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1 Introduction

The central concept of the random matrix theory as envisioned by E. Wigner is the general hy-
pothesis that the distributions of eigenvalue spacings of large complicated quantum systems are
universal in the sense that they depend only on the symmetry classes of the physical systems but
not on other detailed structures. The simplest case for this hypothesis is for ensembles of large but
finite dimensional matrices. The general hypothesis in this setting thus asserts that the eigenvalue
spacing distributions of random matrices should be independent of the probability distribution of
the ensemble, up to scaling. This is generally referred to as the universality of random matrices.
In this paper we will focus only on the bulk behavior i.e., on eigenvalue distribution in the interior
of the spectrum, although similar questions regarding the edge distribution are also important.

Over the past two decades, spectacular progress (see, e.g., [5, 10, 11, 24, 25, 9, 22] and |2, 8, 9]
for a review) on bulk universality was made for classical invariant ensembles, i.e., matrix models
with probability measure given by e~ N/TV(H)/2 /7 wwhere N is the size of the matrix H, V is a
real valued potential and Z is the normalization. It is well-known that the probability distribution
of the ordered eigenvalues of H on the simplex determined by A; < --- < Ay is given by

N
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where the parameter 5 = 1,2,4 is determined by the symmetry type of the matrix, corresponding
respectively to the classical orthogonal, unitary or symplectic ensemble. With 3 taking these special
values, the correlation functions can be explicitly expressed in terms of polynomials orthogonal
to the measure e #V(#)/2 Thus the analysis of the correlation functions relies heavily on the
asymptotic properties of the corresponding orthogonal polynomials. In the pioneering work of
Gaudin, Mehta and Dyson (see [23] for a review), the potential V' is the quadratic polynomial
V(z) = 22 and the orthogonal polynomials are the Hermite polynomials for which asymptotic
properties are well-known. The major input of the recent work is the asymptotic analysis of the
orthogonal polynomials w.r.t. the measure e #V(#)/2 for general classes of potentials. The formulas
for orthogonal and symplectic cases, i.e., 8 = 1,4, are much more difficult to use than the one
for the unitary case. While universality for § = 2 was proved for very general potential, the best
results for 8 = 1,4 [9, 21, 26] are still restricted to analytic V' with additional conditions.

For non-classical values of 8, i.e., 8 & {1,2,4}, one can still consider the measure (1.1), but
there is no simple expression of the correlation functions in terms of orthogonal polynomials.
Furthermore, the measure (1.1) does not arise from mean-field type matrix models like Wigner
matrices with independent entries. Nevertheless, p is a Gibbs measure of particles in R with
a logarithmic interaction, where the parameter § is interpreted as the inverse temperature and a
priori can be an arbitrary positive number. These measures are called general S-ensembles. We will
often refer to the variables A; as particles or points and the system is called log-gas. It was proved
[12] that in the Gaussian case, i.e., when V is quadratic, the measure (1.1) describes eigenvalues
of tri-diagonal matrices. This observation allowed one to establish detailed properties, including
the local spacing distributions of the Gaussian S-ensembles [27].

Gibbs measures in the continuum with long range or singular interactions are notoriously hard
to analyze since they are very far from the perturbative regime. For non-classical values of 3,
and if we are not in the Gaussian case V(\) = A%, no simple explicit formula is known to express
the correlation functions in terms of orthogonal polynomials, and one cannot rely on any explicit
known matrix model. In this paper we undertake the direct analysis of the Gibbs measure and we
prove the universality for invariant models for any 8 > 0. In other words, we will prove that the



local spacing distributions of (1.1) are independent of the potential V' for certain class of V. There
are two major ingredients in our new approach.

Step 1. Uniqueness of local Gibbs measures with logarithmic interactions. The main result in this
step asserts that if the particles are not too far from their classical locations then the spacing
distributions are given by the corresponding Gaussian ones (We will take the uniqueness of the
spacing distributions as our definition of the uniqueness of Gibbs state). More precisely, denote
by p the limiting density of the particles under the measure x(™ (1.1) as N — oco. Let Y = VN
denote the location of the j-th point under p, i.e., ; is defined by

e
N/ p(x)dz = j, 1<j<N. (1.2)
—0o0

We will call ; the classical location of the j-th particle. The basic assumption is the following:

Assumption A. For some b < 31—8 and any « > 0, there exists €y > 0 such that
P (|Ak = 6| S N7HP) > 1 — exp(—N®°) (1.3)

for large enough N and any k € [N, (1 — a)N].

Under this assumption (under some minor and easily verifiable assumptions near the edges of the
limiting measure), we will prove that the spacing distributions of y are given by the corresponding
Gaussian model with V (x) = 22. We will use the Gaussian case as our reference ensemble only for
the convenience of definiteness. In fact, no detailed properties of the Gaussian measures are used
in the proof and any other reference ensemble would have worked as well. Furthermore, in this
step we make no assumption on the convexity of V', which is needed in the next step.

Step 2. Particle location estimate. The second step is to verify Assumption A. For non-classical
B, Assumption A is only proved for b near one [20, 25, 21] for analytic potential V' under certain
constraint. This is far from sufficient to complete Step 1. We will prove Assumption A for all 5 > 0
under the assumption that V' is convex and analytic. Our method uses the following three ideas:
(1) The analysis of the loop equation in [20, 21, 26] to control the density. (2) The logarithmic
Sobolev inequality guaranteed by the convexity of V. (3) A multiscale analysis of the probability
measures of invariant ensembles. We note that the assumption of analyticity on V' is needed only
for using the loop equation in (1).

The basic idea of our proof is to use the following tool from [14]: For two probability measures
1 and w define the Dirichlet form by

D(p|w) = %/\v@fdw.

Then the difference of the local spacing distributions of the two measures is negligible provided
that the Dirichlet form per particle is sufficiently small in the large N limit [14]. Notice that if we
used the relative entropy of the two measures, then the uniqueness of the Gibbs measures would
require the total entropy, which is an extensive quantity, to be small. To apply this Dirichlet form
inequality, we first localize the measure by fixing A; for j outside, say, the interval [L + 1, L + K]
for L in the bulk and K = N* for some k > 0. We will call these data of A; outside the interval
[L + 1,L + K] the boundary condition. We then compare this measure to a local Gaussian -
ensemble with a fixed boundary condition by showing that the Dirichlet form per particle of these
two measures is small for typical boundary conditions w.r.t. pu.



Our approach shares some philosophy from the recent method on the universality of Wigner
matrices [14, 15]. In this approach, the key condition to establish is

Assumption III. There exists an a > 0 such that we have

N
1
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j=1

with a constant C' uniformly in N. Here puyy is the law given by the Wigner ensemble.

Under this assumption, a strong estimate on the local ergodicity of Dyson Brownian motion
(DBM) was established in [14, 15]. DBM [13] establishes a dynamical interpolation between Wigner
matrices and the invariant equilibrium measure y. This estimate then implies the universality of
Wigner matrices. Thus the main task in proving the universality of Wigner matrices is reduced to
verifying Assumption III.

There are several similarities between the method used for the universality of Wigner matrices
[14, 18] and the current proof for S-ensembles: (i) Both rely on crude estimates such as (1.3) and
(1.4) on the location of the eigenvalues to establish the local spacing distributions are the same as
in the Gaussian cases. (ii) Both use estimates on the Dirichlet form to identify the local spacing
distributions. (iii) The main model dependent argument is to prove these crude bounds on the
eigenvalues. The precision of these a-priori estimates on the eigenvalues is weaker than the local
spacing, but better than previously known results on eigenvalue locations: we have to develop new
methods to prove (1.3) and (1.4).

There are, however, substantial differences between the proofs of universalities for Wigner
and (-ensembles. First, since the §-ensembles are already in equilibrium, there is no dynamical
relaxation mechanism to exploit and the local statistics need to be identified directly without
dynamical argument. Second, we obtain the crude estimate (1.3) by a method completely different
from the Wigner matrices, as there is no underlying matrix ensemble with independent entries to
analyze. The accuracy result we obtain by this new method is actually optimal, i.e. (1.3) will be
shown to hold for any b > 0.

2 Statement of the main result

Consider a probability measure

(N) _ (N (qyy — L A BT o=NEVOW)
pgy = p(dA) = Zn H [Ai = Al H HMdAy .. dAg, (2.1)
1<i<j<N
where A\ = (A1,...,An), A1 < -+ < Ay. Here the inverse temperature satisfies 5 > 0 and the
external potential V' is any convex real analytic function in R, and such that
_8 inf V" (z) > 0. (2.2)
2 zeR

For such a convex potential, as noted in the next section the equilibrium measure, denoted by
p(s)ds, is supported on a single interval [A, B]. In the following, we omit the superscript N and
we will write p for p). We will use P, and E, to denote the probability and the expectation
with respect to pu.



The Gaussian case corresponds to V(\) = A?; the expectation with respect to this Gaussian
measure will be denoted by Egauss, and the equilibrium measure is known to be

psc(E) = % V(4= E?),,

the semicircle density. The Gaussian case includes the classical GUE, GOE and GSE ensembles
for the special choice of § = 1,2, 4, but our result holds for all 8 > 0.
Now we state our main theorem which will be proven at the end of Section 4:

Theorem 2.1 AssumeV is any real analytic function with inf,cg V" () > 0. Let 8 > 0. Consider
the B-ensemble p = pgyv. Let G : R — R be a smooth, compactly supported function. Let
E € (A, B) lie in the interior of the support of p, and similarly let E' € (—2,2) be inside the
support of pse. Define L and L' by

L /E L E’
~ =/ pl)ds, == psc(w)da.
N A N 9

Fiz a parameter K = N* where 0 < k < % is an arbitrary constant. Let I and I’ be two intervals
of natural numbers, I = [L+1,L+ K], I' = [L' + 1, L' + K] with length K = |I|. Then

1 N = Ais1) 1 Ny = A1)
]E”Kp(E) ZG( p(E) = ) _EGausst (E) ;G( psc(E’)+1 )

iel 8¢

=0, (23)

N —oo

i.e. the appropriately normalized particles gap distribution of the measure gy at the level E in
the bulk of the limiting density asymptotically coincides with that for the Gaussian case and it is
independent of the value of E in the bulk. In particular the gap distribution is universal.

Remark. The same result (with the same proof) holds for higher order correlation functions of
particles gaps. More precisely, fix n > 1 and an array of positive integers, m = (my, ma,...,my) €
N%. Let G : R® — R be a bounded smooth function with compact support and we define

gi,m(A) — 1 . (N(A’L - /\i+m1) ’ N()‘H-ml - )‘i+m2) e N(Ai"l'mn—l B Ai"l‘mn)). (24)
p(E) p(E) p(E) p(E)

Then, under the conditions of Theorem 2.1 and using its notations, we have

lim ]EiZg- (A)—E ing A)|=0 (2.5)
N ;LK : i,m GaussK , i,m ’ '
icl iel’
where G; |, is defined exactly as G; m but p(E) is replaced with ps.(E').

(N)

The limit (2.5) can be reformulated as the convergence of the correlation functions. Let py,
denote the n-point correlation function of the measure y = ugN& defined by

PNy, ... xy) = / p(x)dan4q ... dey, (2.6)
RN-n
where i is the symmetrized version of ; given in (2.1) but defined on the RY instead of the simplex:

N 1
Y (dA) = N!u(d)\ )



where A7) = (A, (1), ..., Ao())s With A1) < -+ < Ap()-

From (2.5) we have the convergence of the correlation functions, stated as the following corol-
lary. Since the proof is a standard argument and it is essentially identical to the one given in
Section 7 of [15], we omit it.

Corollary 2.2 Under the assumption of Theorem 2.1 and with the same notations, for any smooth
test functions O with compact support and for any 0 < k < L, we have, with s := N~'* that

27
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E'+s qg 1 a a
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The local statistics of the A;s in the Gaussian case have been explicitly computed by Gaudin,
Mehta and Dyson (see, e.g., [23]) for the classical value 8 € {1,2,4}. For general 8 > 0, there is an
explicit description in terms of some stochastic differential equations, the Brownian carousel [27].

Theorem 2.1 will be proved in two steps as explained in the introduction. For logical reasons,
we will first present Step 2 on particle location estimates in Section 3 and then Step 1 on the
uniqueness of Gibbs measure in a finite interval in Sections 4 and 5.

3 Optimal accuracy for particle locations

Along this section, we assume that V' satisfies the same conditions as in Theorem 2.1. Let the
typical position 5 be defined by
Tk k
ds = —.
/ p(s)ds = -

—0o0
Moreover, all constants in this section depend on the potential V', which is fixed. In the following,
we will denote [z,y] = NN [z,y],
The purpose of this section is to prove that accuracy holds for the measure p at the optimal
scale 1/N, in the following sense.

