
?_Jniversality of Data Retrieval Languages

Alfred V. Aho
Bell Laboratories

Murray Hill, New Jersey

and

Jeffrey D. UllmanT

Princeton Unwers@

Princeton, New Jersey

Abstract. We consider the question of how powerful a relational query language should be and state

two principles that we feel any query language should satisfy. We show that although relational algebra

and relational calculus satisfy these principles, there are certain queries involving least fixed points that

cannot be expressed by these languages, yet that also satisfy the principles. We then consider various

extensions of relational algebra to enable it to answer such queries. Finally, we discuss our extensions

to relational algebra in terms of a new programming language oriented model for queries

1. Introduction

One facility provided by a database system is a query, or
data maruptdation, language whose primary function is the
extraction of information from the database. The data re-
trieved by a single query can range from a small simple
subset of the database, as in ‘<print the name and address
of the employee with employee number 12345, ” to a
large complex subset, as in “print the names of all em-
ployees under 40 whose last three raises have been above
average. ” A query will be treated as a mapping on the
contents of the database, which we here regard as a col-
lection of relations [Cl 1. The value returned by a query
will also be a relation, that is, a set of k -tuples for some
k>l.

One key question concerning query languages is what
power they should have. For example, should a query
language be able to specify any mapping whatsoever from
lists of relations to relations? It is our point of view, and
one held widely, that a query language should provide
physical data independence; that is, the result of a query
should not depend on the representation of the data. We
also feel that the role of a query language should be pri-
marily the selection of data from a database, rather than
arithmetic computation on this data. The computational
capability, if desired, should be separate from the retrieval
capability. This separation of function has a number of

t Work partially supported by NSF grant MCS-76- 15255

e

benefits, such as simplifying the optimization of both the
computational and the query operations.

We therefore postulate two principles that a query
language should obey. In essence, these principles state
(1) that the value produced by a query should be in-
dependent of the manner in which the data are actually
stored in a database and (2) that a query language should
treat data values as essentially uninterpreted objects,
although certain properties, such as a linear ordering on
certain domains can be built into the query language.
These principles are defined more formally in Section 2.

The relational algebra and calculus of Codd [C 11 satisfy
these principles and are often used as models of a query
language. One purpose for which Codd introduced these
languages was to provide a yardstick for measuring the re-
lative power of query languages.

There is, however, an important family of “’least fixed
point” operations that still satisfy our principles but yet
cannot be expressed in relational algebra or calculus.
Such fixed point operations arise naturally in a variety of
common database applications. In an airline reservations
system, for example, one may wish to determine the
number of possible flights between two cities during a
given time period. In a network analysis system, one may
wish to determine whether there is an active circuit con-
necting two points. In a business management system,
one may wish to determine the lowest-level manager
common to a group of employees. None of these queries
can be couched in relational algebra. In the appendix, we
give a formal proof that the transitive closure of a binary

110

Permission to make digital or hard copies of part or all of this work or personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific permission and/or a fee.© 1979 ACM 0-12345-678-9…$5.00

relation, an elementary example of a least fixed point

operation, cannot be expressed in relational calculus.

In Sections 4 and 5 we consider extensions to relational
algebra to enable queries such as these to be expressed.
In Section 6 we discuss various methods by which rela-

tional algebra expressions containing least fixed point

operators can be efficiently implemented.
Finally, in Section 7 we examine the universality of our

extensions in terms of a new, stylized programming
language that is intended to serve as a model of computa-
tion for query languages. We show that the programming
language is at least as powerful as relational algebra with a
least fixed point operator. We also show that Codd’s ori-
ginal formulation of relational algebra is equivalent to this
language with a restrictive interpretation of the semantics
of the for statement in this language.

2. Two Principles for Data Retrieval Languages

The general consensus is that, at least for query
languages based on the relational model, one does not
wish to have general Turing machine (see [HU], e.g.)
capabilities. In particular, one wants the query language
to be sufficiently high level that it deals with relations as
sets of tuples, meaning that the order in which the tuples
are considered should not influence the result. In this
sense, the Turing machine working on an input tape con-
taining lists of tuples is too powerful a model. This is the
basis of the first of our two principles regarding what pro-
perties a relational query language should have.

Pr/nciple 2. The result of a function on relations should
depend only on the values of the relations as sets of tu-
pies. The result should not depend on the order in which
the tuples are stored.

Our formalization of the second principle is related to
an idea used independently by Paredaenn[P] and Bancilhon

[B] to characterize certain aspects of relational queries.
Their idea is that queries should preserve symmetries that
exist among the values that appear in argument relations.
More formally, assume D is the domain from which all
values for the components of relations are taken. Let K
be a 1-1 mapping of D into itself. (D is presumably
infinite.) Call ~ a renaming. If f is a function that takes
n relations as arguments, we say f commutes with K if

p(f(rl, . . . ,r.)) = f(~(rl), . . . ,w(r.)). Let us call f

an acceptable que~ if f commutes with every renaming.
In this sense, operations like the union or Cartesian pro-
duct of relations are acceptable; so is the transitive clo-
sure of a binary relation.

