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Abstract. We present a general analysis of highly con- 
nected recurrent neural networks which are able to 
learn and retrieve a finite number of  static patterns. The 

arguments are based on spike trains and their interval 
distribution and require no specific model of  a neuron. 
In particular, they apply to formal two-state neurons as 

well as to more refined models like the integrate-and- 
fire neuron or the Hodgkin-Huxley  equations. We 

show that the mean firing rate defined as the inverse of 
the mean interval length is the only relevant parameter 

(apart  from the synaptic weights) that determines the 
existence of  retrieval solutions with a large overlap with 
one of  the learnt patterns. The statistics of the spiking 

noise (Gaussian, Poisson or other) and hence the shape 
of  the interval distribution does not matter. Thus our 
unifying approach explains why, and when, all the 

different associative networks which treat static patterns 
yield basically the same results, i.e., belong to the same 

universality class. 

1 Introduction 

Whenever networks with formal neurons have been 
studied (McCulloch and Pitts 1943; Little 1974; 

Hopfield 1982; Amit et al. 1985), there have been 

doubts concerning the relevance of  the results to neuro- 
biology. The assumption of formal two-state neurons h 

la McCulloch and Pitts seems extremely simplified com- 
pared to the rich behaviour of  real neurons. To bring 
theory closer to neurobiology, a number of  more 
refined models of a neuron have been incorporated in a 

network description (Buhmann and Schulten 1986; 
Horn and Usher 1989; Treves 1990; Gerstner 1990; 
Amit et al. 1991; Amit and Tsodyks 1991; Gerstner and 
van Hemmen 1992). The results show, however, that 
the basic associative features of the network remain 

unchanged with respect to networks 
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with McCulloch-Pitts neurons, even though more de- 

tails have been added to the description of  the neurons. 
This leads to the question why the network behaviour 

always exhibits the same collective features, despite 
the fact that quite different models of  a neuron have 

been used. 
On the other hand, it is known from general results 

of  statistical physics that many features of  the elements 
of  a network do not matter for its collective behaviour 

as long as the system is large enough. Only a couple of 
fundamental parameters determine how the system be- 

haves qualitatively and gather the various models into a 
small number of  universality classes. In theoretical ap- 
proaches to neural networks, the mean firing rate or 
mean firing frequency is often considered as such a 
fundamental parameter and used in a macroscopic de- 
scription of  the network states (Wilson and Cowan 
1972; Hopfield 1984; Schuster and Wagner 1990; Ab- 
bott 1991). This is related to the idea that information 
on the environment is encoded in biological neural 
systems by the mean firing rate of  the neurons (Adrian 
1926), an idea which has been put into question recently 

(Bialek et al. 1991). 
It is important to realize that the arguments pre- 

sented in this paper do not rely on any a priori assump- 
tion concerning the importance of the mean firing rate. 
Rather it is the result of  our considerations that in a 
fully connected (recurrent) network that functions as an 
associative memory for stationary patterns, i.e., in gen- 
eralized associative networks of the 'Little-Hopfield'- 
type, the mean firing rate is the only relevant parameter 
of  the network. Second-order features of  the spiking, 
such as the exact distribution or the variance of the 

spiking intervals, do not matter. 
The above universality is a result that is indepen- 

dent of any particular model of  the neurons and is 
based only on the assumption of  high connectivity. 
Thus, all model neurons which have the same gain 
function (mean firing rate versus input current) will 

lead to the same stationary states. This generalizes 
results of Hopfield (1984) and Kiihn et al. (1991) who 
have argued in favor of  the equivalence of  formal 
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neurons and those with graded response. The equations 

that we derive are identical to those of  the mean-field 

solution which is often used as an approximation in a 

simplified theory of  neural networks. Our results for the 

stationary solutions, however, are exact. 

An argument similar to ours has been put forward 

by Amit and Tsodyks (1991) who also use the notion of  

mean firing rate in the context of  neural nets. But while 

they appeal to the high connectivity in biological net- 

works to justify the use of  the 'law of large numbers '  as 

a good approximation to reality, we present an exact 

derivation of the mean-field results and show that there 

is a controlled and well-defined way to go from spike 

trains to a description by gain functions. 

In the next section we calculate the interval distribu- 

tion and the mean firing rate for a spike train of  a 

single neuron. In the subsequent Sect. 3 we treat a 

network of  neurons and show analytically that the 

mean firing rate and the strength of  the synaptic feed- 

back are the only variables that determine the existence 

of  retrieval states. As an application of  this general 

result we analyze some examples of  networks with 

various model neurons including the Hodgk in -Hux ley  

model (Sect. 4). The discussion in Sect. 5 concentrates 

on the validity and limitations of  the assumptions we 

made in the derivation of  the results of  Sect. 3. We 

close our considerations with a number  of  conclusions 

in Sect. 6. 

2 Spike trains of  a single neuron 

In an experimental setup, stationary input conditions 

can be defined by a constant input current forced upon 

the neuron by an electrode into the soma. The spike 

train can then be recorded by an extracellular electrode 

near the axon. After the current is switched on, it takes 

a few spikes before the neuron adapts and regular 

spiking evolves. Depending on the input current I, a 

spike train length T (Fig. l) contains only a few spikes 

(low 'firing rate') or many spikes (high 'firing rate'). To 

analyze such a spike train, we can plot its interval 

distribution Dr(s) where the subscript I refers to the 

dependence upon the input current I (Fig. 2). In this 

plot, Dz(s)As is the probability that a neuron fires 

between s and s + As given that the last spike has 

occurred at s = 0. Thus it is the probability that the 

interval between two subsequent spikes has a length 

between s and s + As (see Fig. 1). The normalization of 

probabilities yields S~ Di(s) ds = 1. 