Theorem 3.1 Take any a > 0 and € > 0. There are constants d,c1,co > 0 such that for any
N >1 and k € [aN, (1 —a)N],

IPIJ« (‘)\k — ’7]€| > N_1+E) < 016_02N5.

After some initial estimates relying on large deviations results, the proof consists in comparing
1 to some locally constrained measures for which better concentration estimates can be proved
for the differences between particles. This measure is related to the pseudo-equilibrium measure
n [14], but has distinctly different properties. Iterations of these comparisons will give optimal
accuracy.

3.1 Initial estimates

The purpose of this paragraph it to prove the following crude estimate. It will be the initial step
in the induction of Subsection 3.3.



Proposition 3.2 For any a,e > 0 there are constants ci,c2,0 > 0 such that for any N and
k € [aN,(1 —a)N]
P, (|/\k — Y| > N_%+E> < creN’. (3.1)

This result is a direct consequence of the following equation (3.12) and Corollary 3.5, whose
proofs are the purpose of this section. We first state well-known facts about the equilibrium
measure.

For convex analytic potential V satisfying the asymptotic growth condition (2.2) (or even with
weaker hypotheses on V', see e.g. [6, 1]), the equilibrium measure p(s)ds associated with (1)) x>0
can be defined as the unique minimizer (in the set of probability measures on R endowed with the
weak topology) of the functional

I(v) = /V(t)dy(t) - // log [t — s|dv(s)dv(t)

if [V(t)dv(t) < oo, and I(r) = co otherwise. Moreover, p has the following properties:
(a) The support of p is a single interval [A, B].

(b) This equilibrium measure satisfies

for any t € (A, B).

(c) For any t € [4, B],
p(t)dt = %r(t) (t—A) (B —t)l4 pdt, (3.3)

where 7 can be extended into an analytic function in C satisfying

1 /B V'(z) = V'(t) dt (3.4)

a2t - A)(B-1

r(z)

In particular, for convex V', r has no zero in R.

It is known that the particles locations cannot be far from its classical location [4, 26]: for any
€ > 0 there are positive constants C, ¢, such that, for all N > 1,

P, 3k € [1, N] | [Ak — x| > &) < CeN", (3.5)

In order to have density strictly in a compact support, for given R > 0, define the following variant
of u™) conditioned to have all particles in [~ R, R]:

N
1 _NE
p @) = —— T =P [T e 8O0 1, cpdd i (3.6)
NEB<ici<n k=1
Let p,(CN’R) denote the marginals of the measure u(M%) ie. the same definition as (2.6), but with

pu) replaced by p(N-1).



Then Lemma 1 in [6] states that under condition (2.2) there exist some R > 0 and ¢ > 0,

depending only on V, such that for any |z1|,...,|zx| < R
pECN’R)(ajl, Ce ) — p,(gN)(xl, )| < pECN’R)(xl, coxp)e N, (3.7)
and for |z1],...,|z;| > R, |xj41], ..., |2k <R,
pch) (z1,...,25) < e N i loglal (3.8)

The last type of estimates we need are concentration and accuracy of the particles location at scale
N—1/2in the bulk. Concentration is a simple consequence of the Bakry—Emery convexity criterion
for the logarithmic Sobolev inequality ([3], see also [2]): define H by p(d)) = F—e N*(Md), and
assume

V2H > oldx (3.9)

in the sense of partial order for positive definite operators. Then pu satisfies a logarithmic Sobolev
inequality with constant 2/(cN): for any probability density f we have

B flog ) < B,V (3.10)

It is well-known that the logarithmic Sobolev inequality implies the spectral gap and, together
with Herbst’s lemma, it also implies that for any & € [1, N] and > 0

(e — B (M) > z) < 2e7 0N /2,

—~

2.1), for any v € RY

Z ﬁZV” 02 > wlv|?, (3.11)
1<J

where @ is defined in (2.2). Thus there is a constant ¢ > 0 such that for any k

—~

In our case where y is defined by

*(VZH)v

Z\Q

2

P, (A —E,(\r)| > x) < 2e™N* (3.12)

i.e. concentration at scale 1/ VN holds. We now prove that accuracy at the same scale holds inside
the bulk.

The proof of the following lemma is based on an argument in [20] for the polynomial case. In
the form presented here, it follows very closely the proof in [26] for the analytic case except that we
use the logarithmic Sobolev inequality to have a more precise estimate. We now introduce some
notations needed in the proof.

e my is the Stieljes transform of p1 ( )(ds), evaluated at some z with Im(z) > 0, and m its
limit:

N
m(2) = E, (fvzz_l Ai) = [ V0 mee) = [ o

k=1

It is well-known that uniformly in any {Im(z) > €}, ¢ > 0, [mny — m| — 0 (see e.g. [2]).
Along the proof of the next Lemma 3.3 we will see that this convergence holds at speed 1/N.



e 5(z) = =2r(2)y/(A — 2)(B — z), where the square root is defined such that
fR)=vVA=-2)(B-2)~z as z— o

e by(z) is an analytic function defined by

by () = / VIR =V () ey s

z—1

o finally, cn(2) = 7zkn(2) + & (% - 1) m/y(z), where

kn(z) = var, <Z . _1)\1) .

k=1

Here the var of a complex random variable denotes var(X) = E(X?) — E(X)?2, i.e. without
absolute value unlike for the usual variance. Note that |var(X)| < E(|X — E(X)|?).

The equation used by Johansson (which can be obtained by a change of variables in (2.1) [20] or
by integration by parts [26]), is a variation of the loop equation (see, e.g., [19]) used in physics
literatures and it takes the form

(mem)ers(mem)erN:cN. (3.13)

Equation (3.13) expresses the difference my — m in terms of (my —m)?2, by and cy. In the
regime |my — m| is small, we can neglect the quadratic term. The term by is the same order as
|my — m| and is difficult to treat. As observed in [1, 26], for analytic V, this term vanishes when
we perform a contour integration. So we have roughly the relation

1 Yo
(my —m) ~ 2 vl <Z o /\k> ) (3.14)

where we dropped the less important error involving m/y(2)/N due to the extra 1/N factor. In
the convex setting, the variance can be estimated by the logarithmic Sobolev inequality and we
immediately obtain an estimate on my —m. We then follow the method in [16] to use the Helffer-
Sjostrand functional calculus to have an estimate on the particle locations. Although it is tempting
to use this new accuracy information on the particle locations to estimate the variance again in
(3.14), this naive bootstrap is difficult to implement. The main reason is, roughly speaking, that
the particle location estimate obtained from knowing only the size of my —m is not strong enough
in the bootstrap. The key idea in this section is the observation that accuracy information on
particle locations can be used to improve the local convexity of the measure p in the direction
involving the differences of particle locations, see Lemma 3.8. Now we are able to complete the
bootstrap argument and obtain a more accurate estimate on my —m. Since this argument can be
repeated, we can estimate the locations of particles up to the optimal scale in the bulk.

Lemma 3.3 Let § > 0. For z = E+in with A+ 0 < E < B — 6 assume that

%kN(z) 50 (3.15)



as N — oo uniformly in n > N~='*% for some 0 < a < 1. Then there is a constant ¢ > 0 such that
foranyn>N"11% A+§< E < B-9,

ima(2) — m(2)] < ¢ (van + ]\;kN(z)> . (3.16)

Proof. First, for technical contour integration reasons, it will be easier to consider the measure
(3.6) instead of u(™) here. More precisely, define

N
(R) .\ — 1 I ) _ L (R
mi () = By (NZ - Ai) = [ APt

Then it is a direct consequence of (3.7) and (3.8) that there are constants ¢ > 0 and R > 0 such
that uniformly on n > N~1° (or any power of N),

(R)

[my 7CN)

—my|=0(eN), kP — kx| = O(e™N). (3.17)

Consider the rectangle with vertices 2R +iN 19 —2R +iN—19 2R —iN—10 2R —iN—19 call £
the corresponding clockwise closed contour and £’ the one consisting only in the horizontal pieces,
with the same orientation. From (3.13), we obviously have, for z & £/,

1 [ (mn(§) —m(€)? + s(&)(mn (&) — m(§)) +bn(§) —en(§)
2mi J &)z —¢)

Note that the above expression makes sense for large enough N, because then r has no zero on L.
Using (3.17), this implies, for n > N~1,

d¢ = 0.

L[ i€ = ml©) + 5@y’ = m(©) +bw(©) = N(©) o _ e,

2mi r(&)(z = &)
Now, as pgN’R) and p are supported on [—R, R], mg\?) — m and cg\lf) are uniformly O(1) in the

vertical segments of £. Consequently, from the above equation

L[ mE©) = m(€) + s(©)(my” (&) — m(©) + b (&) — e
2mi Jp r(&)(z = §)
As by and r are analytic inside £, and z is outside we get

1 () = m(€)? + () (mi (€) — m(€)) — ()
o J, r(€)(z - )

(5) df _ O(me)'

d¢ = O(N~10).

10



Remember we define a f(z) = /(A — 2)(B — z) uniquely by f(z) ~ z as z = oo. Moreover,

R

|m§5’) —m|(2) = O(272) as |z| — oo because p and pgN

m{P (2) - ‘/ plt) = P ) o,

z—1
/ ot -0 (Lo (5))ar

Consequently, the function s(mg\lﬁ) —m)/r = —2f(m5\1,%) —m) is O(z71) as |z| = co. Moreover, it
is analytic outside £, so the Cauchy integral formula yields

are compactly supported:

=0 (z72) .

L[ s(©my”(©) ~m(©)
omi e rOGE-9

€= —2f(2)(mY —m)(2),
proving

m(R) -m 2 C(R)
—2f(2)(m§\?)(2)—m(z)):—% (my @L(S)(Q — ©ge o).  (3.18)

Consider now the following rectangular contours, defined by their vertices:

Li:R+e+ie,—~R—c+ic,—-R—¢e—ig, R+ ¢ —ig,
Lo: R+ 2e+2ie, —R — 2¢ + 2ie, —R — 2¢ — 2ie, R + 2¢ — 2ie, (3.19)

where € > 0 is fixed, small enough such that all zeros of r are strictly outside L£5. For z inside Lo
and Im(z) > N~!, by the Cauchy formula, equation (3.18) implies that

—2f(2)(m§7(2) — m(2))
R R
— _(ms\?)(z) - m(z))2 + CS\I/%)(Z) . i/ (mg\f )(f)r(gm(f))z — Cgv )(O dé + O(N_lo). (3.20)

2mi

In the above expression, if now z is on L1, |z — £| > &, and on Ly |r| is separated away from zero
by a positive universal constant. Moreover, CS\I,D”) (&) can be bounded in the following way: for any

constants ay,...,ay € [-R—¢, R+¢],

N
Varu(N R) E

1

N 2

1
S

1

1
N2

E,o.m

N
1
< iy E E,ovr (A — axl?)
k=1

because for any k, we have | — Ag| > ¢, | — ax| > €. Now, choose o = E,(\;). By (3.8), for
large enough N any ay, 1 <k < N, isin [-R — &, R+ ¢] indeed. Moreover, by (3.7),

’]EM(N,R) (|>\k - Oék|2) — EM (|/\k — Oék|2)| < e_CNEM(N,R) (|>\k - Oék|2) 5

11



and, by the spectral gap inequality for u, E, (|]Ax — ax|?) = O(N~!). This together proves that

k%%) (¢) is O(N~1), uniformly on the contour £,. Moreover, %ms\lﬁ')l = O(N™1), so finally cg\l,?') (&)

is uniformly O(N 1) on £, and (3.20) implies
“2f(2) () (2) — m(z)) = (P (2) — m(2))*(2) + O (s;p i m|2) Lo,

)

. . . . R R
Moreover, from the maximum principle for analytic functions, sup, |m5\, ) —m| < supg, \ms\, —m|,

so the previous equation implies

1
sup |m§\],?/) —m|=0 (sup \mg\lﬁ) —mf* + N) .
£1 »Cl

We know that pgN)(s)ds converges weakly to p(s)ds (see [2]), so by (3.7) and (3.8) p(lN’R)(s)ds

converges weakly to p(s)ds. On L4, z is at distance at least ¢ from the support of both pgN’R)(s)ds
and p(s)ds so, on Ly, mg\l,%)

implies that

— m converges uniformly to 0. This together with the above equation

B _ . _ofL
szllp\mN m| (N)

By the maximum principle the same estimate holds outside £1, in particular on L5, so equation
(3.20) implies that for z inside £

2P ) - m) = =) - mP + G 40 (). G

Moreover,

1. (my 1 1
- - | E -
N|mN (Z)| N2 H(N’R) . (Z _ )\])2

1
Nn

C

N7 (3.22)

1 1 1
< i tmmi” (@) £ g mi? (2) = m() + g lmm(e)| < gimi () = miz)] -

for some constant c¢. We used the well-known fact that Im m is uniformly bounded on the upper

half plane!. On the set A+J < E < B—§ and |n| < &, we have inf |f| > 0. Therefore (3.21) takes
the form

1 (R) () 2, 1, 1
1 — - = - — — ). (323
(1+0(5;)) @) = me) =0 (1)~ miaP + gz k)4 5 ) - (329
From the hypothesis (3.15), if N~'*¢ <p<ecand A+ < E < B — 6, then
|m§\1,%) —m| < c\mg\lf) —m|* + e, (3.24)

for some ¢ > 0 and ey — 0 as N — oo. For large N, (3.24) implies that \mg\?) —m| < 2epn or
|m§\1,%) —m| > 1/¢—2¢y. This together with |m§5’) —m|(E+ei) — 0 and the continuity of |m§\1,%) —m)

I This follows for example from properties of the Cauchy operator, see p 183 in [8].
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in the upper half plane, this implies that \ms\?) —m| < 2ey and therefore \mg\?) —m/| — 0 uniformly
on N™1te <p<e A+ < E < B- 6. Consequently, using (3.23), this proves that there is a
constant ¢ > 0 such that for any n > N7172 A+ < E < B -6,

) - mil < o (5 + g0 )

The same conclusion remains when substituting mg\?) (resp. kg\lﬁ)) by mpy (resp. ky) thanks to
(3.7) and (3.8).