There are, however, other queries we might well regard
as acceptable that do not commute with arbitrary renam-
ings. For example, “print the name of the employee with
employee number 12345” does not commute with renam-
ings that do not map 12345 to itself. Saying that the
renaming should also apply to 12345 in the query skirts
the issue that we are concerned with a class of abstract
functions on relations, and such functions need not have
a concrete representation where a specially treated con-
stant like 12345 is explicitly named. Another problem
comes up when we want to use a relationship like <, as
in AGE < 40. We would not expect such a function to

commute with those renamings that did not preserve the
< order on D.

Paredaeos.’
We thus extend the Bancilhon- cconcept in the

following way. We postulate the existence of a collection
of medicates P on the domain D. These could be anv
sort of predicates; for example, a unary predicate like “x
= 12345” or a binary predicate like “X <. y.” Intuitively,
one might expect that a function f uses some finite sub-
set of the available predicates in P to (extract or select in-
formation from its argument relations. We would not,
therefore, expect that ~ would commute with renamings
that did not preserve the predicates.

We say p preserves predicate p (xl, . . . , x.) if

F.L(P(X1, . . . ,Xn)) is true if and only if

P(p(xl), . . ., P(xn)) is true. For example, if p is “x =
12345”, then p preserves p if and only if it maps 12345

(and therefore no other value) to 12345. K preserves <
if P(x) <K(y) if and cmly if x <y. We can now state our
second principle formally.

Principle 2. A function f is allowable with respect to a
set of predicates P on domain D if anld only if there is a
finite subset PI C P such that f commutes with every
renaming that preserves the predicates in PI.

In what follows, we shall always talk as though D were
a set containing integers, reals, and character strings, with
< defined in the obvious manner when applied to values
of the same type. We shall also take the set of predicates
P to be boolean combinations of statements of the form
x < y and x = c, for some constant c in D. The ideas
extend to other sets of predicates, although if we use too
rich a set, such as “x+-y=z” and “UXV=W, ” we can with
a finite set of predicates PI assure that only the identity
mapping preserves PI, thus making every f allowable.

We shall not take ii position on the “correct” set of
underlying predicates, but we shall take the two principles
above as a definition of what properties a complete query
language should have, relative to a given set of “built-in”
predicates P.

Codd’s relational algebra [Cl] is often used as a model
of a query language, that is, as a minimal set of opera-
tions that every query language should have. We shall
describe relational algebra in the next section, whereupon
it will be obvious that all queries posable in relational
algebra satisfy the two principles above, if the allowable
predicates are taken to be x < y and x = c for all con-
stants c.

3. Relational Algebra

In this section we shall define a set of relational algebra
expressions that is complete for relational calculus, which
is the first order theory of relations arid tuples with com-
parison operators = and < on components of tuples

[C2]. The operands of an expression are either constant
unary relations or variables representing relations. The

operators of an expression are the following:

(1) Cartesian Product. If R and S are relations consist-
ing of r -tuples and s -tuples, respectively, then R x S is
the set of (r+s) -tupkx of which the first r components
are an r -tuple in R and the last s components are an

111

s -tuple in S.

(2) Set Union. If R and S are relations whose tuples
are of the same length, then R U S is the union of the
tuples in R and S.

(3) Set Dl~erence. If R and S are reIations whose tu-

ples are of the same length, then R – S is the set of tu-
ples that are in R but not in S.

(4) Selection. Let F be a predicate built from

(i) the logical operators: and (A), or (V), not (-),

(ii) the arithmetic relational operators:
=, <, >, G, >, +, and

(iii) operands of the form $i standing for the i’h com-
ponent of a tuple.

Then UF (R) = {t I for some tuple t in R, F becomes
true when $ i is replaced by the i’h component of t}.

(5) Projection. 7T$,1,$,Z,.. ,$1~ (R) ={ t’ I for some t in

R, t’ is the k -tuple whose jth component is the ~h com-
ponent of t}. We assume /1,/2, . . . , ik have no repeti-
tions (although this constraint is not essential), and the
~‘s are not assumed to be in any particular order.

All expressions in relational algebra produce relations
as values, when given relations as arguments. Moreover,
the value of an expression cannot involve a symbol in a
tuple if that symbol was not part of some tuple of some
argument relation. Therefore, if the operands in a rela-
tional expression are all finite relations, then the value of
the expression is also a finite relation.

Example 1. Let R = {012, 121, 001].t Then

UN<W. (R) = {012,121}, and TrW,S1(R) = {20,11,10}.
As another example, we can define the composition of

two binary (two-component) relations R and S by

R 0 S = m$l,$4(U$2=$3 (R x S)). This shorthand will be
used subsequently. ❑

4. The Least Fixed Point Operator

Consider an equation of the form

R =f(R) (1)

where f(R) is a relational algebra expression with
operand R, perhaps among other operands, such that the
degree (i.e., the number of components in each tuple) of
R and f(R) are the same. A least fixed pojnt of equation
(l), denoted LFP(R = f(R)), is a relation R* such that

(i) R* = f(R*) and

(ii) If R is any relation such that R = f(R), then
R*c R.

In general, there may not be any R * satisfying (i) or
any satisfying (ii). However, Tarski [T] assures us that a
unique least fixed point exists if f is monotone, which in
the context of the partial order C on relations means that

if RI G R2, then f(R1) C f(R2) (2)

or equivalently

f(RI U R2) = f(Rl) U f(R2) (3)

T Throughout, we shall indicate a tuple such as (0,1 ,2) by the se-
quence 012

There is a stronger condition called add[tnwy, expressed
by

f(Rl U ~2) = f(Rl) U f(RJ (4)

Obviously (4) implies (3), so every additive f is mono-
tone.