We find that long intervals are extremely unlikely 

and so are very short intervals. The latter fact is due 

to the refractory period of  the neuron which prevents 

the emission of another spike immediately after firing. 

Roughly speaking, the neuron remembers the emission 

of the last spike. This idea can be made more precise, 

if we look at the conditional probability Pz(s) that a 

neuron has not yet spiked at time s under the condi- 

tion that there was a spike at s = 0. The 'survivor 

function'  (Perkel et al. 1967) Pz(s) remains at 1 (i.e., 
no firing can occur) during the absolute refractory 

period and decays to zero afterwards (Fig. 2, bottom). 

The two quantities Dz(s) and Pz(s) are connected by 

the relation 

d 
D I (s) = -- dss ez  (s) .  (1) 

To see this, we consider the probability to fire between 

s and s + As, 

Dz(s)As = Pz(s) - PI(s + As) = d PI(s)As + O(As) 2 �9 

(2) 

Since each of the two functions can be derived from the 

other, it is completely equivalent whether we describe 

neuronal spiking by an interval distribution or a sur- 

vivor function. Both contain most of  the information of 

a spike train under stationary conditions. In particular, 

we can get the averaged quantities, especially the mean 

interval length. It is straightforward to define the mean 
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Fig. 1. Spike trains: Only a few spikes 
occur at low input current (top), 
whereas at higher input currents spiking 
is more frequent (bottom). Spikes are 
counted during a measurement period of 
length T; intervals between subsequent 
spikes have a variable length s 
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Fig. 2. Spike train analysis: The interval 
distribution D/(s) (top) gives the 
differential probability to find a interval 

ao.o of length between s and s + ds. The 

t 'survivor' function Pt(s) (bottom) is the 
probability that a neuron stays quiescent 
during a time s after firing of a spike at 
s = O. Both functions are given for a 
regularly firing neuron (sharply peaked 
interval distribution and set-like survivor 
function) and a randomly firing neuron 
(long exponential tail) 

~ 0 . 0  

interval length 

g(I) = s x Di(s) ds = s ---dssPl(s) ds 
0 0 

= ~ Pl(s) ds .  (3) 
o 

The mean firing rate is then defined as the inverse of  the 

mean interval length (cf Perkel et al. 1967) 

f ( I )  = g ( I ) - ~ .  (4) 

This definition is useful for theoretical considerations as 

well as for experimental studies. Since for a long mea- 

surement time T the mean interval length is given 

directly by the total time T divided by the number  of  

events (spikes) Z, we have g(l) = T / Z ( I )  and therefore 

z(i) 
f ( I )  = - -  (5) 

T 

So there is a simple procedure to determine the mean 

firing rate at a given input current. We count the 

number of  spikes and divide by the measurement time. 

The mean firing rate as a function of  I is called the 

gain function of  the neuron. Typical gain functions of 

real neurons are plotted in Fig. 3 (Jahnsen and Llinas 

1984). 
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Fig. 3. Gain function: Experimental gain functions of thalamic neu- 
rons in the Guinea-pig. Taken from Jahnsen and Llinas (1984) 

Note that if we talk of  'mean firing frequency' 

instead of  'mean firing rate '  a different definition should 

be adopted. In this case the procedure would be to 

determine the ' instantaneous frequencies' (e.g. the in- 

verse of  an interval length) first and take the mean 

afterwards, a procedure that yields a different result. 

Our derivation in the next section, however, shows that  

the mean firing rate as defined above is the relevant 

variable in the context of  neural nets. 

To this end, it is convenient to introduce the activity 

A. I f  a neuron is prepared in a state of  input current L 

we can ask for the expectation value A[I(t), t]At of 

finding a spike in a short interval At. In the case of  a 

stationary input, i.e., I(t) - I ,  the expectation value is 

simply the mean number  of  spikes per unit time multi- 

plied by At, so that 

A[I(t), t] - f ( I )  . (6) 

If, however, the input varies in time, we can still ask for 

the expectation value of  firing events, but to give this 

question a precise meaning we have to consider a large 

ensemble of  n identically prepared neurons. The activity 

A[I(t), t] is then defined by 

A[l(t), t] = lim lim n -~ Z /A t ,  (7) 
A t ~ O  n - - *  ~ 

where Z gives the number  of  spikes of  the ensemble 

during the time between t and t + A t. 

3 T h e  n e t w o r k  

3.1 Definition o f  the model 

The associative retrieval qualities of  a neural system are 

not the result of  any individual neuron but rather the 

collective effect of  a whole network of  neurons. To get 

some insight into the macroscopic properties of  a neu- 

ral system, we have to define a network that  is appro-  

priate for formal considerations and takes into account 

some relevant neurobiological facts. I t  is, of  course, 
practically impossible to reach both a i m s -  analytical 

transparency and detailed n e u r o b i o l o g y -  at the same 
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time. In the approach presented below, only a few 
restrictions are posed on the type and characteristics of 
the neurons. Thus the reader may imagine any realistic 
model of  a biological neuron. We are, however, fairly 

strict on the type of  connection topology and synaptic 
weights that we assume. The limitations of these as- 
sumptions are pointed out in this section and will be 

discussed more thoroughly in Sect. 5. 
To keep track of  the spikes, we describe the spike 

train of  each neuron by a sequence of  6-functions 

n i 

• i ( t )  = Z 3 ( t  - t k , ) ,  ( 8 )  
k i =  1 

where the tk, with l~<ki~<ni and 0~<tk,~<t are the 
spiking times of  neuron i. As long as we assume linear 
dendritic summation (as we do below), (8) is just a 
convenient way to describe the spikes and includes no 

additional approximation, because the only thing that 
matters is the effect of  the spikes on other neurons and 
not the shape of  the spikes themselves. This effect is 