O

To prove accuracy results for p, the above Lemma 3.3 will be combined with the following one.

Lemma 3.4 Let§ < (B—A)/2 and E € [A+6, B—0] and 0 < n < 6/2. Define a function f = fg,:
R — R such that f(z) = 1 for x € (—o0, E — 7], f(x) vanishes for x € [E + n,00), moreover
If(z)] < en~t and |f"(x)| < en=2, for some constant c. Let p be an arbitrary signed measure and
let S(z) = [(z—=z)"'p(x)dz be its Stieltjes transform. Assume that, for any x € [A+6/2, B—§/2],

U U
)| < — )| < — . .
|S(x 4 iy)| < Ny for n<y <1, and |ImS(z +iy)| < Ny for 0<y<n (3.25)
Assume moreover that [, p(A\)dA = 0 and that there is a real constant T such that
~ U
[Ap(N)]dA < —. (3.26)
= N

T, T)e
Then for some constant C > 0, independent of N and E € [A+ §, B — §], we have

‘/fE()\)ﬁ()\)d)\’ < %

Proof. Our starting point, relying on the Helffer-Sjostrand functional calculus, is formula
(B.13) in [16]:

‘/ fe(A d)\‘ <C"//yf y)ImS (z —|—iy)dxdy’ (3.27)

+c//umwn+mvawnw@nww+wwmw, (329

for some universal C' > 0, and where x is a smooth cutoff function with support in [—1, 1], with
x(y) =1 for |y| < 1/2 and with bounded derivatives.

Using (3.25) and (3.26), the support of X’ being included in 1/2 < |y| < 1, and the fact that
[ is O(n™!) on an interval of size O(n), the term (3.28) is easily bounded by O (¥). Concerning
the right hand side of (3.27), following [16] we split it depending on 0 < y < pand n < y < 1.
Note that by symmetry we only need to consider positive y. The integral on the first integration
regime is easily bounded by

U U
)x (y)ImS(z —|—1y)dxdy‘ // yn 2 ——dady | =0 <> .
’//<y<n |z—E|<n,0<y<n Ny N

13



For the second integral, as fs and x are real, we can substitute Imm by m and use the analyticity
of m when integrating by parts (first in z, then in y):

‘//ng yfe(x)x(y)ImS(z + iy)dxdy‘ < //Ky yfe(@)x(y)S(z + iy)dxdy‘

-/ / WS o+ iy)dxdy‘

IN

/ /77 - 9y (yx(y)) fe(2)S(z + iy)dxdy’

n ] [nseteonste +inds

This last integral is easily bounded by O(U/N) using (3.25). Concerning the previous one, as
I =0(n™1), |z — E| < n for non vanishing f, 9,(yx(y)) = O(1) and S(z +iy) = O(U/(Ny)),

this is bounded by
U [tdy B U|logn|
o[ )0

concluding the proof. 0

As a corollary of Lemmas 3.3 and 3.4, we get the accuracy at scale 1/ VN for the \;’s in the
bulk.

Corollary 3.5 For any a > 0 and € > 0 we have

WJ(CN) %l =0 (N_1/2+8)

uniformly in k € [aN, (1 — a)N] where VI(CN) and v are defined by

(N)

Tk k Yk k
N yg. _ B _k
/ pi (s)ds = N and /_OO p(s)ds N

— 00

Proof. We will apply Lemma 3.4 to p = p — pgN) with n = N~'/2%¢and check the conditions

on S =m —my. We denote z = x + iy.
By the spectral gap inequality for the measure p, we get

AR c AR
Var“<zz/\k>‘§N3E” V<Zz)\k>

k=1 k=1

2
C

— N2y4‘

N

N2

(3.29)

Together with Lemma 3.3, this implies that uniformly in N='/2*¢ <y <1 and z € [A +§/2, B —

0/2], we have
i (2) — m(2)] = O (;] + N;y4) ~0 (g) .

For 0 < y < N~1/2%¢ m is uniformly bounded and

y = ylmmy(z +iy) = / (:U_yigp(m (t)dt

14



is an increasing function, so denoting yo = N~/2¢ we have
y Im(my (z+iy) —m(z+iy))| < yo Immy (2+iyo) +O(y) < yo|Im(my (z-+iyo) —m(z+iyo))|+O(yo)-

Therefore, for any 0 < y < ]\]*1/2+€7

N1/2+5
Im(my(z +1iy) — m(z +iy))| = O ( Ny ) .
Finally, the condition (3.26) with U = O(N'/2%¢) and with the choice of any 7 > max(|A|, |B|) +0
follows from the large deviation estimate (3.5).
Using the conclusion of Lemma 3.4 for functions fr and fg4, defined in the same lemma, and
subtracting both results, we get that uniformly in E € [A+ §, B — 4],

/E (P™M(8) = p(t))dt| = O(N /2%, (3.30)

— 00

so if 'y](cN) € [A+6,B — ¢], then |'y,(cN) — | = O (N~1/2%¢). This estimate holds uniformly

in k € [aN,(1 — a)N]: as a consequence of (3.30) and the smooth form (3.3) of p, for any
k € JaN, (1 — a)N] and sufficiently large N we have fy,(fN) € [A+6,B -], for 6 > 0 small enough,
concluding the proof. 0

Lemma 3.6 For any ¢ > 0 there exists c1,ca,€’ positive constants such that for any N3/5t¢ <
j < N — N3/5%¢ we have

Py (|>\j -7l 2 N74/15+5) < cre N’

Proof. We will assume that j < N/2 in the following, i.e. we will estimate the accuracy near
the edge A, the proof close to the other edge B being analogous. We follow the notations used
in Corollary 3.5 and Lemma 3.4. For E € [A — 6, A+ 0] U[B — 6, B + 4], we have inf |f|(2) > /1.
Therefore we can divide —2f(z) on both side of (3.21) to have

1 miP (2) — m(2)]? 1 1
(HO<N7}3/2)> (m§5>(z)m(z))o<| N (\)/77 )l +N2\/ﬁk§f’)(z)+Nn3/2

(3.31)
By (3.29), (3.7) and (3.8) we can bound the variance term by
1 R C

for n > N 19 for example. Following the same continuity argument in the proof of Lemma 3.3, we
obtain that for any € > 0

. N¢®
tnginse — ) e+ i) = O (s ).

provided that

1] 1 1
(®) } ‘<1 (3.33)

- k . <
N eV (Z)+N773/2 = N

15



We can now follow the argument in the proof of Corollary 3.5 so that (3.25) holds with U = N3/5.
Since the condition (3.26) is easy to verify, we thus have

C|logn|

N5 o n=NT

[ 160 - st <
where fg is defined in Lemma 3.4. This proves that
BE-n B Cllogn
/ pWN) (t)dt g/ p(t)dt + %
— 00 —0o0
In particular,

i Cllognl _ [ Cllogy| _ [+
N N2s p ™ (t)dt — N2 S p(t)dt,

— 00 — 00

and we have, by definition of ~;, that
Vj—N3/5+e < ’)/j(-N) + 27.
Similarly, the reverse inequality holds and we have

N
Vj—N3/5+e — 2n < 'YJ(' ) < Y4 N3/5+e + 27.

Since L;E p(t)dt ~ (B — A)3/2, for j > N3/5t we have

N —1/3
‘7j7N3/5+5 - <C (]j\/'> N—2/5+€/2 < N—4/15+e

Moreover, by (3.12), A; is concentrated around E,();) at scale N=Y2 g0 [E.(\;) — ](,N)| =
O(N~1/2), concluding the proof of the lemma. 0

3.2 The locally constrained measures

In this section some arbitrary €, > 0 are fixed. Let 6 be a continuous nonnegative function with
6 =0on[—1,1] and §” > 1 for |z| > 1. We can take for example () = (x—1)?1ps1+(x+1)?* 11
in the following.

Definition 3.7 For a given k € [aN,(1 — a)N] and any integer 1 < M < aN, we denote
I®RM) = [k — M,k + M] and iy = |[I®M)| = 2M + 1. Moreover, let

l—e
¢(k,M) =8 Z 0 (NOV_)‘J)) )
i<j,i,jel®:M) M

We define the probability measure

1 ‘)
dw®M) .= Ee*qj(k M)d,u, (3.34)

where Z = Z .. The measure w ™M) will be referred to as locally constrained transform of pu,
around k, with width M. The dependence of the measure on € will be suppressed in the notation.

16



We will also frequently use the following notation for block averages in any sequence x1, xs, . . .
xECM] — Z ;. (3.35)
’LEI(k M)

The reason for introducing these locally constrained measures is that they improve the convexity
in I+M) yp to a common shift, as explained in the following lemma.

Lemma 3.8 Consider the previously defined probability measure

kM) le—‘b(k'M)d,u _ ie—N(Hlsz)d)\’

where we denote

1 B
Mmoot -5 S g )

N
i<j,i,jEIk:M)

N
Hy = f% Z log [A; — A gz

(i,5) €T kM)

where J®M) s the set of pairs of points i < j in [1, N] such that i or j is not in I5RM) - and
Hi=H1(Ae—nr1y s Merar). Then V2Ha > 0 and denoting v = (v;);c ), we also have

ﬁNl_QE
’l)*(v27'[1)’l} Z 5 i Z (Ui — Uj)z. (336)
M i,jEI(k‘Iw)

Proof. Since V is convex, to prove the convexity of Hs, it suffices to prove it for the Coulomb
interaction terms; this relies on the calculation, for any u € RY,

W (V2 H () = 2 N X o “l_ LY

](k M) Ai

Moreover, for any v € R*™, a similar calculation yields

2 B (vi —v;)* Nl % o (N2 = )
v (V)0 > o > TYESWE + 8 ey S (wi—v)%0 <)

M
i<g,i,j€lk.M) 1<g,i,j€1k.M)

(3.37)
From our definition of 6,
1 N N2725 0// lee()\z_ _ )\j) N N2725
(/\z — )\j)2 Z?\/[ M - Z?\/[ ’

which implies
1—-2e

N
v (VP H ) > B—;

S (wi—vy)* (3.38)

i<j,i,j€1k.M)

which completes the proof of (3.36), noting that the above factor 1/2 comes from the strict ordering
of ¢ and j indexes in (3.38). 0
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The above convexity bound, associated with the following local criterion for the logarithmic

Sobolev inequality, will yield a strong concentration for >, ;. m) vsA; under wkM) - if >, vi =0.
This lemma is a consequence of the Brascamp-Lieb inequality [7]. Notice that the original inequality
applied only to measures on RY, but a mollifying argument in Lemma 4.4 of [17] has extended it
to the measures on the simplex {A\; < A2 < ... < Ay} considered in this paper.
Lemma 3.9 Decompose the coordinates A = (A1, ..., An) of a point in RN =R™ x RN=™ g5 \ =
(2,y), where x € R™, y € RN=™, Let w = %e*NH be a probability measure on RY = R™ x RN—™
such that H = Hi + Ha, with H1 = Hi(z) depending only on the x variables and Hao = Ha(z,y)
depending on all coordinates. Assume that, for any A € RN, V2Hy()\) > 0. Assume moreover that
Hi(x) is independent of x1 + ...+ Xy, i.c., Z;n:l Oz;H1 = 0, and that for any x,v € R™,

0" (VPH, (x > £ Z [v; — v;]? (3.39)

