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ABSTRACT: We begin by explicating a recent proof of the cluster decomposition principle
in AdS>4 from the CFT>3 bootstrap. The CFT argument also computes the leading
interactions between distant objects in AdS>4, and we confirm the universal agreement
between the CFT bootstrap and AdS gravity in the semi-classical limit.

We proceed to study the generalization to CFTs, which requires knowledge of the
Virasoro conformal blocks in a lightcone OPE limit. We compute these blocks in a semi-
classical, large central charge approximation, and use them to prove a suitably modified
theorem. In particular, from the d = 2 bootstrap we prove the existence of large spin
operators with fixed ‘anomalous dimensions’ indicative of the presence of deficit angles in
AdSs. As we approach the threshold for the BTZ black hole, interpreted as a CFTy scaling
dimension, the twist spectrum of large spin operators becomes dense.

Due to the exchange of the Virasoro identity block, primary states above the BTZ
threshold mimic a thermal background for light operators. We derive the BTZ quasi-
normal modes, and we use the bootstrap equation to prove that the twist spectrum is
dense. Corrections to thermality could be obtained from a more refined computation of
the Virasoro conformal blocks.
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1 Introduction and summary

Spacetime is a set of coordinate labels associated with the states and operators of a quantum
mechanical system. It becomes a useful concept when the Hamiltonian of the system is
approximately local in these coordinate labels. One need not resort to holography to find
examples; for instance, this line of thinking underlies the reconstruction of extra dimensions
from their Kaluza-Klein spectra. One can produce even more elementary examples by
studying the ‘emergence’ of the coordinate label x from an abstract interacting harmonic
oscillator defined in terms of creation and annihilation operators.

In this spirit, the conformal bootstrap [1-3] and related techniques [4-6] have re-
cently led to a rigorous, non-perturbative proof [7] of the cluster decomposition principle
in AdSg41 for all unitary d > 3 CFTs. Both AdS cluster decomposition and the leading
corrections to it, including long-distance gravitational and gauge forces, are the AdS space-
time interpretation of a CFT theorem. The theorem pertains to the operator content of
the operator product expansion (OPE) in the large angular momentum limit.

In this paper we will explain the AdS interpretation in more detail, review the theorem
and its proof, and then study its generalization to CFT2/AdS;. We will show that in a
certain semi-classical limit of 2d CFTs it is possible to generalize the theorem. In partic-
ular, we will derive the existence of deficit angles in AdSs from the properties of Virasoro
conformal blocks. We will also study the CFT dual of a light object interacting with a
BTZ black hole [8].

The goal of the analysis is to use the conformal bootstrap to constrain the dynamics
of an emergent AdS theory in a limit where a pair of objects are well-separated in AdS.!
The geodesic distance between the AdS objects will be extremely large and in particular, it
may be much larger than the radius of curvature of the AdS theory. One should therefore
think of the results as demonstrating super-AdS scale locality.? Below, as in [7], we will
formulate a more precise criterion along these lines that we will term ‘cluster decomposition’
in AdS, since it encodes the constraint that physics in one region of AdS should have no
effect on physics in another region in the limit that the separation between the two regions
approaches infinity.

To motivate our criterion for cluster decomposition, we rely on some basic facts about
the kinematics of ‘objects’ in AdS, which we discuss in more detail in section 2. The AdS

We emphasize that we are not assuming anything about the existence of an actual description in terms
of fields, strings, etc. propagating in AdS. All our claims about AdS will follow as consequences of the CFT
spectrum and OPE.

2This is in contrast to analyses that demonstrate sub-AdS scale locality after making various additional
assumptions about the CFT [9-14].
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Figure 1. This figure indicates the correspondence between a descendant operator/state in the
CFT and a center-of-mass wavefunction in AdS. The relationship is entirely kinematical; it follows
because the conformal group is the isometry group of AdS. A primary state would have its center
of mass at rest near p = 0, the origin of AdS in the metric of equation (2.1).

kinematic facts that we will invoke follow almost entirely from the role of the conformal
symmetry group as the isometry group of AdS. We define an ‘object’ in AdS as a state cre-
ated by any primary operator in the CFT with definite dimension and angular momentum.
The wavefunction for the center-of-mass of an object can be uniquely determined, and it is
mainly supported near the origin of AdS. All possible center-of-mass motions in AdS arise
as linear combinations of conformal descendant states, as pictured in figure 1. In other
words, center-of-mass wavefunctions in AdS fill out a single irreducible representation of
the conformal group.