described by the synaptic weights and the time course 
of  the postsynaptic response in the soma of the receiv- 
ing neuron. Let us assume that neuron j has fired a 
spike at t = 0  and is connected to neuron i via a 

synapse of  strength Jo" The current from neuron j to 
neuron i is then 

Ii(t) = Jqe(t) (9) 

where E(z) is the normalized current response function 
(j',~oE(Z) dz = 1). It is a measurable quantity with 
some typical rise and decay time in the ms-range. The 
argument z measures the time since the emission of  the 
spike at the soma of  neuron j. Thus E(z) also includes 
the axonal transmission delay of the spike travelling 
from neuron j to neuron i (Fig. 4). We assume that the 

shape of  E(r) is independent of the particular pair of  
neurons or, equivalently, that all specific synaptic prop- 
erties are in the efficacy factor J• only. In a fully 
connected network of  N neurons the total current into 
neuron i is then given by 

Ii(t) = ~, Jo" 7 dzc(z)o-j(t-  z) .  (10) 
j = l  0 

As we have mentioned before, we assume that the 
contributions of the neurons add up linearly (spatial 
summation). 

At this point, it may be appropriate to recall and 
discuss the assumptions made so far. We have intro- 
duced a network of  neurons which are coupled by 

synaptic weights. The most important assumption here 
is that the synaptic signals which are collected by the 
postsynaptic neuron add up in a linear fashion. Thus all 

nonlinearities of the dendrites, e.g., effects of  the rever- 
sal potential and shunting inhibition, are excluded; see 
Abbott (1991) and Ekeberg (1991) for a model of  these 
effects. Under the assumption of  linear synaptic sum- 
mation, the shape of the presynaptic spikes is irrelevant. 

This allows us to describe the spikes as a sequence of 
b-functions (8). The second assumption in our descrip- 
tion of the network is that all neurons and synpases 

are taken to be identical. We thus neglect that various 
types of neurons and synapses are found in the brain, 
in particular we neglect the effects of synaptic place- 
ment in terms of dendritic distance to the soma. In 
Sect 5.2 we will show how this assumption can be 

dropped and various types of neuron and synapse can 

be included. 
A third and strong assumption concerns the synap- 

tic efficacy. Here we take the simple Hebbian learning 

matrix 

2J0 q 

J u = - ~  - Z ~'~', (11) 
t ~ = l  

where J0 is a parameter and /z = 1 , . . . ,  q labels the 
patterns. Each pattern/~ is a set of independent, identi- 
cally distributed random variables { ~ ,  i = 1 . . . . .  N} 
which assume the values + 1 with equal probability. 

Furthermore q is fixed and finite. This choice of  the 
synaptic matrix is certainly a strong simplification, but 

we have voted for it to keep the argument transparent 
and allow a comparison to other theoretical models. A 
generalization to patterns of arbitrary activity and 

asymmetric synaptic connections is straightforward; see 
Sect 5.1 for some details. 

To summarize this subsection, we have introduced a 
model network and discussed the assumptions concern- 

ing the theoretical description of  the model. These 
assumptions might seem strong as compared to the 
variety of  details and phenomena found in biological 

systems and the model is certainly not a fully realistic 
description of  the cortex. If, however, the model Ansatz 
is contrasted with traditional theoretical approaches to 

associative memory in recurrent neural nets (Little 
1974; Hopfield 1982; Amit et al. 1985), it compares 

favorable in terms of biological realism. In particular, a 
postsynaptic response function is included into the de- 
scription of  the synaptic transmission and the type of 
model neuron ('binary', 'graded-response', or 'spiking') 
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Fig. 4. Postsynaptic current: The synaptic response 
function E(z) gives the time course of  the current into 

the soma of  the postsynaptic neuron after the firing 

of  a presynaptic neuron at z = 0 



need not be specified. This general model is solved in 
terms of  stationary retrieval solutions in the following 
subsection. 

3.2 Derivation of the equations for the mean firing rates 

To give an analytical solution of  the network be- 
haviour, it is convenient to divide the ensemble of 
neurons into sublattiees L(x) (van Hemmen et al. 1986; 

van Hemmen and Kiihn 1986) of those neurons that 
have learnt the same 'information', i.e., L ( x ) =  {i; 

~ j = x }  where ~i is the information (e l ;  1 ~<# ~<q) 
which has been presented to neuron i. Thus, the sublat- 
tice L(x) contains all neurons i with ~i = x. Let the 

number of  neurons in the sublattice L(x) be IL(x)l . 
With these abbreviations we can write the current into 
neuron i (Herz et al. 1988) 

Ii(t) = 2Jo ~f drE(r) ~f ~rj(t -- z) 
/ t ~ i  0 "= 

= 2Jo ~j~' drc(~) ~ IL(y)I 
~ = 1  0 y N 

• y~[[Z~y)lj~cy)trj(t - -r)]  (12) 

where the prime at the summation sign indicates that 
the sum goes over all y with [L(y)[ ~ 0. 