1,j=1

with some positive £ > 0. Then for any function of the form f(X) = F (3 i~ viz;), where Y, v; =0
and F : R — R is any smooth function, we have

/f2 log f?dw — (/ f2dw) log (/ dew) < giN/\Vdew. (3.40)

Proof. In the space R™ we introduce new coordinates (z,w) = M*(x1,...,2) with z =
(Zh N 7Zm—1) € Rm_l )
w = m_1/2 Z X, (341)
i

and M is an orthogonal matrix. Since Hi(z) is independent of z1 + ... 4+ x,,,, we can define
H1(z) := H1(x). Similarly, the function f(\) = F(} ", viz;) with ), v; = 0 depends only on the
z coordinates, i.e. it can be written as g(z) = f(A). Hence we can rewrite

| Prosra= [ gloggan Pas= [ g
RN Rm—1 RN Rm—1
where dv = v(z)dz with

v(z):= ie*Nﬂ(z) = l/ e*NH(””’y)dwdy.
Z Z RXRN m

Introduce the variable ¢ = (w,y) € R x RN~ and denote by Hqq> Hzq, H-» the matrices of second
partial derivatives. As Hs is convex, the Brascamp-Lieb inequality yields
-~ 1
Ho. > — e~ NH(@w) [’Hu - qu[qu}—lﬂzq] dwdy.
Z RxRN-—m

Since H; is independent of ¢, we have, by assumption of the positivity of the Hessian of Hs, that
for any ¢ fixed,

(HZ)zz - qu[qu] leq (HZ) (HQ)zq[(H2)qq}_1(H2)zq = 0. (3'42)

Thus we have, for any v € R™~!, that

WH U > w (Hi)z2u =u M*(’Hl mMu > = Z Mu ) 12, (3.43)

18



where M denotes the first m — 1 columns of M. Since the last column of M is parallel with
(1,1,...,1) € R™ and M is an orthogonal matrix, we have ), (Mu); = 0 and

&S (W) - (B, =26 Y (W) =26 Y w2 .41

3 i=1 i=1

Hence the measure v ~ exp(—N ??[) is log-concave with a lower bound 2N¢ on the Hessian of IV 7-l,
and we can apply the Bakry-Emery argument to prove the logarithmic Sobolev inequality for v.
Without loss of generality we can assume that f fPdw = f ¢%dv = 1. Therefore, we have

1 1
/]RN f?log f2dw = /}Rm-1 g*log g*dv < Ne /Rm_1 |V.g|%dv = Ne /RN |V f|?dw, (3.45)

where we have used the orthogonality of M to show that |V ,g|?> = |V, f|?>. This proves the estimate
(3.40). 0

It is now immediate, from Lemma 3.8, Lemma 3.9 and Herbst’s lemma, that the following
concentration holds.

Corollary 3.10 For any function f({\;,i € I®M1Y) =3 a vidi with 3, v; = 0 we have

5 N272€ 5
Py (|f — Eyawan (f)] > ) < 2exp (—47;M|U|2$ ) .

Choosing v; = —v;j41 = 1 and all other v;’s being zero, this corollary shows that the particle
differences A\; — Aj41 concentrate around their mean with respect to the w®M) measure. By
choosing € small and M almost order one, we obtain concentration almost up to the optimal scale
1/N. If we can justify that the measures w®M) and p are very close (in a sense to be defined), we
will have concentration of differences at the optimal scale for u. We will then separately show, by
using the loop equation, that accuracy will hold at the same scale as well. This is the purpose of
the next subsection, through an inductive argument.

3.3 The induction

The purpose of this paragraph is to prove the following proposition: if accuracy holds at scale
N—1+e it holds also at scale N—1t3a,

Proposition 3.11 Assume that for some a € (0,1) the following property holds: for any a,e > 0,
there are constants 0, c1,c2 > 0 such that for any N > 1 and k € [aN, (1 — a)N],

P, (A — | > N7HHa+e) < e, (3.46)

Then the same property holds also replacing a by 3a/4: for any a,e > 0, there are constants
d,¢1,c2 > 0 such that for any N > 1 and k € [aN, (1 — a)N], we have

3 8
Py (|>\k — | > N*”Z“*E) < crem 2N,
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Proof of Theorem 3.1. This is an immediate consequence of the initial estimate, Proposition
3.2, and iterations of Proposition 3.11.

Two steps are required in the proof of the above Proposition 3.11. First we will prove that
concentration holds at the smaller scale N~1*%,

Proposition 3.12 Assume that (3.46) holds. Then for any a > 0 and € > 0, there are constants
¢1,¢2,0 > 0 such that for any N > 1 and k € [aN, (1 — a)N],

a
§+6

N
Py (|)\k —E.(Ax)| > ) < 616_62N5~

The above step builds on the locally constrained measures of the previous subsection. Then,
knowing this better concentration, the accuracy can be improved to the scale N -1+

Proposition 3.13 Assume that (3.46) holds. Then for any a > 0 and £ > 0, there is a constant
¢ > 0 such that for any N > 1 and k € [aN, (1 — a)N],

N+e
N

N
"Y;i )*’Yklic

Proposition 3.11 is an immediate consequence of the last two propositions. The proofs of these
two propositions are postponed to the end of this section, after the following necessary series of
lemmas.

Lemma 3.14 Take any € > 0 and o > 0. There are constants c1,ce > 0 such that for any
N > 1, any integers 1 < My < M < aN, any k € [aN, (1 —a)N], and w M) from Definition 3.7
associated with k, M, e,

M
P, ka0 <’)\LM1] _ )\ij] —E . (AiMl] — )\LM])’ > i M) < 016_6212.
1

Nl—s

Proof. Note that )\LMI] — /\LM] is of type > r.an viA; with >~ v; = 0 and

Moo o1\t X o1 Yoo 2 Mo 4
|’U|2:Z(M_M>+ZW§Z(W+W)+ZWSM

1 Mi+1 1 My+1

This together with Corollary 3.10 concludes the proof. O

Lemma 3.15 Assume that for u accuracy holds at scale N=**¢ id.e. (3.46). Take arbitrary
a,e > 0. There exist constants c1,co,0 > 0 such that for any N > 1, for any integer M satisfying
N® < M < aN/2, for any k € [aN, (1 — a)N] and for any j € [1, N], we have

By (Ag) = B (A)] < cxe™e™",
where the measure w*M) is defined in (3.34) from Definition 3.7 with parameters k, M, e.

Proof. First, the total variation norm is bounded by the square root of the entropy, and by (3.8)
the particles are bounded with very high probability, so we have

B (\y) = g ()] < €1/ S | wkMD) 4 OeN)
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for some ¢,C > 0 independent of k, j. For the measures we are interested in, using the logarithmic
Sobolev inequality for u, we have for some ¢,C' > 0

Aegnr — Neoar) N2\ 2
(k:,M) < NC]E 0/ ( k+M k—M )
S(p|w™™) < CN°E, ( i

Now, as 0”(z) = 0 if |z| < 1 and ¢'(x)? < 422, for some new and universal constants ¢, C' > 0

S w(hM)) = CN° Ey ((/\k+M B )\k_M)Qll)\k+M_)\k—M|>%)

1/2 i 1/2
< CN°® [E# ((Merar — Ak_M)‘*)} [IP’# (|>\k+M ~Neent| > Nle_> } . (3.47)

This moment of order 4 is polynomially bounded, for example just by concentration of order N ~1/2
for all A;’s under p. Concerning the above probability, as | vk —ve—n| = O(M/N), for sufficiently
large N if [Apinr — Ap—nr| > Ni{ViE then either |Agyar — Veanr| > M/NY72 or [Mp_ar — yenr| >
M/N'=¢. But accuracy holds at scale N~'*% < M/N, so both previous events have exponentially
small probabilities, uniformly in k. Indeed, one has k — M,k + M € [aN/2,(1 — «/2)N] and by
(3.46)there are constants 0, ¢y, ca > 0 such that for any N > 1 and k € [aN/2, (1 — a/2)N],

Py (JAe — | > M/N'7¢) < creN’.
This concludes the proof. 0O

Lemma 3.16 Assume that for u accuracy and concentration hold at scale N~1T%. Take arbitrary
a,€ > 0. There are constants c1,co,0 > 0 such that for any N > 1, any integers N* < M < aN,
1< M; <M, and k € [2aN, (1 — 2a)N],

N¢ M
]P)H (’AECMI] _ )\gﬂM] _]Eu (AECMI] _ )\ECM])’ > W M) S Cle_C2N5.

Proof. Consider the measure w®*M) associated with the choice & = €/2. First note that, by
Lemma 3.15,

‘Eu ()‘ECM” _ /\ECM]) B (/\ECMl] _ )\ECM])‘ < ce_CNgl’

for some coefficients ¢, C, d1, uniformly in N, k, M, M;. As a consequence of this exponentially
small difference of expectations, the probability bound to prove is equivalent to the existence of
1, 2,60 > 0 such that

—eaN® M M M M Ne M
PM(A)Scle zN’A:{‘)\L 1]—/\2]—1[*:(”(1&-,1%)(/\;@ 1]_)‘E€ ]>‘>W ]\41}’

with the same uniformity requirements. By Lemma 3.14, we know that there are such constants
with S
P ck,n) (A) < 016_621\/ ,

so the proof will be complete if we can prove that |P,«,m) (A) —P, (A) | is uniformly exponentially
small. By the total variation/entropy inequality we have:

IPen (A) =P, (A) ] < /|dw(k’M) —dp| < 1/28(u | wkM)), (3.48)
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This entropy was shown to be exponentially small in the proof of Lemma 3.15, see equation (3.47).
a

Lemma 3.17 Assume that for i accuracy and concentration hold at scale N='*%. For any & > 0
and o > 0, there are constants c1,cz,0 > 0 such that for any N > 1 and k € [2aN, (1 — 2a)N],

a a Nste
P, (‘)\k — AN =B (= A > N) < e’

Note that in this lemma and its proof, for non-integer M we still write )\EﬂM] for )\LLM“, where | M|
means the lower integer part of M.
Proof. Note first that

A= AN _E O - AL‘“N])‘ < ‘)\k AT L (0 — ALN”])‘
+ \AENQ] D VLS N VAR VI B

By the choice M; =1, M = N® in Lemma 3.16, the probability that the first term is greater than
N ?VH is exponentially small, uniformly in k, as desired. Concerning the second term, given some

r >0 and g € N defined by 1 —r < a+ qr <1, it is bounded by

=

q—
[Na+(l+1)7‘] [Na+€r] [Na+(l+1)r] [Na+£T]
X e (T A

~

n ‘)\Eca+qr} _ )\ECaN] _ Eu ()‘ECNGMT] _ )\ECQN]) ‘ .

By Lemma 3.16, for any € > 0, each one of these g+ 1 terms has an exponentially small probability
NetE

of being greater than Consequently, choosing any ¢ and r (and therefore ¢) such that
€+ § < a/2 concludes the proof. 0

Proof of Proposition 3.12. We just need to write
A= Bl < [ = MM =B, O = A + e - B

By Lemma 3.17, the first term has exponentially small probability to be greater than & ?Vﬁ. B

the logarithmic Sobolev inequality for p with constant O(1) (see (2.2)), the second term has an
even better concentration, at scale 1/N:

T

aN aN
B (I - B O >

)< oo
This concludes the proof of the proposition. 0

Proof of Proposition 3.13. Thanks to Lemmas 3.3, 3.4, and reproducing the proof of Corollary
3.5, we know it is sufficient to prove that for any § > 0

o (25
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goes uniformly to 0 where z = E+in, F € [A+ 6, B — 4] and n > i
Let iy be the index in [0, N] such that the typical position 'yil(\)[ is the closest to E. Define the
indexes of particles close to F, far from E and in the edge as

Int = {i: |i — io| < N+<},
Ext = {i: |i —io| > N*™,i € [aN, (1 — a)N]},
Edg:{llg[[OéN,(l—Oé)Nﬂ},

where « is small enough such that
) 1)
%N<A+§<A+5<E<B—5<B—§<7(1_Q)N. (3.49)

We choose ai = E, (Ax) in the following equations. Then

1 1 C 1 1
— < —E _
N2 Var”<zz—Ak> - N2TH Z Z—A,  Z—Op
k k€Edg
C 1 1 ? o 1 1 ?
) - ) - :
+N2 " kg;xtz—/\k z— oy +N2 " k;tz—/\k Z— Qg (3.50)

The edge term is bounded by
C
ey

Edg

From the condition (3.49) and the large deviation estimate (3.5), the above probability is expo-
nentially small. Moreover, the above L? moments are O(1/N) by the spectral gap inequality for
1, see e.g. equation (3.12). Hence the edge term goes to 0 uniformly.

