stochastic integrals that will

arise in the limit N →∞.

To ensure a proper separation of scales later on, define

(4.7) {1, . . . ,M}k� :=
{
i= (i1, . . . , ik) ∈ {1, . . . ,M}k : |ij − ij ′ | ≥ 2 for all j �= j ′

}
.

Our second approximation shows that the contributions to Ẑ
(k)
N in (4.6) from sum-

mation indices i ∈ {1, . . . ,M}k \ {1, . . . ,M}k� is small for large M , uniformly in
large N , that is,

(A2) limM→∞ lim supN→∞‖∑i∈{1,...,M}k\{1,...,M}k�
1

M
k
2
�

N;M
i ‖2

2 = 0.

Therefore, we can restrict the sum over i in Ẑ
(k)
N to i ∈ {1, . . . ,M}k� . Note that this

implies we can further replace Z
(A1)
N,βN

in (4.4) by

Z
(A2)
N,βN

:= 1+
K∑

k=1

β̂k

M
k
2

∑
i∈{1,...,M}k�

�
N;M
i

with lim
M→∞ lim sup

N→∞
∥∥Z(A1)

N,βN
−Z

(A2)
N,βN

∥∥2
2 = 0.

(4.8)

We now try to identify the limit of �
N;M
i as N →∞. The heuristics sketched

in Section 3.2 for Z
(1)
N and Z

(2)
N suggest the following:

• Case k = 1: the family (�
N;M
i )1≤i≤M converges in distribution to i.i.d. standard

normal random variables (ζi)1≤i≤M .
• Case k = 2: for i1 ≤ i2 − 2, the family �

N;M
i1,i2

converges in distribution to ζi1ζi2 ,

while for i1 ≥ i2 + 2, the family �
N;M
i1,i2

converges in distribution to a family of
i.i.d. standard normal random variables ζi1,i2 independent of (ζi)1≤i≤M .

For k ≥ 3, the limit of �
N;M
i1,...,ik

also turns out to be a product of independent stan-
dard normal random variables ζ·, with one ζ· for each running maxima in the se-
quence (i1, . . . , ik). More precisely, let us say that

(4.9) i := (i1, . . . , ik) ∈ {1, . . . ,M}k is a dominated sequence if i1 > i2, . . . , ik.

Then each i ∈ {1, . . . ,M}k� can be divided into consecutive dominated sequences

i(1) := (i1, . . . , i�2−1), i
(2) := (i�2, . . . , i�3−1), . . . , i

(m) := (i�m, . . . , ik), where
i�1 = i1 < · · ·< i�m are the successive running maxima of (i1, . . . , ik).

Our third approximation step shows that the random variable �
N;M
i in (4.6)

admits the following asymptotic factorization:
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(A3) For all M,k ∈N and for each i := (i1, . . . , ik) ∈ {1, . . . ,M}k� ,

(4.10) lim
N→∞

∥∥�N;M
i −�

N;M
i(1) �

N;M
i(2) · · ·�N;M

i(m)

∥∥2
2 = 0,

where (i(1), . . . , i(m)) is the decomposition of i into dominated sequences.

Note that this allows us to further replace Z
(A2)
N,βN

in (4.8) by

Z
(A3)
N,βN

:= 1+
K∑

k=1

β̂k

M
k
2

∑
i∈{1,...,M}k�

�
N;M
i(1) �

N;M
i(2) · · ·�N;M

i(m)

with
∥∥Z(A2)

N,βN
−Z

(A3)
N,βN

∥∥2
2 −→

N→∞ 0.

(4.11)

We are now reduced to identifying the limit of �
N;M
i when i are dominated

sequences. Denote

(4.12) DM :=
{
i ∈

∞⋃
k=1

{1, . . . ,M}k� : i is a dominated sequence

}
.

Here is the key step in the proof of Theorem 2.8:

(K) As N →∞, the family of random variables (�
N;M
i )i∈DM

converges in distri-
bution to a family of i.i.d. standard normal random variables (ζi)i∈DM

.

In particular, this implies that

(4.13) Z
(A3)
N,βN

d−−−−→
N→∞ ZM,K

β̂
:= 1+

K∑
k=1

β̂k

M
k
2

∑
i∈{1,...,M}k�

m(i)∏
l=1

ζi(l) .

To complete the proof of Theorem 2.8 for β̂ ∈ (0,1), we first take the limit
K →∞. By the fact that β̂ < 1, it is clear that ZM,K

β̂
converges as K →∞ to

(4.14) Z
(M)

β̂
:= 1+

∞∑
k=1

β̂k

M
k
2

∑
i∈{1,...,M}k�

m(i)∏
l=1

ζi(l) ,

uniformly in L2 with respect to M . Therefore, it only remains to take the limit
M →∞ and show that

(A4) Z
(M)

β̂

d−−−−→
M→∞ Z

β̂
= e

∫ 1
0

β̂√
1−β̂2t

dWt− 1
2

∫ 1
0

β̂2

1−β̂2t
dt

.

We will prove the key step (K) in Section 5. The approximation steps (A1)–(A4)
will be carried out in Section 6, which then implies Theorem 2.8. The main tool to
prove (K) is a fourth moment theorem for polynomial chaos expansions, due to de
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Jong [13, 14], Nualart and Peccati [29] and Nourdin, Peccati and Reinert [28]. The
following versions is an extension to random variables with possibly unbounded
third moment, based on the Lindeberg principle proved in [11] (which extends [26,
31]).

THEOREM 4.2 (Fourth moment theorem). For each N ∈ N, let (ηN,t )t∈T be
independent random variables with mean 0 and variance 1, indexed by a count-
able set T. Assume that (η2

N,t )N∈N,t∈T are uniformly integrable. Fix k ∈ N and

d1, . . . , dk ∈ N. For each 1 ≤ i ≤ k, let �
(i)
N (ηN,·) be a multi-linear polynomial in

(ηN,t )t∈T of degree di , that is,

�
(i)
N (ηN,·)=

∑
I⊂T,|I |=di

φ
(i)
N (I )

∏
t∈I

ηN,t for some real-valued φ
(i)
N (·).

Assume further that:

(i) for all 1≤ i, j ≤ k, E[�(i)
N (ηN,·)�(j)

N (ηN,·)]→ V (i, j) for some matrix V as
N →∞;

(ii) for each 1 ≤ i ≤ k, E[�(i)
N (ξ·)4] → 3V (i, i)2 as N →∞, where we have

replaced (ηN,t )t∈T by i.i.d. standard normal random variables (ξt )t∈T;
(iii) the maximal influence of each variable ηN,t on the polynomials of degree

one among (�
(i)
N (ηN,·))1≤i≤k is asymptotically negligible, that is, for each

1≤ i ≤ k,

(4.15) max
t∈T

∣∣φ(i)
N

({t})∣∣→ 0 as N →∞.

Then (�
(i)
N (ηN,·))1≤i≤k converge in law to a centered Gaussian vector with covari-

ance V .

PROOF. If we replace (ηN,t )t∈T by standard Gaussians (ξt )t∈TN
, Theorem 4.2

holds without the need of assuming condition (iii), thanks to [28], Theorem 7.6,
which is a multi-dimensional extension of the fourth moment theorem [14, 29].

To justify the replacement with Gaussians, we show that the vectors
(�

(i)
N (ηN,·))1≤i≤k and (�

(i)
N (ξ·))1≤i≤k have the same limit in law as N →∞.

By the Crámer–Wold device, it is enough to consider a linear combination �N =∑k
i=1 ci�

(i)
N , which is a multi-linear polynomial with degree d :=max1≤i≤k di and

with variance σ 2
N ≤ k

∑k
i=1 c2

i

∑
I⊆T φ

(i)
N (I )2 (by Cauchy–Schwarz). By the Lin-

deberg principle in [11], Theorem 2.6, for any smooth and bounded f : R→ R

there is C =Cd,f <∞, such that, for every M > 0,∣∣E[f (
�N(ηN,·)

)]−E
[
f
(
�N(ξ·)

)]∣∣≤ Cσ 2
N

{
m>M

2 +Md max
t∈T

√
Inft (�N)

}
,
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where

m>M
2 := max

X∈⋃N∈N,t∈T{ηN,t ,ξt }
E
[
X21{|X|>M}

]
,

Inft (�N)=
k∑

i=1

∑
I t

φ
(i)
N (I )2.

By the uniform integrability assumption on η2
N,t , we can fix M > 0 large enough

so that m>M
2 is as small as we wish. Since supN∈N σ 2

N < ∞ by assumption (i),
the proof is completed if we show that maxt∈T

√
Inft (�N)→ 0 as N →∞. For

polynomials �
(i)
N of degree di = 1, this holds by assumption (iii), while for di ≥ 2

it is a consequence of the fourth moment assumption (ii), as shown in [28], Propo-
sition 1.6 and (1.9). �

5. Proof of key step for Theorem 2.8. In this section, we prove the key step
(K) in the proof of Theorem 2.8, formulated in Section 4, which asserts that the
building blocks of the chaos expansion have asymptotic Gaussian behavior. This
result actually holds in great generality and is of independent interest, so it is worth
stating explicitly the assumptions we need.

We work on Z
d for fixed d ∈ N0 (with Z

0 := {0}). For every n ∈ N, we fix a
function qn(·) ∈ L2(Zd)—not necessarily a probability kernel—and we define [cf.
(2.7)]

(5.1) RN :=
N∑

n=1

‖qn‖2 =
N∑

n=1

( ∑
x∈Zd

qn(x)2
)
.

In the following sections, we will focus on the special cases when qn(x) =
P(Sn = x) or qn = P(n ∈ τ), with S or τ satisfying the local limit theorems in Hy-
pothesis 2.4. However, in this section we only need to assume that RN is a slowly
varying function which diverges as N →∞. The basic case to keep in mind is
RN ∼C logN .

Let us fix M ∈N and split

{1,2, . . . ,N} = I1 ∪ I2 ∪ · · · ∪ IM,(5.2)

where the intervals Ii are defined by (4.5). This definition ensures that each Ii

contributes equally to RN , since4

(5.3)
∑
m∈Ii

‖qm‖2 =Rti −Rti−1 ∼
N→∞

RN

M
.

4Note that Rn −Rn−1 = o(Rn) as n→∞, by the slowly varying property, hence Rti ∼ i
M

RN .
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DEFINITION 5.1. Let Efin :=⋃
k∈N Ek be the set of all finite sequences z =

(z1, . . . , zk) taking values in a given set E. For z ∈Ek ⊆Efin, we denote by |z| = k

the length of z. We also let Nk↑ be the subset of increasing sequences n ∈ N
k , that

is, n1 < n2 < · · ·< nk , and analogously we set Nfin↑ :=⋃
k∈NN

k↑.

We focus on the random variables �
N;M
i1,...,ik

introduced in (4.6), which can be

conveniently reformulated as follows. Given i ∈ {1, . . . ,M}fin, we define a set of
increasing sequences n ∈ N

fin↑ that are compatible with i, denoted by n ≺ i, as
follows:

(5.4) n≺ i ⇐⇒ |n| = |i| and n1 − n0 ∈ Ii1, . . . , n|i| − n|i|−1 ∈ Ii|i|,

where n0 = 0. We can then define

(5.5) �
N,M
i :=

(
M

RN

) |i|
2 ∑

n∈Nfin↑ :n≺i

Qn,

with

(5.6) Qn :=
∑

x∈(Zd )|n|

|n|∏
j=1

qnj−nj−1(xj − xj−1)η(nj ,xj ) =
∑

x∈(Zd )|n|
qn(x)η(n,x),

where n0 = x0 = 0 and we have introduced the further abbreviations

qn(x) :=
|n|∏
j=1

qnj−nj−1(xj − xj−1), η(n,x) :=
|n|∏
j=1

η(nj ,xj ).(5.7)

Here, (η(n,x))(n,x)∈N×Zd are independent random variables with E[η(n,x)] = 0,
Var[η(n,x)] = 1. (In our case [cf. (4.2)], we actually have Var[η(n,x)] = 1+ o(1) as
N →∞, because

Var[η(n,x)] = exp(λ(2βN)− 2λ(βN))− 1

β2
N

= 1+O(βN),

since λ(β) = 1
2β2 + O(β3) as β → 0. To lighten notation, we assume that

Var[η(n,x)] = 1.)

We allow η(n,x) = η
(N)
(n,x) to depend on N ∈ N, as in (4.2). We only need

to assume that the squares ((η
(N)
(n,x))

2)N∈N,(n,x)∈N×Zd are uniformly integrable.
Note that this holds for (4.2), as one easily checks by showing boundedness of
E[(η(N)

(n,x))
4]; see [11], equation (6.27).

We now state our main result, which generalizes the key step (K) in Section 4.
Recall that the space DM ⊆ {1, . . . ,M}fin of dominated sequences is defined as
[cf. (4.7) and (4.12)]

(5.8) DM := {
i ∈ {1, . . . ,M}fin : i1 > i2, i3, . . . , i|i|, |ij − ij ′ | ≥ 2 ∀j �= j ′

}
.
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PROPOSITION 5.2. Assume that RN in (5.1) is a slowly varying function
which diverges as N → ∞. For every fixed M ∈ N, the random variables
(�

N,M
i )i∈DM

indexed by dominated sequences in DM , converge jointly in law as
N →∞ to i.i.d. standard Gaussians (ζi)i∈DM

.