Next we would like to understand how to construct a CFT state corresponding to a
pair of well-separated objects in AdS. Naively one might try acting on the vacuum with
two primaries, O4 and Opg, but how can we create a large separation between objects A
and B? There is no CFT state where the objects are far apart and permanently at rest in
AdS, because the AdS potential would cause them to fall towards each other. However, if
we give the pair of objects a large relative orbital angular momentum, then the centrifugal
force will keep them far apart. A rough definition of cluster decomposition can now be
provided: given the existence of primaries O4 and Opg in a CFT, there also exist primary
operators with large angular momentum £ that create states with the appearance of objects
A and B, spinning around each other at large £ in AdS, with vanishingly small interactions.
Such a state is pictured in figure 2.

We must clarify what we mean when we say the objects are non-interacting in the limit
of wide separation. If their interactions are negligible, then the interaction or ‘binding’
energy of the two-object state must be negligible as well. The Dilatation operator of the
CFT must split up into two pieces that act separately on objects A and B. This translates
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Figure 2. This figure shows two objects created by CFT operators O 4 and Op orbiting each other
at large angular momentum, and therefore at large separation, in AdS. A major goal will be to
show that such states exist and to describe their properties.

into the statement that the anomalous dimension of the two-object state should vanish. In
precise terms, given two CFT primary operators, O4 and Op, their OPE should contain
primary operators [O4Og|, ¢ with dimensions

AAB(TZ,E):AA—i-AB—l-Qn-i-f—l-’yAB(n,f), (1.1)

such that y4p(n,f) — 0 as { — oo. Here n is an additional quantum number that
parameterizes the eccentricity of the orbits in the semi-classical limit, so it allows for
relative boosts between the objects.

This is exactly the spectrum of ‘double-trace’ states in a generalized free theory (GFT).
These are theories whose correlators are entirely determined by two-point Wick contrac-
tions, as we discuss in section 3.2. For our present purposes it is more useful to define GFT's
as the dual of free quantum field theories in AdS, since this definition emphasizes that GFT's
describe non-interacting objects in AdS. In the limit £ — oo, not only the anomalous di-
mensions, but also the OPE coefficients of [O4Og], ¢ with O4 and Op should approach
those of a generalized free theory. In other words, at large angular momentum the CFT
should have a spectrum and OPE coefficients that match GFT. When these criteria are all

satisfied, we say that the AdS dual satisfies the cluster decomposition principle.
Crucially, this implies that at large angular momentum, the Hilbert space of the CFT

has the structure of a Fock space. In other words, associating creation and annihilation

operators aiu, aTB’i and a4 ;,ap; with the i-th descendants of O4 and Og, it is meaningful

to write the state [O4OB|n ¢ as cn,g;i,jal Za};j|0>, where ¢, ¢; j is the appropriate ‘Clebsch-
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Figure 3. One can only obtain an s-channel singularity in a scattering amplitude via an infinite
sum of ¢-channel partial waves as £ — co. The same physical point, adapted to AdS/CFT, underlies
the proof of cluster decomposition and the derivation of long-range forces from the CFT bootstrap.

Gordan coefficient’ for irreducible representations of the conformal group. The Dilatation
operator D, which is the Hamiltonian for radial evolution, acts at large ¢ as

D= Z(AA,iGL,iCLA,i + AB,iaTB’Z‘aB,i)- (1.2)

(2

When we study AdS in global coordinates, this is the time translation operator, or in other
words, the Hamiltonian.

As shown in [7] and reviewed in section 3, all CFTs in d > 3 satisfy this cluster
decomposition principle. This result generalizes earlier results found in perturbation theory
in large classes of CFTs [4, 15, 16]. It is consistent with, though clearly stronger than, our
experience with weakly coupled field theories in AdS>4. Specifically, potentials between
particles due to the exchange of massless fields fall off exponentially in proper distance at
large separation. In fact, when the lowest-twist (7 = A — {) operator appearing in both
the O304 and O;O0p OPE is a conserved current, such as T, the leading anomalous
dimension at large angular momentum is [5-7]

Ta5(0) o . (13)

The constant of proportionality is determined by the central charge of the current and
the charges of O4,Op. In the case where this conserved current is the energy-momentum
tensor, we verify that the numerical value of the coefficient exactly matches the prediction
from semi-classical gravity in AdS. Thus “Newtonian” gravity in AdS is a generic long-
distance feature for any CFT in d > 3.

