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Simulations of five different coarse-grained models of symmetric diblock copolymer melts are
compared to demonstrate a universal (i. e., model-independent) dependence of the free energy on
the invariant degree of polymerization N , and to study universal properties of the order-disorder
transition (ODT). The ODT appears to exhibit two regimes: Systems of very long chains (N >

∼

104) are well described by the Fredrickson-Helfand theory, which assumes weak segregation near
the ODT. Systems of smaller but experimentally relevant values, N <

∼
104, undergo a transition

between strongly segregated disordered and lamellar phases that, though universal, is not adequately
described by any existing theory.

PACS numbers: 82.35.Jk,64.70.km,64.60.De

Universality is a powerful feature of polymer statisti-
cal mechanics that allows the behavior of real systems
to be predicted on the basis of simple generic models
and scaling arguments. The paradigmatic example is the
scaling theory of dilute and semidilute polymer solutions
in good solvents [1–3], which predicts a universal depen-
dence of all properties on two thermodynamic state pa-
rameters (an excluded volume parameter and an overlap
parameter). Historically, this scaling hypothesis was ver-
ified by comparing experiments on diverse chemical sys-
tems with varied chain lengths and concentrations [3–5].
Here, we compare simulations of diverse models to verify
an analogous scaling hypothesis about the equation of
state and order-disorder transition (ODT) of symmetric
diblock copolymers, and to characterize this transition.

We consider a dense liquid of AB diblock copolymers,
with N monomers per chain, and a fraction fA of A
monomers. We focus on the symmetric case, fA = 1/2.
Self-consistent field theory (SCFT) is the dominant the-
oretical approach for block copolymers [6–8]. SCFT de-
scribes polymers as random walks with a monomer sta-
tistical segment length b, which we take to be equal for
A and B monomers. The free energy cost of contact be-
tween A and B monomers is characterized by an effective
Flory-Huggins interaction parameter χe. Let g denote a
dimensionless excess free energy per chain, normalized by
the thermal energy kBT . SCFT predicts a free energy g
for each phase that depends only upon fA and the prod-
uct χeN , or upon χeN alone for fA = 1/2. This yields a
predicted phase diagram [6, 7] that likewise depends only
on fA and χeN . For fA = 1/2, SCFT predicts a transi-
tion between the disordered phase and lamellar phase at
(χeN)ODT = 10.495.

SCFT is believed to be exact in the limit of infinitely
long, strongly interpenetrating polymers [9, 10]. The de-
gree of interpenetration in a polymer liquid is charac-
terized by a dimensionless concentration C ≡ cR3/N ,
in which c is monomer concentration, c/N is molecule

concentration, and R =
√
Nb is coil size. Alternatively,

interpenetration may be characterized by the invariant

degree of polymerization N ≡ C
2
= N(cb3)2 [10]. A

series of post-SCF theories [10–18], starting with the
Fredrickson-Helfand (FH) theory [10], have given pre-
dictions for finite diblock copolymers that depend on N
in addition to the SCFT state parameters, but that re-
duce to SCFT predictions in the limit N → ∞. Specifi-
cally, these theories suggest that, for symmetric copoly-
mers, g of each phase is given by a universal (model- and
chemistry-independent) function of χeN and N alone,

g = g(χeN,N) . (1)

If so, the value of χeN at the ODT (where the free en-
ergies of the two phases are equal) should depend on N
alone, and should approach 10.495 as N → ∞.
The FH theory and its relatives all yield predictions

that are consistent with Eq. (1). All, however, also rely
on mathematical approximations that, to a greater or
lesser extent [18], limit their validity to large values of
N . Validity of Eq. (1) is thus a necessary but not suffi-
cient condition for validity of more approximate theories.
One goal of this work is to directly test the validity of
this scaling hypothesis, independent of the FH theory,
by comparing results of simulations of different coarse-
grained models.
Here, we compare simulations of four different con-

tinuum bead-spring models (models H, S1, S2, and S3)
and a lattice model (model F) with widely varying chain
lengths. Each bead-spring model has a pair potential
of the form Vij(r) = ǫiju(r), with ǫAA = ǫBB and
ǫAB ≥ ǫAA. Model H uses a truncated purely repulsive
Lennard-Jones pair potential (H denotes “hard”), and
is similar to the model of Grest and coworkers [19, 20].
Models S1, S2, and S3 all use the softer pair potential typ-
ical of dissipative particle dynamics simulations. Model F
is an FCC lattice model. Models H [21–23], S1 [22, 23],
and F [24–27] have been studied previously. The term
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“model” refers to set of choices for the functional form
of the pair and bond potentials, and for values of all pa-
rameters except N and one parameter that is varied to
control χe. Here, we vary the difference α ≡ ǫAB − ǫAA

between the strength of AB and AA (or BB) pair in-
teractions, while holding T , ǫAA and other parameters
constant.