PROOF. We observe that, by (5.6),

(5.9) E[Qn] = 0, E[QnQn′ ] = ‖qn‖21{n=n′},

where

(5.10) ‖qn‖2 :=
|n|∏
j=1

‖qnj−nj−1‖2 =
|n|∏
j=1

( ∑
x∈Zd

qnj−nj−1(x)2
)
.

We stress that E[QnQn′ ] = 0 for n �= n′, because n= (n1, . . . , n|n|) then contains
some value, say nj , which does not appear in n′ (or the other way around), so the
random variables η(nj ,xj ) appearing in the product QnQn′ are unpaired and the
expectation yields zero.

It is now easy to see that the random variables �
N,M
i , for i ∈DM , are uncorre-

lated and have asymptotically (as N →∞ for fixed M) unit variance. In fact,

E
[
�

N,M
i �

N,M

i′
]= 0 ∀i �= i′,

because if n ≺ i and n′ ≺ i′, then n �= n′ by (5.4), and hence E[QnQn′ ] = 0 by
(5.9). Next, by (5.5) and (5.9),

E
[(

�
N,M
i

)2]= (
M

RN

)|i|∑
n≺i

‖qn‖2

=
(

M

RN

)|i| |i|∏
j=1

( ∑
m∈I (ij )

‖qm‖2
)
−−−−→
N→∞ 1,

(5.11)

where in the last step we used (5.3).
We now apply the multi-dimensional version of the fourth moment theorem,

Theorem 4.2, to prove that (�
N,M
i )i∈DM

converge to i.i.d. standard Gaussians. We
have just verified condition (i) in Theorem 4.2, and the influence condition (iii) on
�

N,M
i with |i| = 1 clearly holds. It only remains to verify condition (ii), that is,

assuming that (η(n,x))(n,x)∈N×Zd are i.i.d. standard normal, we need to show that

(5.12) lim
N→∞E

[(
�

N,M
i

)4]= 3 ∀i ∈DM.

Recalling (5.5), we can write

(5.13) E
[(

�
N;M
i

)4]= (
M

RN

)2|i| ∑
a,b,c,d≺i

E[QaQbQcQd ],
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where by (5.6) and (5.7),

E[QaQbQcQd ]
= ∑

x,y,z,w∈(Zd )|i|
qa(x)qb(y)qc(z)qd(w)E[η(a,x)η(b,y)η(c,z)η(d,w)].(5.14)

Let (a,x) = ((a1, x1), (a2, x2), . . . , (a|i|, x|i|)) ∈ (N × Z
d)|i| denote the se-

quence of space-time points determined by a and x, and let p ∈N be the number of
distinct space-time points in the union of the four sequences (a,x), (b,y), (c,z),
(d,w):

p := ∣∣(a,x)∪ (b,y)∪ (c,z)∪ (d,w)
∣∣

= ∑
(n,r)∈N×Zd

1{(n,r)∈(a,x)∪(b,y)∪(c,z)∪(d,w)}.(5.15)

The first step toward (5.12) is to show that we can restrict the two sums in
(5.13)–(5.14) to configurations of (a,x), (b,y), (c,z), (d,w) satisfying

(5.16) p= 2|i|.
Indeed, we can rule out the two cases p > 2|i| and p < 2|i| as follows.

Case 1. p > 2|i|. Since there are 4|i| space-time points (including multiplic-
ity) in the four sequences (a,x), (b,y), (c,z), (d,w), there must be at least one
space-time point, say (am, xm), which will not be matched in pair with one of
the elements in (b,y) ∪ (c,z) ∪ (d,w). Then the expectation in (5.14) vanishes
because η(am,xm) is not paired to any other η random variable in η(b,y), η(c,z) or
η(d,w) [recall (5.7)]. Therefore, the contribution to the sum in (5.13) is zero in this
case.

Case 2. p < 2|i|. Recalling (5.15), for each 1≤ p < 2|i|, set

S(p)
N :=

(
M

RN

)2|i| ∑
(a,x),(b,y),(c,z)

(d,w) such that p=p

qa(x)qb(y)qc(z)qd(w)

×E[η(a,x)η(b,y)η(c,z)η(d,w)].
(5.17)

It suffices to show that S(p)
N → 0 as N →∞, for each p < 2|i|.

To lighten notation, we assume that qn(x) ≥ 0 [just replace qn(x) by |qn(x)|
in the following arguments]. Furthermore, we first consider the simplifying case
when

(5.18) qn(x)≤ 1.

We will use the fact that E[η(a,x)η(b,y)η(c,z)η(d,w)] = 0 unless the individual η

variables match in pairs or quadruples, since we have assumed the η’s to be i.i.d.
standard normals in our attempt to verify Theorem 4.2(ii). In any event, note that

(5.19)
∣∣E[η(a,x)η(b,y)η(c,z)η(d,w)]

∣∣≤ 3|i|.
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If p = p, then we can relabel (a,x) ∪ (b,y) ∪ (c,z) ∪ (d,w) =
{(f1, h1), (f2, h2), . . . , (fp,hp)}, with f1 ≤ f2 ≤ · · · ≤ fp , and we set f0 := 0
[since (fi, hi) are distinct space-time points, when fi = fi+1 we must have
hi �= hi+1]. The sums in (5.13) and (5.14) can then be rewritten as sums over
(fj , hj )1≤j≤p , with another sum over all admissible assignments of (a,x), (b,y),

(c,z), (d,w) to points in (fj , hj )1≤j≤p .
We start by summing over all admissible values of (fp,hp). Denoting by m ∈

{2,4} the number of space-time points in (a,x), (b,y), (c,z), (d,w) assigned to
(fp,hp) [for m ∈ {1,3}, the expectation in (5.14) vanishes]. The factors in (5.14)
involving (fp,hp) are

m∏
i=1

qfp−fri
(hp − hri )

for some r1, . . . , rm ∈ {0,1, . . . , p − 1}. Using the assumption (5.18) that qn ≤ 1,
we get

∑
(fp,hp)

m∏
i=1

qfp−fri
(hp − hri )≤

∑
(fp,hp)

qfp−fr1
(hp − hr1)qfp−fr2

(hp − hr2)

≤
( ∑

(fp,hp)

qfp−fr1
(hp − hr1)

2
)1/2

×
( ∑

(fp,hp)

qfp−fr2
(hp − hr2)

2
)1/2

≤ ∑
1≤n≤N

∑
x∈Zd

q2
n(x)=RN.

(5.20)

The last inequality holds because the range of fp − fri is contained in {1, . . . ,N},
by (5.4).

We can iterate this estimate, summing successively over (fp−1, hp−1),

(fp−2, hp−2), . . . , (f1, h1). This, together with (5.19), shows that for fixed M ∈N,
as N →∞,

(5.21) S(p)
N ≤ 3Ĉ

(
M

RN

)2|i|
Rp

N =O
(
Rp−2|i|

N

)
,

where Ĉ depends only on |i| and p and bounds the number of ways of assigning
(a,x), (b,y), (c,z), (d,w) to (f�, h�)1≤�≤p . Since p < 2|i|, relation (5.21) shows

that S(p)
N converges to zero as N tends to infinity.

We now show how to remove the assumption qn ≤ 1 in (5.18). Setting

(5.22) ‖qn‖∞ := max
x∈Zd

qn(x),
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the right-hand side of (5.20) is replaced by RN(max1≤n≤N ‖qn‖m−2∞ ). As
we sum over (fp,hp), . . . , (f1,p1), we collect exactly 4|i| − 2p factors of
max1≤n≤N ‖qn‖∞. Consequently, (5.21) becomes

(5.23) S(p)
N =O

(
Rp−2|i|

N

(
max

1≤n≤N
‖qn‖∞

)4|i|−2p)
.

However, by (5.1) and (5.22),

(5.24) max
1≤n≤N

‖qn‖2∞ ≤ max
1≤n≤N

(Rn −Rn−1)= o(RN),

since RN is slowly varying and divergent. Therefore, S(p)
N → 0 also in the general

case.
Continuing with the proof of (5.12), we may now restrict the sums in (5.13) and

(5.14) to configurations satisfying p= 2|i| [recall (5.15)]. This means that the 4|i|
space-time points among (a,x), (b,y), (c,z), (d,w) match exactly in pairs (i.e.,
coincide two by two).

As before, let (fi, hi)1≤i≤p , with f1 ≤ f2 ≤ · · · ≤ fp and p = 2|i|, be the dis-
tinct space-time points occupied by (a,x) ∪ (b,y) ∪ (c,z) ∪ (d,w). In principle,
one could have fi = fi+1 (necessarily with hi �= hi+1), but such configurations
give a negligible contribution in (5.13), because this leaves at most p− 1 free co-
ordinates fj to sum over, each of which gives by (5.20) a contribution of at most
RN [assuming qn ≤ 1; otherwise use (5.24)], while the prefactor in (5.17) decays
as R−p

N . As a consequence, we may assume that f1 < f2 < · · ·< fp , which means
that the time points among a,b, c,d have to match exactly in pairs.

We now make a further restriction. Let [a] := [a1, a|i|] ⊆ R be the smallest in-
terval containing all the points in the (increasing) sequence a = (a1, a2, . . . , a|i|).
Then [a] ∪ [b] ∪ [c] ∪ [d] is a union of disjoint closed intervals (connected com-
ponents) whose number can range from one to four. We now show that we can
restrict the sum in (5.13) to configurations of a,b, c,d with exactly two connected
components. We distinguish between two cases.

Case 3. Three or four connected components. Since |a| = |b| = |c| = |d| = |i|,
we must have

|a ∪ b ∪ c ∪ d| ≥ 3|i|,
therefore, also p≥ 3|i| [cf. (5.15)], which has been excluded in Case 1.

Case 4. One connected component. Similar to (5.17), it suffices to focus on

(5.25) ŜN :=
(

M

RN

)2|i| ∑
(a,x),(b,y),(c,z),(d,w)

matching in pairs and
forming one connected component

qa(x)qb(y)qc(z)qd(w)

and show that ŜN → 0 as N →∞ (note that E[η(a,x)η(b,y)η(c,z)η(d,w)] = 1 be-
cause of the “matching in pairs” condition). We will show that the “one connected
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component” condition effectively leads to the loss of a degree of freedom in the
summation.

Without loss of generality, assume that a1 = min{a1, b1, c1, d1} is the smallest
among all time indices in a,b, c,d . Then it has to match either b1, c1 or d1. Say
a1 = b1 = f1. It follows that c1 = fu for some u ∈ {2, . . . , p}. The constraints of
matching in pairs and [a] ∪ [b] ∪ [c] ∪ [d] having one connected component imply
that either c1 ≤ ak̄ or c1 ≤ bk̄ for some k̄ ≥ 2; w.l.o.g., assume that c1 ≤ ak̄ . Since
a ≺ i, by (4.5) and (5.4), this implies

f1 = a1 < fu = c1 ≤ ak̄ ≤ a1 + ti2 + ti3 + · · · + tik̄

≤ f1 + (k̄− 1)ti1−2 ≤ f1 + |i|ti1−2,

where the last inequality holds because i� ≤ i1 − 2 for all � ∈ {2, . . . , |i|}, since i

is a dominated sequence; cf. (5.8). Also note f1 = a1 ≥ ti1−1, again by (4.5) and
(5.4). Therefore,

f1 = a1 ≥ ti1−1 and

fu = c1 ∈ (f1, f1 + m̄1] where m̄1 := |i|ti1−2.
(5.26)

We can now sum (5.25) over the variables (f1, h1), . . . , (fp,hp) subject to
(5.26) for some 2 ≤ u ≤ p. The sum over (fp,hp) has already been estimated
in (5.20) with m= 2, and is bounded by RN . The same bound RN applies to the
sum over (f�, h�) for each �= p− 1,p− 2, . . . , u+ 1. The sum over (fu,hu), in
view of (5.26), is bounded by∑

fu∈(f1,f1+m̄1]

∑
hu∈Zd

qfu−fr1
(hu − hr1)qfu−fr2

(hu − hr2),

for some r1, r2 ∈ {0, . . . , u− 1}. Since fu = c1 is the first index of the sequence
c, we have either r1 = 0 or r2 = 0; w.l.o.g., assume r1 = 0. We then have [recall
(5.7)] ∑

fu∈(f1,f1+m̄1]
hu∈Zd

qfu(hu)qfu−fr2
(hu − hr2)

≤
( ∑

fu∈(f1,f1+m̄1]
hu∈Zd

qfu(hu)
2
)1/2( ∑

fu∈(f1,f1+m̄1]
hu∈Zd

qfu−fr2
(hu − hr2)

2
)1/2

(5.27)

≤
( ∑

f1<n≤f1+m̄1
x∈Zd

q2
n(x)

)1/2( ∑
1≤n≤N

x∈Zd

q2
n(x)

)1/2
=

√
Rf1+m̄1 −Rf1

√
RN.
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Let us recall from (4.5) that ti = tN,M
i satisfies Rti ∼ i

M
RN as N →∞ (for fixed

M ∈N). It follows that if j < i, then tj = o(ti ) as N →∞.5 Since m̄1 = |i|ti1−2 by
(5.26) while f1 = a1 ≥ ti1−1, it follows that m̄1 = o(f1), and hence Rf1+m̄1 ∼Rf1 .