More generally, if operators with twist 7,,, < d — 2 are present, the correction behaves
like y4p(¢) < £~7m. By unitarity, the twist cannot be less than % for scalars, and cannot
be less than d — 2 for operators with spin £ > 1. Violations of the unitarity bound could
produce forces that grow at long-distance, so unitarity is intimately connected with AdS
locality.

The key observation that allows us to obtain these constraints is that individual con-
formal blocks® in the decomposition of the four-point CFT correlator

(O4(21)04(22)Op(73)Op(74)) (1.4)

3For readers unfamiliar with the conformal bootstrap, we give a brief overview in section 3.1. For a more
thorough review, see e.g. [3].




predict singularities in the 0304 — OpO%, or ‘s-channel’ that cannot be reproduced
by any sum over a finite number of spins in the decomposition in the O4O0p — 0403,
or ‘t-channel’. An analogous phenomenon in scattering theory is indicated in figure 3.
These singularities occur in the limit 23, — 0, which is often referred to as a “light-cone”
limit since the position x2 is being brought onto the light-cone of the position z1. In the
s-channel, these singularities are controlled by the exchange of operators with minimum
twist, which generically includes the identity operator 1 and conserved currents.

The situation becomes both more difficult and richer in d = 2, as we discuss in section 4.
On the one hand, this difficulty can already be seen from the exchange of weakly coupled
massless fields in AdSs, where the potential at long distances no longer falls off at wide
separation; we discuss AdS3 dynamics in detail in sections 2.2 and 2.3. This is related to
the fact that the minimum twist of operators allowed by unitarity in d = 2 is zero, so the
leading correction from equation (1.3) to the anomalous dimension does not decay at large
angular momentum ¢. More precisely, in d = 2, the Virasoro algebra implies that there are
infinite towers of zero-twist operators, which are the (anti-)holomorphic descendants of any
(anti-)holomorphic primary operator, and these contribute singularities at the same order
as the identity operator. At a minimum, the spectrum always contains the holomorphic
and anti-holomorphic descendants of the identity operator itself.

Therefore to make progress in d = 2 we must take these contributions into account,
which means we must determine the Virasoro conformal block for the identity operator.
Fortunately we can use technology that has been specifically developed to exploit the full
Virasoro symmetry. In particular, by focusing on the case of large central charge ¢, we
can use powerful techniques [17] to calculate various contributions to correlators, and in
particular the contribution from the OPE exchange of any number of products of the
energy-momentum tensor. The conformal blocks holomorphically factorize, so in such a
calculation we can focus on the holomorphic piece. In all cases, we are looking at the
conformal block for an operator with weight h, contributing to the the four-point function
(04(0)04(2)Op(1)Op(0)) of operators O4, Op with weight ha, hp. In the semi-classical
limit ¢ — oo and formally }%A, hTB fixed, the conformal blocks F(z) take the form

F(z) = exp <—%f(z)) (1.5)

for a function f(z) that depends on ¢ only through the various ratios hA/c. In the limit
ha < ¢, hy < ¢ but keeping hp/c arbitrary, we find

1—-(1—2)*B
aB

g £(2)=(2ha—hy) log ( >+h,4 (1—ap) log(1—=22h, log (““‘”) , (1.6)

2
where ap = /1 — 24hp/c, and we neglect terms of order O(h%/c?, h% /c?). Further results
using these methods for the conformal blocks are presented in appendix D.