All neurons j that belong to the same sublattice as 
neuron i, i.e. ~i = ~i = x, experience the same current 

/,-(t) = I(x, t) = 2Jo ~ x"  S dr,(z) 
/ x = l  0 

x~[L~)lY~E 1 y iZ~y)[je~(y)tyj(t--z)l. (13) 

We now keep the number of  patterns fixed and take 
N ~ oo. The sum in square brackets, integrated over a 
short time At, approaches the probability to find a spike 

at a neuron of the sublattice L(y) in the time interval 
between (t - z )  and (t - z  + At). Since there are exten- 

sively many neurons in L(y) and since all j e L(y) are 
equivalent, receive the same input and are otherwise 

independent, it follows that the quantity in square 
brackets equals the activity A(y, t ) =  A[I(y), t] defined 

in Sect. 2, (7). Hence we find as N ~ oo 

I(x,  t) = 2J0 ~ x" ~ dr,(v) Ep(y)y 'A(y ,  t - r), (14) 
/ a = I  0 y 

where p(y) = [L(y)[/N is the probability of  a neuron to 

belong to the sublattice L(y). 
Later on we will be interested in solutions that 

'retrieve' the stationary patterns the system has been 
trained on. For  the moment we only assume that there 
is some kind of  stationary solution. A stationary solu- 
tion is defined by the condition that the mean activity 
is constant in each  sublattice, i.e., A(y, t)-= A(y). In 
this case the time-dependent postsynaptic current E(r) 
drops out (due to the normalization ~ z(r) dr = 1) and 

the input is constant at each sublattice, I(x,  t) - I(x). 
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Given a constant input, the mean activity equals the 

mean firing rate A(y) =f[ I (y) ] ,  as we have pointed out 
at the end of  Sect. 2. We thus arrive at the following 

implicit equation for the sublattice current 

q 

I(x) = 2J0 ~ x u ~p(y)y~f[I(y)] . (15) 
/ ~ = 1  y 

This is the main result of  the present section. The 
solution of (15) yields all stationary states of  the net- 
work. 

Let us step back for a moment and look at what has 
happened so far. The main step in the above derivation 
is from (13) to (14) where the limit N ~  has been 

taken. Here we have made use of  the law of  large 
numbers which can be applied under the condition that 

all neurons of the ensemble are independent and equiva- 
lent. They are independent because the firing of  a 
neuron depends only on the total postsynaptic current 
into the neuron whatever the presynaptic origin of the 

signals may be. They are equivalent because all neurons 
of  a sublattice experience the same postsynaptic cur- 
rent, viz. (13). But are these arguments correct? Is it not 

true that the firing should also depend on the refractori- 
ness of  the neuron, i.e., on the time that has passed 
since the last firing occurred (see, e.g., Fig. 2)? 

Let us therefore assume for the moment that the 
firing depends not only on the total synaptic current I, 
but also on the refractory time s defined as the time 

which has passed since the last firing event. In this case, 
it is convenient to define new sublattices L(y, s) of  those 

neurons i which have learnt the same information and 
have fired their last spike at time tk, = t -  s. Using 

discrete time steps of  duration At, we can argue as 
before, and in the limit At --* 0 we find instead of  (14) 

I(x,  t) = 2J  0 x" ~ dze(z) 
, u = l  0 

x ~ ~ dsp(y,  s)y~A(y, s, t - ~ ) ,  (16) 
y 0 

where p(y, s) is the differential probability of a neuron 
to belong to the sublattice L(y, s) and A(y, s, t) is mean 
activity of this sublattice at time t. To continue, we 
assume as before a stationary solution, so that the 
explicit time dependence may be dropped, and obtain 

/ ( x , t ) = I ( x ) = 2 J o  ~ x U E S d s p ( y , s ) A ( y , s ) .  (17) 
, u = l  y 0 

Let us try to understand the meaning of  the integral 
~ dsp(y,  s)A(y, s). According to its definition, 

A(y, s)ds is the firing probability of  neurons in sublat- 
rice L(y, s), i.e., neurons which are subject to a current 
I(y) and have not fired during a time s. The quantity 
p(y, s), on the other hand, is the probability of  belong- 
ing to the sublattice L(y, s) with refractory time s and is 
therefore proportional to the survival function P~(s) 
which gives the neuron's probability to survive a time s 

without spiking; cf. (1). We have 

p(y, s) = p(y, 0)P~(s) (18) 

where I = I(y) is the current at sublattice L(y). I f  we 
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recall the notion of  the interval distribution (Sect. 2), we 
see that Dl~y)(S) = P~y) ( s )A(y ,  s). We therefore arrive at 

ds p(y, s)A(y, s) = p(y, O) ~ Dt<y)(s) ds = p(y, O) 
0 0 

= p(y)f[ I (  y)].  (19) 

The last step follows from (3), (4), using (18) and the 

normalisation condition S~ P(Y, s )ds  =p(y) .  

Thus the more complicated model where the firing 
probability depends explicitly on the refractory time s 
also leads to the result (15). That is, the mean firing 
rate as defined by (3) and (4) is the only quantity that 
matters. The exact shape of  the interval distribution 

DI(S ) - s e e  Fig. 2 -  drops out since only the integral 
[ ~  SDl(S) ds] ~ is contained in (17) and (19). Hence the 
type of noise that leads to a broadening of Dr(s)  is 
irrelevant. 

As we have mentioned before, the stationary states 
of the network are given as the solutions of  (15). As a 

measure of the quality of the solutions regarding 
retrieval of a pattern/~ we define the overlap m ~ 

m "  = 2 ~ p ( x ) x " A ( x ) .  (20) 
x 

If  we assume that the retrieval solution has a non-vanish- 
ing overlap with one pattern only, i.e., m" -- m6 ~', then 
we find from (15) the self-consistent equations for / t  # v 

m~2Zx X'Up(x)~J~ x#ml~) 
= �89  + f ( - J o i n )  - f ( J o m )  - f (  - J0m)] 

= 0 ,  (21) 

while for # = v 

r n V = m = 2 ~ x V P (  x Jo ~,, x~'m" 
\ . u = l  

= f ( J o r n )  --  f (  - Jorn) . (22) 

If we plot 

g ( I )  . .=f(I) - f ( - I )  (23) 

as a function of  I we find the stationary overlap by a 
straightforward graphical solution. Since the current is 
given by I = Jorn, the intersection of a straight line of 
slope 1/J  o with the function g ( I )  yields m. 