The parameters of the four bead spring models were
chosen to facilitate testing of universality, by creating
pairs of simulations of different models with equal val-
ues of N . Parameters for models H, S1, S2, and S3 were
adjusted to give values of N/N = (cb3)2 with ratios of
nearly 1:4:16:32. Because simulations were conducted for
chain lengths N = 16, 32, 64, and 128 that also differ
by multiples of 2, some pairs of simulations of different
models have nearly equal values of N . Specifically, simu-
lations of H-64 (model H with N=64) and S1-16 (model
S1 with N=16) both have N ≃ 240, while S1-64 and S2-
16 both have N ≃ 960, S1-128, S2-32, and S3-16 all have
N ≃ 1920, and S3-64 and S2-32 both have N ≃ 3840.

The simulations presented here span a range N ≃
100 − 7600 that overlaps much of the range of N ≃
200 − 20, 000 explored in experiments on symmetric di-
block copolymers. For example: N ≃ 1100 in a clas-
sic study of poly(styrene-b-isoprene) [28, 29], N ≃ 220
in a recent study of poly(isoprene-b-L lactic acid) [30],
and N ≃ 5000 in the study of poly(ethylene-propylene-
b-ethylethylene) used to test the FH theory [31–34].

Simulation details: Each bead-spring model has a bond
potential Vbond(r) = κ(r − l0)

2/2 and a pair potential
Vij(r) = ǫiju(r) that vanishes beyond a cutoff distance
rc. For model H, u(r) = 4[(σ/r)−12 − (σ/r)−6 + 1/4],
rc = 21/6σ, ǫAA = kBT , κ = 400kBT/σ

2 and l0 = σ. For
models S1, S2, and S3, u(r) = [1 − (r/σ)2]/2, rc = σ,
ǫAA = 25kBT , l0 = 0, and κσ2/kBT = 3.406, 1.135,
and 0.867 respectively. All bead-spring simulations re-
ported here are GPU-accelerated NPT molecular dynam-
ics (MD) simulations [35]. The pressure for each such
model (which is independent of N) was chosen to yield
a target monomer concentration c in the limit α = 0,
N → ∞ of infinite homopolymers. Values of cσ3 for
models H, S1, S2, and S3 are 0.7, 3.0, 1.5, and 1.5, re-
spectively. Values of the statistical segment length b for
all five models were obtained [23, 36] from the extrap-
olation b2 ≡ limN→∞ 6R2

g/N of homopolymer (α = 0)
simulations, where Rg is the radius of gyration, giving
b/σ = 1.404, 1.088, 1.727, 1.938 for models H, S1, S2, and
S3, respectively. Model F is an FCC lattice model with
20 % vacancies, with a bond length

√
2d, c = 0.4d−3, and

b = 1.745d. ODTs for bead-spring models were identified
using a well-tempered metadynamics free energy method,
as discussed in supplemental material [37].

Estimating χe: The question of how to assign a value
to the interaction parameter χe used in coarse-grained
theories, and in Eq (1), has hindered previous attempts
to compare simulations of coarse-grained models to the-

ory or to each other. For each model in our simulations,
χe is some unknown function χe(α) of the control param-
eter α. Our approach to estimating χe(α) is motivated
by recent advances theoretical predictions for the struc-
ture factor S(q) in the disordered phase. It was recently
shown [23] that the renormalized one-loop (ROL) theory
[16, 17] can accurately predict simulation results for S(q)
over a wide range of values of N and α using a single
nonlinear function χe(α) for all chain lengths. In what
follows, we thus analyze results for the free energy and
ODT using an approximation for χe(α) for each model
that is obtained from a simultaneous fit of simulation re-
sults for S(q) for several chain lengths to the ROL theory
(see supplemental material [37]).

For comparison, we also consider a simpler linear ap-
proximation for χe(α), which was used in Ref. [21]. This
approximation is based on an analysis of a perturbation
theory for homopolymer blends [36] that yields an ex-
act expression for the first term of a Taylor expansion of
χe(α). This gives χe(α) ≃ z∞α/kBT , where the coeffi-
cient z∞ is obtained from homopolymer (α = 0) simula-
tions [37].

Results: One rather direct way of testing Eq. (1) is to
compare results from different simulation models for the
derivative g′ ≡ ∂g/∂(χeN). Given an accurate estimate
of χe(α), g

′ can be calculated using the relation

∂g

∂(χeN)
=

〈UAB(α)〉
MNǫAB(α)

[

kBT
dχe(α)

dα

]−1

, (2)

where UAB is the total nonbonded AB pair interaction
energy in a system of M chains. Eq. (2) is derived
by using the identity ∂g/∂α = 〈∂H(α)/∂α〉/(kBTM),
where H(α) is the model Hamiltonian, to show
that ∂g/∂α = 〈UAB〉/(MkBTǫAB), and then writing
∂g/∂χe = (∂g/∂α)/(dχe/dα).