This implies that the right-hand side of (5.27) equals
√

o(1)Rf1

√
RN = o(1)RN as

N →∞.
We can now sum over the remaining variables (f�, h�) for � = u − 1,

u− 2, . . . ,1 as we did before, with each sum bounded by RN as shown in (5.20),
which gives

(5.28) ŜN ≤ Ĉ
(

M

RN

)2|i|
Rp

No(1),

where Ĉ is again a combinatorial factor independent of N . Since p = 2|i|, for any
fixed M ∈N, the right-hand side of (5.28) vanishes as N →∞.

To complete the proof of (5.12), it only remains to show that (5.12) holds if the
joint sums in (5.13) and (5.14) are restricted such that |(a,x) ∪ (b,y) ∪ (c,z) ∪
(d,w)| = 2|i| and [a] ∪ [b] ∪ [c] ∪ [d] contains two connected components.

Case 5. Two connected components. In this case, a,b, c,d must coincide two
by two, that is,

(5.29) a = b and c= d or a = c and b= d or a = d and b= c.

This extends further to (a,x), (b,y), (c,z), (d,w). By symmetry, each of the three
cases gives the same contribution, which leads to the factor 3 in the right-hand side
of (5.12). We can thus focus on the case (a,x)= (b,y) �= (c,z)= (d,w).

Restricting the sums in (5.13) and (5.14) to (a,x) = (b,y) �= (c,z) = (d,w),
we obtain

(5.30)
(

M

RN

)2|i| ∑
a,c≺i,x,z∈(Zd )|i|

[a]∩[c]=∅

qa(x)2qc(z)
2.

Note that if we ignore the restriction [a] ∩ [c] =∅, then the sum factorizes and we
obtain

(5.31)
(

M

RN

)2|i|( ∑
a≺i,x∈Zd

qa(x)2
)( ∑

c≺i,z∈Zd

qc(z)
2
)
−−−−→
N→∞ 1

by the same variance calculation as in (5.11). This proves (5.12), because the terms
in (5.30) with [a] ∩ [c] �= ∅ are negligible by the same bounds as in Case 4 [cf.
(5.27)], where [a] ∪ [b] ∪ [c] ∪ [d] contains one connected component. �

5If tj ∈ [εti , ti ] for ε > 0, the slowly varying property of RN would yield Rtj ∼Rti , contradicting
(4.5).
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6. Proof of Theorem 2.8. In this section, we will first prove the approxima-
tion steps (A1)–(A4) outlined in Section 4, and then conclude the proof of Theo-
rem 2.8.

Recall that the first step (A1) enlarges the range of summation for Z
(k)
N in (4.1)

to 1≤ n1, n2 − n1, . . . , nk − nk−1 ≤N .

LEMMA 6.1 [Approximation (A1)]. For each k ∈ N, let Z
(k)
N be as in (4.1),

and let

(6.1) Ẑ
(k)
N := 1

Rk/2
N

∑
1≤n1,n2−n1,...,nk−nk−1≤N

z1,z2,...,zk∈Zd

k∏
j=1

qnj−nj−1(zj − zj−1)

k∏
i=1

η(ni,zi ).

Then

(6.2) lim
N→∞E

[(
Ẑ

(k)
N −Z

(k)
N

)2]= 0.

PROOF. Recall from (5.6) that for n = (n1, . . . , nk) ∈ N
k↑ := {n ∈ N

k : n1 <

n2 < · · ·< nk},

(6.3) Qn :=
∑

x∈(Zd )|n|

|n|∏
j=1

qnj−nj−1(xj − xj−1)η(nj ,xj ) (with n0 = x0 = 0).

We can then write the difference

Ẑ
(k)
N −Z

(k)
N = 1

Rk/2
N

∑
n∈Nk↑

(11≤n1−n0,...,nk−nk−1≤N − 10<n1<···<nk≤N)Qn.

Since E[QnQn′ ] = 1{n=n′}‖qn‖2 for n,n′ ∈N
k↑ by (5.9), we observe that

E
[(

Ẑ
(k)
N −Z

(k)
N

)2]= E
[(

Ẑ
(k)
N

)2]−E
[(

Z
(k)
N

)2]− 2E
[(

Ẑ
(k)
N −Z

(k)
N

)
Z

(k)
N

]
= E

[(
Ẑ

(k)
N

)2]−E
[(

Z
(k)
N

)2]
.

On the other hand, recalling (2.7),

E
[(

Z
(k)
N

)2]≤ E
[(

Ẑ
(k)
N

)2]
= 1

Rk
N

∑
1≤n1,n2−n1,...,nk−nk−1≤N

z1,z2,...,zk∈Zd

k∏
j=1

qnj−nj−1(zj − zj−1)
2

= 1

Rk
N

( ∑
1≤n≤N

z∈Zd

qn(z)
2
)k

= 1.

(6.4)



UNIVERSALITY IN MARGINALLY RELEVANT DISORDERED SYSTEMS 3083

To prove (6.2), it then suffices to show that lim infN→∞E[(Z(k)
N )2] ≥ 1, which

holds since

E
[(

Z
(k)
N

)2]= 1

Rk
N

∑
n∈Nk↑

10<n1<···<nk≤N‖qn‖2

≥ 1

Rk
N

∑
n∈Nk↑

11≤n1−n0,...,nk−nn−1≤N
k
‖qn‖2 = Rk

N/k

Rk
N

,

which tends to 1 as N → ∞ by the assumption that RN is slowly varying
in N . �

The approximation step (A2) in Section 4 bounds the contributions of near-
diagonal terms when the summations in Ẑ

(k)
N in (6.1) are divided into blocks.

LEMMA 6.2 [Approximation (A2)]. Recall from (4.6) the definition of the
block variables

�
N;M
i :=

(
M

RN

)k/2 ∑
n1∈Ii1 ,...,nk−nk−1∈Iik

Qn,

i = (i1, . . . , ik) ∈ {1, . . . ,M}k,
(6.5)

with Qn as in (6.3), and Ii = (ti−1, ti] defined as in (4.5) such that Rti ∼ i
M

RN .
Then

(6.6) lim
M→∞ lim sup

N→∞
E

[( ∑
i∈{1,...,M}k\{1,...,M}k�

1

M
k
2

�
N;M
i

)2]
= 0,

where {1, . . . ,M}k� was defined in (4.7), which consists of i with |ij − ij ′ | ≥ 2 for
all j �= j ′.

PROOF. Denote {1, . . . ,M}k∗ := {1, . . . ,M}k \ {1, . . . ,M}k� . Note that

E

[( ∑
i∈{1,...,M}k∗

1

M
k
2

�
N;M
i

)2]
= 1

Rk
N

∑
i∈{1,...,M}k∗

∑
n1∈Ii1 ,...,nk−nk−1∈Iik

‖qn‖2.

Recall from (5.3) that
∑

m∈Ii
‖qm‖2 ∼ RN/M as N → ∞, while ‖qn‖2 =∏|n|

j=1 ‖qnj−nj−1‖2, we can therefore sum nk, nk−1, . . . , n1 successively to obtain

lim sup
N→∞

E

[( ∑
i∈{1,...,M}k∗

1

M
k
2

�
N;M
i

)2]
≤ ∑

i∈{1,...,M}k∗

1

Mk
,
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which tends to 0 as M →∞, since the constraint i ∈ {1, . . . ,M}k \ {1, . . . ,M}k�
reduces the number of free indices in i = (i1, . . . , ik). �

The approximation step (A3) concerns the asymptotic factorization of �
N;M
i

into a product of �
N;M
i(j) , indexed by dominated sequences i(1), . . . , i(m) form-

ing i [cf. (4.9)]. Recall that each i = (i1, . . . , ik) ∈ {1, . . . ,M}k� can be divided

into m = m(i) consecutive dominated sequences i(1) := (i1, . . . , i�2−1), i(2) :=
(i�2, . . . , i�3−1), . . . , i(m) := (i�m, . . . , ik), where i�1 = i1 < i�2 < · · ·< i�m are the
successive running maxima of (i1, . . . , ik).

LEMMA 6.3 [Approximation (A3)]. For each i = (i1, . . . , ik) ∈ {1, . . . ,M}k� ,
we have

(6.7) lim
N→∞E

[(
�

N;M
i −�

N;M
i(1) �

N;M
i(2) · · ·�N;M

i(m(i))

)2]= 0,

where (i(1), . . . , i(m(i))) is the decomposition of i into dominated sequences.

PROOF. We first prove (6.7) for m(i) = 2, with �1 = 1 and �2 denoting the
indices of the two running maxima of i. Recall that

(6.8) �
N;M
i1,...,ik

=
(

M

RN

)k/2 ∑
n1∈Ii1 ,...,nk−nk−1∈Iik

x1,...,xk∈Zd

k∏
j=1

qnj−nj−1(xj − xj−1)

k∏
i=1

η(ni,xi ).

Note that if we replace qn�2−n�2−1(x�2 − x�2−1) by qn�2
(x�2) and replace the range

of summation n�2 −n�2−1 ∈ Ii�2
by n�2 ∈ Ii�2

, then the above expression for �
N;M
i

becomes that for �
N;M
i(1) �

N;M
i(2) . We will show that these replacements are jus-

tified because using that �2 is a running maximum of i, one has n�2 $ n�2−1

and the local limit theorem of Hypothesis 2.4 can then be applied to replace
qn�2−n�2−1(x�2 − x�2−1) by qn�2

(x�2).

First, note that the summands in (6.8) for �
N;M
i are all orthogonal, and the

dominant L2 contribution comes from x1, . . . , xk with |xj − xj−1| of the order

φ(nj − nj−1) := (
(nj − nj−1)L(nj − nj−1)

2)1/d

for each 1 ≤ j ≤ k. Indeed, by the local limit theorem of Hypothesis 2.4 and a
Riemann sum approximation,

E[(∑|x|≤Kφ(n) qn(x)η(n,x))
2]

E[(∑x qn(x)η(n,x))2] =
∑
|x|≤Kφ(n) qn(x)2∑

x qn(x)2 −→
n→∞

∫
|x|≤K g2(x)dx∫

g2(x)dx
−→

K→∞ 1.
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Therefore, by choosing K large, we can approximate �
N;M
i arbitrarily closely in

L2 by

�̃
N;M
i =

(
M

RN

)k/2 ∑
n1∈Ii1 ,...,nk−nk−1∈Iik|x1|≤Kφ(n1),...,|xk−xk−1|≤Kφ(nk−nk−1)

k∏
j=1

qnj−nj−1(xj − xj−1)

×
k∏

i=1

η(ni,xi ).

Similarly, we can approximate �
N;M
i(1) �

N;M
i(2) arbitrarily closely in L2 by

�̃
N;M
i(1) �̃

N;M
i(2) , which differs from �̃

N;M
i in:

• the factor qn�2
(x�2) instead of qn�2−n�2−1(x�2 − x�2−1);

• the range of summation n�2 ∈ Ii�2
and |x�2 | ≤Kφ(n�2), instead of n�2 −n�2−1 ∈

Ii�2
and |x�2 − x�2−1| ≤Kφ(n�2 − n�2−1).

We now show that these differences are negligible in L2 contributions. By as-
sumption,

nj − nj−1 ∈ Iij = (tij−1, tij ] for all 1≤ j ≤ �2 − 1,

where ta is chosen with Rta ∼ a
M

RN . Since RN is slowly varying and divergent,
we have t1 � t2 � t3 � · · · as N →∞. In particular, we have the uniform bound

(6.9) n�2−1 =
�2−1∑
j=1

(nj − nj−1)≤
�2−1∑
j=1

tij =O(ti1)= o(ti�2−1),

where the last bound holds because the assumption i ∈ {1, . . . ,M}k� and �2 be-
ing a running maximum ensures that ij ≤ i1 < i�2 − 1 for all 1 ≤ j ≤ �2 − 1.

Therefore, when we switch from the range of summation in �̃
N;M
i from n�2 ∈

n�2−1 + (ti�2−1, ti�2
] to n�2 ∈ (ti�2−1, ti�2

], the difference is negligible in L2 as
N →∞.

Similarly, we have the uniform bound

|x�2−1| ≤
�2−1∑
j=1

|xj − xj−1|

≤K

�2−1∑
j=1

φ(nj − nj−1)≤K

�2−1∑
j=1

φ(tij )� φ(ti�2−1),

(6.10)

and when we switch the range of summation in �̃
N;M
i from |x�2 − x�2−1| ≤

Kφ(n�2 − n�2−1) to |x�2 | ≤ Kφ(n�2), the difference is again negligible in L2 as
N →∞ (recall that by construction Ii�2

 n�2 − n�2−1 ≥ ti�2−1).
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Having justified the switch of the range of summation for n�2 and x�2 in
�̃

N;M
i to n�2 ∈ Ii�2

and |x�2 | ≤ Kφ(n�2), we note finally that switching
qn�2−n�2−1(x�2 − x�2−1) to qn�2

(x�2) also leads to a negligible difference in L2

as N →∞, because uniformly in x�2−1 and n�2−1 with bounds as in (6.9) and
(6.10), and uniformly in n�2 ∈ Ii�2

and |x�2 | ≤Kφ(n�2), we have

(6.11)
∣∣∣∣qn�2−n�2−1(x�2 − x�2−1)

qn�2
(x�2)

− 1
∣∣∣∣ −→
N→∞ 0,

which follows readily from the local limit theorem for q(·) in Hypothesis 2.4.
This completes the proof of (6.7) when i has two running maxima. In general,

when i has m running maxima, occurring at indices �1 = 1, �2, . . . , �m, the argu-
ment is the same: We just replace qn�j

−n�j−1(x�j
−x�j−1) by qn�j

(x�j
) and replace

the range of summation n�j
− n�j−1 ∈ Ii�j

by n�j
∈ Ii�j

, one j at a time. �

As explained in Section 4, for a fixed M ∈ N, which is the number of blocks
(Ii)1≤i≤M that partition [1,N] [cf. (5.2)], the polymer partition function Zω

N,βN

(with βN = β̂/
√

RN for some β̂ < 1) is approximated in distribution in the
N →∞ limit by the random variable Z

(M)

β̂
in (4.14). The last step (A4) is to

show that as M →∞, Z
(M)

β̂
converges to the log-normal random variable Z

β̂
in

Theorem 2.8.