4 Qualitative solution for various model neurons 

What are the conditions for the existence of  retrieval 
solutions? Figure 5 gives some examples of typical 
behaviour for various types of  model neuron. 

The majority of  the more  realistic models of  neu- 
ronal spiking is based on the classic work of Hodgkin 
and Huxley (1952) who have summarized their exten- 
sive experimental studies on the giant axon of  the squid 

in four differential equations. The first describes the 
conservation of  electric charge on a piece of membrane 
of  capacitance C under the influence of a current and a 

voltage V 

car 
dt = I, = I (24) 

where I is the external driving current and I i is the sum 
of the ionic currents through the cell membrane 

I i = - - g ~ v a m 3 h ( V -  VNa ) - - g K n 4 ( V -  VK) 

- gL(V- vL). (25) 

The constants Vuo, VK, and VL are the equilibrium 
potentials of  the three components sodium, potassium, 
and 'leakage', the g's are parameters of  the respective 
ion-conductances which depend on the variables m, n, 
and h determined by the differential equations 

dm 
d~- = ~m(V)(1 - m)  - [3m( V ) m  

dn 
d t  = ~ , ( V ) (  1 - n) - ~ , ( V ) n  

dh 
d t  = gh(V)(1  - h) - [3h(V)h . (26) 

The ~ and /~ are given functions of  V that have been 

adjusted empirically to fit the data of  the giant axon. 
In realistic models of a neuron which include the 

dendrites and the soma analogous equations for addi- 
tional ion currents can be added, in particular a calcium 

current and a calcium dependent slow potassium cur- 

rent ktcal (Koch and Segev 1989; Ekeberg et al. 1991; 
Traub et al. 1991). The equilibrium potentials and the 

~- and//-functions can then be adjusted so as to fit the 
data of  various types of  neuron. 

For  the sake of  simplicity, however, we have re- 
stricted our numerical work to the set (24)-(26)  and we 

have used the original parameters of  Hodgkin and 
Huxley. Solving (24)-(26)  for different driving currents 
I we find a threshold 0 above which repetitive firing 
occurs. The rate of  firing depending on the input cur- 

rent, i.e., the gain function of  the neuron, is shown in 
Fig. 5 (top left, solid line). This gain function which 

shows a sharp step at threshold is typical for the squid 
axon. A more refined 'realistic' model which includes 
the slow Ktcal-current  has a continuous transition at 
threshold and a gain function which is roughly linear 
over a wide range of  frequencies (Ekeberg et al. 1991). 

Realistic models based on the Hodgkin-Huxley  

equations describe a wide range of phenomena found in 
experiments on diverse neurons quite accurately. Be- 
cause of  the complexity of (24)-(26)  and analogous 

sets of equations, which have many free variables and 
tens of  parameters that must be fitted, various simpler 
models have been proposed which capture the key 
features of  neuronal spiking. One approach aims at a 
systematic reduction of  (24)-(26)  to two variables, so 
as to allow a phase plane analysis of  the stationary and 
oscillatory states of the system. This has been done by 
FitzHugh (1961) and Nagumo et al. (1962) and more 
recently by Abbott  and Kepler (1991). The gain func- 
tion of  these nonlinear oscillators is similar to that of  
the Hodgkin-Huxley model; in particular, there is a 
discontinuity at threshold. 



201 

150.0 

N 
100.0 

o- 50.0 

0.0 
-5.0 

I 
0.0 

�9 -.'i" 

5,0 10.0 15.0 20.0 

input current I 

150.0 

100.0 

== 
50,0 

0.0 
-5 .0  

" I I I I " f  
0.0 5.0 10,0 15.0 20.0 

input current I 

150,0 

N 
:I:. 100.0 

50.0 

150,0 i i i 

5.0 10.0 15.0 20,0 

lnput current I 

~N 100.0 

50.0 

0.0 ~ 0.0 
-5 ,0  0.0 -5 .0  

i i i i 

~I i I 

0.0 5.0 10.0 15.0 20.0 

input current I 

150.0 1 r T T 150,0 

t/J 

,.." ; ' " ~   ,oo.ol..t  ,oo,o 
50.0 �9 �9 �9 �9 ~ ~ 50.0 

0.0 0.0 

-5 .0  0.0 5.0 10.0 15.0 20.0 -5 .0  0.0 5.0 10.0 15.0 20.0 

input current I input current I 

Fig. 5. Gain function o f  various model 

neurons. Top - Hodgk in -Hux ley  model, 

all parameters are taken from the 
original paper of  Hodgkin and Huxley. 

Middle - Integrate-and-fire model with 

absolute refractory period t r = 4 ms, 

integration time x = 10 ms and threshold 

current  Io = 6 #A. Bottom - Two-state 

neuron without refractory period. The 

solid lines in the left column give the 

gain function f ( I )  in the noiseless case, 

dotted lines show the mean  firing 

frequency at a finite noise level 

(block-shaped amplitude distribution); 

see text for details. In the three plots of  

the right column, the function 

g(1) = [f(1) - f ( - I ) ]  is plotted. The 
intersection of  g(1) with a straight line 

of  slope 1/J o yields the stationary 
overlap during the retrieval o f  a pattern 

A different approach takes the neuron as a leaky 
integrator which is reset, if firing occurs. This leads to 

the class of 'integrate-and-fire' models which have been 
studied extensively by Stein (1967). The membrane 
voltage evolves after each spike according to 

V(t) = IR[ 1 -- exp( -- t /RC)], (27) 

where R and C are the membrane resistance and capac- 
itance respectively and I is the driving current. If  the 
threshold voltage I/o is reached, the neuron fires and the 
voltage is reset to zero. If  we also include an absolute 
refractory period tr during which the membrane is 
insensitive to external stimuli, we find a firing rate 

[ ( f ( I ) =  t r + z l o g  1-- , (28) 

where T = RC and Io = Vo/R. This is the gain function 
that is plotted in Fig. 5 (middle left, solid line). 