The identity conformal block is the special case of (1.6) with h, = 0. In AdSs, this
captures the exchange of arbitrary numbers of gravitons in the semi-classical (large mp;)
limit. By taking appropriate limits of the positions z;, one can reinterpret the four-point



function equivalently as the two-point function of O 4, not in the vacuum state, but in the
state created by a heavy operator. A remarkable fact is that in this semi-classical limit,
we find that the identity conformal block exactly reproduces the two-point function for the
light operator Oy in a CFT at finite temperature [18, 19]

(ﬂ'TB)QhA

<OB ’OA(it)OA(O) |OB> = m7

(1.7)

set by the conformal weight of the heavy operator Op

Ty = V24hp/c—1 (1.8)

o ’

where we have conformally mapped (1.7) to radial time coordinates ¢ = —log(z). An
identical formula with ha, T,z — ha,Ts,Z holds for the anti-holomorphic piece F(2) of
the identity conformal block, so for spinning operators Op one finds distinct left- and right-
moving temperatures. The effective temperatures Tg, Tz obtained here from the bootstrap
match the semi-classical temperature of a black hole in AdS3 with mass and spin given by
the conformal weights of Op. Consequently, the effect of multi-7),, exchange (i.e., multi-
graviton exchange in AdS3) between a light “test mass” and a heavy operator has exactly
the same effect that the BTZ black hole geometry has on light fields in AdSs3. This provides
a derivation of a version of the Eigenstate Thermalization Hypothesis [20, 21] for CF T3 at
large central charge.

Because we take the large ¢ limit, the results we obtain in 2d have a more limited
range of applicability than in d > 3, where we made no assumptions whatsoever about the
CF'T other than unitarity and the OPE. However, in the large c limit we have a transparent
physical interpretation in AdSs3, and we can prove striking results about the dual dynamics,
including the presence of deficit angles from particles in AdSs, as well as the modes in a
BTZ black hole background. A summary of the results from our bootstrap analyses follows.

Summary: CFT4 with d > 3. It is convenient to state the results [6, 7] in terms of
the anomalous dimension y45(n,¢) = Aap — (Aa+ Ap+2n+{) and the OPE coefficients
cap(n,?) for the operator [O4Og], . These operators are implicitly defined by the proof
that in the limit of large ¢, there exists a sequence of operators with the stated properties
for every integer n. We begin with the result for the general case, which assumes only
unitarity and the OPE:
General: yap(n, ) ~ ZTZ Pap(n, t) ~ Parr(n, () (1 + O(’YAB(&")))

In the above expression, the symbol ~ denotes the behavior in the limit of large ¢. The
function Pgpr(n,f) is the OPE coefficient-squared in generalized free theories; the explicit
expression can be found in [22]. 7, is defined as the smallest twist of any operator that
appears in both the 0% O 4 and O;O0p OPE, and by unitarity this cannot be less than %.

Using the results of [23], it is convenient to separate out the case of CFTs whose
correlators are exactly those of free fields, and all other CFTs. The reason is that only the
former case can have conserved currents with spin ¢ > 3, so eliminating this one essentially



trivial case allows us to restrict the minimal twist 7 = d — 2 operators to spin-1 currents
and the energy-tensor. The result in this large class of CFTs is:

d+2 d
non_lfree CFT’ ' YAB (TL ﬂ) ~ Ygrav * gauge Y, ~ - 2 WGN(AAAB) - o Xqa4qp
T(sca ar) >d—2 " ) pd—2 grav VOl(Sd_l ) (d— 1) gauge

The coefficients ygray and Ygauge can be calculated in the CF'T by using the Ward identities
to constrain the coefficients of conserved currents in the 0% O 4 OPE in terms of the charge
of 04, which for a spin-1 current is defined above as g4, and for 7}, is the dimension A 4.
For simplicity we have approximated vgrq, in the limit of large A4 and Ap. The conserved
current contributions can be interpreted in terms of AdS parameters by using their relation
to the CF'T central charges at weak coupling; in section 2.1, we perform this matching in
d = 4 for the gravitational term and find complete agreement.

Summary: CFTs. In the limit where hghp/c is fixed while ha/c and hg/c — 0 as
¢ — 00, the Virasoro conformal block for the identity is particularly simple. Assuming the
identity is the only zero-twist primary being exchanged, the bootstrap leads to:

hahp

ha,hp < c: ’)/AB(n,E) = —24 p = —4GNFEsFER

The above anomalous dimension gets corrections at order O(};—g, "2“) As indicated in the
final equality above, this agrees exactly with the binding energy for two test masses in
linearized gravity in AdSs.