LEMMA 6.4 [Step (A4)]. Let (ζi)i∈DM
be i.i.d. standard normal random vari-

ables indexed by finite dominated sequences in DM as defined in (4.12). Let
β̂ ∈ (0,1), and let

(6.12) Z
(M)

β̂
:= 1+

∞∑
k=1

∑
i∈{1,...,M}k�

β̂k

M
k
2

m(i)∏
l=1

ζi(l) ,

where (i(1), . . . , i(m(i))) is the decomposition of i into dominated sequences. Then

(6.13) Z
(M)

β̂

d−−−−→
M→∞ Z

β̂
= exp

(∫ 1

0

β̂√
1− β̂2t

dW(t)− 1

2

∫ 1

0

β̂2

1− β̂2t
dt

)
,

where W is a standard one dimensional Wiener process.

PROOF. Grouping i = (i1, . . . , ik) according to the indices of its running max-
ima �1 = 1 < �2 < · · · < �m ≤ k, as well as the values of the running maxima
1 ≤ i�1 < · · · < i�m ≤ M , which we denote by i ∼ (%�, i%�), we can write (with
�m+1 := k + 1)

(6.14) Z
(M)

β̂
= 1+

∞∑
k=1

k∑
m=1

β̂k

M
k
2

∑
1=�1<···<�m≤k

1≤i�1<i�2<···<i�m≤M

∑
i∈{1,...,M}k�

i∼(%�,i%�)

m∏
j=1

ζ(i�j ,...,i�j+1−1).
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Let us replace the constraints i ∈ {1, . . . ,M}k� and i ∼ (%�, i%�) by sum over

(i�j+1, . . . , i�j+1−1) ∈ {1, . . . , i�j
− 1}�j+1−�j−1 for each 1 ≤ j ≤ m, that is, ap-

proximate Z
(M)

β̂
by

Ẑ
(M)

β̂
= 1+

∞∑
k=1

k∑
m=1

β̂k

M
k
2

× ∑
1=�1<···<�m≤k

1≤i�1<i�2<···<i�m≤M

∑
(i�r+1,...,i�r+1−1)∈
{1,...,i�r−1}�r+1−�r−1

for r=1,...,m

m∏
j=1

ζ(i�j ,...,i�j+1−1),
(6.15)

where we have extended the i.i.d. family (ζi)i∈DM
to include new indepen-

dent standard normals ζ(a1,...,ar ) indexed by dominated sequences (a1, . . . , ar) ∈
{1, . . . ,M}r \ {1, . . . ,M}r�.

Note that Ẑ
(M)

β̂
contains more summands than Z

(M)

β̂
, and the summands are

orthogonal. A simple calculation shows that both ‖Ẑ(M)

β̂
‖2

2 and ‖Z(M)

β̂
‖2

2 tend to

1+∑∞
k=1 β̂2k = (1− β̂2)−1 as M →∞. Therefore,

∥∥Ẑ(M)

β̂
−Z

(M)

β̂

∥∥2
2 −→

M→∞ 0.

For a ∈N and r ∈N, let us now denote

(6.16) ξr(a) := ∑
(a2,...,ar )∈{1,...,a−1}r−1

ζ(a,a2,...,ar ).

Denoting rj := �j+1 − �j (with �m+1 := k+ 1) and aj := i�j
, we can then rewrite

Ẑ
(M)

β̂
as

Ẑ
(M)

β̂
= 1+

∞∑
k=1

k∑
m=1

β̂k

M
k
2

∑
1=�1<···<�m≤k

1≤a1<a2<···<am≤M

m∏
j=1

ξ�j+1−�j
(aj )

= 1+
∞∑

k=1

k∑
m=1

β̂k

M
k
2

∑
r1,...,rm∈N

r1+···+rm=k

∑
1≤a1<a2<···<am≤M

m∏
j=1

ξrj (aj )

= 1+
∞∑

m=1

∑
r1,...,rm∈N

∑
1≤a1<a2<···<am≤M

m∏
j=1

β̂rj

M
rj
2

ξrj (aj )(6.17)
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= 1+
∞∑

m=1

∑
r1,...,rm∈N

∑
0<t1<t2<···<tm≤1

t1,...,tm∈ 1
M
N

m∏
j=1

β̂rj

M
rj
2

ξrj (Mtj )

= 1+
∞∑

m=1

∑
0<t1<t2<···<tm≤1

t1,...,tm∈ 1
M
N

m∏
j=1

{∑
r∈N

β̂r

M
r
2
ξr(Mtj )

}
,

where we could interchange summations because the series is L2 convergent when
β̂ ∈ (0,1).

We note that (β̂/
√

M)rξr(Mt) are independent normal random variables for
different values of r ∈N and t ∈M−1

N, and hence the collection of random vari-
ables:

�M,t :=
∑
r∈N

β̂r

M
r
2
ξr(Mt), t ∈ (0,1] ∩ 1

M
N,

are also independent normal with mean zero and variance

Var(�M,t )=
∑
r∈N

β̂2r

Mr
Var

(
ξr(Mt)

)=∑
r∈N

β̂2r

Mr
(Mt − 1)r−1 = β̂2

M
· 1+ εM(t)

1− β̂2t
,

where ∣∣εM(t)
∣∣= 1

M(1− β̂2t)+ 1
≤ 1

M(1− β̂2)+ 1
,

which tends to 0 uniformly in t ∈ [0,1] as M tends to ∞, provided β̂ < 1. There-
fore, we can represent �M,t in terms of a standard Wiener process W

�M,t = β̂(1+ εM(t))√
1− β̂2t

∫ t

t− 1
M

dWs, t ∈ [0,1] ∩ 1

M
N.(6.18)

We can then write

Ẑ
(M)

β̂
= 1+

∞∑
m=1

∑
0<t1<t2<···<tm≤1

t1,...,tm∈ 1
M
N

m∏
j=1

β̂(1+ εM(t))√
1− β̂2tj

∫ tj

tj− 1
M

dWs.(6.19)

For β̂ < 1, it is easily seen that

Ẑ
(M)

β̂

L2−−−−→
M→∞ 1+

∞∑
m=1

∫
· · ·

∫
0<t1<···<tm<1

m∏
j=1

β̂√
1− β̂2tj

dWtj

= : exp
{∫ 1

0

β̂√
1− β̂2t

dW(t)

}
:,



UNIVERSALITY IN MARGINALLY RELEVANT DISORDERED SYSTEMS 3089

where the last equality holds by the properties of the Wick exponential ([24], Sec-
tion 3.2). Since the last expression is precisely Z

β̂
, the proof is complete. �

PROOF OF THEOREM 2.8. When β̂ ∈ (0,1), the convergence of Zω
N,βN

to Z
β̂

follows readily from the approximation steps (A1)–(A4) and the key
step (K), as explained in Section 4. The convergence of the second moment
E[(Zω

N,βN
)2]→ E[(Z

β̂
)2] = 1

1−β̂2 for β̂ ∈ (0,1) is a simple calculation, using (4.4)

and E[(Ẑ(k)
N )2] = 1 [recall (6.4)].

When β̂ ≥ 1, the convergence in law Zω
N,βN

→ 0 follows a standard argu-
ment, which we include for completeness. Note that it suffices to show that
for some ϑ ∈ (0,1), the fractional moment E[(Zω

N,βN
)ϑ ] converges to zero as

N →∞.
First, we show that E[(Zω

N,β)ϑ ] is nonincreasing in β . Indeed,

d

dβ
E
[(

Zω
N,β

)ϑ ]= ϑE

[
E

[
N∑

n=1

(
ωn,xn − λ′(β)

)
e
∑N

n=1(βωn,xn−λ(β))

](
Zω

N,β

)ϑ−1

]

= ϑ

N∑
n=1

E
[
E
[(

ωn,xn − λ′(β)
)
e
∑N

i=1(βωi,xi
−λ(β))(Zω

N,β

)ϑ−1]]

= ϑ

N∑
n=1

E
[
Ẽ
[(

ωn,xn − λ′(β)
)(

Zω
N,β

)ϑ−1]]
,

where we have interpreted e
∑N

i=1(βωi,xi
−λ(β)) as a probability density for a new law

P̃ which exponentially tilts ωi,xi
for each 1 ≤ i ≤ N . Note that [ωn,xn − λ′(β)] is

increasing in ωn,xn , while (Zω
N,β)ϑ−1 is decreasing in ωn,xn because ϑ ∈ (0,1).

Therefore, by the FKG inequality,

d

dβ
E
[(

Zω
N,β

)ϑ ]≤ ϑ

N∑
n=1

E
[
Ẽ
[
ωn,xn − λ′(β)

]
Ẽ
[(

Zω
N,β

)ϑ−1]]= 0,

since

Ẽ
[
ωn,xn − λ′(β)

]= E
[(

ωn,xn − λ′(β)
)
eβωn,xn−λ(β)]= d

dβ
E
[
eβωn,xn−λ(β)]= 0.

We have just shown that E[(Zω

N,β̂ ′/
√

RN
)ϑ ] ≤ E[(Zω

N,β̂/
√

RN
)ϑ ], for any β̂ <

1 ≤ β̂ ′. Since Zω

N,β̂/
√

RN
converges in distribution to Z

β̂
when β̂ < 1, and

(Zω

N,β̂/
√

RN
)ϑ is uniformly integrable, because ϑ ∈ (0,1) and E[Zω

N,β̂/
√

RN
] = 1,



3090 F. CARAVENNA, R. SUN AND N. ZYGOURAS

by the first part of Theorem 2.8 we then have

lim sup
N→∞

E
[(

Zω

N,β̂ ′/
√

RN

)ϑ ]≤ lim sup
N→∞

E
[(

Zω

N,β̂/
√

RN

)ϑ ]
= E

[
exp

(
ϑ

∫ 1

0

β̂√
1− β̂2t

dW(t)− ϑ

2

∫ 1

0

β̂2

1− β̂2t
dt

)]

= exp
(

ϑ(ϑ − 1)

2

∫ 1

0

β̂2

1− β̂2t
dt

)
= (

1− β̂2)− ϑ(ϑ−1)
2 .

Letting β̂ ↗ 1 then shows that E[(Zω

N,β̂ ′/
√

RN
)ϑ ] → 0 as N → ∞ whenever

β̂ ′ ≥ 1. �

7. Proof of Theorem 2.12. To prove Theorem 2.12, we first need to extend
Proposition 5.2 to random variables �

N;M
i which form the building blocks of par-

tition functions Zω
N,β(X) with starting points X= (x, t) other than the origin. More

precisely, as in (4.6), define

�
N;M
i (X) :=

(
M

RN

)k/2 ∑
n1−n0∈Ii1

n2−n1∈Ii2 ,...,nk−nk−1∈Iik

z1,z2,...,zk∈Zd

k∏
j=1

qnj−nj−1(zj − zj−1)

(7.1)

×
k∏

i=1

η(ni,zi ),

except here (z0, n0) is defined to be X instead of the origin.
For X = (x, t) ∈ Z

d × N0 with d ∈ {0,1,2}, recall the definition of |||X||| from
(2.15). We then have the following extension of Proposition 5.2.

PROPOSITION 7.1. Assume that Hypothesis 2.4 holds and RN in (2.7)–(2.8)
diverges as N →∞. For 1 ≤ k ≤ r , let X(k)

N = (x
(k)
N , t

(k)
N ) be points in Z

d × N0,
such that

(7.2) ∀1≤ k, l ≤ r: R|||X(k)
N −X(l)

N |||/RN = ζk,l + o(1) for some ζk,l ∈ [0,1].
For M ∈ N, let us denote by D̃M be the set of dominated sequences i ∈ DM [cf.
(5.8)], for which i1/M is well separated from all the ζk,l in the following sense:

(7.3) D̃M := {
i ∈DM : |i1/M − ζk,l|> 1/M ∀1≤ k, l ≤ r

}
.

Then the vector (�
N;M
i (X(k)

N ))1≤k≤r,i∈D̃M
converges in law as N →∞ to a cen-

tered Gaussian vector (ζ
(k)
i )1≤k≤r,i∈D̃M

with covariance matrix

(7.4) Cov
[
ζ

(k)
i , ζ

(l)

i′
]= 1{i=i′}1{i1/M>ζk,l}.
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PROOF. The random variable �
N;M
i ((x, t)) has the same law as �

N;M
i ((0,0)).

Therefore, the proof of Proposition 5.2 readily implies that for each i ∈ D̃M and
1≤ k ≤ r ,

Var
(
�

N;M
i

(
X(k)

N

)) −→
N→∞ 1 and E

[(
�

N;M
i

(
X(k)

N

))4] −→
N→∞ 3.

By the (multi-dimensional) fourth moment theorem (Theorem 4.2), it then only
remains to show that

Cov
(
�

N;M
i

(
X(k)

N

)
,�

N;M
i′

(
X(l)

N

)) −→
N→∞ 1{i=i′}1{i1/M>ζk,l}

∀1≤ k, l ≤ r, i, i′ ∈ D̃M.