The most dramatic simplification is a reduction of  
neuronal spiking behaviour to two states only: firing 
(S = + 1) or not firing (S = - 1 ) .  This model is known 
as two-state or formal neuron and has been used in 
theoretical considerations (McCulloch and Pitts 1943) 
as well as in the study of neural networks (Little 1974; 

Hopfield 1982). The gain function is that of  a simple 
threshold device with a step at ! = 0. Noise can be 

added, if we assume that spiking occurs stochastically 
with conditional probability 

Prob{S = + 11I} = �89 + tanh[fl(I - 0)]}. (29) 

This is the so-called Glauber dynamics. Averaging over 
time we find the mean firing rate 

f ( I )  = �89 { 1 + tanh[fl(I - 0)] },  (30) 

which is also plotted in Fig. 5 (bot tom left, dotted). 
The gain functions of the models presented above 

should be understood as typical examples. The models 
have been selected to show a variety of  qualitatively 
different results. Other models yield gain functions that 
are similar to one of  the three types or lie somewhere in 
between. Experimental results show that real neurons 
exhibit a similar variety of  gain functions (Hodgkin 
1948; Llinas and Sugimori 1980; Jahnsen and Llinas 
1984; Connors and Gutnick 1990). 

In the right column of  Fig. 5 we have plotted the 

function 

g(I) ==f(I) - - f ( - I ) .  (31) 
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According to (22) and (23) the intersection of this 
function with a straight line of slope 1/Jo yields the 
stationary overlaps with one of  the patterns. The solu- 
tion g(Io) = Io/Jo is unstable, if (~g /~I)(Io) > J o  I . The 
other solutions may be unstable with respect to oscilla- 
tory solutions, see Sect. 5 for details. If the feedback 

parameter Jo is strong enough, all models have a re- 
trieval solution with finite stationary overlap. If we 

start to reduce the synaptic feedback J0, the value of 
the overlap gets smaller and smaller. If  one reduces the 
feedback even further the overlap either jumps to zero 
discontinually at a critical value Jc (Fig. 5, top and 
middle, right column), or it decays continually as in the 
Hopfield model (Fig. 5, bottom right). 

It has sometimes been argued that an obvious flaw 
of  associative network models is the high firing rate in 
the stationary states of  the system as compared to the 
low spiking rates found in experiments (Amit and 
Treves 1989; Amit and Tsodyks 1991). From the graph- 
ical solutions in Fig. 5, however, we immediately see 
that for a gain function of  the Hopfield type (bottom), 
solutions with arbitrary low firing frequencies are pos- 
sible. For integrate-and-fire neurons there is a lower 

bound, but it is low enough to allow reasonably low 
firing rates (Amit and Tsodyks 1991). This is also true 

for other realistic models that show a rather linear and 
flat (steady state) gain function (e.g., Ekeberg 1991). It 
is only for gain functions with a sharp threshold as it is 
seen in the Hodgkin-Huxley  model (Fig. 5, top) and 
similar models that solutions with low firing rates are 
not possible, at least not in the noise-free case. So what 
is the effect of  noise on the system? 

In the Hopfieid model with formal two-state neu- 
rons and Glauber dynamics, the slope of the gain 

function is directly correlated with the magnitude of the 
noise in the stochastic dynamics. In the more refined 
models like the integrate-and-fire model or the variable 
threshold model, the slope is set by internal parameters 
of the models, i.e., the time constant of  the membrane 
and the decay time of  the refractory period. If we add 
noise to the system, the gain function changes slightly 
and the threshold is rather blurred (Fig. 5, top and 
middle, dotted), but the main difference is in the inter- 
val distribution which can take different forms depend- 
ing on the kind of  noise we choose (Gaussian, Poisson 
and other). The derivation of Eq. (15) in Sect. 3, 
however, shows that the form and the variance of the 

interval distribution do not matter. Noise matters only 
in as f a r  as it decreases or increases the mean firing rate. 

An explicit way to introduce noise into the above 
models is to take the input current as a parameter that 
varies stochastically around the nominal current I0, i.e. 

I = Io + 61 (32) 

where 6I  is chosen from a probability distribution 
P(6I) .  Besides the distribution of  amplitudes P(6I)  

(which may be a Gaussian) the frequency distribution 
of the noise is also an important parameter that deter- 
mines the effective noise level. As an example of  a noisy 
dynamics we have simulated the Hodgkin-Huxley  and 
the 'integrate-and-fire' model neurons with an input 

current that changed abruptly every ms. The noise 
amplitude 61 has been chosen from a block-shaped 

distribution P(6I)  = 1/(2AI)  for 1611 ~ A I  = 0.31o and 0 
otherwise. The mean firing rate has been determined 
according to the procedure outlined in Sect. 2. We then 
calculated the function g(I)  that is plotted in the right 
column of  Fig. 5 (dotted curves). As before, we find the 
overlap value from a graphical solution of (22) (Fig. 5, 
intersection of the dotted curves with the straight line). 
Thus, the qualitative behaviour of the system remains 

unchanged. 
The gain functions of Fig. 5 are based on some 

models that are commonly used in neurobiology and 
neural network theory. We have taken them only as 

convenient examples to explain the various types of 
solution, but the arguments of  Sect. 3 do not rely on 

any model at all. Instead of  one of the model gain 
functions it is also possible to take an experimentally 
measured gain function of neurons in the association 
area of the cortex and some typical values of the 
synaptic feedback. A graphical solution analogous to 
Fig. 5 shows whether the retrieval of a stationary 

patterns is possible. 