Eq. (1) implies that g′ = ∂g/∂(χeN) should (like g) be
a universal function of χeN and N . Data from simula-
tions of different models with matched values of N should
thus collapse when g′ is plotted vs. χeN . The quality of
the collapse does, however, depend on the accuracy of the
approximation for χe(α) used to construct such a plot.
The inset and main plots of Fig. 1 show two different at-
tempts to collapse data for g′ vs. χeN for models S1-64
and S2-16, for which N ≃ 960. The inset was constructed
using the linear approximation χe ≃ z∞α/kBT . This ap-
proach fails, yielding a poor data collapse and poor agree-
ment for the value (χeN)ODT of χeN at the ODT (indi-
cated by arrows). The main plot was constructed using
the nonlinear approximation for χe(α) obtained by fitting
S(q). This succeeds, giving near perfect collapse of the
data for g′ from these two models, and excellent agree-
ment for (χeN)ODT. Results for other pairs of models
with matching N show similar agreement. This analysis
nicely verifies the accuracy of both the scaling hypothe-
sis, Eq. (1), and of this method of estimating χe(α).
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FIG. 1. Plots of g′ ≡ ∂g/∂(χeN) vs. χeN for models S1-64
and S2-16 (N ≃ 960), constructed using different approxi-
mations for χe(α): The inset uses the linear approximation
χe(α) = z∞α/kBT . The main plot uses a nonlinear approx-
imation obtained by fitting S(q). The dashed curve shows
the SCFT prediction for g′(χeN). Vertical arrows mark the
positions of the ODTs.

There is a small discontinuity in g′ across the ODT in
the main plot of Fig. 1, of magnitude ∆g′ ≃ 0.007, indi-
cating a very weakly first-order transition. The smallness
of ∆g′ indicates that the degree of AB contact is similar
in the disordered and ordered phases near the ODT. This
suggests that the disordered phase at the ODT has a lo-
cal structure similar to that of the ordered phase, with
well defined A and B domains and an AB interfacial area
per volume very similar to that of the lamellar phase,
but without long range order. The SCFT prediction for
g′(χeN) (dashed line) is given by the spatial average of
the product φA(r)φB(r) of the predicted local volume
fractions of A and B monomers. This yields g′ = 0.25
in the disordered phase, χeN < 10.495. Notably, SCFT
predictions for g′ are poor in the disordered phase, but
show excellent agreement with simulations in the ordered
phase. SCFT thus accurately predicts the extent of AB
contact within the ordered phase, but is intrinsically in-
capable of handling the strong short-range correlations
in the disordered phase.

Fig. 2 shows the free energy per chain g vs. χeN for
four values of N . These were calculated by numeri-
cally integrating simulation results for ∂g/∂α within each
phase, setting g(α = 0) = 0 by convention for homopoly-
mers, and matching values of g in the two phases at the
ODT. Three of the plots show results for pairs of simu-
lations with matched values of N , to demonstrate con-
sistency of results obtained in corresponding thermody-
namic states of different models. Deviations from the
SCFT prediction for g in the disordered phase are eas-
ily visible in the range 10.495 < χeN < (χeN)ODT be-
tween the SCFT and true ODTs, where the disordered
phase develops strong correlations. Interestingly, SCFT
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FIG. 2. Free energy per chain g vs. χeN at 4 different val-
ues of N , plotted using a nonlinear approximation for χe(α).
Solid lines are SCFT predictions for g(χeN). The straight
solid line is the SCFT prediction g(χeN) = χeN/4 for the
disordered phase. Vertical dotted lines show the SCFT ODT,
at χeN = 10.495. Vertical dashed lines show actual ODTs. In
plots that display results for two systems, the ODT is shown
for the system with larger N .

predictions for g are quite accurate within the ordered
phase, and become more so with increasing N : There
is a small but noticeable offset between simulation re-
sults and SCFT predictions for g in the ordered phase
for N ≃ 240, but much less error for larger N . This
agreement does not follow trivially from the observed ac-
curacy of SCFT predictions for g′ in the ordered phase,
since the value of g at the ODT is calculated by integrat-
ing ∂g/∂α through the disordered phase, in which SCFT
predictions are poor. At a heuristic level, the main com-
ponents of g are free energies arising from AB interfacial
contact and chain stretching. Only the extent of AB
contact is directly reflected by the value of g′. These re-
sults thus suggest that SCFT accurately describes both
of these free energy components in the ordered phase,
though not in the disordered phase near the ODT.
Fig. 3 shows a compilation of results for (χeN)ODT

from all simulations, plotted vs. N , using our nonlin-
ear approximation for χe(α). The most important fea-
ture of this plot is the fact that results from all five
models collapse onto a common curve, as required by
Eq. (1), confirming the universality of the results. Note
the excellent agreement found for pairs of simulations
with matched values of N , shown by overlapping open
symbols. The results also clarify the limitations of the

FH prediction [10], (χeN)FH ≡ 10.495+41.0N
−1/3

(solid
curve). The highest values of N studied here closely ap-
proach the FH prediction, but deviations grow with de-
creasing N , and become large for modest values typical
of many experiments. The dotted curve is an empirical
fit to results of the bead spring models: (χeN)ODT =

(χeN)FH + 123.0N
−0.56

. These results suggest that the
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FIG. 3. Values of χeN at the ODT vs. N , for all simulations.
Bead-spring model results are shown as open symbols, with
labels for specific systems. Lattice model results for N = 20,
30, 40, 60, 90, 120 and 180 are filled gray circles. The solid
curve is the FH prediction. The horizontal long dashed line is
the SCFT prediction. The short dashed curve is an empirical
fit.