If f is monotone, then by induction on i we can show
that

f ‘-’ (0) c f ‘ (0)

where f’ is f applied i times. If all argument relations
are finite, then since no new component values are intro-
duced by the relational algebra operators, we know that
there is some finite relation of which each f‘ (0) is a sub-
set. Therefore, there must be some no such that

0 ~ f (0) .$ fz(a) > . . . ~ fno(a) = f“o+’(a) (5)

We shall use the term

lim f” (0)
n-~

for fnO(0).

It is easy to check that f “0(0) is a fixed point of R.

An induction on i shows that f‘ (0) is contained in any

fixed point of equation (1). Therefore lim f n (0) is the
n--

least fixed point of (l).
Example 2. The transitive closure of a binary relation

R. is the least fixed point of

R= ROROURO

If we let f(R) = R ORO tJ Ro, then

fl(0)= ~Roo RoO . . . ORO (i times)
,=1

as may be proved by an easy induction on n. Thus by

(5), the least fixed point of R = .f(R) is what we nor-
mally call the transitive closure, that is,

~ ROOROO . . . ORO (i times)
,=1

Example 3. Suppose we have a database representing
airline flights, containing the relation

FLIGHTS(SOURCE, DEST, D_TIME, A_TIME)

where SOURCE and DEST indicate the source and desti-
nation cities; D_TIME and A_TIME indicate the depar-
ture and arrival times. We might wish to compute a rela-
tion FLIGHTS* with the same four components that in-
cludes FLIGHTS and, in addition, represents all finite se-

quences of flights such that in each sequence

(i) the destination of each flight (except the last) is

the source of the next, and

(ii) the arrival time of each flight (except the last) oc-
curs before the departure time of the next.

We could express this relation as the least fixed point of
the equation

FLIGHTS* = FLIGHTS U

‘$1,$6,$3.$8 h2=$5 md $4<$7@L1GHTS x FLIGHTS*)) (6)

112

Note that when we treat (6) as an equation of the form
R =f(R), then ~(n) is

FLIGHTS U ~$,,$fj,$~,$g(~zn~,n~ $4<$7(FL1GHTS x R))

and FLIGHTS is an operand that is presumed to be a
constant as far as the taking of a fixed point is concerned.
❑

The following theorem is easy to prove by induction on
the number of operators in a relational expression.

Theorem 1. Any relational algebra expression that does
not use the set difference operator is additive in all its
variables. ❑

On the other hand, a nonmonotone expression can
have a least fixed point and not every expression involv-
ing the difference operator fails to be monotone.

5. Embedding the Least Fixed Point Operator
in a Query Language

The problem of how to incorporate a least fixed point

(LFP) operator into a query language in a useful manner
is not trivial. To begin, it may be hard just to determine
whether the LFP of an equation exists, let alone to visu-
alize what it is. Also, evaluating a LFP in a straightfor-
ward way may be computationally infeasible unless some
advantage is taken of the sparseness of a relation or the
special nature of the expression involved. In this section,
we propose three syntactic mechanisms whereby the LFP
operator can be made available to a query language
modeled after relational algebra.

(1) Provide specialized operators such as * (reflexive-
and-transitive closure) or + (transitive closure) that can

be applied to certain relations. Such shorthands are clear-
ly useful, but they do not provide us with the versatility
of the LFP operator; witness Example 2.

Standard methods for computing the transitive closure

[AHUI will probably be prohibitively expensive unless
they take into consideration the likely sparseness of a re-
lation: Recently, an algorithm for transitive closure that
is optimal in an expected time sense has been given [S1.
A facility to define transitive closures (but not general
LFP’s) is available in Query-by-Example [Z].

(2) Provide a syntactically sugared way of saying “let
S be the LFP of R = f(R),” where f is an expression
in relational algebra, perhaps with other fixed point opera-
tors. In essence, here we are proposing that the user be
able to write down an equation that his desilred relation
satisfies, but no smaller relation satisfies. If he does so,
and his intuition is correct, R = f(R) will have a LFP.
If f is monotone, the LFP ‘can be computed using (5),
where, as we have mentioned, only a finite number of
terms need be taken before we obtain the limit; there is,
however, no a priori upper bound on the number of terms
to be taken.

(3) Provide a procedural method of constructing a re-
lation R inductively. That is, we provide a basis rule that
says R. G R for some relation Ro, which may be an alge-
braic expression of existing relations. We then provide an
inductive rule that says g (1?) G R, where g is some
function of R, expressed in relational algebra, that has as
value a relation with the same degree as R. By implica-
tion, we assume an exclusion clause saying that nothing is

in R unless it follows from the basis and induction rules.
We might express such a procedure in terms of a simple

while-loop:

R+RO

do
R’+R

R --’R u g(R)

while (R’ # R)

Now the value of R can be computed as the limit of
the sequence Xo, Xl, where X. = R. and

T = g(&l) U -K-I for i>l. If g is monotone, and
f’(R) = RO U g(R) U R, then f is also monotone,

and X, G f ‘+1(0) G X,+1 for all i > 0, as an easy induc-
tion on i shows. As the limit of f n (0) exists, the limit
of X. exists, and the limits are the same.