Using the accuracy at scale N~'+% and the concentration at scale N~1+%/2 (Proposition 3.12),
the second term in (3.50) is bounded, up to constants, for some ¢y, ¢, > 0 by

1 1
Z— Ay zZ—

2 c’ 5 c’ )
gNnQZP B =Xl < 5 +WZEM(|A,€—%|).

Edg Edg

2

1 i k— Otk _ s
k>Nate (ﬁ)

Nig+k — Qig+k|? 1
< NQE Z w Z = +Cl€—02N5 < NQN—2+CL<N—CL)2 - N—@.
k>Nate k>Nate

In particular, it converges uniformly to 0. For the third term, for some ¢ > 0 it is less than

2
1 c @
N2774]E <Z|)\k—ak|) < NT774N TR <Z|)\k —Oék|2>

Int Int

a+e)2 3a+2¢
< TR aga VT
— N2774 N4,'74

This goes to 0 if > N~1*%+5  concluding the proof. 0
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4 Local equilibrium measure

4.1 Construction of the local measure

Let 0 < K < 1/2. Choose g € [k,1 — k] and set L = [N¢| (integer part). Fix an integer K with
K < (N — L)/2, in fact we will always assume that K depends on N as K = N* with k < 1. We
will study the local spacing statistics of K consecutive particles

(\j :jel}, I=I,:=[L+1,L+K].

These particles are typically located near F, determined by the relation

/ "t =g

— 00

Note that |y, — E,| < C/N.
We will distinguish the inside and outside particles by renaming them as

()\1,)\2, .. .,)\N) = (yl, YL, a1y T K YL K41y - ..yN) S E(N), (41)

but note that they keep their original indices. The notation Z() refers to the simplex {z : 21 <
29 < ...< zy} in RY. In short we will write

X = (r41,...TryK), and Y =i, YL, YL+K+1,---UN)s

all in increasing order, i.e. x € Z5) and y € 2N-K),

points and to the x’s as internal points.

We will fix the external points (often called as boundary conditions) and study the conditional
measures on the internal points. We consider the parameters L and K fixed and we will not
indicate them in the notation. We first define the local equilibrium measure on x with boundary
condition y by

We will refer to the y’s as the external

-1

ty (dx) = uy (x)dx, Uy (x) == u(y,x) [/ u(y,x)dx] , (4.2)

where u is the density of puy. Note that for any fixed y € S(N-K), x; lies in the interval
(YL, YL+ K +1]-

Given the classical locations, v = {v1,72,...,vn} with respect to the y-measure, we define the

relazation measure py" = p” by

W= e N, QT =), Q)= ) (43)

r 2T
® jerI

where Z,, is chosen such that p is a probability measure. Here 0 < 7 < 1 is a parameter which may
even depend on y, i.e., 7 = 7(y) is allowed. Note that an artificial quadratic confinement has been
added to the equilibrium measure. We define the local relazation measure py, to be conditional
measure of u”.

Define the Dyson Brownian motion reversible with respect to pg, by the Dirichlet form

D=3 5 [0, (14)

24



where 0; = 0. The Hamiltonian HJ of the measure uj(dx) ~ exp(—NHJ) is given by

H(x) = ngy(xi) _% S log foy — il + 3 QI (), (4.5)

i€l el iel
1
Vy(z) =V(z) — i Zlog |z — y;]. (4.6)
J¢1

We now define the set of good boundary configurations with a parameter g > 0 and a parameter
0 = 6(N) > 0 that in the applications may depend on N:

Gseo =G 1= {y €ENT  Jyp — k| <6, Yk € [Nk/2, LIU[L+ K +1,N(1 - x/2)], (4.7)
and |yr — k| <1, Vk € [1,N],
and E, (z; —7;)* <6° forall j€[L+1,L+ K]

and yr —yr—1 > exp(=N), yYrik+42 = Yrtk41 = exp(—N‘”)}.

First we show that the good configurations have overwhelmingly large probability

Lemma 4.1 For any g9 > 0 and for any choice 6 = N~ with d € (1 — k, 1), there is an ' > 0
depending on d such that

P,(G°) < Ce=N° 1 Ce~N"™ (4.8)

Proof. We have proved in Theorem 3.1 that for any choice 6 = N~¢ with d € (0,1) the
probability that the first condition in (4.7) is violated is bounded by Cexp(—cN¢') with some
¢’ > 0 depending on d. Similarly, the second condition is violated with an analogous very small
probability by (3.5). To check the probability to violate the third requirement in the definition of
G, we use that

Pu{Eu (25— 1) 2 0° ) < Pu{Py, {2 — 2] 2 8/2} = 36/4} + Cexp(—eN7)
< O5°E,Py, {|z; — 7] > 6/2} + Cexp(—cN®)
< C6 PP {|z; — ;] > 6/2} < c1e_CQN6l, (4.9)
since for y satisfying the first two conditions of (4.7) we have
Ey, (zj — ;) < 82 /4 + Py {lz; — ;] = 6/2}

as Tj — V) < Yr+k+1 — V) <0+ vr4Kx+1 — 71 < 1 and also a similar lower bound holds.
Finally, we show that

B 112 S ) <O

and a similar bound holds for the other condition in the fourth line of (4.7). For simplicity of the
presentation and to avoid introducing new notations, we will actually prove

]P)/A (yL+1 —yr < eXp(—NEO)) < Oe,CNso
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from which the previous inequality follows just by shifting the indices. With the events

A= {yr11 —yr < exp(—=N*)}, Q= {yr+rx11 —yr < 2a},
we write
Pu(A) =E, [I(Q)Puy (A)] + P (29). (4.10)

Choosing a = CoK/N with a sufficiently large fixed constant Cy Theorem 3.1 and § < K/N
guarantee that P, (Q°) is subexponentially small.
We will prove that
Py, (p+1 —yrL < N7%r) < Cyr (4.11)

for any r € (0,1). The constant depends on V', more precisely
Cv =C+Csup{|V'(z)| : =€ [yr,yr+r+1]}- (4.12)

From (4.11) the necessary subexponential estimate on the first term in (4.10) follows by choosing
r = N~2exp(—N®).

To prove (4.11), on the set Q we can shift the measure such that y;, = —yr+x+1 and denote
a = —yr,. Then we have

a—ap
// dx H (4 ,xj)ﬁe—Né > Vy(zy)
—atap jer

i<j

—(1— )K+ﬁKK 1)/2/ / dWH 6 -NET V(- «P)wg)

1<j

where we set w; == (1 —¢) 'z, dx =dzpi1...dovr+k and dw = dw; ... dwg. By definition,

_NB —_ w; -N& - w
e VB o) — NV T = ppuy ) [ (0= (1= p)uy)?

i<L i>L+K+1
-N2v C N N
> e NEVE N 1N [Ty —9)® T (- wy)’
i<L i>L+K+1

Note that we only used that V is a C'-function with bounded derivative in performing a Taylor
expansion and using that w; < a is finite. Hence

i/ / (,C —xj)ﬁeng > Vy(zj) > (1 —QD)NK—’_CKQ@_CVNK[’D
—a+aga

'LJEI
i<j

with

Z::/ dw T (i —w;)Pe N 55 Vol

i,j€T
i<j
Therefore the py-probability of yr+1 —yr = zr4+1 — yr > a(l — ¢) can be estimated by
Py (w141 > —a+pa) > (1 - @)VIFOImOVNEY > — (0y + O)NK

by using K < N. Choosing ¢ = N~2r/a and recalling that a ~ K/N, we arrive at (4.11). 0
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Proposition 4.2 Let ¢ > 0 be fized. For any smooth, compactly supported function G : R — R
we have

. 1
dim By (B, — By ] X Ze; G<N(1‘z‘ - Ii+1))‘ =0, (4.13)
provided
1
5% <7(y) <27 foranyy €G (4.14)
holds for the function T = 7(y) with some constant T = 7y such that
N§?
— < N7 (4.15)
=

We remark that, with a slight abuse of notation, the last term, ¢ = L + K in the sum involving
the non-existing x;41 = rp k1 is defined to be zero. We also point out that the notation E.E,,
means that the law of y is given by p in the first expectation and we are using the measure p, in
the second one. Of course, we have E, = E,E,,_.

Proof. For any configuration y, any 7 (may depend on y) and for any smooth function G with
compact support, we have

TIN®/2

1/2 /2
D(uyM)) +Ce N [S(uylng), (4.16)

[E,, _Eu;] % ZG(N(% —a:i_H)) < C’(

iel

Here we also introduced the notations

D(p|w):= %/‘Vlog (%)‘Qdu = Ziv/‘V\/grdw (4.17)

S| w) == / tog ()

for any probability measures u,w. The estimate (4.16) follows from our the local relaxation to
equilibrium argument that in this form first appeared in Theorem 3.4 of [15]. We will neglect the
exponentially small entropy term since it can be estimated by the Dirichlet form, i.e. by the first
term as long as 7 > N—C,

We thus obtain

and

N¥/2 1/2 o
% E.[1g T(y)D(uym;)]) +Ce N | (4.18)

E,[E,, ~E,;] % > G(N@i—eu)| <0
i€l

To obtain the estimate (4.18) we separated good and bad configurations; we used (4.16) for y € G.
On the complement G¢ we just used the trivial estimate on G, and this yields the subexponentially
small second term.

Assuming (4.14), we have

LB, [16 7D (uyl3)] < B 1 Sy —%)?] NOT N (9)
Kug yitty)l = GT(y)jEIJ J =5 = :
by (4.15). Inserting this estimate into (4.18) we completed the proof of the proposition. O
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4.2 Matching the boundary conditions

Suppose we have measures ¢ and g with potentials W and V' given by (2.1) with densities p = py
and pyy, respectively. For our purpose W (x) = 22, i.e, o is the Gaussian $-ensemble and py () =
% [4 —t2] is the Wigner semicircle law. Let the sequence 7; be the classical location for 1 and
the sequence ¢; be the classical locations for o.

We will match the boundary conditions for the local measure on Jy := [y, yr+x+1] around
E, with those of the ¢ measure. For definiteness we choose the interval J' = [0/, 01/ x4+1] with
L' = 1(N — K — 1) as our reference interval. Note that J’ is symmetric to the origin. The local
density py (E,) at the point £, we look at may be different from the density pw (0) at the origin.
Thus the typical length of Jy, which is yp4x+1 — vL ~ [pV(Eq)]*lN’l, may not be close to the
length of J’ which is very close to [pw (0)] * N~ = 1N~ so we will have to rescale the o measure
by a factor

s A v (Eq).
! pw (0)
In fact, we need to match not only the interval of classical locations v with J’, but the exact

interval I,,. This requires a y-dependendent scaling factor s = s(y).
From now on we assume that y is a good boundary condition with a parameter J that satisfies

5N

. 4.2
7 -0 (4.20)

We can shift the coordinates so that

—YL = YL+K+1- (4.21)

Since our observable is translationally invariant, we will not track the translation and we assume
that (4.21) holds. We define

9 / 0 / 9 ’
sly) = 2L = KK Sq = L (4.22)
yL YL+K+1 YL
We have 9 9 SN
L L’
s — 84| = — <(C— =0 4.23
sty) sl =[5~ | < 0% (423)
since
K K K
N — i ~— i - -1 .
O ~~[ow(O)] "5 e —lov(B) " 5y v —lov(B)l 55 (4.24)

by using y € G and (4.20). Similar formulas hold for 01/ k11, Yo+k+1 and yr+x+1 at the upper
edge of the interval. Here the A ~ B is understood in the sense that the approximation error at
most of order (K/N)?, recalling that K = o(N).

For simplicity of the presentation, we can first shift the original u-ensemble such that £, = 0.
Second, we can perform an initial rescaling of the Gaussian -ensemble so that s, = 1.

Lemma 4.3 Assuming E, =0, s, =1, we have

2
7 ) 1
YL+ = Orrssl < Cﬁ + C, lj] < ﬁN”' (4.25)
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Proof. The classical locations 7yz; and 014  are given by the equation

YL+j j Or/4; j
/7 =% [ @ =5 (4.26)

L 0L

We will use the approximations

pv(z) =pv(0)+O(),  pw(z)=pw(0)+O(z) (4.27)

for small = (to stay away from the spectral edge). Since |y; — ;| < J, we have

| T (@) = / T @)+ 06) = e O ) +0 3z ) +00)

L L
(4.28)
Similarly,

K+1 O/ L ki1 K2

T:/ pw(x)d(E:pW( )(QL’+K+1_9L’)+O<N2> (429)
0,

Since —yr, = yr+x+1 = —01//$ = 01+ K+1/s which is comparable with K/N by (4.24), and since

|s — 1] < C%% from (4.23), we have

CK CO0N
- <220 4.

low (0) = pv (0)] < —= + —= (4.30)

From (4.26), (4.27) and (4.24) we get
»2 . .2
J J J
ov(0) (s —1) +0(33) = % = ew ()b —00) + 0(3)
which combining with (4.30) and pw (0) > ¢ gives
j2
Yit+j — YL =0p45 — 0 + O(m) + O(9).