FH theory becomes accurate for N >∼ 104, but breaks
down at lower N .

Insight into the reason for this breakdown of the FH
theory for N <∼ 104 can be gained by examining the de-
gree of segregation in the ordered phase at the ODT. The
approximations underlying the FH theory are strictly
valid only for extremely large N , for which it predicts
a transition to a weakly segregated lamellar phase. The
inset of Fig. 4 shows the dependence of the average lo-
cal volume fraction of A monomers, φA(z), in the or-
dered phase at the ODT, plotted vs. normal coordinate
z for model S1-64 (N ≃ 960). This composition profile is
almost sinusoidal, but is clearly not weakly segregated.
The main plot shows the maximum value of φA(z) in the
middle of the A domain of the ordered phase at the ODT
plotted vs. N for different systems. This value remains
large (≥ 0.83) over the entire range studied here, but
decreases slowly with N in a manner that suggests con-
vergence to FH predictions for N >∼ 104. The solid curve
shows the corresponding value predicted by the FH the-
ory, which assumes a sinusoidal profile. Note that the FH
theory predicts unphysical values of max[φA(z)] > 1 for
N <∼ 103, and thus must begin to fail below a crossover
value of N somewhat greater than 103.

In this Letter, we present the first simulations to
demonstrate consistency among different coarse-grained
models for the equation of state and the value of χeN at
the ODT of symmetric diblock copolymers, by using N
as a correlating variable. This verifies a scaling hypothe-
sis, Eq. (1), that posits a universal dependence on N and
χeN . At a practical level, the demonstration of univer-
sality opens the way for the use of coarse-grained simula-
tions as reliable tools for predicting the behavior of real
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FIG. 4. Maximum value of the local volume fraction φA(z)
in the ordered phase at the ODT plotted vs. N for all bead
spring simulations. Inset: Composition profile φA(z) in the
ordered phase at the ODT for model S1-64, where z is distance
normal to layers and Lz is simulation cell size.

materials. This success depended critically upon the de-
velopment of an adequate method of estimating χe, which
we achieve by fitting the structure factor S(q) in the dis-
ordered phase to an accurate new theory [16, 17]. The
universality predicted by Eq. (1) is found to be remark-
ably robust, applying down to N ≃ 200, and to chains
with as few as 16 monomers. Universal behavior charac-
teristic of random-walk polymers must, of course, break
down for sufficiently short discrete chains, but we found
surprisingly little evidence of this in the systems studied
here. The FH theory has a more limited range of validity.
Our results suggests that the FH theory becomes quan-
titatively accurate for N >∼ 104. In the range N <∼ 104

studied here (and in many experiments), both the or-
dered phase and the disordered phase become strongly
segregated near the ODT. This violates the assumptions
underlying the FH theory, causing (χeN)ODT to deviate
substantially from the FH prediction. SCFT is found,
however, to give surprisingly accurate predictions for g
in the ordered phase. SCFT thus may provide good pre-
dictions for many order-order transitions in block copoly-
mers, if combined with sufficiently accurate estimates of
χe. On the other hand, SCFT grossly underestimates
(χeN)ODT for the order-disorder transition of symmet-
ric diblock copolymers with modest N because it cannot
describe the strongly segregated disordered phase that
exists near the ODT.
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INTRODUCTION

The simulations presented in the accompanying article were conducted independently by

two subsets of the authors: Simulations of the bead-spring models (models H, S1, S2, and

S3) were conducted at the University of Minnesota by J.G., P.M. and D.M, while the lattice

Monte Carlo simulations (model F) were conducted at the University of Reading by T.B.

and M.M. The decision to present the results in a joint publication was made when analysis

of the two data sets by identical methods revealed the consistency of the results, after both

sets of simulations were complete. Somewhat different simulation methods were thus used

in the bead-spring and lattice simulations.

FCC LATTICE MODEL

Model F is a face-centered-cubic lattice Monte Carlo model with 20 % vacancies, as

described in the main text. The model has a distance
√
2d between nearest neighbor sites

and a concentration c = 0.4d−3, where d is the spacing of an underlying cubic lattice. Double

occupancy is prohibited. The model has no interaction between AA or BB nearest neighbor

pairs (ǫAA = ǫBB = 0), and an interaction ǫAB = α between AB nearest neighbor pairs.