(7.5)

Note that when the dominated sequences i, i′ are different, there are unmatched
η’s and consequently Cov(�

N;M
i (X(k)

N ),�
N;M
i′ (X(l)

N )) = 0; and when i = i′, we
have

E
[
�

N;M
i

(
X(k)

N

)
�

N;M
i

(
X(l)

N

)]
=

(
M

RN

)k ∑
n1−t

(k)
N ∈Ii1

n1−t
(l)
N ∈Ii1

∑
z1∈Zd

q
n1−t

(k)
N

(
z1 − x

(k)
N

)
q
n1−t

(l)
N

(
z1 − x

(l)
N

)

× ∑
n2−n1∈Ii2 ,...,nk−nk−1∈Iik

z2,...,zk∈Zd

k∏
j=2

qnj−nj−1(zj − zj−1)
2

∼ M

RN

∑
n1−t

(k)
N ∈Ii1

n1−t
(l)
N ∈Ii1

∑
z1∈Zd

q
n1−t

(k)
N

(
z1 − x

(k)
N

)
q
n1−t

(l)
N

(
z1 − x

(l)
N

)
,

(7.6)

where in the last step we used (2.7) [recall that qn(x) = P(Sn = x) and we write
f (N)∼ g(N) as a shorthand for limN→∞ f (N)/g(N)= 1].

We first consider the case i1/M > ζk,l , which implies (i1 − 1)/M > ζk,l since
i ∈ D̃M . In this case, since Ii1  n1 − t

(k)
N = n1 − n0 ≥ ti1−1, recalling assumption

(7.2) we have

n1 − t
(k)
N $ ∣∣t (k)

N − t
(l)
N

∣∣.
By Hypothesis 2.4, the dominant contribution to (7.6) then comes from z1 with∣∣z1 − x

(k)
N

∣∣$ ∣∣x(k)
N − x

(l)
N

∣∣ as N →∞.

By the same argument as in the proof of Lemma 6.3, we can apply the local limit
theorem in Hypothesis 2.4 and replace (x

(l)
N , t

(l)
N ) in (7.6) by (x

(k)
N , t

(k)
N ), which
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implies that

lim
N→∞E

[
�

N;M
i

(
X(k)

N

)
�

N;M
i

(
X(l)

N

)]= lim
N→∞E

[
�

N;M
i

(
X(k)

N

)2]= 1.

We next consider the case i1/M < ζk,l , which implies (i1 + 1)/M < ζk,l since
i ∈ D̃M . By the definitions (7.2) and (2.15) of ζk,l and |||X|||, this implies

either R|t (k)
N −t

(l)
N |/RN = ζk,l + o(1);

or R
φ←(|x(k)

N −x
(l)
N |)/RN = ζk,l + o(1),

(7.7)

where we recall by (2.6) and (2.14) that φ←(|x|) :=min{n ∈N0 : φ(n)≥ |x|} with
φ(n) := (nL(n)2)1/d . We now show that (7.7) forces either n1 or z1 to vary in
intervals with empty intersection.

In the first case in (7.7), we have |t (k)
N − t

(l)
N | $ ti1+1 $ |Ii1 | as N →∞,

where we recall that Ii1 = (ti1−1, ti1] with Rti1
∼ i1

M
RN . Therefore, the constraints

n1− t
(k)
N ∈ Ii1 and n1− t

(l)
N ∈ Ii1 in (7.6) are incompatible and the sum equals zero.

In the second case in (7.7), we have φ←(|x(k)
N − x

(l)
N |) $ ti1+1, and hence

|x(k)
N − x

(l)
N | $ φ(ti1+1). Therefore, for N large, for any fixed C > 0,{

z1 ∈ Z
d : ∣∣z1 − x

(k)
N

∣∣≤ Cφ(ti1+1)
}∩ {

z1 ∈ Z
d : ∣∣z1 − x

(l)
N

∣∣≤ Cφ(ti1+1)
}=∅.

By Hypothesis 2.4, uniformly in n ∈ Ii1 = (ti1−1, ti1], the dominant contribution to∑
z qn(z) and

∑
z q2

n(z) come from the region |z| ≤ Cφ(ti1+1). Partitioning the sum

in (7.6) according to whether |z1 − x
(k)
N | ≤ Cφ(ti1+1), or |z1 − x

(l)
N | ≤ Cφ(ti1+1),

or neither, it then follows that the quantity in (7.6) tends to 0 as N →∞, which
concludes the proof of (7.5). �

PROOF OF THEOREM 2.12. The approximation steps (A1)–(A3) for the par-
tition function Zω

N,βN
outlined in Section 4 (and proved in Section 6) also ap-

plies if the starting point of the polymer is different from the origin. For the
step (A1), in order to show that the constraint n0 < n1 < · · · < nk ≤ N can be
replaced by 1 ≤ n1 − n0, . . . , nk − nk−1 ≤ N , we need to use the assumption
R

N−t
(k)
N

/RN = 1− o(1) in (2.16).

It follows that we can approximate the partition functions (Zω
N,βN

(X
(j)
N ))1≤j≤r

jointly in L2 [with an error uniformly small in N , when M is large; cf. (4.11)] by

Z
(A3)
N,βN

(
X

(j)
N

) := 1+
M∑

k=1

β̂k

M
k
2

∑
i∈{1,...,M}k�

�
N;M
i(1)

(
X

(j)
N

)
�

N;M
i(2)

(
X

(j)
N

) · · ·
×�

N;M
i(m)

(
X

(j)
N

)
, 1≤ j ≤ r,

(7.8)

where we recall that �
N;M
i (X

(j)
N ) is defined in (7.1).
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By Proposition 7.1, as N →∞, (Z
(A3)
N,βN

(X
(j)
N ))1≤j≤r converge jointly in distri-

bution to

Z
(M,j)

β̂
:= 1+

M∑
k=1

β̂k

M
k
2

∑
i∈{1,...,M}k�

ζ
(j)

i(1)ζ
(j)

i(2) · · · ζ (j)

i(m) , 1≤ j ≤ r.

It only remains to prove the analogue of Lemma 6 and show that as M →∞,
(Z

(M,j)

β̂
)1≤j≤r converge jointly to the family of log-normal random variables

(:eYj :)1≤j≤r in (2.17)–(2.18).
Following the same steps as in the proof of Lemma 6 up to the resummation

procedure in (6.17), we can approximate Z
(M,j)

β̂
in L2 (as M →∞) by

Ẑ
(M,j)

β̂
= 1+

∞∑
m=1

∑
0<t1<t2<···<tm≤1

t1,...,tm∈ 1
M
N

m∏
i=1

�
(j)
M,ti

,

where

�
(j)
M,t :=

∑
r∈N

β̂r

M
r
2
ξ (j)
r (Mt)

for

t ∈ [0,1] ∩ 1

M
N and ξ (j)

r (a) := ∑
(a2,...,ar )∈{1,...,a−1}r−1

ζ
(j)
(a,a2,...,ar )

.

Similar to (6.18), we can encode the family of jointly Gaussian random variables
�

(j)
M,t as

�
(j)
M,t =

β̂(1+ o(1))√
1− β̂2t

∫ t

t− 1
M

dW(j)
s , t ∈ [0,1] ∩ 1

M
N,(7.9)

where (W(j))1≤j≤r is a family of correlated Brownian motions (the explicit form
of the correlations will be derived in a moment). Therefore, for all 1≤ j ≤ r ,

Ẑ
(M,j)

β̂
= 1+

∞∑
m=1

∑
0<t1<t2<···<tm≤1

t1,...,tm∈ 1
M
N

m∏
i=1

β̂(1+ o(1))√
1− β̂2ti

∫ ti

ti− 1
M

dW(j)
s

L2−−−−→
M→∞ :eYj :,

where Yj := ∫ 1
0

β̂√
1−β̂2t

dW
(j)
t . It now only remains to find the covariance between

(Yj )1≤j≤r .
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Note that for each 1 ≤ k, l ≤ r and s, t ∈ [0,1] ∩ 1
M
N, by the definition of ξ

(j)
r

and Proposition 7.1, we have

E
[
�

(k)
M,t�

(l)
M,s

]=∑
r∈N

β̂2r

Mr
E
[
ξ (k)
r (Mt)ξ (l)

r (Ms)
]

= 1{t=s}
∑
r∈N

β̂2r

Mr

∑
(a2,...,ar )∈{1,...,Mt−1}r−1

E
[
ζ

(k)
(Mt,a2,...,ar )

ζ
(l)
(Mt,a2,...,ar )

]

= 1{t=s}
∑
r∈N

β̂2r

Mr

∑
(a2,...,ar )∈{1,...,Mt−1}r−1

1{t>ζk,l}

= 1{t=s>ζk,l}
M

· β̂2(1+ o(1))

1− β̂2t
.

Therefore, for all s, t ∈ [0,1] ∩ 1
M
N, we have

E

[∫ t

t− 1
M

dW(k)
u

∫ s

s− 1
M

dW(l)
u

]
= 1{t=s>ζk,l}

M
,

and hence E[W(k)(T )W(l)(S)] = ∫ T∧S
ζk,l

dt for all 0≤ S ≤ T ≤ 1. This implies that

Cov(Yk, Yl)= E

[∫ 1

0

β̂ dW
(k)
t

(1− β̂2t)
1
2

∫ 1

0

β̂ dW
(l)
t

(1− β̂2t)
1
2

]

=
∫ 1

ζk,l

β̂2

1− β̂2t
dt = log

1− β̂2ζk,l

1− β̂2
,

which concludes the proof. �

8. Proof of Theorem 2.13. In this section, we prove Theorem 2.13. First, we
prove an analogue of Proposition 5.2, the key step (K) in the proof of Theorem 2.8.
The difference here is that we need to average over the starting point of the partition
function. As in Theorem 2.13, let ψ : Rd × [0,1] → R be a continuous function
with compact support. For any finite strictly increasing sequence n= (n1, . . . , n|n|)
and 0≤ n0 < n1, we then modify the definition of Qn in (5.6) as follows:

(8.1) Q
ψ
(n0,n) :=

∑
x0∈Zd

∑
x∈(Zd )|n|

( |n|∏
j=1

qnj−nj−1(xj − xj−1)η(nj ,xj )

)
ψ(X̂N),

where

X̂N :=
(

x0

φ(N)
,
n0

N

)
with φ(N) := (

L(N)2N
)1/d

.
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To decompose J
ψ
N in (2.21) as we decomposed the partition function in terms of

the �’s, for i ∈ {1, . . . ,M}k , we need to modify the definition of �
N,M
i in (5.5) as

follows:

�
N,M;ψ
i := L(N)

φ(N)dN

(
M

RN

) |i|−1
2 ∑

0≤n0<N

∑
n≺i

Q
ψ
(n0,n).(8.2)

The following analogue of Proposition 5.2 is the key step in the proof of Theo-
rem 2.13.

PROPOSITION 8.1. Assume that Hypothesis 2.4 holds, and RN in (2.7) is
a slowly varying function which diverges as N → ∞. For each M ∈ N and
ψ ∈ Cc(R

d × [0,1]), the random variables (�
N,M,ψ
i )i∈DM

converge in joint dis-

tribution to a family of independent Gaussian random variables (ζ
ψ
i )i∈DM

with

ζ
ψ
i = 0 if i1 < M ; and if i1 =M , then ζ

ψ
i has mean zero and variance:

(8.3) V ψ :=
∫
(Rd×[0,1])2

ψ(x, t)K
(
(x, t),

(
x′, t ′

))
ψ
(
x′, t ′

)
dx dt dx′ dt ′,

where K is defined in (2.23).

PROOF. The proof is similar to that of Proposition 5.2. We will only highlight
the changes in the proof. For simplicity, we assume d �= 0. The case d = 0 can be
treated similarly.

First, note that we can rewrite �
N,M;ψ
i in the following form:

�
N,M;ψ
i = ( M

RN
)
|i|−1

2

φ(N)
d
2 N

3
2

∑
x∈(Zd )|i|

∑
1≤n1≤N

n2−n1∈Ii2 ,...,n|i|−n|i|−1∈I|i|

qψ
n (x)η(n,x),(8.4)

where η(n,x) =∏|n|
j=1 η(nj ,xj ), and q

ψ
n (x) := q

N,ψ
i1,n1

(x1)
∏|n|

j=2 qnj−nj−1(xj − xj−1)

with

(8.5) q
N,ψ
i1,n1

(x1) :=
∑

x0∈Zd

n0∈[0,n1)∩(n1−Ii1 )

ψ

(
x0

φ(N)
,
n0

N

)
qn1−n0(x1 − x0).

Note that the constraint n1 − n0 ∈ Ii1 appearing in (8.2) (inside n ≺ i) has been
moved to (8.5). For simplicity, we will denote the summation constraints on n in
(8.4) also by n ≺ i. Note that we have just casted �

N,M;ψ
i in the same form as

�
N,M
i in (5.5).
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Variance calculations. We first show that when i1 < M , �
N,M;ψ
i → 0 because

its variance tends to 0. Note that

(8.6) Var
(
�

N;M;ψ
i

)= ( M
RN

)|i|−1

φ(N)dN3

∑
n≺i

x∈(Zd )|i|

(
q

N,ψ
i1,n1

(x1)
)2

|i|∏
j=2

qnj−nj−1(xj − xj−1)
2.