Since v, = 01+, this completes the proof of the lemma. 0

4.3 Rescaling of the reference problem

Throughout this section we fix a good boundary configuration. y € G and a number 7(y) depending
on this configuration and satisfying (4.14). We will approximate the local relaxation measure pg,
on [yr,Yr+k+1) by a fixed reference measure.

Given the collection of classical locations ; corresponding to the Gaussian potential W (z) =
we define a reference local relaxzation measure Ug via the Hamiltonian

Hj(x) = Z {6:102 - = Z log |z; — 6, \] - = Z log |x; — Z( —0,)%,  (4.31)
i€l

i,j€I’ icl’
i<j

2

on the set [01/,0r 1 k41] where I' := [L' + 1, L' + K]. Note that if ¢ is the equilibrium measure
given by (2.1) corresponding to W and ¢ denotes the corresponding relaxation measure
7 Z  _NgT 7 7 7 1
do’ = e Mo, QT(x) =D Qi(x;),  Qf(z) = oriG 0,)2, (4.32)

a” jer
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defined analogously to (4.3), then o} is the conditional measure of 6™ under the condition that the
outside points are exactly at their classical locations, i.e. \; =60;, j & I'.

We make three simplifications in the presentation. First, as already in Section 4.2, we assume
that both the configuration space [yr,,yr+k+1] for the original measure u; and the configuration
space 017,01+ k1] of the reference measure Ug are symmetric around the origin; this can be
achieved by an irrelevant shift. Second, we assumed s, = 1, which can be achieved by an irrelevant
rescaling of W. Finally, we will set L’ = L. This last assumption expresses an irrelevant shift in
the labelling of one of the ensembles. Strictly speaking, shifting would mean that the original set
of particles indices [1, N] gets shifted as well. However, in our argument this shift does not play
any active role; the only information we use about the set of indices is that L is macroscopically
separated from its boundary and that its cardinality is N.

We now rescale the measure ag from 01,00+ kx+1] = [0, —0L] to [yr,yr+k+1] = [yL, —yL] by
the factor s = s(y) defined in (4.22) (note that yr,0; < 0). With the rescaled boundary conditions
0; — 0;. :=0,;/s, we define the reference local relazation measure, or reference measure in short, to

be 1 )
O_;’,s = WG_N’H;)S(X)CIX, (433)

a measure on the set [yr, yr+x+1] with Hamiltonian

. 2,2 2
#5200 = 30 [0 2 S ol — 03 /5l] — o 3 lolay il + 22 (i~ 01/ (434)

iel jeI ijel iel
1<J

The rescaled potential associated with this Hamiltonian is W(z) = s22?.

For any smooth function G with compact support, we have

]EU;,S%ZG<N(% - l’i—i—l)) = ﬁ /QQL/S dx e~ VMg ( Zg( xi+1)), (4.35)

L/s el

where f; dx stands for the K-dimensional integral f[aAb]K dxpyy...dxpyx and Z™%:5 ig the nor-
malization factor. Let z; = w;/s, then the right side becomes

o f, e (M) g el
7 Jor
= E‘Tf;E ZG(N(% - xi+1)) +o(1),

iel
where we renamed the w-variables to z-variables in the first step and in the second step we have

used that
‘G(N(xi - $i+1)/s) - G(N(l”i - $i+1))‘ <O = 5[[|G" oo

by Taylor expansion and from the fact that G is compactly supported. Clearly, the difference
vanishes as long as s — 1. Thus we are free to scale the measure with factor converging to 1. The
condition s — 1 will be guaranteed by (4.23).

Our main result is the following theorem.
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Theorem 4.4 Let0<<p< . FPir K=NF, §=N"1+=N"1twithd=1-p,t=2d—1—¢ =
1-3p and k= %o, in partzcular such that (4 15), (4.20) are satisfied. Then

]EM]E“;% 3y G(N i) ) i ZG( xm))‘ =0 (4.37)

icl

as N — oo for any smooth and compactly supported test function G. Here the law of y is given by
1 in the expectation.

Proof. From the rescaling estimates, (4.35)-(4.36), it suffices to prove that
E. [EH§ o b(y) Z G( .’L‘i+1)) —0 (4.38)

as N — oo. Notice that after the rescaling both measures u:, and crg’s(y) live on the same interval
[YL,Yr+K+1]- In Proposition 4.2 we already showed that

Eu[Eyg —E, /0] Z G( - xi+1)> o0, (4.39)
ZEI

since (4.23) with s, =1 and §N/K — 0 guarantee that 7(y) := 7/s(y)? satisfies (4.14). Thus the
limit (4.38) will follow from the following Proposition that we will prove in Sections 5:

Proposition 4.5 Under the assumptions of Theorem 4.4, we have
Eu[E, /o — Eypm] E;G( -—xm)) 0. (4.40)
i€

This completes the proof of Theorem 4.4. O

Proof of Theorem 2.1. Finally, combining Theorem 4.4 with Proposition 4.2 and noticing
that (4.15) is satisfied since t = 2d — 1 — ¢, we have

E,%ZG(N —xm) ,,KZG( —mH_l))‘—)O (4.41)

icl el

as N — oo. This holds for K = N* with any 0 < k < % by selecting a suitable ¢ in Theorem 4.4.
However, the measure Ug is independent of V', the only information we used was that the local
density matches. So we obtain that any two measures pgy and pgw have the same local gap
statistics assuming that the local densities of the two ensembles coincide. 0

5 Comparison with the reference problem
In this section we prove Proposition 4.5. On the set y € G¢ with subexponentially small probabality
(4.8) a trivial estimate on G suffices. For the sequel we therefore assume that y € G and we set

7(y) := 7/s(y)? which clearly satisfies (4.14). In the first step we will soften the boundary condition
y for the measure local relaxation measure ps,.
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5.1 Regularizing the boundary conditions

We know that the boundary condition y € G is regularly spaced on the scale § = N~%, but it
does not exclude that Nd = N'=?¢ >> 1 points of the colletion y pile up near the edges of the
interval [yr,, yr+kx+1]. This would substantially influence the local relaxation measure py near the
corresponding edge inside [y, yr+x+1]- We therefore first replace the boundary conditions near
the edges by the regularly spaced ones given by 6’ = 6/s(y). This change will be controlled only
in the entropy sense. The local relaxation measure with regularized boundary conditions will then
be compared with the reference measure in the stronger Dirichlet form sense.
Set a parameter
B=N’ with 14+¢—-d<b<k, (5.1)

in particular N <« B <« K. Given a boundary condition y € G, we define a new boundary
condition yZ = {yB : i ¢ I} as

max{0},yr—ap} for L—-4B<i<L
yP =< for i<L—4B, or i>L+ K +4B (5.2)
min{0,, yr4+xyap} for L+K+1<i<L+ K+4B,

i.e., we replace at most 4B boundary conditions y; with the rescaled classical ones 6] = 6;/s(y)
near the edges of the interval [yr,yryx+1] = (07,07 . 1]. Note that the configuration space is
unchanged. We have

Y4B < VL4 +06<0; 4,5 +CB*N2+06 <0 ,p5,

where we used that y € G in the first step and (4.25) in the second. In the last inequality we used
that 07 o5 — 0} _,5 > ¢cBN~! (by regular spacing) and the definition of B from (5.1). Thus we
obtain

yB =0, L-2B<i<IL, (5.3)

and similarly at the upper edge. In other words, we do replace at least 2B boundary condition
points near the edges with the classical ones. Although it may happen that a few yZ pile up, but
this occurs away from the edges. The key property of the family y is the following bound

#{i : yP € J} <CN|J| (5.4)

for any interval J such that |J| > ¢N~! and ¢|J| < dist(J, [yr, yr+x+1]) < |J|/c with some small
constant c.

Consider the regularized local relaxation measure, which is defined as the probability measure

pB7(dx) = Z e N T dx (5.5)
of K ordered points x = (xp41,...,2+k) In [Yr, Yr+K+1], with Hamiltonian
,T 6 3 B T
"Hf’ (x) := Z §V;B (z;) — N Z log |z; — ;| + ZQi (x;), (5.6)
icl igel icl

i<j

with a quadratic confinement Q7 (z) = (27(y)) ' (z — 6})? as in (4.34) and 7(y) = 7/s(y)?. The
potential V' is given by

) 2 2
VlB(x):V(m)—NZlogM—ij\—N Z log |z — y;| for L+1<i<L+4B
J<L j>L+K+1
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i 2 2 i
VyB(x):V(x)fﬁZIOgmfyj\fﬁ‘ Z log |z — y;| for L+4B+1<i¢<L+K-4B
J<L J>L+K+1

and

l. 2 2 .
VyB(x):V(J:)—NZIOg\x—yﬂ—N Z log|:v—yJB| for L+K—-4B+1<i<L+K.
J<L J>L+K+1

In other words, we replace the boundary condition y with y? for the points z; with L 4+ 1 < i <
L+ 4B at the lower edge and similarly for the other edge. The boundary conditions for the middle
points z; with L + 4B +1 < i < L + K — 4B remain unchanged. Recalling (4.5), we have in
particular

T T 2
’Hf’ (x)—Hy(x) = ¥ Z Z [—log |z; — yf\ +log |x; — y;|] + (Upper edge), (5.7)
L—4B<j<L L<i<L+4B

where (Upper edge) refers to an analogous term collecting interactions near the upper edge.

B,

y " satisfy

Lemma 5.1 Lety € G. The relative entropies of the measures pg, and
Syl ™) + S(uy " |uy) < CB*log N. (5.8)

Proof. We start with the following lemma that estimates the relative entropy of any two
measures:

Lemma 5.2 Suppose p;(dz) = Zi_leindzzr, i = 1,2 are probability measures with Hamiltonians
H; on a common measure space. Then

S(pilp2) < By, [He — Hi] + Ey, [Hy — Ho). (5.9)
We also have the inequality
EN2 [HQ - Hl] S logZ1 - IOgZQ S EMI [H2 - Hl] (510)

Proof. By Jensen inequality, we have

d Z
0 < S(p1lp2) = /dul log (dZ;> = /du1[H2 — Hy] +log (Zi)

dx

—H

<E,, [H; — Hi] - log [/e lfe—szJ
S E#l[H2 - Hl} + E#z [Hl — HQ]

This completes the proof of Lemma 5.2. 0

Hence we have S(uf|ul™) < 84, where

Q= (]Eu;, - EHE,T) Z Z [~ log(z; — yJB) + log(z; — y;)] + (Upper edge).
L—4B<j<L L<i<L+4B

(5.11)
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Using that x; — y; < 1, we clearly have

0 < — Z Z [E/L; log(z; — y]B) FEAT log(z; — yj)] + (Upper edge)
L—4B<j<L L<i<L+4B
< CB%log N — B2EH§3,T log(xp+1 —yr) + (Upper edge). (5.12)

In the first term we used the trivial estimate z; — ij >0, — 0, | >cN~! for any j < L. The
second term will be estimated by Lemma 5.3 below and this completes the estimate for S(uy|ud 7).
The other relative entropy, S (uf T|puy) can be treated similarly and this proves Lemma 5.1. 0

Lemma 5.3 Suppose 7 > N, then for any p > 1 we have
Eyz|log(zr+1 —yr)|P < Cplog N (5.13)
and the same estimate holds w.r.t the measure ,uf’T.
Proof. We will need that
IE”H; (xpy1 —yr < N_3r) < Cr (5.14)

for any r € (0,1). Then (5.13) follows from integrating in r from 0 to 1 and treating the regime
241 —yr > N3 trivially by using o711 —yr < yrixi1 —yr < CK/N < 1.

The estimate (5.14) can be proven essentially in the same way as (4.11), just the potential
gV(xj) of the j-th point in that proof is replaced with gV(mj) + Q7 (x;). The final estimate
is somewhat weaker since now the bound on the constant Cy defined in (4.12) deteriorates to
Cy < Cr~! < CN. This accounts for the change from N=2 to N=3 in (5.14). The argument for

the measure ,u}],B’T is analogous and this proves Lemma 5.3. 0

5.2 Regularization does not change spacing statistics
Given that the local relaxation measure pg and its regularized version uf’T are close in relative

entropy sense, the next proposition shows that their local spacing statistics coincide.