5 Discussion and generalization 

5. I Patterns o f  arbitrary activity 

There are two obvious objections to our network analy- 
sis. They concern the symmetry of the connections and 
the high spatial activity in the retrieval states. Both 

objections can be overcome by a generalization of the 
model network to patterns of  arbitrary activity a, i.e. 
~ = + 1 with probability (1 + a)/2. To code the pat- 
terns we change the synaptic connection matrix and 

allow it to assume the asymmetric form (van Hemmen 
et al. 1990) 

2J0 
~" r 1 6 2  a). (33) Jij - N(  i ~ a z) , = t  

Despite the asymmetry of  the connections, an exact 
solution is still possible. With the new definition of  the 
overlap 

2 N 

m" N(1 - a 2 ) j ~ ,  ( ~ ; - a ) S j  

2 
- 1 - a z ~ P(X)(X" - a)A(x) (34) 

we find instead of (15) 

q 

I(x) = (2Jo/1 - a 2) ~ x ~' ~ p ( y ) ( y U _  a) f[ I (y)] ,  (35) 
/ a = l  y 

whereas (22) remains unchanged. Thus the retrieval 
solution does not change either. 

5.2 Non-identical neurons and synapses 

As we have pointed out in Sect 3.1, the model has been 
defined under the assumption that all neurons and 
synapses have identical characteristics. In neurobiology, 
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however, several distinct types of  neuron, e.g., pyrami- 

dal and stellate cells, and also several types of  synapse, 

characterized by some neurotransmitter substance and 

receptor mechanism, are known. Furthermore,  the neu- 

rons of  one type may have different size and the 

synapses may have different positions on the dendritic 
tree. To take these effects into account, we group the 

neurons into several classes 2 = 1 . . . .  I and the 

synapses into distinct types x = 1 , . . .  k. The elements 

of  each class are assumed to show identical characteris- 

tics. I t  is impossible to give an analysis of  the most  

general case of  synaptic connections between the vari- 

ous neurons. But as long as each postsynaptic neuron 

of class 2 has the same distribution of synapses along 

the dendrites, an extension of the above considerations 

and results is straightforward. In this case, the post- 

synaptic response to a single presynaptic spike arriving 

via a synapse of type x can be described by a general- 

ization of  (9), 

Jo(x, 2)e(~c, ~) (36) 

where e(x, z) describes the time dependence of the 

response of  a synapse of  type x and Jo(x, 2) is the 

effective strength due to the dendritic distance between 

the synapse and the soma of  a neuron of type 2. We 

define sublattices L(x, 2) of  neurons i that belong to 

class 2 and have stored the data gi = x. All neurons in 

L(x, 2) experience the same current 

fo I(x,  2, t) = 2 x ~ Jo(x, 2) dze(x, ~) 
, u = l  ~r 

• ~ p ( y ,  t - ( 3 7 )  
y, 2" 

I f  we solve the system of equations in a way analogous 

to (13)-(15) ,  then we find instead of  (22) for the 

overlap 

m = ~ p(2)[f~(I4) --f~( - I~)1. (38) 
2 

Here p(2) is the port ion of neurons of  class 2 in the net, 

f4 the gain function of  these neurons, and 14 the driving 

current 14 = ~ = l Jo(x, 2)m. Thus the result is basically 

the same as (22), except that the contributions of  the 

various neurons and synapses have to be weighted with 

the prefactor p(2) and Jo(x, 2), respectively. 

5.3 Mean-field conditions and how to get rid of them 

The main result of  the preceding sections is that  it is 

possible to construct the stationary solutions of  a net- 

work in terms of overlaps in a manner  which is indepen- 
dent of any specific model of the neurons. The only 
object we use are spike trains, may they be produced by 

real neurons or some formal neuron. Using the spike 

trains we calculate the mean firing rate defined as the 

inverse of  the mean interval length. The only parame- 

ters which we need to determine the existence and 

quality of  the retrieval solutions are the gain function of  

the neurons, i.e., the mean firing rate in dependence 

upon the input current, and the synaptic efficacy factor 

Jo as a measure of  the feedback of  the network onto the 
neurons. F rom our considerations it follows that sec- 

ond and higher-order moments  of  the spiking statistics 

which determine the shape and the variance of  the 

inverval distribution do not matter.  Thus, the results 

are independent of the nature of the noise, be it Poisson, 

Gaussian or other. Only the mean of  the interval distri- 

bution counts. 

In fact, our results are identical to a naive mean- 

field solution of  the network. I f  we assume two popula-  

tions of  neurons, those that should be 'on '  for pattern 

v and those that should be 'off ' ,  both will see the same 

input current, but with different signs. Performing the 

's loppy'  mean-field argument (Wilson and Cowan 1972) 

we immediately get (22). 

The present argument,  however, shows that (22) is 

exact and not based on any additional mean-field as- 

sumption. Such a result, however, should be no sur- 

prise, since it is known that for a fully connected system 

with a finite number of  different connection weights 

(i.e., q finite) mean-field theory becomes exact in the 

bulk limit N ~ ~ .  This is due to the fact that in a fully 

connected network each neuron receives inputs from 

extensively many others. I f  these inputs are indepen- 

dent, the law of  large numbers states that only the 

mean of the distribution matters. With the assumption 

of  stationarity we could neglect correlations of  the 

synaptic contributions in time, while the sublattice ar- 

gument showed that there are no correlations in space. 