Conversely, if f is monotone, then the LFP of
R = f(R) can be expressed by giving the basis rule:
@ G R and the induction rule f(R) G R. As

f ‘-1(0) C f‘ (0) follows from monotonicity and induc-
tion on i, we see that Jf, = f‘ (0). Therefore, for mono-
tone functions, methocis (2) and (3) are equivalent in
their ability to define relations. However, method (3) has
the additional advantage that the limit Iim X, is known to~.-CO
exist independent of whether g is monotone, since when
g is a relational algebra expression, there are only a finite
number of symbols that can appear in the tuples of any
X,, and XoGX1CX2C

6. Optimization of Queries with the LFP Operator

The mechanical optimization of queries that is possible
when the operators are union, selection, projection, and
Cartesian product [CM., ASU, SYI does not seem to be
available when the LFP operator is included. A “next-
best” alternative is to develop commutation laws for the
LFP operator, similar to those developed for other rela-
tional operators by [SC]. Most important is a method for
evaluating selections ahead of LFP operators. For exam-
ple, this change can convert a general transitive closure
problem into a single source shortest path problem.

We shall present a method for commuting selections
over a LFP operation, provided that in the expression
LFP(R = f(R)) the function f is such that it has only
one instance of R. There are certain restrictions on the
form of the selection as well, since selection does not
commute with Cartesian product, in gerieral. We also as-
sume either that f is monotone, or that the semantics of
the LFP operator are such that the limit of the series (5)
is what is wanted. Let us begin with an example that will
introduce the general method.

Example 5. The transitive closure ojf a relation R. is

LFP(R = R o R. IJ R(,). If we want to know the points
accessible from a given point ao, we could write
U$l..o (LFP(R = R o R. (J Ro)). However, computing

the desired relation S = {aob] aob is in RJ) requires
that we first compute J?$, an operation that is far more

expensive than we need. Our goal is to., in a sense, move
U$I=.O inside the LFP operator, so S can be computed

directly.

113

Our approach is to replace the expression

CW.O(LFP(R = R ORO U RJ

by its infinite expansion

U$,=ao(((((“ “)oRo)URO)ORO)URO) (7)

obtained by repeatedly replacing R by R o R. U Ro. Ex-
pression (7) has the form U$l=.O(X U Ro). Since selec-

tion distributes across union, we can rewrite (7) as

a$l=ao(x) u U$,=.O(RO) (8)

where expression X has the form Y o Ro, and

Y= (((((...) ORO) URO) ORO) URO)

We would now like to distribute the selection operator
across the composition, but we may not do this in gen-
eral. “If the selection involves only the first or second ar-
gument of the composition, however, then it is possible
to move the selection through the composition operator.
Since cr$l=~o involves only the first argument here, we can

replace (8) by

W$l=do(Y) o RO U W=.O(RO) (9)

We now note that a$l=ao(Y) looks exactly like (7), our

original expression. If we use E to denote the value of
(7), we obtain the following fixed point equation for E

E = E ORO U U$I.GO(RO) (lo)

The value of equation (10) can be computed relatively
efficiently by expanding according to (5). Note that we
never put into T any tuple ab with a # ao. ❑

The above example works because several conditions
hold.

(1) The function f(R) = R o RO U RO is monotone,
so the infinite expansion “makes sense, ” and the con-
structed function (1O) is also monotone.

(2) We are able to distribute the selection operator
through every subexpression of C7).

(3) We obtain a subexpression which has the same
form as our original expression.

Condition (3) turns out to hold without loss of general-
ity, providedthat (2) holds. This follows from the faCt

that the selection cannot change substantially as it is dis-
tributed; it can only apply to different components or
disappear entirely. Thus only a finite number of selec-
tions are ever applied to the various subexpressions.

We can now state our general algorithm for taking an
expression of the form a~ (LFP(R = f(R))), where
f(R) has only one occurrence of R, and is monotone,
and converting it to a particular expression
h (LFP (S=g (S))). The work involved in computing the
latter expression is of no greater order than that to com-
pute the former, and in some circumstances will be an
order of magnitude less.

Algorithm 1. Distribution of selection through the LFP
operator.

Input. An expression UF (LFP (R = f(R))) where
f(R) has only one occurrence of R

Ouiput An equivalent expression

and is monotone.
h(LFP(S = g(~))).

Method We construct a sequence of expressions Eo,

El, ..., each with one occurrence of the operand R, by
the following rules.

Basis. EO is UF(R).

Induction. Suppose we have constructed E,. If E, has a
subexpression of the form UC(R), then in E, replace

WC(R) by UC (.f (R)). Since f(R) has one occurrence of
R, the resulting expression will also have one occurrence
of R.

We now attempt to distribute the selection operator

through f(R) as far as possible using the following iden-
tities.

(1) If UC is applied to YX Z, the following rules apply.

(i) uc(yx.z) = (~~(y))xz if ~C applies only to
components that come from Y.

(ii) UG (Yxz) = yxa~f(z) if UC applies only to

components from Z. G’ is G with the component
numbers adjusted appropriately.

(iii) If neither Y nor Z by itself includes all com-
ponents mentioned in G, we cannot distribute the
selection through the Cartesian product.