This model has been studied previously [1–4] using methods similar to those used here.

The simulations reported here all used the parallel tempering method described in Ref. [3].

Simulations were carried out in L × L × L cubic simulation cells, where L was chosen to

be approximately
√
14 times the preferred layer spacing at the ODT, to yield a nearly

commensurate cell for lamellae oriented in a {321} direction. Previous studies [2, 3] have

shown that the dependence of (χeN)ODT upon L is modest for symmetric diblock copolymers

in cells of this size or larger.

In the simulations presented here, separate sets of parallel tempering simulations were

conducted for each N , initialized from either (1) all disordered configurations or (2) all

ordered configurations. Results obtained from simulations with these different initial states

were found to converge outside of a small range of values of α near the ODT. Near the ODT,

however, results from different initial conditions differed, creating the metastability loops

visible in Fig. 1. The minimum and maximum values of α within these loops provide bounds

on the true value αODT of α at the ODT. Our estimates of αODT for model F, as reported

2
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FIG. 1. Free energy derivative g′ vs. χ
(1)
e N for lattice model simulations with N = 20 to 180,

where χ
(1)
e (α) ≡ z∞α/kBT is a linear approximation for χe(α). Values of g′ shown here were

calculated using Eq. (2) of the main text, also using approximation χ
(1)
e . Results are show both for

simulations that were initialized with all disordered configurations (©) and simulations that were

initialized with ordered configurations (�). The persistence of metastable ordered and disordered

phases very near the ODT is evident from the existence of metastability loops in which the results

obtained from different initial states differ.

in Fig. 3 of the main text, are the midpoints of these metastability loops. The uncertainty

∆(χeN) in the value of χeN at the ODT due to metastability is ∆(χeN) ≤ 0.1 for N = 20,

. . . , 120 and ∆(χeN) ≃ 0.2 for N = 180. This uncertainty is too small to significantly affect

the quality of the collapse shown in Fig. 3 of the main text.

BEAD-SPRING MODELS

Models H, S1, S2 and S3 are continuum bead-spring models, which are described in the

main text. All bead-spring simulations reported here are molecular dynamics simulations

that were conducted using the HOOMD-blue code [5] for GPU-accelerated MD simulations.

The simulations used to measure the structure factor S(q) in the disordered phase, measure

the average AB pair energy 〈UAB〉 in the disordered phase, and locate the ODT were all

isobaric, isothermal molecular dynamics simulations that were carried out using the inte-
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grator of Martyna, Tobias, and Klein [6], using a time step ∆t = 0.005 in natural units

(kBT = 1, σ = 1, bead mass =1). These simulations were performed using a fixed set of

values for potential energy parameters ǫAA = ǫBB, rc, κ, and l0 and the pressure P for each

model (non-dimensionalized in the same units), over a range of values of ǫAB = ǫAA + α.

Isothermal, constant volume (NVT) simulations of models H and S1 have been carried out

previously [7–9], using the same potential energy parameters. Values for all simulation input

parameters are given in Table 1.

The pressure used in NPT simulations of each such model was chosen so as to yield a

predetermined target value c for the monomer concentration in the limit α = 0, N → ∞
of infinite homopolymers. The target values of c = 0.7σ−3 for model H and c = 3.0σ−3 for

model S are the concentrations used in earlier NVT simulations of these models [9]. The

required pressure P for each model was determined by running NVT simulations for each

model for several values of N in the α = 0 homopolymer state with a monomer concentration

equal to the target value, and measuring the pressure. The pressure P (N) was found to

exhibit a nearly perfect linear dependence on 1/N , P (N) = P∞ + δ/N . The extrapolated

value P = P∞ was used for all NPT simulations.

NPT simulations of the bead-spring models were carried out using chains of lengthN =16,

32, 64, and 128. Several types of NPT simulation were performed for each such model and

chain length.

(1) Simulations of the disordered phase were performed in NPT ensemble using an L ×
L× L cubic simulation cell. The number of molecules M for each of these simulations was

chosen, as in Ref. [9], to yield a length L of approximately 3 times the RPA prediction 2π/q∗0

for the layer spacing evaluated at the ODT for a system with the asymptotic monomer

concentration c.

(2) Simulations of the ordered phase were performed over a range of parameters near

and above the ODT value of α using a tetragonal Lx × Lx × Lz simulation cell in which

Lx and Lz can fluctuate independently so as to allow the layer spacing to adjust to create

a state of isotropic pressure. These simulations were initialized with artificially ordered

configurations of 3 lamellar periods with layers oriented normal to the z axis. In systems

that did not disorder, the layers remained in this orientation. All reported thermodynamic

and structural properties of the ordered phase, including 〈UAB〉, the layer spacing d, and

the composition profile φA(z), were obtained from such tetragonal NPT simulations.