Note that given (n1, x1), the sum over (n2, x2), . . . , (n|i|, x|i|) asymptotically
equals (RN

M
)|i|−1 by the same calculations as in (5.11). Therefore,

Var
(
�

N;M;ψ
i

)= 1+ o(1)

φ(N)dN3

∑
x1∈Zd

1≤n1≤N

(
q

N,ψ
i1,n1

(x1)
)2

= 1+ o(1)

φ(N)dN3

∑
x1∈Zd

1≤n1≤N

∑
0≤n0,n

′
0∈n1−Ii1

x0,x
′
0∈Zd

ψ(X̂N)ψ
(
X̂′N

)

× qn1−n0(x1 − x0)qn1−n′0
(
x1 − x′0

)
.

(8.7)

Since ψ ∈ Cc(R
d × [0,1]), we can choose A > 0 large enough such that

supp(ψ) ⊂ [−A,A]d × [0,1]. Then in (8.7), we can restrict the sums to
|x0|∞, |x′0|∞ ≤ Aφ(N). By the local limit theorem for qn(·) in Hypothesis 2.4,
we observe that the dominant contribution in (8.7) comes from x1 ∈ Z

d with
|x1|∞ < Ãφ(N) if Ã is large enough. By first summing over (x0, n0) and (x′0, n′0),
we then have

Var
(
�

N;M;ψ
i

)≤ C

φ(N)dN3

∑
|x1|∞<Ãφ(N)

1≤n1≤N

|ψ |2∞

× ∑
x0,x

′
0∈Zd

1≤n0,n
′
0∈n1−Ii1

qn1−n0(x1 − x0)qn1−n′0
(
x1 − x′0

)

= C

φ(N)dN3

∑
|x1|∞<Ãφ(N)

1≤n1≤N

∑
1≤n0,n

′
0∈n1−Ii1

|ψ |2∞

≤ C|ψ |2∞
φ(N)dN3 ·N(2Ã)dφ(N)d |Ii1 |2 −→

N→∞ 0,

(8.8)

where the convergence holds because Rti1
/RN ∼ i1/M < 1 implies that |Ii1 | ≤

ti1 = o(N).

We next check that when i1 = M , �
N;M;ψ
i has the correct limiting variance.

Note that because Ii1 = (tM−1, tM ] = (tM−1,N] with tM−1 � N , by the same
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bound as in (8.8), we can enlarge the range of summation of n0, n
′
0 in (8.7) to

0 ≤ n0, n
′
0 < n1 without changing the limiting variance. Moreover, by the local

limit theorem for qn in Hypothesis 2.4, we have

Var
(
�

N;M;ψ
i

)= 1+ o(1)

φ(N)dN3

∑
0≤n0,n

′
0<n1≤N

x1,x0,x
′
0∈Zd

ψ(X̂N)ψ
(
X̂′N

)

× qn1−n0(x1 − x0)qn1−n′0
(
x1 − x′0

)
= 1+ o(1)

φ(N)dN3

∑
0≤n0,n

′
0<n1≤N

x1,x0,x
′
0∈Zd

ψ(X̂N)ψ
(
X̂′N

)

× g(
x1−x0

φ(n1−n0)
)

φ(n1 − n0)d

g(
x1−x′0

φ(n1−n′0)
)

φ(n1 − n′0)d

= 1+ o(1)

φ(N)3dN3

∑
0≤n0,n

′
0<n1≤N

x1,x0,x
′
0∈Zd

ψ(X̂N)ψ
(
X̂′N

)

× g(
x1−x0
φ(N)

/(
n1−n0

N
)

1
d )

n1−n0
N

g(
x1−x′0
φ(N)

/(
n1−n′0

N
)

1
d )

n1−n′0
N

,

(8.9)

where in the last equality we have replaced φ(n1 − n0) and φ(n1 − n′0),
respectively, by φ(N)(

n1−n0
N

)1/d and φ(N)(
n1−n′0

N
)1/d . This is justified when

n1−n0, n1−n′0 > εN for any fixed ε > 0, because φ(n)= (L(n)2n)1/d and L(·) is
slowly varying; while on the other hand, the contributions to (8.9) from n0, n

′
0, n1

with n1 − n0 ≤ εN or n1 − n′0 ≤ εN can be made arbitrarily small by choosing
ε small, thanks to the same estimates as in (8.8). A Riemann sum approximation
with y := x0/φ(N), y′ := x′0/φ(N), z := x1/φ(N), s = n0/N , s′ := n′0/N and
t := n1/N then gives

Var
(
�

N;M;ψ
i

) −→
N→∞

∫
· · ·

∫
y,y′,z∈Rd

0≤s,s′<t≤1

ψ(y, s)ψ
(
y′, s′

)g(
z−y

(t−s)1/d )

t − s

×
g(

z−y′
(t−s′)1/d )

t − s′
dz dt dy dy′ ds ds ′

=
∫
· · ·

∫
y,y′,z∈Rd

0≤s,s′≤1

ψ(y, s)

×K
(
(y, s),

(
y′, s′

))
ψ
(
y′, s′

)
dy dy′ ds ds′

= V ψ,

(8.10)
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where

K
(
(y, s),

(
y′, s′

))= ∫ 1

s∨s′

∫
Rd

g(
z−y

(t−s)1/d )

t − s

g(
z−y′

(t−s′)1/d )

t − s′
dz dt

=
∫ 1

s∨s′

∫
Rd

gt−s(z− y)gt−s′
(
z− y′

)
dz dt

=
∫ 1

s∨s′
g2t−s−s′

(
y − y′

)
dt

=
∫ 1

s∨s′

g(
y−y′

(2t−s−s′)1/d )

2t − s − s ′
dt = 1

2

∫ 2−s−s′

|s−s′|
g(

y−y′
u1/d )

u
du.

(8.11)

Here, we used the fact that the transition density gt of a Brownian motion in R
2

(or a Cauchy process in R) is symmetric and scaling invariant, and g = g1. Note
that K agrees with the kernel in (2.23), which completes the variance verification.

Fourth moment calculations. We now apply the fourth moment theorem (Theo-
rem 4.2) to prove Proposition 8.1. By the variance calculations above, it suffices to
restrict our attention to (�

N,M;ψ
i )i∈DM

with i1 =M . For distinct i, i′ ∈DM with

i1 = i′1 = M , it is easily seen that E[�N,M;ψ
i �

N,M;ψ
i′ ] = 0. Therefore, condition

(i) in Theorem 4.2 is satisfied. Clearly, condition (iii) also holds. It only remains to
verify the fourth moment condition:

lim
N→∞E

[(
�

N,M;ψ
i

)4]= 3V ψ ∀i ∈DM with i1 =M,(8.12)

assuming that (η(n,x))n∈N,x∈Zd are i.i.d. standard normal.

Using the representation for �
N,M;ψ
i in (8.4), we have a similar expansion of

the fourth moment as in (5.13) and (5.14):

E
[(

�
N,M;ψ
i

)4]= ( M
RN

)2|i|−2

φ(N)2dN6

∑
a,b,c,d≺i

x,y,z,w∈(Zd )|i|

qψ
a (x)q

ψ

b (y)qψ
c (z)q

ψ

d (w)

×E[η(a,x)η(b,y)η(c,z)η(d,w)],

(8.13)

where q
ψ
n (x) := q

N,ψ
M,n1

(x1)
∏|n|

j=2 qnj−nj−1(xj − xj−1) with q
N,ψ
M,n1

(x1) defined as
in (8.5).

Note that the only difference between the expansion in (8.13) and the expan-
sion for E[(�N,M

i )4] in (5.13)–(5.14) is that the factors qn1(x1) are replaced by

q
N,ψ
M,n1

(x1), and the corresponding normalizing constant
∑

x1∈Zd ,n1∈IM
qn1(x1)

2 ∼
RN/M is replaced by

1

V ψ

∑
x1∈Zd

1≤n1≤N

(
q

N,ψ
M,n1

(x1)
)2 ∼ φ(N)dN3,(8.14)
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where this asymptotic relation follows from the variance calculations in (8.7) and
(8.10).

The verification of the fourth moment condition (8.12) now follows the same
argument as that for �

N,M
i in Section 5. Recall from (5.15) that

p := ∣∣(a,x)∪ (b,y)∪ (c,z)∪ (d,w)
∣∣= ∑

(n,r)∈N×Zd

1{(n,r)∈(a,x)∪(b,y)∪(c,z)∪(d,w)},

and we relabel (a,x)∪ (b,y)∪ (c,z)∪ (d,w)= {(f1, h1), (f2, h2), . . . , (fp,hp)},
with f1 ≤ f2 ≤ · · · ≤ fp .

In the proof of Proposition 5.2, we considered 5 cases. Case 1 with p > 2|i| can
be treated exactly the same way here.

For Case 2 with p < 2|i|, we can follow the same arguments up to (5.20) [note
that 0 ≤ qn(x) ≤ 1 under our assumptions]. If there are only two factors of q and
qN,ψ in the left-hand side of (5.20) that involve (fp,hp), then we apply Cauchy–
Schwarz exactly as in (5.20), which gives the desired factors of (RN/M)1/2 or
(φ(N)dN3)1/2. If there are four factors of q and qN,ψ , then we can pick any two
factors and bound the factor of q by 1, and bound the factor of qN,ψ by N‖ψ‖∞,
since

q
N,ψ
M,n1

(x1) :=
∑

x0∈Zd

n0∈[0,n1)∩(n1−IM)

ψ

(
x0

φ(N)
,
n0

N

)
qn1−n0(x1 − x0)≤N‖ψ‖∞.

Note that the pre-factor in (8.13) will be cancelled out exactly when each q con-
tributes a factor of (RN/M)1/2 to the sum, and each qN,ψ contributes a factor
of (φ(N)dN3)1/2. Each replacement of q by 1 in (5.20) leads to the loss of a
factor (RN/M)1/2 in the bound for S(p)

N in (5.21), and similarly, each replace-
ment of qN,ψ by N‖ψ‖∞ leads to the loss of a factor (φ(N)dN3)1/2/N‖ψ‖∞.
Summing successively over (fp−1, hp−1), (fp−2, hp−2), . . . , (f1, h1) then gives a
similar bound as in (5.21), so that the contributions in this case is negligible.

For Case 3 where [a] ∪ [b] ∪ [c] ∪ [d] consists of three or four connected com-
ponents, it again reduces to Case 1.

For Case 4 where [a]∪ [b]∪ [c]∪ [d] consists of a single connected component,
we follow the same calculations up to (5.27), where we note that because fu = c1
is the first index of the sequence c, the first factor in the right-hand side of (5.27)
should be replaced by( ∑

x∈Zd ,f1<n≤f1+m̄1

(
qN,ψ
n (x)

)2
)1/2

≤ (
Cm̄1(2Ã)dφ(N)d |IM |2)1/2

= o
((

φ(N)dN3)1/2)
,

where the inequality follows the same calculations as in (8.8), and the last equality
holds since |IM | ≤ N and m̄1 = |i|tM−2 = o(N), by its definition in (5.26). This
implies a similar bound as in (5.28) and shows that this case is also negligible.
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Case 5 where [a] ∪ [b] ∪ [c] ∪ [d] consists of two connected components gives
the full contribution to the limiting fourth moment of �

N,M;ψ
i in (8.12), and the

argument is exactly the same as in the proof of Proposition 5.2. �

PROOF OF THEOREM 2.13. Recall from (2.21) that

J
ψ
N := 1

φ(N)dN

∑
X∈Zd×N0

√
RNL(N)2

(
Zω

N,βN
(X)− 1

)
ψ(X̂N).

To prove Theorem 2.13, that is, show that J
ψ
N converges in distribution to a Gaus-

sian random variable with mean zero and variance given in (2.22)–(2.23), we plug
in the polynomial chaos expansion of Zω

N,βN
(X) from (4.1) [with (x0, n0) := X]

and rewrite J
ψ
N as

J
ψ
N = L(N)

φ(N)dN

∞∑
k=1

β̂k

R(k−1)/2
N

∑
1≤n1<···<nk≤N

x1,x2,...,xk∈Zd

qN,ψ
n1

(x1)

×
k∏

j=2

qnj−nj−1(xj − xj−1)

k∏
i=1

η(ni,xi ),

(8.15)

where

(8.16) qN,ψ
n1

(x1) :=
∑

x0∈Zd ,0≤n0<n1

ψ

(
x0

φ(N)
,
n0

N

)
qn1−n0(x1 − x0).

The approximation steps (A1)–(A3), described for the partition function Zω
N,βN

in Section 4 (and proved in Section 6), can also be performed for J
ψ
N with only

minor differences. Similar to (4.11), we can therefore approximate J
ψ
N by

Ĵ
ψ
N,M :=

M∑
k=1

β̂k

M(k−1)/2

∑
i∈{1,...,M}k�

�
N;M;ψ
i(1) �

N;M
i(2) · · ·�N;M

i(m) ,(8.17)

where i(1), . . . , i(m) is the decomposition of i into dominated sequences and
�

N;M;ψ
i was defined in (8.2). Taking the limit N →∞ in (8.17) and applying

Proposition 8.1 as done in (4.13), we obtain

Ĵ
ψ
N,M

d−−−−→
N→∞ J

(M)

β̂

:=
∞∑

k=1

β̂k

M
k−1

2

∑
i∈{1,...,M}k�

m(i)∏
l=1

ζ
ψ

i(l) =
∞∑

k=1

β̂k

M
k−1

2

∑
i∈{1,...,M}k�

i1=M

ζ
ψ
i ,

(8.18)
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where we used the fact that by Proposition 8.1 only ζ
ψ
i with i1 =M are nonzero.