(2) cr~(Y lJ z) =0-G(Y) u a.(z)
(3)UG’(Y-Z)=U~(Y)-mC(Z)
(4) UG(UH(Y)) = crH(wG(Y))T
(5) mG(n~ (Y)) = ~L(~G(Y)) where G’ is G with

component numbers adjusted appropriately.
As a special case, if the selection is not distributed to

the subexpression of f(R) that contains R, then apply
the trivial selection that is satisfied by every tuple to that

subexpression. This is done for convenience, to ensure
some selection will eventually reach the argument R.

Expression E,+l results from applying these rules as far

as possible. We continue the induction with E,+l in place
of E, except in two cases.

(1) If we are unable to pass a selection through a
Cartesian product of terms, one of which involves the ar-
gument R, then we fail to commute OF with the LFP
operator.

(2) If E,+, is of the form h (g(mF(R))) and for
some .j < /, E, is of the form h (UF(R)), then we have
found g and h. From E,+l we construct the expression
h(LFP(S = g(S))).

Theorem 2. If f is monotone, Algorithm 1 succeeds in
producing an equivalent expression h (LFP(S = g(S))).
If no relation appearing as an operand in f, or as the
result of evaluating a subexpression of f is empty, then
the time to evaluate h (LFP (S=g (S)) is no greater than a
constant times that needed to evaluate m~ (R =f (R))

(and in general may be much less).

Some Extensions

The same technique as described above for selections
can also be used to distribute some projections into a LFP
operator. In fact, projections always pass through a
Cartesian product, so there is no risk of failure from that

t We could combine the two selections, but we assume selections

within f have been distributed as much as possible, and to com-

bine selections here may make it impossible to pass our selection
through a Cartesian product.

114

source. We may also generalize what we have done to
LFP operators that simultaneously define several rela-
tions.

7. Toward an Improved Model fora
Relational Query Language

In this section we define a language that we feel can
serve as a model of computation for relational database
retrieval operations. The language obeys the principles
specified in Section 2 and has the ability to:

(1) Create new tuples from given tuples by selecting
certain components from the given tuples and arranging
them in some order.

(2) Create new relations.
(3) Copy relations.
(4) Iterate over all tuples of a relation in an unspecified

order.

(5) Make tests based on some property of a given tu-
ple, provided that property involves only arithmetic com-
parisons among components of the tuple and, perhaps,
constants.

(6) Make tests based onthemembership ofatuple ina
relation.

Although we cannot prove that we have found the
maximal class of queries that respect the two principles of
Section 2, we nevertheless feel that our language serves
as one natural benchmark against which other notations
foroperating onrelations can reevaluated, inexactly the
same way that relational calculus serves as a benchmark.
Under one natural interpretation of the iteration state-
ment our language is equivalent to relation calculus or
algebra; under another more general interpretation it is at
least as powerful asrelational algebra with the fixed point
operator, and we conjecture that it is strictly more power-
ful.

A Language for Data Retrieval

We now define our data retrieval language,
ments of the language are as follows.

(1) t+y(t,,tn)

The state-

Here t and t,are tuple-valued variables and~ is a func-
tion that produces from tuples tl,...,tna particular tu-

ple t,l(.h)c,2(j2) . . “ C,k(jk), where t,(j) is the jth com-

ponent oftuple t,.

(2) insert(t, R)anddelete(t, R)
Here, tisatuple variable andl? a relation variable.

(3) R-S

R is a relation variable and S is a relational variable or
constant.

(4) fortin R do <statement>
Here t is a tuple variable whose scope is local to the for
statement and R isa relation variable. Any tuple variable
assigned within the for statement is assumed local to that
for statement. We shall see that the precise semantics of
the for statement determines the class of functions
definable in the language.

(5) ifp(t)then <statement> [else <statement>]
Here t is a tuple variable andp is a predicate built from
the arithmetic comparison operators and the logical con-

nective (and, or, not).
(6) iftin R then <statement> [else <statement>]

Again, tisatuple variableandR a relation variable.

(7) begin <statement list> end
(8) localt

This statement defines a tuple varialble t whose scope is
local to the begin-end block in which this define satement
is contained.

A program in this language is a statement, which can

be a begin-end block. The input to a program is the set
of relation variables in the program that are referenced
but not previously defined. One relation variable is desig-
nated as being the (output relation variable. Thus a pro-
gram computes a function whose arguments are the input ‘
relation variables and whose value is that of the output
relation variable.

We assume that for each relation variable there is a
fixed degree, and all tuples in the relation have this
number of components. We also a:wume that there is a
fixed arity for each tuple variable. Finally, we assume
each component of each relation is selected from a known
finite domain for th~lt component.

The Four Interpretations of the for Statement

The semantics of lthe for statement

for t in R do <statement>

can be defined in ssveral different ways. There are two
orthogonal issues. The <statement:> should be executed
for each tuple of R. But should the execution be in
parallel, or should we iterate over leach t in R serially?
The second issue is, should the value of R be bound on
entry to the for loop, or should it be allowed to change
within the loop? In each case we get a diflerent class of
functions. Let us consider the four interpretations and
the resulting classes of functions in turn.

7.1. R Bound Before the Loop; Parallel Execution

In this interpretation we associate with each tuple vari-
able a set of tuples. The following rules are used to inter-
pret the statements:

(1) t+.f(t,,...,tn).Assign to t the set of tuples
formed by taking one tuple in each set for t,,1<i< n and
applying f to those tuples. For example, if the assign-
ment is t+ tlt2(juxtaposition of tuples denotes concate-
nation), then the set for t is the Cartesian product of the
sets for tland t2.