4



model ǫAA rc κ l0 c P

H 1.0 1.1225 400.0 1.0 0.7 2.307

S1 25.0 1.0 3.406 0.0 3.0 20.249

S2 25.0 1.0 1.135 0.0 1.5 4.111

S3 25.0 1.0 0.867 0.0 1.5 4.132

TABLE I. Simulation input parameters for the bead-spring models in units of kBT = 1 and σ = 1.

Here, c denotes the extrapolated monomer concentration for infinite homopolymers at the specified

pressure.

Initial estimates of the value of α at the ODT were obtained from observations of spon-

taneous disordering of tetragonal NPT simulations of systems that were initialized with an

ordered configuration, and of spontaneous ordering of cubic NPT simulations of systems

that were initialized with a disordered configuration, for simulations with values of α spaced

closely around the ODT. Measurements of 〈UAB〉 yielded metastability loops similar to those

shown in Fig. 1 for the lattice model. Ordered and disordered phases were also identified

by tracking the absolute magnitude of the Fourier amplitude ψ(q) of the order parameter

ψ(r) = cA(r)− cB(r) at the wavevector q for which |ψ(q)| is maximum, corresponding to a

Bragg peak in the ordered phase. These simulations yielded initial estimates of the values

αODT and dODT of α and the layer spacing d at the ODT.

(3) Well-tempered metadynamics simulations were run for each model and chain length

to more precisely locate the ODT by measuring the difference in free energy between the

competing phases. These simulations are discussed in a separate section below.

PARAMETER CALIBRATION

Here, we present the analysis used to estimate the model-dependent phenomenological

parameters b, z∞ and χe(α) that are required in our theoretical analysis. Fitting procedures

for these quantities are identical to those presented in Ref. [9]. Values for the resulting

coefficients are given in Table III.
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model M L αODT (χeN)ODT N

H-64 2026 57.00 1.587 22.86 240.2

S1-16 2007 22.04 4.920 22.76 238.9

S1-32 2555 30.09 2.220 19.57 477.7

S1-64 3269 41.16 1.031 17.24 955.4

S1-128 4162 56.21 0.478 15.33 1910.9

S2-16 3137 32.22 14.678 17.44 955.5

S2-32 4145 44.55 5.771 15.61 1911

S2-64 5573 61.95 2.534 14.35 3822

S3-16 3967 34.85 12.430 15.70 1907

S3-32 5391 48.63 4.990 14.39 3815

S3-64 7227 67.56 2.213 13.36 7629

F-20 2500 50 0.167 27.48 90.13

F-30 2880 60 0.112 25.80 135.2

F-40 3144 68 0.084 24.30 180.3

F-60 3413 80 0.056 22.44 270.4

F-90 3691 94 0.037 20.59 405.6

F-120 4199 108 0.027 18.98 540.8

F-180 5111 132 0.017 17.44 811.2

TABLE II. Chain length N , number of molecules M , simulation cell size L, and precise estimates

of ODT for all systems studied in this work. Cell size L is given in terms of length unit of σ = 1

for bead-spring models and d = 1 for model F. Values of M and L given here for the bead-spring

models are those used in well-tempered metadynamics simulations conducted to locate the ODT.

Statistical Segment Length

Values of the statistical segment length b for each model were obtained, as in Ref. [9],

by evaluating the radius of gyration Rg(N) for homopolymers with several chain lengths

and extrapolating to obtain the limit b2 = limN→∞ 6R2
g(N)/N . Because this defines b

for continuum models as a property of a hypothetical system of infinite homopolymers

with a specified concentration c and a corresponding pressure P , it can be evaluated by

6
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FIG. 2. Results for 6R2
g/Nb2 (symbols) vs. N

−1/2
in homopolymer melts, for all five models. Solid

lines are fits to Eq. (1), which were used to determine values for b. The dashed line is the predicted

universal asymptote 1− 1.42N
−1/2

, without the 1/N correction.

extrapolating results of either NVT or NPT simulations. Values of b for models S2, S3

and F were obtained by analyzing NVT homopolymer simulations with the target monomer

concentrations c = MN/V for several values of N , as was done for models H and S1

in Ref. [9]. The ROL theory predicts [9, 10] that 6R2
g(N)/N should vary with N in a

homopolymer melt as
6R2

g(N)

N
≃ b2

[

1− 1.42

N
1/2

+
γ

N

]

. (1)

where the coefficient 1.42 is a theoretically predicted universal coefficient. Results for each

model were fit to Eq. (1) by treating b and γ as fitting parameters. Fig. 2 shows the resulting

fits for all five models.

Effective Coordination Number

It was shown in Ref. [11] that the RPA interaction parameter χe for structurally sym-

metric models such as those studied here is given to first order in α by χe(α) ≃ z∞α/kBT ,

where the coefficient zα is an “effective coordination number” that can be extracted from

homopolymer simulations. This coefficient is given by the N → ∞ limit of a quantity

z(N) = 〈Uinter〉/(MNǫ), where Uinter is the inter-molecular pair interaction energy in a

7
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FIG. 3. Results for z(N)/z∞ (symbols) vs. N
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for all five models. Solid lines are fits to Eq.