We can also go beyond this “test mass” limit, and analyze the bootstrap constraints
in the limit that hp/c is fixed but h/c is small. It is well known that AdS3 has a gap in
energy of ﬁ between the vacuum and the lightest BTZ black hole. Below this threshold,
masses in AdSs just create local conical “deficit angle” singularities. Using the relation
c = %, this energy gap translates to a threshold in the weight of a scalar operator at
h = h = 5;. It is convenient to separate our results into hg > 57 and hp < 57, i.e. into
weights that correspond to AdS geometries above and below threshold for a BTZ black
hole. As we review in section 2.2, the deficit angle created by a particle with mass 2hp in
AdS; is just A¢g =27(1 — /1 —24hp/c). In this more general limit, we find:

h A
i?ﬁMﬂ hp <93 3fﬂﬂﬂnyv2@3+ 1_2MU#dhA+nD:E@+<}—2f>EA

h
and 2 <1 hp>s; : Tap(f,n)=dense~2hp+4nilgTz(ha+n)
c

where we have listed the case of scalar O 4 and Op, for simplicity.

The energy spectrum below the BTZ black hole threshold exactly matches the semi-
classical result from AdS3 with a deficit angle A¢, as we discuss in more detail in section 2.2.
The spacing between modes becomes vanishingly small as one approaches the BTZ thresh-
old at hp = ¢/24. Above the BTZ threshold we derive a dense discretum of twists in the
large ¢ spectrum of the O4Op OPE. One can also identify the spectrum of BTZ quasi-
normal modes. For this, one should use a basis not of primary operators (which must have
real and positive dimensions by unitarity), but rather of in and out states, obtained in



Figure 4. This figure depicts the AdS/CFT correspondence in global coordinates, emphasizing that
AdS time translations are generated by the Dilatation operator, so that bulk energies correspond
to operator/state dimensions in the CFT.

practice by adopting an appropriate ie prescription. As shown in equation (1.7), the semi-
classical identity conformal block matches the two-point function evaluated in a thermal
background, so the full spectrum?® of BTZ quasinormal modes can be reproduced [24].

2 Defining long-distance AdS physics in CFT terms

In this section we will formulate a version of the AdS cluster decomposition principle and
translate it into a statement about the spectrum and OPE of a CFT. Brief in situ reviews
of some necessary aspects of AdS/CFT [25-27] will be given where required.

We will be considering CFTs in radial quantization, taking the Dilatation operator
D as the Hamiltonian. Since the angular momentum generators commute with D, we
label CFT states according to their scaling dimension A, which is their D eigenvalue,
and their angular momentum quantum numbers, which we denote by £. In this basis the
momentum generators P, = —id,, act as raising operators of the dimension A, while the
special conformal generators K, act as lowering operators. Irreducible representations of
the conformal group are labeled by the quantum numbers of a primary state, which is
a state annhilated by all the K,. Descendant states are created by acting with P, on
a primary. In radial quantization, local operators can be identified with the states they
create on a tiny circumscribing ball (see e.g. Chapter 2 of [28]).

We will study AdSg4y; in global coordinates, with metric

RZ
ds® = # (dt* — dp* — sin® pdQ?) . (2.1)
cos? p

4Our methods are generally only reliable for the large angular momentum modes.



This coordinate system has a natural correspondence with a CFT in radial quantization, as
pictured in figure 4. We identify the unit d-vector Q) with coordinates on a sphere about the
origin in the CFT, and e with the radius of the sphere. The Dilatation operator generates
t-translations, so that bulk energies correspond to CFT dimensions via

Acrr = EagsRads- (2.2)

The other global conformal generators also correspond to AdS isometries. For the most
part we will work in units with Ragqs = 1, although we will occasionally reintroduce the
AdS length for clarity and emphasis.

Conformal invariance uniquely determines an AdS;;; wavefunction for the center of
mass coordinate of any primary or descendant state, as pictured in figure 1. This is a general
result; it follows because the conformal symmetries form the isometry group of AdS, so
there is a one-to-one map between conformal representations and AdS coordinates. A
primary wavefunction must be annihilated by all the special conformal generators K, and
this provides d distinct first order differential equations that must be satisfied by a primary
wavefunction in AdSg4y;. In the scalar case primary wavefunctions necessarily take the form

Yorim (t, p, Q) = €™ cos® p. (2.3)

Since the Dilatation operator D = —i0; we see that the undetermined parameter A is the
scaling dimension of the state.