(2) insert(t, R) and delete(r, R) are executed by set-
ting R to R U T ;and R – T, respectively, where T is

the set of tuples associated with t.

(3) R - S has the obvious meaning and does not
affe~t the sets associated with tuple variables.

(4) for tinR do <statement >
The set associated with t is R at the beginning of <state-
ment >. The tuple variable t is local to the for statement.

(5) if p(t) then <statement 1> [else <statement2 >1
Let T be the set associated with the tuple variable t be-
fore the if statement. Let T‘ be the set {.s I s is in T and

p(s)). Within <statement 1>, set T‘ is associated with
tuple variable t and within < statement2 >, if it is

115

present, T– T‘ is associated with t. After the if state-
ment T is again associated with t,even if at that time the
union of the two sets associated with t is not T. Note
that we in effect define a new t local to the if statement.

(6) if tinR then <statement> [else <statement2 >1
The meaning of this statement is similar to (5) with

T;= T–R.

(7) begin
<statement >;

<statement >
end

Any changes to the set associated with a tuple variable lo-
cal to the block made by <statement i > carry over to the
next statement, unless the rule for <statement i > causes
the value for that variable to be changed (as in (1)).

Example 6. Consider the program in Fig. 5, which com-
putes T= RoS. Suppose R = {ab, ac, bc} and
S = {aa, cb] initially. After statement t+ rs the sets as-
sociated with t,r and s are {abaa, abcb, acaa, accb, bcaa,

bccb], {ah, ac, be}, and {aa, cb}, respectively. The state-
ment insert (u, T) sets T to {ab, bb), which is R oS. ❑

begin
T-a;

for sin S do
for r in R do

begin
local u;

t+-rs;

if t(2) = t(3) then
begin

u + t(1) t(4);

insert (u, T)

end
end

end

Fig. 5. Program to compute composition.

Theorem 3. The set of functions computable by pro-
grams with tbound to the current value of R in for T in
R do and parallel interpretation of for loops is coexten-
sive with the functions computed by relational algebra ex-
pressions.

7.2. R Not Bound Before the Loop; Parallel Execution

There is the possibility that R changes within a for
loop, and if so, we might wish to consider the possibility
that the set associated with t in the loop for t in R do
changes as R changes. One way to effect such changes
might be to modify the set associated with t after an as-
signment, insertion or deletion to R within the loop. It is
not hard to show that such an interpretation does not add
to the capability of the language to produce new func-
tions; the language is still equivalent to relational algebra.

A second interpretation is to fix the set associated with
t,but to repeat the for loop with tassociated with the set
of tuples added to R at the previous repetition, until at

some point no new tuples are added to R. Let us call this
interpretation the iterative-parallel interpretation of pro-
grams.

Theorem 4. Every function expressible by the basis-
induction method (method 3) of specifying fixed points
can be computed under the iterative-parallel interpreta-
tion.

7.3. Serial Execution

Let us now consider interpretations of for t in R do
<statement > that select an arbitrary ordering for the
members of R and execute the <statement> once for
each value of t. We may either fix the set of t’s before
entering the loop or we may allow the set to adapt to
changes in R within the loop. The method of adaptation
could be either of those suggested in Section 7.2, or we
could at each iteration of the for loop select a t currently
in R that has not been selected before. Unlike the
iterative-parallel interpretation, this interpretation permits
the loop to respond to deletions within the loop.

We shall not fix on a serial interpretation with R not
bound on entry to the loop because our negative remarks
about the serial interpretation with R bound on entry to
the loop apply to all these interpretations as well, and our
conclusion is that serial interpr.etations must be rejected
as candidates for universal database languages.

Our principal objection to serial interpretations is that
they can violate the first principle: order independence. It
is easy to construct programs whose output is determined
by the order in which tuples in some relation are con-
sidered.

While we do not advocate serial interpretations of our
language as candidates for the notion of a universal data
manipulation language, we shall state the following
theorem which places the interpretation above into per-
spect ive.

Theorem 5. Every relational algebra expression can be
computed by a program under the fixed binding, serial in-
terpretation.

-.

[AHUI

[ASU]

[B]

[cl]

[C21

Kelerences

A. V. Aho, J. E. Hopcroft, and J. D. Unman, The

Design and A nalysls of Computer Algorithms,

Addison-Wesley, Reading, Mass., 1974.

A. V. Aho, Y. Sagiv, and J. D. Unman,
“Equivalences Among Relational Expressions, ”
SIAM J. Computing, 1978.

F. Bancilhon, “On the completeness of query
languages for relational expressions,” Rapport de
Recherche No. 297, IRIA, Rocquencourt, France,
May, 1978.

E. F. Codd, “A Relational Model for Large
Shared Data Banks, ” Comm. ACM 13:6 (June,
1970), 377-387.

E. F. Codd, “Relational Completeness of Data
Base Sublanguages,” in Data Base Systems (R.
Rustin, cd.), Prentice-Hall, Englewood Cliffs, N.
J., 1972, pp. 65-98.

,
116

[Ch] A. Church, Introduction to Mathematical Logic,

Vol. 1, Princeton University Press, 1956.