(2). The dashed line is the predicted asymptote 1 + (6/π)3/2N̄−1/2.

homopolymer melt of M chains of length N with a pair potential V (r) = ǫu(r) for bead-

spring models, or a nearest-neighbor interaction of strength ǫ in a lattice model. It was also

predicted [11] that z(N) should vary with N as

z(N) ≃ z∞

[

1 +
(6/π)3/2

N
1/2

+
δ

N

]

, (2)

where z∞ and δ are model-dependent parameters. Values of z∞ were determined for models

S2, S3 and F, as done previously for models H and S1 [9], by running NVT homopolymer

simulations at the target concentration c for several chain lengths, and fitting the results for

each model to Eq. (2), using z∞ and δ as fitting parameters. Fig. 3 shows the resulting fits.

Values are given table III.

Estimating χe(α) by fitting S(q)

A nonlinear approximation for χe(α) was estimated for each model by fitting simulation

results for the structure factor S(q) in the disordered phase to predictions of the ROL

theory [12, 13], as done previously in Ref. [9]. Bead-spring simulations used for this purpose

were cubic NPT simulations carried out at the same pressure as that used in all other

simulations. Because our previous simulations of models H and S1 were NVT simulations,
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we have obtained new data and new fits for these models using NPT simulations. In order

to obtain reliable data for S(q) for each model over a range of values of α large enough to

reach the ODT for the shortest chains of interest (i. e., for N = 16 for models S1, S2, and

S3 or N = 20 for model F), we included data for models S1, S2, S3 and F from additional

simulations of chains of length N = 12 in the data set that was used to estimate χe(α).

These additional simulations of short chains were not used for other purposes, and are not

reported in the main text of this article.

An approximation for χe(α) for each model was obtained by a simultaneous fit of ROL

theory predictions to simulation results for cNS−1(q∗) from several different chain lengths,

using the same function for χe(α) for all chain lengths. The fit assumed the functional form

χe(α) =
z∞α̂ + a2α̂

2

1 + d1α̂ + d2α̂2
(3)

for each model, where α̂ = α/kBT , with d2 = 0 in all models except model H. The coefficients

a2, d1 and (for model H) d2 are treated as fitting parameters. The use of z∞ as the leading

term in the numerator constrains the fit to agree with the results of perturbation theory

[11]. The functional form for model H, for which d2 6= 0, was chosen to make χe(α) approach

a finite limit as α → ∞, for physical reasons that are discussed in Ref. [9]. The form used

for all other models (with d2 = 0) yields a linear increase for large α. Results of the fits

for models S1, S2, S3 and F are shown in Fig, 4. Model H is not shown because it is very

similar to the fit shown for NVT simulations in Ref. [9], and because we evaluated the ODT

for this model only for chains of length N = 64, for which the linear approximation almost

suffices. Resulting values for the coefficients a2, d1 and (for model H) d2 are given in Table

III. Plots of the resulting estimates of χe(α) are shown in Fig. 5.

WELL-TEMPERED METADYNAMICS

The well-tempered metadynamics algorithm [14, 15] (WTMetaD) was used to precisely

locate the ODT of the bead-spring models (models H, S1, S2 and S3). Metadynamics

(MetaD) is an adaptive bias potential technique that is based on the simulation of a modified

Hamiltonian that is given by the sum

H = H0 + V (Ψ) (4)

9
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model b (cb3)2 z∞ a2 d1 d2

H 1.404 3.753 0.2965 2.56 8.20 2.123

S1 1.088 14.93 0.237 0.138 0.438 0

S2 1.727 59.70 0.0916 -0.00087 0.00420 0

S3 1.938 119.21 0.0977 -0.00144 0.00086 0

F 1.745 4.506 4.897 88.5 8.30 0

TABLE III. Estimates of parameters b and z∞ and the coefficients in Eq. (3) for χe(α) for all five

models, as determined by fitting simulation results. The statistical segment length b is given in

units with σ = 1 for bead-spring models or d = 1 for the FCC lattice model. The value of (cb3)2 for

NPT bead-spring simulations is calculated using the target value of c for infinite homopolymers.

of the physical system Hamiltonian H0 and a fictitious potential V (Ψ) that depends on a

collective variable Ψ. Like other adaptive biasing techniques, such as Wang-Landau sam-

pling, WTMetaD causes V (Ψ) to evolve during the simulation in a manner that is designed

to lower free energy barriers between different macroscopic states. WTMetaD provides an

estimate of the free energy G(Ψ) as a function of the collective variable, in which (for an

11



appropriate choice of collective variable) different macroscopic states show up as distinct

minima in G(Ψ).