Proposition 5.4 Lety € G, 7 = 7(y) = 7/s(y)? and assume that for the parameters B = N?,
K = N* and # = Nt it holds that

14+2b—t—k<0. (5.15)
Then
1
[Erg Bzl 25 G(N s —xm))’ 0 (5.16)
i€l

as N — oo for any smooth and compactly supported test function G.
Proof. Since Lemma 5.1 and (5.15) guarantee that

NSE™ | pf)r < CNB*r
K - K

logN < N—¢ (5.17)

with some &’ > 0, Proposition 5.4 is a direct consequence of the following comparison lemma which
was first stated in a remark after Lemma 3.4 in [14], see also Lemma 4.4 in [15]. 0
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Lemma 5.5 Let G : R — R be a bounded smooth function with compact support and let a sequence
E; be fized. Let I be an interval of indices with |I| = K. Consider a measure w with relazation time
7 and let qdw be another probability measure. Then for any & > 0 and for any smooth compactly
supported function we have

\Kz/ Bl as] < 0 NS0T e -
and
‘% Z/G(N(xz —xiy1))lg — 1]dw‘ <C w + Ce—eN* V' Su(9), (5.19)
el

where S,(q) = S(qw | w).
Proof. Let g evolve by the dynamics 0;q; = Lq;, where L is the generator defined by

/ffﬁfdw =D,(f) = %/Wﬂzdw. (5.20)

Let 7/ = N°r. Since ¢,/ is already subexponentially close to w in entropy sense, S, (g/) <
Cexp(—cN¢)S,(q), and the total variation norm can be estimated by the relative entropy, we only
have to compare g with ¢,.

By differentiation, we have (the summation over i always runs i € I)

/;;G(N(xi— ’ T/dw—/ ZG ))qdw (5.21)
_ /O " ds / K;aiG(N(xiEm)aiqsdw. (5.22)

Here we used the definition of £ from (5.20) and note that the 1/N factor present in (5.20) cancels
the factor NV from the argument of G. From the Schwarz inequality and dq = 2,/¢0,/q, the last
term is bounded by

[% /0 dS/Z [@G(Nm —Ei>)}2qsdw]l/2 [/0 dS/;Z(aiﬁ)gdw] -

NS, (g)7
K

by integrating 955, (qs) = —4D.,(,/qs). This proves (5.18) and the proof of (5.19) is analogous.

<C (5.23)

5.3 Accuracy of block averages

In the next Section 5.5 we will compare the regularized local relaxation measure pf T with the

7.5(y) s

reference measure Uo in Dirichlet form sense. As a preparation for this step, we give an estimate

on the location of the block averages a:[ I, Recall their definition

B] _
T 2B+ 2. @
|[k—j|<B
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forany j € [L+ B+ 1,L+ K — B]. The following lemma shows concentration on a scale ¢ for

JILB] w.r.t. puy and M?’T- The scale ¢ is larger than § but will be smaller than K/N, the length of
configuration space interval. Thus that the accuracy of the position of z; decreases from § to (,

but the accuracy of y; is still d.

Lemma 5.6 Set (=N"*t=2d—1—¢p and firy € G. Foranyj € [L+B+1,L+ K — B] we

have 5] 5] ,
L% (|% ~Bya| 2 C) < e (5.24)
and . . ,
Pﬂf,f (|z£ I_ E#Jyg,fxg- ]| > C) < e~ N (5.25)
provided
b kb
z§—¢+min(d—§—§,d—§+§) (5.26)
for some &' =¢'(d, ) > 0 depending only on d and p. Furthermore, we have
B B B B B B
Bo-al =P <50, [Egal? -0 <8¢ Bl o <5 an)

Proof. We will need two standard inequalities from probability theory. The first one is

P,(A) - log m <log2+ S(ulv) (5.28)

for any set A and probability measures u,v. This can be obtained from the entropy inequality

/fd,u < S(plv) +log [/efdy}
by choosing f(z) =b-14(x) with b = —logP¥(A). Using Lemma 5.1 we thus obtain

log2 + CB?%log N
—log Pu; (4)

P2 (4) < (5.29)

The second inequality is a concentration estimate. Suppose that the probability measure w
satisfies the logarithmic Sobolev inequality (LSI), i.e.

S.(f) < Cu / IV /2w (5.30)

holds for any f > 0 with [ fdw = 1. Then for any random variable X with E,X = 0 and any
number 7" > 0 we have

T2
E,e’™™ <E, exp <CS2 |VX|2) . (5.31)

Since the Hamiltonian H] is convex with V2”H; > 771, by the Bakry-Eméry criterion the
measure jij, ~ exp(—NHJ) satisfies (5.30) with Sobolev constant C = 27/N, i.e.

S | 1) < 4rD(v | 45) (5:32)

for any probability measure v (recall that the definition of the Dirichlet form (4.17) contains a
1/2N prefactor). The same statements hold for the regularized measure uf &
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For L+ B+ 1< j <L+ K — B define the event
A=A ={o ~E 2P > ¢}, with ¢(=N"2 (5.33)

with a parameter z € (0,1) chosen later. Using (5.31) for X = :l:(xf - E%xf) and noticing that
|IVX|? = (2B + 1)~!, we obtain

P.;(A) < 2e73NBETT (5.34)
Using now (5.29), we get
CBr
IP’#;B,T(A) < NG -0 (5.35)
assuming
b—t+22—-1<0. (5.36)
Using t = 2d — 1 — ¢, we need
b ¢
d——-——. .
z < 573 (5.37)

Under this condition we have from (5.34) that
Pug (|0} — Bgal®| = ¢) < 2e77", (5.38)

B,t

y " 1s also concentrated by the LSI, we have

Since the measure p
B B _B?
P (2l — Bzl 2 () <2075 50

and together with (5.35) we have

B B
B, -2l — Byl < 2. (5.39)
Therefore xBB] is concentrated on a scale ¢ around the same point w.r.t both measures pug and
T
Using (5.32) and that y € G we get
- . 4N ANS’K
S(iyliy) < 4rDlpnylig) < =By Y (= 7)) € ——— (5.40)
jel
Hence by (5.28) and (5.34) we obtain
log2 + WK os2p
P < T 41
provided that
kE b
d——+—. 5.42
2z < 513 (5.42)
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Now by the definition of y € G in (4.7) we have

]P)uy(‘ng] _E x[-B]| > C) < C_QEuy‘ng'B] _E :c[B]|2

Hy 5 Py g
1 2
< — Z E |£Uk —-E CCk|
= 2 oy Hy
<QB+ 1)< |[k—j|<B
1 2 02
< LS B <l o
2 Ly 2
@B | o ¢

using (5.37). Combining it with (5.41) we obtain
‘E#yx?] - ]EH;mBB]‘ < 2. (5.43)

Finally, since y € G, we have
B B\ 2 B B2
(E ajg.]_fyj[. ]) <Et(xg-}—'yj[- ]) <6<,

which, combined with (5.39) and (5.43), yields (5.27). This completes the proof of Lemma 5.6.

5.4 Proof of Proposition 4.5

B,
y

UZ’S in Dirichlet form sense. Recall their definitions from (5.5) and (4.33), respectively, and recall
that 7 = 7(y) := 7/s(y)?. Here s = s(y) is a function that is approximately 1 for good external
configurations y € G (see (4.23)).

The result is the following comparison of local gap statistics. Combining this result with
Proposition 5.4 and checking that the condition (5.15) is satisfied with the choice of parameters
given below, we arrive at the proof of Proposition 4.5. 0

Now we will compare the regularized local relaxation measure p with the reference measure

Proposition 5.7 Fiz p < %. Lety € G, 7 =7(y) = 7/s(y)? and assume that for the parameters
§=N"1 B=N K=NFuwithd=1—¢, b=S8p, k:%ga, Then witht =2d—1—p=1-3¢p
let # =Nt witht:=2d—1—p=1-—3¢p. Then

[Euf,f — EU;,S] % Z G(N(Z‘Z — l’i+1)> ‘ —0 (5.44)
el

as N — oo for any smooth and compactly supported test function G.

Proof. The key technical estimate is the following lemma whose proof will take up most of
this section.

Lemma 5.8 Let ¢ > 0. Suppose B = N°, K = N¥ with 0 < b <k <1, and § = N~ with
d € (0,1). Suppose that these parameters satisfy

b kb
1-b<—p+min(d-7 -2 a-2+2), (5.45)

i.e. ome can choose a number z > 1 — b and satisfying (5.26). Lety € G = G5, be a good
configuration. Assume thateg < &'/10, where e’ = €'(d, ) is obtained in Lemma 5.6. Assume that
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the equilibrium measure py is C' away from the edges. Let 7 = N~—' witht = 2d — 1 — . Then
the Dirichlet form of uf” with respect to the reference measure is bounded by

K? N&  K*  §2N? o
N T2 T T Br +N3/5+Lp] +erem N (5.46)

T 7,8 A
Dy | og") < C7(log N)

The prefactor 7/K is for convenience; the local gap statistics of two measures are approximately
the same if 7D/K — 0. More precisely, we have the following general theorem which is a slight
modification of Lemma 3.4 [14] (see also Theorem 4.1 in [15]).

Lemma 5.9 Let G : R — R be a bounded smooth function with compact support. Let I be an
interval of indices with |I| = K. Consider a measure w with relazation time T and let qdw be
another probability measure. Then for any & > 0 and for any smooth compactly supported function
we have

‘% ;/G(N(xi —zi41))[g — 1]dw‘ <C w 1 Ce—NT V5@, (5.47)

where Dy, (q) :== D(qw | w).
Proof. As in the proof of Lemma 5.5, let ¢ evolve by the dynamics 0;q; = Lgq;, where L is
the generator defined by (5.20). Let 7/ = N¥®7. Since ¢, is already subexponentially close to w,

Sw(gr) < Cexp(—eN¥)S,(q), we only have to compare ¢ with ¢,.
By differentiation, we have

/ % ;G(N(xi - ml))qT/dw - / % Z G(N(mi - xi+1))qdw (5.48)
= /OT, dS/ % ; 3,-G(N(Ii - 931‘-4—1))) [05qs — D511qs]dw. (5.49)

Here we used the definition of £ from (5.20) and note that the 1/N factor present in (5.20) cancels
the factor IV from the argument of G. From the Schwarz inequality and dq = 2,/¢0,/q, the last
term is bounded by

2 T 5 1/2
lfj\é/o ds/z |:aiG<N($i_$i+1))i| (x5 — xi41)> qsdw]

1/2
T 1 1 9
X [/0 ds/m zﬁ: m[&x/% - 0it1 QS} dw]

Dy (va)T
< _ .
< C Fra (5.50)
which completes the proof of Lemma 5.9. 0

The proof of Proposition 5.7 now follows from Lemma 5.8 and Lemma 5.9 with w = JZ’S and

qdw = uff’T. The parameters b, k,d € (0,1) have to satisfy the following relations from (5.45) and
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from the requirement that the right side of (5.46) converges to zero:

b<k
| —btped-2_%
4 2 2
kb
1-0 d— =+ =
+e< 5 1t3
1-2d4+¢p+2k—-1<0
1-2d+(2d—-1—-¢p)<0
dk—-3+(2d—-1—-p) <0
1-2d4+¢—-2d+3-b—-k<0
3
1—2d+2p+ 2 <0.
It is easy to check that all these conditions are satisfied if, e.g.
39 1
d=1- b=38 k=— 0 < —.
2 ¥, 2907 <<P_38

This choice is not optimal for the above system of inequalities, but we took into account that
the parameters will also have to satisfy (5.15) so that we could combine Proposition 5.7 and
Proposition 5.4 to arrive at Proposition 4.5.

Finally, the entropy term S(u2™ | 05°®) in (5.47) can be estimated by the Dirichlet form via
the logarithmic Sobolev inequality. This completes the proof of Proposition 5.7. 0

5.5 Dirichlet form estimate: proof of Lemma 5.8

By definition,

l B,T 7,8
Pl o) = 2NK/‘Vlog

)‘dBTSK/ > Zdw

L+1<j<L+K
where Z; is defined as follows: For L +1 < j < L + 4B, we set
. B B 1 B / P)/j B 93
ZJZ§V(LL’J)—NkZ zj—y,f_§ Z 701 T
<L-2B k<L—-2B
k>L+4+K k>L+4+K

(recall that 6 = 6;/s and we set W(z) = s>z?). Note that the summation at the lower edge is only
for k < L — 2B instead of k < L because the interaction terms near the boundary cancel by (5.3).
Moreover, notice that the linear terms, coming from the derivative of the quadratic confinements
(see (4.3) and (4.34)), cancel each other

s(y)? 1 v =05
(2j = 60) = —(z; =) = JT ’

by the choice of 7(y) = 7/s(y)?.
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Similarly, for L + K —4B < j < L + K, we set

_ By B 3 1 B B 1 % — 0]
k>L+K+2B k>L+K+2B .
k<L k<L
Finally, for L +4B < j < L+ K — 4B, we define
B B 1 B i B 1 7 =Y
Zi ==V (x;) — —= — =Wz, — .
J 2 (z5) N 4 Ti—Yp 2 S(QUJ)—i_]\7 Z xj—0;€+ T
<L k<L
k>L+K+1 k>L+K+1

Notice that here yy, is not replaced with yZ since only interactions for z;’s near the edges have been
regularized. Moreover, the interactions with the boundary terms y, with k = Land k = L+ K +1
cancel out since yz, = 07 and yr4 k1 = 07, 1 Dy the matching construction.