[CM] A. K. Chandra and P. M. Merlin, “Optimal im-
plementation of Conjunctive Queries in Relational
Data Bases,” Proc. Ninth A nnua[A CM Symposium

on Theory of Computing, May 1976, pp. 77-90.

[D] C. J. Date, An introduction to Database Systems,

Addison-Wesley, Reading, Mass., 1975.

[HUI J. E. Hopcroft and J. D. Unman, Formal

Languages and their Relation to Automata,
Addison-Wesley, Reading, Mass., 1969.

[P] J. Paredaerq Information Processing Letters 7:2, 1978.

[S1 C. P. Schnorr, “An Algorithm for Transitive Clo-
sure with Linear Expected Time,” SIAM J. Com-

puting 7:2 (May, 1978), 127-133.

[SC] J. M. Smith alnd P. Y.-T. Chang, “Optimizing the
Performance of a Relational Algebra Database in-
terface, ” Comm. ACM 18:1OI (Oct., 1975), 568-
579.

[Syl Y. Sagiv and M. Yannikakis, “Equivalence
Among Relational Expressions with the Union
and Difference Operation s,” Proc. ACM Interna-

tional Conference on Ve~ Large Data Bases, Sept.,
1978.

[T] A. Tarski, “A Lattice-Theoretical Fixpoint
Theorem and its Applications,” Pac/jc J

Mathematics 5:2 (June, 1955), 285-309.

[Z] M. M. Zloo~, “Query-by-Example: a Database
Language, ” IBM Syst. J., 16):4 (1977), pp. 324-
343.

117

Appendix

In this appendix. we prove that the transitive closure of

a relation cannot be couched as an expression of relation-
al algebra.t It is interesting to note that both Bancilhon
[B] andParedaena[P] in essence characterize relational alge-
bra as equivalent to the set of mappings obeying principle 2
with respect to an empty set of predicates. However,
transitive closure obeys this principle. There is no con-
tradiction. In [B,P] it is shown that for every relation r

there is a relational algebra expression E such that
E (R)= R+, the transitive closure of R. What we show is
that for no relational algebra expression E is E(R) =R+

for all r.

Theorem 6. For an arbitrary binary relation R, there is
no expression E(R) in relational algebra equivalent to
R+, the transitive closure of R.

Suppose we have an expression E(R) that is the transi-
tive closure of R. Let Z/ = (al, aj, . . . , al) be a set of 1
arbitrary symbols. Let RI be the finite relation
{a~a,, a,a~, al_l al]. RI represents the graph

@+@-’““-o
We shall show that, for any relational expression E, there
is some value of 1 for which E (Rl) is not R/+. In particu-
lar, we shall show by induction on the number of opera-
tors in E, that E(R1) can be expressed as

{b, b,..” b~ I W(bl, bz, . . . ,b~)}

where T is the logical “or” of clauses; each clause is the
logical “and” of atoms. An atom is a formula
b,=c, b,#c, b,= bj+corb, # bj+c, where cisa

(not necessarily positive) constant, and bj + c is short for
“that am such that b, = am_ C.” The b’s are assumed to
range over {al, a2, . . . , al], where I is understood. The
assertion b, = b~ + c says that b, is c nodes down the
chain, formed by the graph of R/, from bj. Note that ~
is not precisely a predicate of relational calculus, since the
b’s have a fixed domain {al, al]. Also., it should be
understood that the al’s are abstract objects and may not
be ordered by arithmetic < (although superficially, RI ap-
pears to do this). That is, the expression
U$l<$2(n$1 (Rl) x 7r$2(R/)) does not compute R/+; rather
it is meaningless, because U$l <$2 makes no sense when
applied to a set of pairs of abstract a, ‘s.

The following lemma states a useful fact about logical

expressions we shall manipulate.
Lemma 1. Any logical expression consisting of the logi-

cal operators A, V, -, applied to atoms is equivalent to an
expression consisting of clauses separated by or’s. (Such
an expression is said to be in disjunctive normal form or
DNF)

Proof Any expression in propositional calculus [Chl
can be written as the disjunction of clauses consisting of
the logical “and” of literak, which are propositional vari-
ables or their negation. The lemma follows since the ne-

T This claim appears in [D], p. 145, without Proof or citation.

gation of an atom is an atom. ❑

We now prove the characterization of the values that

E(RI) may take for any relational algebra expression E.

Lemma 2. If E is any relational algebra expression, then
for sufficiently large 1,

E(R,) = {bl ..0 b~ I W(bl, . . . ,~k)}

for some k and some DNF expression V, where the b,’s

range over the set {al, az, . . . , al).

Proof The proof is an induction on the number of
operators in E.

Basis. Zero operators. Either the operand is R, or a
constant relation of degree 1. The relation RI can be ex-
pressed as

{bjb2[b2=b1+l}

while the constant set {cl, C2, . . . , cm,} can be expressed
as

{bilbl= cl\dbl= czV. ”. Vbl=c~}

Note the c,’s must be a,’s for expression E to make
sense.

Znduction. All but projections are easy.
Case 1. E = El u Ez, El – Ej, or El x Ez. Let El

have value (bl . . . bk I Wl((q “ “ o b~)] and Ez have value
{b’, . . . b~ I W2(b’1 . . “ b~}. If E= E1UE2, or
E = E1–E2, then m == k for E to make sense. The value
of El U E2 is

{b, . . . b~ I ‘P1(bl, . . . ,b~) v~l(bl, . . . ,b~)).