The effectiveness of metadynamics depends critically upon the choice of an appropriate

collective variable. Natural choices of a collective variables for a crystallization transition can

be expressed in terms of the Fourier amplitudes of the order parameter ψ(r) = cA(r)−cB(r).
These can be expressed as sums

ψ(q) ≡ 1

NM

MN
∑

j=1

ǫje
iq·rj (5)

where q is a wavevector commensurate with the simulation cell,
∑

j is a sum over all NM

monomers in a system of M chains of length N , rj is the position of monomer j, and

ǫj = ±1 is a prefactor of +1 for A monomers and −1 for B monomers. We experimented

with collective variables that depended only upon the Fourier amplitudes for the Bragg

peaks of the lamellar phase in some expected orientation, but encountered difficulties due

to the tendency of the system to order in unexpected orientations. In response, we adopted

a multi-mode collective variable defined as a regularized sum

Ψ ≡
[

∑

q

|ψ(q)|nf(q/qcut)
]1/n

(6)

over all accessible wavevectors q, and experimented with different possible values of the

integer n. Here, f(q/qcut) is a cutoff function that is introduced to suppress contributions

from q ≫ q∗, and the sum is over all allowed wavevectors for which f(q/qcut) is not negligible.

We took f(x) to be a modified Fermi function f(x) = {1 + exp [12 (x− 1)]}−1, with qcut

slightly larger than the peak wavenumber q∗.

Eq. (6) defines a regularized norm for composition fluctuations. The choice n = 2, corre-

sponding to a Euclidean norm, does not adequately discriminate the ordered and disordered

phases. Increasing n increases the relative weight of the wavevector q for which |ψ(q)| is
maximum, and thereby increases the separation between the values of Ψ in the ordered and

disordered phases. The choice n = 4 was found to yield adequate discrimination, and was

used in all calculations. An example of the resulting converged free energy G(Ψ) is shown

in Fig. 6.

To reduce the number of WTMetaD simulations necessary to identify αODT, we imple-

mented an extrapolation scheme that allows one to estimate changes in the constrained free
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energy G(Ψ, α) with small changes of α. Given the results of a metadynamics simulation at

a single value α = α0, one can estimate G(Ψ, α) over a range of nearby values using a linear

extrapolation

G(Ψ, α) ≃ G(Ψ, α0) +
∂G

∂α

∣

∣

∣

Ψ,α=α0

(α− α0) (7)

in which the partial derivative is given by an average

∂G

∂α

∣

∣

∣

Ψ,α=α0

=
〈UAB〉

∣

∣

Ψ,α0

ǫAB(α0)
(8)

that can be evaluated for all values Ψ over the course of a biased simulation. This scheme

made it possible for us to identify the ODT for most systems from the results of a single

WTMetaD simulation at a well chosen value of α near the true ODT. Fig. 6 shows an

example of an extrapolation that was used to refine an accurate initial guess for αODT for

model S1-32.

Metadynamics simulations were carried out in NPT ensemble using a cubic L × L × L

unit cell in which the number of molecules M was chosen so as yield a commensurate

cell for a 3 layer system oriented in a {300} orientation, using our best estimate of the

equilibrium layer spacing and monomer concentrations in the ordered phase at the ODT

from tetragonal NPT simulations conducted very near the ODT. With this choice of system

size, ordered configurations observed in biased simulations almost all oriented along {300} or

{221} orientations, which yield the same layer spacing d = L/3 in a cubic box. The value of

αODT for each system was identified using an equal area construction, requiring that regions

near the ordered and disordered minima in G(Ψ) yield equal contributions to the integral
∫

dΨ e−G(Ψ,α)/kT .

Because our choice of collective variable is expressed as a sum of Fourier modes, efficient

implementation of this metadynamics algorithm for large systems required the implemen-

tation of a particle-mesh algorithm similar to that used to treat Coulomb interactions in

MD simulations [16]. The WTMetaD algorithm was implemented as a publically accessible

Integrator plug-in [17] to the HOOMD-blue simulation framework [5]. The particle-mesh

scheme used to compute the order parameter and the forces derived from it have been fully

implemented on the GPU using the CUFFT library, as part of the same plug-in. The imple-

mentation also runs on multiple GPUs, using a distributed FFT algorithm [18, 19], which

was needed for some larger systems. Further details of the implementation and testing of

this algorithm will be discussed in a separate publication [20].
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FIG. 6. Constrained Gibbs free energy G(Ψ) from WTMetaD simulations as function of the

order parameter Ψ for model S1-32 (M=2543, 3 layers) calculated at α = 2.20 (solid curve), and

extrapolated to the ODT at αODT = 2.213 (dashed curve) using linear extrapolation, Eq. (7). Inset:

Equilibrium probability distribution P (Ψ) ∝ e−G(Ψ)/kBT for the same two values of α (solid/dashed

curves). The ODT (dashed curve) was determined by an equal area rule.
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