Thus the conditions for the application of the law of 

large numbers and the exact validity of  mean-field-re- 

suits are the full connectivity and the assumption of  
stationarity plus the restriction to a finite number of 
patterns. What  happens if we loosen one - or more - of  

these conditions? 

i) Finite number of patterns. The crucial step of  the 

analysis is from (13) to (14) where we have to use the 

fact that each sublattice contains in the limit N ~ ~ an 

extensive number  of  neurons. For  N large, but finite, we 

have to restrict the number  of  patterns so as to assure 

that the number  of  sublattices 2 q is much smaller than 

N, or q <~ log N. If, however, the n u m b e r  of  patterns q 

is of  the same order than the number  of  neurons, i.e., 
q = ~tN with finite ~, then the coupling matrix (11) 

introduces an additional source of  noise into the sys- 

tem. In analogy to earlier results (Amit  et al. 1987, 

Kfihn et al. 1991) we expect that  (22) must  be changed 

so as to include the extra noise term. A careful interpre- 

tation of  the results of  Kiihn et al. for a network of  

graded-response neurons shows that the gain function 

alone is not enough to determine the state of  the system 

and that the variance of  spiking frequencies at fixed 

input is also important.  The qualitative nature of  the 

phase diagram, however, remains the same, i.e., in the 
limiting cases of  high and low loading, models with 

identical gain function yield the same result. 

ii) Full connectivity. Let us now consider the condi- 

tion of full connectivity. I f  we remove synapses stochas- 

tically, we achieve sparse, but long-ranged connections. 

As long as each neuron has connections to a large 
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number  of  neurons in arbitrary distance, hardly any- 

thing changes and the same type of analysis as in Sect. 

3 can be carried out. In the cortex, it is believed that 

every neuron is connected to thousands of  other neu- 

rons. There are many  local connections, but there is 

also a large port ion of  axons that extend over long 

distances. A model with full connectivity may thus be 

an excellent approximat ion to the high connectivity 

found in some areas of  the cortex. 

In the case of  predominantly local connections, 

however, the situation changes and a completely differ- 

ent mathematical  description becomes necessary. In this 

case, correlations between neighbouring neurons can 

lead to local clusters that behave in a way different 

from the bulk of the neurons. Mean-field solutions are 

then no longer valid. In a biological context, local 

connections are of  extreme importance for the under- 

standing of columnar structures in the visual cortex and 

the formation of neural maps (Hubel  and Weisel 1977), 

Nevertheless we have good arguments to speculate that 

in the association areas of  the cortex uniformly ranged 

connections are a fair approximation.  In those areas 

our approach may be applied. 

iii) Stationarity. The third important  condition in 

the argument of  Sect. 3 has been the assumption of a 

stationary solution of  the collective dynamics of  the 

system. This assumption has been possible since we were 

interested in the retrieval of  stationary patterns only. 

From a biological point of  view, time-dependent solu- 

tions are certainly important;  we only have to think of  

the fast reaction of  the nervous system to changing 

external input conditions as for example during the flight 

of  a fly or a bat. It  is also known that single neurons as 

well as neural systems produce a variety of  adaptation 

effects in a changing environment. Furthermore,  there is 

evidence that the brain reacts with coherent oscillations 
of  the spiking activity even during fairly constant input 

conditions as for example in the odor system of  the rat 

(Freeman 1975) or in the visual cortex of  the cat 

(Eckhorn et al. 1988; Gray  and Singer 1989). With 

respect to the possibility of  oscillations in a neural net 

we have to consider the conditions under which the 

assumption of  a stationary solution is no longer justified. 

The theoretical conditions for the stability of  the 

stationary solutions are a long postsynaptic integration 

time as compared to the inverse of  the mean firing rate, 

or, if the integration time is short, a timing of  delay and 

response that leads to a negative feedback. Even if a 
stationary solution is locally stable it might be of  minor 

importance, if its domain of  attraction is small com- 
pared to oscillatory solutions. It  has been shown that in 

a network with realistic neurons both collective oscilla- 

tions and stationary solutions can occur. It depends on 
the exact timing of  the synaptic transmission delays and 

the postsynaptic response whether the stationary solu- 

tion is stable or the system is driven into the oscillatory 

state (Ritz 1991; Gerstner and van Hemmen 1992). 

Thus the stability of  the stationary solution is achieved 

by a complex combination of  delay time and postsy- 

naptic response on the one hand, refractory period, 

mean firing rate, and spiking noise on the other hand. 

For  this reason, time-dependent effects require a spe- 

cific model of  the neurons that takes all these elements 

of  neuronal spiking into account. For  time-dependent 

effects, the mean firing rate can no longer take a 

dominant role, since the correlation among the firing of  

different neurons becomes important.  Thus, any ap- 

proach that uses mean firing rate assumptions in the 

context of  collective oscillations and other time-depen- 

dent problems seems questionable. 

6 Conclusions 

Using the concepts of  statistical spike train analysis, we 

have shown that there is a controlled way to go from 

realistic neuronal spike trains to a description by gain 

functions (mean firing rate versus input current), It  

turns out that in a recurrent network with high connec- 

tivity the mean firing rate is the only relevant variable 

of  neuronal spiking in a stationary state. This conclu- 

sion is independent of  any specific model of  a neuron. 

Hence it is possible to predict the existence and quality 

of  retrieval solutions, provided the gain function and 

the efficacy of the synaptic transmission are known. 

Thus, as long as we are interested in stationary solu- 

tions only, there is no need to include more and more 

refined models of  a neuron into associative neural net- 

work models - the gain function is the only object that 

matters. 

It  is however, important  to realize that these results 

are exact only for a stationary state of  a highly con- 
nected network. I f  we are interested in locally connected 

nets or in time-dependent solutions, then the mean 

firing rate is no longer the only relevant parameter.  In 

this case, detailed models of  a neuron and its firing 

behaviour are required. It is necessary to keep this in 

mind, if a description of collective oscillations in the 

cortex, adaptation phenomena, or other time dependent 

problems of  neuronal spiking like is attempted. 
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