Again, by Proposition 8.1, we note that J
(M)

β̂
is a normal random variable (as a

sum of independent normal variables) with mean zero and variance:

Var
(
J

(M)

β̂

)= ∞∑
k=1

β̂2k

Mk−1

∣∣{i ∈ {1, . . . ,M}k� : i1 =M
}∣∣V ψ −→

M→∞
β̂2

1− β̂2
V ψ,

which is exactly the variance σ 2
ψ in (2.22). Therefore, J

(M)

β̂
converges to a normal

random variable with mean zero and variance σ 2
ψ . This is the analogue of step (A4)

in Section 4, which concludes the proof of Theorem 2.13. �

9. Proof for the 2d stochastic heat equation. In this section, we prove The-
orems 2.15 and 2.17 for the regularized 2d stochastic heat equation (2.25). The
basic strategy is to compare the solution uε with the partition function of a di-
rected polymer on Z

2+1, so that we can apply Theorems 2.12 and 2.13.
The starting point is the Feynman–Kac representation (2.27) for ũε(t, x),

which has the same distribution as uε(t, x), but differs by a time reversal in the
Feynman–Kac formula (2.26). We can extend this representation jointly to all
(ũε(t, x))t∈[0,1],x∈R2 . Namely, let

ũε(t, x)= E(ε−2(1−t),ε−1x)

[
exp

{
βε

∫ ε−2

ε−2(1−t)

∫
R2

j (Bs − y)W̃ (ds,dy)

− 1

2
β2

ε ε−2t‖j‖2
2

}]

= E(ε−2(1−t),ε−1x)

[
: exp

{
βε

∫ ε−2

ε−2(1−t)

∫
R2

j (Bs − y)W̃ (ds,dy)

}
:
]
,

(9.1)

where E(s,y) denotes expectation for a Brownian motion B starting at y at
time s. It is then clear that (ũε(t, x))t∈[0,1],x∈R2 has the same distribution as
(uε(t, x))t∈[0,1],x∈R2 .

Furthermore, by the definition of the Wick exponential : exp : ([24], Section 3.2),
we can write

ũε(t, x)= 1+
∞∑

k=1

βk
ε

×
∫
· · ·

∫
ε−2(1−t)<t1<···<tk<ε−2

∫
R2k

E(ε−2(1−t),ε−1x)

[
k∏

i=1

j (Bti − xi)

]

×
k∏

i=1

W̃ (dti ,dxi)
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= 1+
∞∑

k=1

βk
ε(9.2)

×
∫
· · ·

∫
ε−2(1−t)<t1<···<tk<ε−2

∫
R2k

(∫
R2k

k∏
i=1

pti−ti−1(yi − yi−1)

× j (yi − xi)d%y
)

×
k∏

i=1

W̃ (dti ,dxi),

where pt(·) is the probability density for Bt , (t0, y0) = (ε−2(1 − t), ε−1x), and
d%y = dy1 · · ·dyk .

We are now ready to give the proofs.

PROOF OF THEOREM 2.15. Let β̂ < 1. We will perform a series of approxi-
mations, eventually approximating ũε(t

(i)
ε , x

(i)
ε ) by Z

η

ε−2,βε
(ε−1x

(i)
ε , ε−2(1− t

(i)
ε )),

1≤ i ≤ r , the partition functions of a directed polymer model on Z
2+1. Since our

approximations will be carried out in L2 on the same probability space, it suffices
to consider a single term ũε(t

(i)
ε , x

(i)
ε ), or just ũε(1,0).

Step 1. First, we show that ũε(1,0) can be approximated in L2 if for each k ∈N,
the integral over %t := (t1, . . . , tk) in (9.2) is restricted to the set

(9.3) Tk,ε := {
(t1, . . . , tk) ∈ (

0, ε−2)k : ti − ti−1 ≥
√

log ε−1 ∀1≤ i ≤ k
}
.

This is necessary because in the L2 approximations that follow,
∫

p2
ti−ti−1

(yi −
yi−1)dyi is not integrable in ti due to the singularity when ti is near ti−1. We thus
approximate ũε(1,0) by

vε(1,0) := 1+
∞∑

k=1

βk
ε

∫
Tk,ε

∫
R2k

(∫
R2k

k∏
i=1

pti−ti−1(yi − yi−1)j (yi − xi)d%y
)

×
k∏

i=1

W̃ (dti ,dxi).

(9.4)

By Itô isometry and the orthogonality of terms in different orders of the Wiener
chaos,

E
[(

ũε(1,0)− vε(1,0)
)2]

=
∞∑

k=1

β2k
ε

∫
T c

k,ε

∫
R2k

(∫
R2k

k∏
i=1

pti−ti−1(yi − yi−1)j (yi − xi)d%y
)2

d%x d%t .
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Given %t ∈ T c
k,ε , let I (%t) := {1≤ i ≤ k : ti − ti−1 ≤

√
log ε−1} ⊆ {1, . . . , k}. We can

then rewrite the integrand
∏k

i=1 pti−ti−1(yi − yi−1)j (yi − xi) above as( ∏
i∈I (%t)

pti−ti−1(yi − yi−1)
∏

i /∈I (%t)
j (yi − xi)

)

×
( ∏

i /∈I (%t)
pti−ti−1(yi − yi−1)

∏
i∈I (%t)

j (yi − xi)

)
.

Taking the first factor as a probability density for %y while taking the second factor
as the integrand, we can then apply Jensen’s inequality to obtain the bound

E
[(

ũε(1,0)− vε(1,0)
)2]

≤
∞∑

k=1

β2k
ε

∫
T c

k,ε×R4k

∏
i /∈I (%t)

p2
ti−ti−1

(yi − yi−1)
∏

i∈I (%t)
j2(yi − xi)

× ∏
i∈I (%t)

pti−ti−1(yi − yi−1)
∏

i /∈I (%t)
j (yi − xi)d%x d%y d%t

=
∞∑

k=1

β2k
ε

∫
T c

k,ε

∫
R2k

‖j‖2|I (%t)|
2

× ∏
i /∈I (%t)

p2
ti−ti−1

(yi − yi−1)
∏

i∈I (%t)
pti−ti−1(yi − yi−1)d%y d%t

=
∞∑

k=1

β2k
ε

∫
T c

k,ε

∫
R2k

‖j‖2|I (%t)|
2(9.5)

× ∏
i /∈I (%t)

e
−|yi−yi−1|2

ti−ti−1

4π2(ti − ti−1)2

∏
i∈I (%t)

e
−|yi−yi−1|2

2(ti−ti−1)

2π(ti − ti−1)
d%y d%t

=
∞∑

k=1

β2k
ε

∫
T c

k,ε

‖j‖2|I (%t)|
2

∏
i /∈I (%t)

1

4π(ti − ti−1)
d%t

≤
∞∑

k=1

β2k
ε

∑
I �=∅

I⊂{1,...,k}

(‖j‖2
2

√
log ε−1

)|I |( log(ε−2)

4π

)k−|I |

=
∞∑

k=1

β̂2k

(
2π

log ε−1

)k{(
‖j‖2

2

√
log ε−1 + log(ε−2)

4π

)k

−
(

log(ε−2)

4π

)k}
−→
ε→0

0,
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where in the last step we used a binomial expansion and the last convergence fol-
lows from the dominated convergence theorem, since β̂ < 1.

Step 2. We next show that vε(1,0) can be approximated in L2 by wε(1,0),
where we replace pti−ti−1(yi − yi−1) in (9.4) by pti−ti−1(xi − xi−1), that is,

wε(1,0) := 1+
∞∑

k=1

βk
ε

∫
Tk,ε

∫
R2k

(∫
R2k

k∏
i=1

pti−ti−1(xi − xi−1)j (yi − xi)d%y
)

×
k∏

i=1

W̃ (dti ,dxi)

= 1+
∞∑

k=1

βk
ε

∫
Tk,ε

∫
R2k

k∏
i=1

pti−ti−1(xi − xi−1)

k∏
i=1

W̃ (dti ,dxi).

(9.6)

Indeed, by Jensen

E
[(

vε(1,0)−wε(1,0)
)2]

=
∞∑

k=1

β2k
ε

∫
Tk,ε×R2k

{∫
R2k

(
k∏

i=1

pti−ti−1(yi − yi−1)−
k∏

i=1

pti−ti−1(xi − xi−1)

)

×
k∏

i=1

j (yi − xi)d%y
}2

d%x d%t(9.7)

≤
∞∑

k=1

β2k
ε

∫
Tk,ε×R2k×R2k

(
k∏

i=1

pti−ti−1(yi − yi−1)−
k∏

i=1

pti−ti−1(xi − xi−1)

)2

×
k∏

i=1

j (yi − xi)d%y d%x d%t .

To show that this bound goes to 0 as ε ↓ 0, we will divide the integral over %y into
two parts.

Using (a + b)2 ≤ 2(a2 + b2), we can bound (9.8) by

2
∞∑

k=1

β2k
ε

∫
Tk,ε×R2k×R2k

(
k∏

i=1

p2
ti−ti−1

(yi − yi−1)+
k∏

i=1

p2
ti−ti−1

(xi − xi−1)

)

×
k∏

i=1

j (yi − xi)d%y d%x d%t

= 4
∞∑

k=1

β2k
ε

∫
Tk,ε×R2k

k∏
i=1

p2
ti−ti−1

(yi − yi−1)d%y d%t(9.8)
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= 4
∞∑

k=1

β2k
ε

∫
Tk,ε

k∏
i=1

1

4π(ti − ti−1)
d%t

≤ 4
∞∑

k=1

β̂2k

(
2π

log ε−1

)k
(

k∏
i=1

log(ε−2)

4π

)
−→
ε→0

4
∞∑

k=1

β̂2k,

which is finite since β̂ < 1. First, this calculation implies that it suffices to show
that each summand on the right-hand side of (9.8), for a fixed k ∈N, tends to 0 as
ε → 0. Second, given %t ∈ Tk,ε , if we restrict the integral over %x and %y in (9.8) to
the set

(9.9) Ek =Ek(%t) := {
(%x, %y) ∈R

2k ×R
2k : |yi − yi−1| ≤ |ti − ti−1| 3

4 ∀1≤ i ≤ k
}
,

then it is easily seen that the kth term in (9.8) still converges to the same limit as
ε ↓ 0, because the dominant contribution to

∫
R2 p2

t (y)dy comes from |y| of the
order

√
t . Therefore, if the kth integral over %x and %y in (9.8) is restricted to Ec

k ,
then the kth term in (9.8) tends to 0 as ε ↓ 0, and the same is true for the kth term
in (9.8).

It then only remains to consider the kth term in (9.8), where the integral over %x
and %y is restricted to Ek . This can be bounded by

β2k
ε

∫
Tk,ε×Ek

(
k∏

i=1

pti−ti−1(xi − xi−1)−
k∏

i=1

pti−ti−1(yi − yi−1)

)2

×
k∏

i=1

j (yi − xi)d%y d%x d%t

= β2k
ε

∫
Tk,ε×Ek

k∏
i=1

p2
ti−ti−1

(yi − yi−1)
(
e

∑k
i=1

−|xi−xi−1|2+|yi−yi−1|2
2(ti−ti−1) − 1

)2

×
k∏

i=1

j (yi − xi)d%y d%x d%t(9.10)

≤ β2k
ε

∫
Tk,ε×Ek

k∏
i=1

p2
ti−ti−1

(yi − yi−1)
(
e

Ck

(log ε−1)1/8 − 1
)2

×
k∏

i=1

j (yi − xi)d%y d%x d%t

−→
ε→0

0,

where the convergence follows easily from the domination by (9.8), and to obtain
the inequality, we argued as follows. If we fix A > 0 such that the support of j (·) is
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contained in a ball of radius A, the factor j (yi − xi) in (9.10) entails |yi − xi | ≤A,
for all 1≤ i ≤ k. Then, writing |a|2 − |b|2 = |a − b|2 + 2|b||a − b|, we obtain

||xi − xi−1|2 − |yi − yi−1|2|
2(ti − ti−1)

≤ (2A)2 + 4A|yi − yi−1|
2(ti − ti−1)

≤ C

(log ε−1)
1
8

for any C > 0 when ε > 0 is sufficiently small. Finally, we note that (ex − 1)2 ≤
(e|x| − 1)2.

This concludes the proof that the bound in (9.8) tends to 0 as ε ↓ 0, which shows
that vε(1,0) and wε(1,0) have the same limiting distribution.

Step 3. We now show that wε(1,0) can be approximated in L2 by Z
η

ε−2,βε
=

Z
η

ε−2,βε
(0,0), the partition function of a directed polymer on Z

2+1 starting at
(0,0), defined on the same probability space as wε .