Now we estimate the size of Z; in each case.

Case 1: L +4B < j < L+ K — 4B. The first step is to decompose Z; as

5
Zj=BY_ 9, (5.51)
a=1
where
1 pv (y) 1 / pw, ()
Ol = [ 2V (z) — | de 2822 — | 2w (x) — [ dy2ed2
J |:2V (IJ) / yl'j_/y QWG('I]) yxj_y
2 2, low 2,up
02 = Q2w 4 Q2
1 1 Y py(y 1 1 < vy
R E P IEl =) B CD DRy =
ker T3 T Yk —o0 Lj —Y k>L+K+11’j*yk ynix+1 Y3 Y
3 _ 03low 3,u
Q; = QY+
1 1 % pw.(y 1 1 AV
::<N g [ )y T oty [
k<L ™7 k —oo Tj 7Y k>L+K+1 "7 k I
YL+ K+1 _
0 = / pv(y) — pw. () dy
YL Tj—Yy
v — 0]
Q=7 5.52
pe= (5.5
Here we also used that [yr,yr+x+1] = (07,07, k1] when establishing the limits of integrations.

By the equilibrium relation (3.2) between V and py, we have
1 _
Qb =o. (5.53)

From (4.25), we have
(5.54)
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Since py € C! away from the edge, and so is the semicircle density py,, we have by Taylor
expansion

yL+K+1
0 = ’/ _pZV dy‘ (5.55)
< /yL+K+1 pv(z;) — pw, (z;) + O(x, y)dy
e Tj—Y

NTE
Here we used (4.27) and (4.30) and the fact that pw_(2) — pw(z) = O(]s — 1|) away from the edge
together with (4.23) to estimate

K ON
< Cllog(e; — yo)) + oW xs1 — ;)] [ } .

ov(e) - pw @l <€ |3+

for any « € [yr,yr+x+1)- The logarithmic terms after taking square and expectation w.r.t. will
give rise to an irrelevant log N factor by using Lemma 5.3

E, 2. [[log(z; — yo)| + [log(yr 1 — 2;)[]” < Clog N.

We now estimate the main error Q? and we will deal with the first term only, coming from the
lower edge, the second one can be treated similarly. We write it as

2,low 1 1 YE py (y) 2,1 2,2 2,3
& :_<NZ ) _/_Oo —dy | = Q5 + Q77+ 4

Ti— Ti—
k<t 3 T Yk i~y

1 1 " pv(y)
Q= —| = —/ LAAL AN
’ (Nzﬂﬂj’)’k ey

with

k<L
yrL
9572 ::/ pv(y)d
vo L
02— L [ L1 } (5.56)
! N tes =% &= Yk

With ¢ = N7 with z is given in Lemma 5.8, define the event
A= {\xLB] Bl <6¢, Vie [[L+B+1,L+K—B]]}7
then its complement has very small probability,
Pz (A) < crem

from (5.24) and (5.27). On the event A® we simply estimate

1 1 pV 1
‘Nzxj_yk_/ Z; d‘<yL_yL 1+C|1og(wj—yL)|,
L —o° -
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therefore

1 1 opv(y) L )?
E 5.1(A%)|~ 7_/ 701’
o )NZ:L”EJ'_% —ooxj_yy
4 1/2 c 1/2 e <’ /3
< Oy B st —un)[) T (B,p - () s e 557)

by using Lemma 5.3 and |yr, — yr—1]| > exp(—N®°) from y € G. Here we used that ¢y < &’/10.

Now we continue the estimate on the set A and we consider the three terms in (5.56) separately.
For the first term we write

1 1 Vi1 va(y) 1 Vi1
o - / —P P ay| = < / T Npy (y)dy
’ NZ:L L= e TITY Nl; W

where we have used that f;:““ Npy =1 and

Ik — Ve —Y _
Ty —y) (g — )

Recall that L > kN > 6 and z; € [yr,yr+x+1] = [Yo,Yo+K+1) + O(0). For k < %KN we know
that |y, — ;| > ¢ with some positive constant. Hence we have

1 o C C 1
v 2 sy X / e = yINov(W)dy < = Y bkss =l SONTY
E<kN/2 k<kN/2" Tk E<kN/2

since Ypy1 — Yx < CN~2/3E=1/3 near a square root singularity of py at the edge. For the regime
k> $kN we can use o1 — Y| < CN7' to get

1 k_ 1 C 1
N i = N N 2
kN/2<k<L KkN/2<k<L (wj - Wk)
1 C 1
=N N (Bl 5
kN/2<k<L (xj—B - Vk)
C 1 C
<= <=,
SN <3

Here in the second inequality we used that on the set A we have

(8]

;> a2ty > 4Pl —6¢ >4 05 —6¢ > L+ ¢cBN7! > 4+ cBN L (5.58)

for k < L using j > L + 4B and thus vj_op — v > ¢BN~! > 6(, since z > 1 — b. Therefore
Tj— Yk = xyi]B — v, > 0. In the third inequality we performed the summation and used that

is regularly spaced. In the last inequality we again used (5.58). In summary, we have shown that

21, C  C
Q< =+ — .
=5t N (5.:59)

on the set A and we have seen that the contribution from A€ is subexponentially small (5.57).
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. 2,2
Now we consider Qj’ on A. We have

7t d Ccé
ot <c "< , (5.60)
v Ti—Y " Y-2B L

by using z;—vyr, > vj—2p—vL—6¢ > c¢(yj—25—"1) from (5.58) and from v;_op—7, > cBN~! > 6(,
moreover x; —yr, > x; — v — 0 > c(vj—2p —vL) by |7z —yr| <6 (fromy € G) and § < BN ™!
(from (5.45)). Thus

C§%>N?
> e
L+4B<j<L+K—4B B
For the third term Q?’S we have
E,z-1(A) > Q392 (5.61)

L+4B<j<L+K-4B

IN

2
1 1 1
Epp1A) Nz(xj_yk xj—wc)]

L+4B<j<L+K—4B [ k<L

2
<E,p-1(A) 3 [;] 3 : (yr — ) 1

L+4B<j<L+K—4B kel \¥i T yi) (x5 =)

We split the summation over k into two terms: kN/2 < k < L and k < kN/2 and separate by a
Schwarz inequality.
First we consider the case kN/2 < k < L. Expanding the square, we need to bound

Eﬂf,rl(A)% Z Z Z . |yk _’YkHya _7a| (562)

kN/2<k<L kN/2<a<L LH4B<j<L+K (@5 =) (@5 — 1) (x5 = ya) (@5 = 7a)

§2]EH5,71(A)% S luk—wl > (%_1 > :

2 27
-
KN j2<k<L LHAB<j<L+K Y)? | N jamner, (B3 T Ya)

where we used another Schwarz inequality and the factor 2 accounts for a similar term with the
role of k and a interchanged.
In the case kKN/2 < k < L we have |y — yx| < J. Then (5.62) is bounded by

262 1
N2 > E,p-1(A) > ( )2 )

1
2
o — T —
L+4B<j<L+K ket T3 T Yk a<L(J Ya)

(5.63)

1 N
<Co? Y Bl <00
L+4B<j<L+K J

Here we used

1 1 C C

Tj =L T — YL

|
IN
A

relying on the regularity of v, and using, from (5.58), that «;—v, > z;—yr, > c¢BN~! which is much
larger than the spacing of order N~! of the y-sequence. In the last estimate z; — v, > |y — yi|
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was used (since BN ™! > §). Similarly we could perform the k summation

1 c
Z(. 7S

X; — Xr; —
ker \Xi yk) 5 — YL

since x; —yr > ; — v — 0 > c(x; — k).
To perform the j summation in (5.63), we use

1 < 1
(zj —yL)? (x[B] —y)?

and then we recall that apart from a set of subexponentially small probability, we have

\l’EB - ’YJ[‘JE]B| < 6¢

from Lemma, 5.6. Since ( < BN~! and xE]B —yr, > ¢cBN~! from (5.58), we see that
2
> < > <<
, ( yL) )2 (B] B
L+4B<j<L+K L+4B<j ’Y] B — YL Yo+3B — YL

On the exceptional set one can just use the trivial bound (z; —yr) ™2 < C(z; —y) 2 < CN?B~?
from (5.58).

Consider now the case k < kN/2 in (5.61). We have

1 lyk — VYo — 7al
Euf’Tl(A)ﬁ Z Z Z (z; ].c_ - o) (7, — (5.64)

k<KN/2a<rN/2 L+AB<G<LAK I = ) (@5 = ) (% Ya)

g2EM5,T1(A)% > vk —nl > (% > (%

_ 2
k<rkN/2 L+4B<j<L+K j = Yk) a<kN/2 Tj ~ Ya)
CK 2 —2/5+¢p
< B,z 5-1(A) > Jyk —wl? <CKN ;
k<kN/2

where we used that all denominators are separated away from zero and Lemma 3.6. Furthermore,
in the last inequality, we have used Lemma 3.6 for & > N3/5+¢ and we used |y, — vi| < O(1) for
k < N3/5%¢ from y € G and (4.7). Similar comment applies to all edge terms in this proof and we
will not repeat it.

Summarizing, we have shown that

E,5.-1(A) > Q377 < + CKN—2/5%¢, (5.65)

C62N?
[
y B
L+4B<j<L+K—4B

Finally, we need to estimate Q3 in (5.52). It can be treated exactly as Q?’l and the result is

c C
Q3] < 3TN (5.66)

on the set A and the contribution from A€ is subexponentially small as in (5.57).
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Case 2: L < j < L+ 4B. (There is a third case L + K —4B < j < L + K which is identical to
Case 2 and will not be treated separately). We decompose Z; as before and the only modifications

are
1 1 YL—-2B )
2,1 vy
oo = - o 3 75_/ ( dy
k<r—2B T3~ Yk o 7Y
1 1 GIL—ZB
Q?,low - Z : 7/ pw, (y) dy
N Toop®i — 0k Joeo Ti—y
YL+ K+1 _ 0 _op
0! :/ pv(y) Pws(y)dy+/ pWS(y)dy.
YL_2B Tji—Y yr—2p i Y
We now estimate the main error term Qz-’low7 and we write it, as before
J
2,low _ 2,1 2,2 2,3
Q; =07 + Q7 +Q
with
1 1 YL-2B ( )
2,1, _ pvY
e b D Dl B
k<r—2p T T Joo  TFTY
YyrL—-2B
95,2 ::/ pV(y) dy
yo—2p LY
28— L ) [ o1 }
! N Top '~ T Uk
We have
Ye+1
2, Y—"k
95 =% / Npy (y)dy
pron e (@ =y — )
< ¢ Z Ve+1 — Vi
TN s @i k)?
c C c C
S5ty Z |’Yk+1*7k|§§+ﬁ
k<kN/2

using that z; >y > v, —90 > vyr—2 + ¢BN~1. The estimate of Q?’Q is trivial

|YL—2B —Yyr—28| _ CN§
cBN-1 - B

2,2
1977 <
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Finally

2
1 1 1
Eup- DI U= Eyp 2 [N 2. ( oy ’Yk)]

L<j< j L5 = Yk
<j<L+4B L<j<L+2B k<L-2B
Cés? 1 1
<=2 E 5. S —
D S S S
L<j<L+4B kN/2<k<L—2B kN/2<a<L—2B
c 2
+ Nz Z |'ch - ykl
k<kN/2

2
< 052% + CKN~2/5%%

where we again split the summation over k into kN/2 < k < L — 2B and k < kN/2, yielding the
two terms, similarly to (5.63) and (5.64).

The estimate Q?’low is analogous to that of Q?l The first term of Q;* is estimated as before in
(5.55). The additional second term in Qf is trivial by recalling |y, _op — 07 _y5| < CB*N =2+ (6

from (4.25):
0" . — 9 2AT—2
/ L o2m pws(y)dy . lyr—op §_2B| _C3+CB 1N L OON @’
vi_on Tji—Y cBN~— cBN~— B N

since the denominator can be estimated by using ©; — yr—2B > yr —Yr—2B > YL — YL—2B — 20 >
¢BN~1 and

2 =07 op > YL — 07 _op > YL — Yo—28 — 26 + (Yo—28 — 07_5p) > ¢cBN ™!

where we used § < BN~! and B < N.
Collecting all the error terms into (5.46) and removing some redundant terms, we have thus
proved Lemma 5.8. O
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