The value of E1–E2 is

{b, . . . bk [Wl(bll, . . . ,b~) A -Wj(bl, . . . ,bk)].

In this case, T, A - ‘P2 must be transformed to DNF,
which we know can be done by Lemma 1. The value of
El XE2 is

{b, . . . b~b’l . ~ . bj I ~,(bl, . . . ,b~) AW,(b’,, . . . ,b:)}.

In this case, V, A ‘If2 lmust be transformed into DNF.
Case 2. E = cr~(E1). Let the value of El be

{b, . . . bk I ‘Pl(bl, bk)]. If formula F involves an
arithmetic comparison other than = or #, then E makes
no sense, since the a,’s are not comparable by <. Thus
F involves only =, # and logical operators. We may,
therefore, express E as

{b, . . . b~ I ‘Pl(bl, . . .,b~) AF(bl, b~)}

and put the resulting formula into DNIF.
Case 3. E = m, (El). To begin, we can express each

projection as a cascade of

(1) projections that permute the order of components,
and

(2) projections that eliminate the last component only.
Let El have value [bl “ “ “ bk I W(bl, b~)]. If ~,

is a permutation, then the value of E is easily obtained by
permuting bl, . . ., b~ in ~ appropriately.

Now consider the case where m, projects out b~. The
value of El is

(bl. . b~_], I (~bk)w(bl, bk)}.

As V is in DNF, we can write

.LIY

substitute into

bk = a, b. = b~+d b~ = b.+d

aJ true if j=r b~ ‘aj~d bw = a,.~

false if j+r (false if d<–j) (fake if d>j)

b,–c b, = a,~C b~ = b,+(d–c) b, = bm+(c+d)
(false if c <–r)

b,+c b, = a,_C b~ = b,+(c+d) b, ~ b~+(d–c)
(false If c < r)

Fig. 1. Result of substitutions.

~=~,v~zv.. V Tm, where each T,
“and” of atoms. For sufficiently large 1, the

~ {b, ” bk_l \ (~bk) W,(bl, bk)}.

is the logical
value of E is

As we can

handle unions by Case 1, let us consider only the case
where ~ itself is a single clause.

Subcase 1. There is no atom of the form

bk=a,, b,= bk+corbk=b, +cin V. Thenlet Wbe
the logical “and” of all the atoms of W that do not involve
bk (any such must have the # relation). Then the value
of E is {bl . . . b~–1 I W’ (bl, . . . ,bk-1}. in Proof note
that for any fixed tuple bl . bk_l that satisfies W, we
can pick bk to be al for some 1 sufficiently large that all
atoms Of the fOrmS bk # (ZJ, b, # bk + c Or’ bk # b, + C

are true. Thus if bl “ “ . b&l satisfies ~’, it also satisfies
(~bk)~(b,, bk).

Conversely, if b] ~ . . bk-1 satisfies

(3bk)W(b,, . . . ,bk),

then surely bl . . . bk_l satisfies all atoms that do not
mention bk.

Subcase 2. There is some atom bk = aJ, b, = bk + c or
bk = b, + c. Substitute for bk in all the other atoms of ~
the expression a,, b, – c or b, + c, respectively.

The result is always equivalent to some atom, or a logi-
cal constant, which we take to be the result of the substi-
tution as indicated in Fig. 1. An atom with the value true

disappears. A false atom causes the value of E to become
the empty set, which we may represent by
{b, . . . bk_l I bl # bl]. If no atom is false, the value of
E is {bl . . . bk_l I W’(b,, bk-l)}, where ~’ COr_tSiStS

of the logical “and” of the following atoms:

(1) The atoms of W modified by the substitution of Fig.
1,

(2) In the case bk = b,+c, c >0, was the substituted
atom, we add the atoms b, # a,, for l–c <j< 1, and

(3) In the case bk = b,–c, c >0 was the substituted
atom, we add the atoms b, # aJ for 1<j< c. ❑

Now we return to the proof of the theorem. Suppose
that E(R) = R+ for some expression E and any relation
R. Then, for sufficiently large 1, RI+ can be expressed as
{blb, \ W(bl, b2)], where V is in DNF.

Case 1. Every clause of ~ has an atom of the form
bl = a,, bz = a,, or bl = bj +C (or equivalently,
b2 = bl–c). Consider the pair b1b2 = a~a~+d, and where
m is larger than any i such that bl = a, or b2 = a, is an
atom in ~, where d is positive and larger in magnitude
than any c such that bl = b2 + c is an atom of V. Then
bl = am, b2 = a~+d satisfies no clause of ~. However,
for sufficiently large 1, am a~+~ is in R,+ but not in
E (Rl), a contradiction.

Case 2. Some clause of T has only atoms with the #
relation. Then consider the pair a~+da~, where no atom
b, # am or b, # a~+d appears in ~, and d is positive and
larger in magnitude than any c such that bl # bz + c or
b2 # bl + c appears in V. Note that from the construc-
tion of W in the case of projections in Lemma 2 that all
atoms b, # aJ added have j either close to zero or close
to I, where “close” means within some constant that
depends on E but not on 1. Thus, for sufficiently large 1,
a~+da~ is in E (Rl) but not in RI+, another contradiction.

We conclude that for any E, there is always an 1 for
which E(Z$) # R/+. ❑

120