Let (Sn)n≥0 be an irreducible aperiodic random walk on Z
2 with n-step incre-

ment distribution p̂n(·), such that S0 = 0 and E[S1(i)S1(j)] = 1{i=j } for i, j =
1,2, where S1(i) denotes the ith coordinate of S1. Recall from (4.1) that the parti-
tion function of a directed polymer model constructed from S and i.i.d. space-time
disorder η, with parameter βε and polymer length ε−2, admits the following poly-
nomial chaos expansion:

(9.11) Z
η

ε−2,βε
= 1+

ε−2∑
k=1

βk
ε

∑
1≤n1<···<nk≤ε−2

x1,...,xk∈Z2

k∏
i=1

p̂ni−ni−1(xi − xi−1)

k∏
i=1

ηni,xi
,

where (ηn,x)n∈N,x∈Z2 are i.i.d. random variables with mean 0. For our purposes,
we will let η be i.i.d. standard normal variables defined from the space-time white
noise W̃ in the chaos expansion for wε(1,0) in (9.6):

(9.12) ηn,x :=
∫
�n,x

W̃ (ds,dy), n ∈N, x = (
x(1), x(2)

) ∈ Z
2,

where �n,x := [n− 1, n] × [x(1)− 1, x(1)] × [x(2)− 1, x(2)].
We can then rewrite (9.11) as

Z
η

ε−2,βε
= 1+

∞∑
k=1

βk
ε

∫
· · ·

∫
0<t1<···<tk<ε−2

∫
(R2)k

k∏
i=1

p̂(ti)−(ti−1)
((xi) − (xi−1))

(9.13)

×
k∏

i=1

W̃ (dti ,dxi),

where we set p̂0(·)≡ 0.
By Gnedenko’s local limit theorem (see, e.g., [7], Theorem 8.4.1)

p̂n(x)= 1

2πn

(
e−

|x|2
2n + o(1)

)
= pn(x)+ o

(
1

n

)
uniformly in x ∈ Z

2 as n→∞,

(9.14)
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where we recall that pn(x) in the right hand side is the transition kernel of Brow-
nian motion. By similar calculations as those leading to (9.6), we can restrict the
integral over (t1, . . . , tk) to Tk,ε as in the definition of vε(1,0) and wε(1,0) in (9.4)
and (9.6), that is, if

Z̃
η

ε−2,βε
:= 1+

∞∑
k=1

βk
ε

∫
Tk,ε×(R2)k

k∏
i=1

p̂(ti)−(ti−1)
((xi) − (xi−1))

×
k∏

i=1

W̃ (dti ,dxi),

(9.15)

then E[(Z̃η

ε−2,βε
−Z

η

ε−2,βε
)2]→ 0 as ε ↓ 0.

We can now bound the L2 distance between wε(1,0) and Z̃
η

ε−2,βε
:

E
[(

wε(1,0)− Z̃
η

ε−2,βε

)2]
=

∞∑
k=1

β2k
ε

∫
Tk,ε×R2k

(
k∏

i=1

pti−ti−1(xi − xi−1)(9.16)

−
k∏

i=1

p̂(ti)−(ti−1)
((xi) − (xi−1))

)2

d%x d%t,

and we will separate the integration over %x into two sets for each k ∈N.
Given %t ∈ Tk,ε and L > 0, let

(9.17) Ek,L =Ek,L(%t) := {%x ∈R
2k : |xi − xi−1| ≤ L

√
ti − ti−1 ∀1≤ i ≤ k

}
.

By the same calculations as for (9.8), we note that when the integrals over %x in
(9.16) are restricted to Ec

k,L for each k ∈ N, the resulting series converges to a
limit (as ε ↓ 0) that can be made arbitrarily small by choosing L large. On the
other hand, for any fixed L > 0,

uniformly in %t ∈ Tk,ε and %x ∈Ek,L,

1−
k∏

i=1

p̂(ti)−(ti−1)((xi) − (xi−1))
pti−ti−1(xi − xi−1)

−→
ε→0

0
(9.18)

by the local central limit theorem (9.14). Therefore, when the integrals over %x in
(9.16) are restricted to Ek,L, the resulting series also tends to 0 as ε ↓ 0, as in
(9.10). In conclusion, the series in (9.16) tends to 0 as ε ↓ 0 and we can approxi-
mate wε(1,0) by Z

η

ε−2,βε
.

Step 4. When β̂ < 1, we just showed that each ũε(t
(i)
ε , x

(i)
ε ) can be ap-

proximated in L2 by Z
η

ε−2,βε
(ε−1x

(i)
ε , ε−2(1 − t

(i)
ε )). Identifying ε−2 with N ,

the convergence in Theorem 2.15 then follows by applying Theorem 2.12 to
Z

η

ε−2,βε
(ε−1x

(i)
ε , ε−2(1− t

(i)
ε )) for 1≤ i ≤ r .
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For β̂ ≥ 1, the proof for uε(1,0) ⇒ 0 as ε ↓ 0 is the same as that for the pin-
ning and directed polymer models in Theorem 2.8. Proving that for 0 < ϑ < 1 the
quantity E[(ũε(t,0))ϑ ] is decreasing in β̂ is even simpler and proceeds as follows.
Note that by (2.27)

ũε(t,0)= E0
[
e
β
∫ ∫

j (Bs−y)W(ds,dy)− β2

2 ‖j‖2
L2(R×Rd )

]=: E0
[
eβGW (B)− β2

2 Var[GW (B)]],
where, for a fix realization of B = (Bs)s≥0, the random variable GW(B) has a
centered Gaussian distribution with variance ‖j‖2

L2(R×Rd )
. For β2 = β2

1 + β2
2 , we

can write

ũε(t,0)
d= E0

[
eβ1G

W1 (B)− β2
1
2 Var[GW1 (B)]eβ2G

W2 (B)− β2
2
2 Var[GW2 (B)]],

where W1,W2 are two independent space-time white noise, and we used the fact

that βW
dist= β1W1 + β2W2. Using Jensen’s inequality to pass the expectation w.r.t.

W2 inside the fractional root in E[(ũε(t,0))ϑ ] then gives the desired monotonicity
in β as well as β̂ , since the two differ by a constant factor. �

PROOF OF THEOREM 2.17. Since (ũε(t, x))t∈[0,1],x∈R2 defined in (9.1) has

the same distribution as (uε(t, x))t∈[0,1],x∈R2 , we note that J
ψ
ε in (2.29) has the

same distribution as

J̃ ψ
ε :=

(
log ε−1

2π

)1/2 ∫
R2×[0,1]

(
ũε(t, x)− 1

)
ψ(x,1− t)dt dx.

Applying the chaos expansion (9.2) with t0 = ε−2(1− t) and x0 = y0 = ε−1x gives

J̃ ψ
ε =

∞∑
k=1

β̂kε4
(

2π

log ε−1

) k−1
2

×
∫
· · ·

∫
x1,...,xk∈R2

0<t1<···<tk<ε−2

(∫
R2k

p
ε,ψ
t1

(y1)

×
k∏

i=2

pti−ti−1(yi − yi−1)j (yi − xi)d%y
)

×
k∏

i=1

W̃ (dti ,dxi),

(9.19)

where we have plugged in βε = β̂( 2π
log ε−1 )1/2, changed variables (t, x) =

(1− ε2t0, εy0) producing the pre-factor ε4, and

(9.20) p
ε,ψ
t1

(y1) :=
∫
R2×[0,t1]

ψ
(
εy0, ε

2t0
)
pt1−t0(y1 − y0)dy0 dt0.

Note that (9.19) has the same form as the expansion for ũε(1,0) in (9.2), except
that the factor pt1(y1) therein is now replaced by p

ε,ψ
t1

(y1), and a pre-factor of
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( 2π
log ε−1 )1/2 has been replaced by ε4. We can now carry out the same steps as in the

proof of Theorem 2.15 to approximate J̃
ψ
ε by J

ψ
N for a directed polymer on Z

2, so
that Theorem 2.13 can be applied.

In Step 1 of the proof of Theorem 2.15, we restricted the range of integration of

t1, . . . , tk in (9.2) so that ti − ti−1 ≥
√

log ε−1 for all 1 ≤ i ≤ k. This is necessary

because in the L2 approximations that follow,
∫

p2
ti−ti−1

(yi − yi−1)dyi is not inte-
grable in ti due to the singularity when ti is near ti−1.There is no such singularity
for p

ε,ψ
t1

(y1) and, in fact,∥∥pε,ψ
∥∥2

2 :=
∫
R2×[0,ε−2]

(
p

ε,ψ
t1

(y1)
)2 dy1 dt1

=
∫
(R2)3

∫
t1∈(0,ε−2)
t0,t

′
0∈(0,t1)

ψ
(
εy0, ε

2t0
)
ψ
(
εy′0, ε2t ′0

)
× pt1−t0(y1 − y0)pt1−t ′0

(
y1 − y′0

)
dy0 dt0 dy′0 dt ′0 dy1 dt1

(9.21)

can be bounded in the same way as its discrete counterpart q
N,ψ
M,n1

(x1) from (8.5)

[see the variance calculations in (8.8)–(8.10) and (8.14), with N = ε−2, φ(N) =
ε−1], which gives ‖pε,ψ‖2 ∼Cε−4 as ε→ 0. Therefore, in our current setting, we
need to restrict t1, . . . , tk to

(9.22) T̃k,ε := {
(t1, . . . , tk) ∈ (

0, ε−2)k : t1 > t0, ti − ti−1 ≥
√

log ε−1 ∀2≤ i ≤ k
}
.

The rest of the calculations in Step 1 carry through once we take into account that
‖pε,ψ‖2 is of the order ε−4, which cancels the pre-factor ε4 in (9.19).

In Step 2 of the proof of Theorem 2.15, we replaced pti−ti−1(yi − yi−1) by
pti−ti−1(xi−xi−1) for each 1≤ i ≤ k, using the fact that yi−xi must lie in the sup-

port of j (·). The same applies here, except that we also need to replace p
ε,ψ
t1

(y1)

by p
ε,ψ
t1

(x1).
More precisely, we can first apply the same calculations as in (9.8)–(9.10) to

replace pti−ti−1(yi − yi−1) by pti−ti−1(xi − xi−1) for each 2 ≤ i ≤ k. The only
change we need to make is to redefine the set Ek in (9.9) by

(9.23) Ẽk := {
(%x, %y) ∈R

2k ×R
2k : |yi − yi−1| ≤ |ti − ti−1| 3

4 ∀2≤ i ≤ k
}
.

After making these replacements, it only remains to bound the following simpler
analogue of (9.10):

ε8
(

2π

log ε−1

)k−1 ∫
T̃k,ε×Ẽk

(
p

ε,ψ
t1

(y1)− p
ε,ψ
t1

(x1)
)2

×
k∏

i=2

p2
ti−ti−1

(xi − xi−1)

k∏
i=1

j (yi − xi)d%y d%x d%t(9.24)
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≤Cε8
∫
R4×[0,ε−2]

(
p

ε,ψ
t1

(y1)− p
ε,ψ
t1

(x1)
)2

j (y1 − x1)dy1 dx1 dt1

−→
ε→0

0,

where in the inequality, we applied the same calculations as for (9.8), and the
convergence to 0 can be easily deduced from the definition of p

ε,ψ
t (y) in (9.20).

We can therefore approximate J̃
ψ
ε in L2 by

Ĵ ψ
ε :=

∞∑
k=1

β̂kε4
(

2π

log ε−1

) k−1
2

×
∫
· · ·

∫
T̃k,ε×R2k

p
ε,ψ
t1

(x1)

k∏
i=2

pti−ti−1(xi − xi−1)

k∏
i=1

W̃ (dti ,dxi).

(9.25)

Following Step 3 in the proof of Theorem 2.15, we now introduce a directed
polymer on Z

2, where the n-step transitional kernel p̂n(·) of the underlying random
walk S satisfies the local limit theorem in (9.14), so that Hypothesis 2.4 holds with
L(·) ≡ 1. As in (8.15), and with N = ε−2 and φ(N) = (L(N)2N)1/2 = ε−1, we
can define

J
ψ
N = L(N)

φ(N)2N

∞∑
k=1

β̂k

R(k−1)/2
N

× ∑
1≤n1<···<nk≤N

x1,x2,...,xk∈Zd

p̂N,ψ
n1

(x1)

k∏
j=2

p̂nj−nj−1(xj − xj−1)

k∏
i=1

η(ni,xi )

=
∞∑

k=1

β̂kε4
(

2π + o(1)

log ε−1

) k−1
2

× ∑
1≤n1<···<nk≤ε−2

x1,x2,...,xk∈Zd

p̂N,ψ
n1

(x1)

k∏
j=2

p̂nj−nj−1(xj − xj−1)

k∏
i=1

η(ni,xi ),

(9.26)

where we used RN =Rε−2 ∼ log ε−1/2π by (2.8), and

(9.27) p̂N,ψ
n1

(x1) :=
∑

x0∈Zd ,0<n0<n1

ψ
(
εx0, ε

2n0
)
p̂n1−n0(x1 − x0).

Note that p̂
N,ψ
n1 (x1) is a discrete sum approximation of p

ε,ψ
t1

(x1) in (9.20), and if
we let (η(n,x))n∈N,x∈Z2 be Gaussian random variables defined from W̃ as in (9.12),

then J
ψ
N in (9.26) is just a discrete sum approximation of Ĵ

ψ
ε in (9.25). The L2

difference ‖Jψ
N − Ĵ

ψ
ε ‖2

2 can be shown to vanish as ε→ 0, similar to (9.15)–(9.18),
and we will omit the details.
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Similar to Step 4 in the proof of Theorem 2.15, we can finally apply Theo-
rem 2.13 (for the directed polymer on Z

2) to J
ψ
N and conclude that J

ψ
N , and hence

also J
ψ
ε , converge in distribution to a Gaussian random variable with mean zero

and variance σ 2
ψ . �
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