Equation (2.3) describes a wavefunction centered at p = 0, falling off quickly at large
distances, with a characteristic rate set by A. In the large A limit this can be approximated
by a Gaussian wavepacket at the center of AdS, with a width ~ 1/ VA. Tt is held in
place by the effect of the AdS curvature. Descendant state wavefunctions filling out a
full irreducible representation of the conformal group can be computed by acting on the
primary wavefunction with the raising operator P,, the CFT momentum generator. A
typical descendant state is portrayed in figure 1.

Let us be a bit more precise about the kinematics of the descendant states. The AdS
wavefunction for the center of mass of a state descending from a scalar primary is (see
e.g. [11, 29])

1 , d
Vs (t, p, Q) = NieﬂE""{tYw(Q) [Siﬂg pcost poFy <—n7 AL+ n, L+ 3 sin” P)}
Ant
(2.4)

with normalizations

L T2+ DDA+ — 452)
Nane = (=1) \/ T(n+ ei OT(A+n +2£) ’ (2:5)

where F,, y = A+2n+/{. The two quantum numbers n and ¢ index changes in the twist and
angular momentum, respectively, where the twist 7 = A —£. If we consider the simple case
of n =0 and £ > A > 1, corresponding to minimal twist and large angular momentum,



then we find that the norm of the wavefunction has a maximum at a geodesic distance®

(k) ~ R;ds log <2§> (2.6)

from the center of AdS, with a width of order Raqs/VA in (k). In this limit the wave-
function represents an object in a circular orbit about the center of AdS.

The preceding discussion of CFT states and AdS center-of-mass wavefunctions was
completely general. Now let us specialize for a moment and consider CFTs with AdS duals
whose spectra include weakly coupled particles. The 2-particle primary states in such an
AdS theory are dual to operators that we will represent as [010s], ¢ in the CFT, where
01 and 05 are primaries that create single-particle states.

The primary operators [O1 0], ¢ create 2-particle states whose center of mass is sup-
ported near our chosen origin at p = 0 in AdS, but the pair of particles themselves can
have a large relative motion. In particular, we can study the state where the particles
both orbit the center of AdS precisely out of phase, so that they are opposite each other
across the center of AdS. This configuration is pictured in figure 5. The particles are very
well-separated at large ¢, because they are balanced across the center of AdS. In the case
of free particles the primary operators [0102], ¢ have dimension

A+ Ag+2n + 4. (27)

This CFT scaling dimension corresponds to the rest mass of the two AdS particles plus a
contribution from the kinetic energy of their relative motion.

In the case of a pair of non-interacting AdS objects, including the case of free particles,
we can work out the kinematics exactly. In the appendices of [22, 30] it was shown how to
decompose a primary operator [O102], ¢ in a generalized free theory® into the descendants
of 01 and O,. This is identical to decomposing 2-particle primary wavefunctions into sums
of products of one-particle descendant wavefunctions in AdS. In the case of n = 0 one finds

0102 = Y SMQ( ---8%(91) (ayl---a%oz) (2.8)
l1+la=

with coefficients

o (-1
b — fl'fglr(Al + El)F(AQ + 62)

(2.9)

This means that at large ¢, the CFT primary [O;Os], is dominated by contributions from
descendants with

N — _— -4 —. 2.1
4 5 Ay A, + (2.10)

/ AQ—Al 14 AQ_AI
; (1 )=5+ 55

5The geodesic distance x from the center of AdS is related to the p coordinate by sinh x = tan p.
SA generalized free theory is the conformal theory dual to a free field theory in AdS. It can also be
described as a CFT whose correlators can all be obtained by Wick contractions into 2-point correlators.

~10 -



We see that at large angular momentum, such operators are composed of pairs of descen-
dants of O; and Oy with nearly equal angular momenta. The relation (2.10) will be useful
for the semi-classical gravity calculations that follow in section 2.1.

The operators [0102], ¢ always appear in the OPE of O and O if the conformal
theory is a generalized free theory. If the theory is perturbative in either an AdS coupling
(e.g. 1/N) or some weak coupling in the CFT, then these operators are also guaranteed to
exist [4] and to make an appearance in the O;(x)O2(0) OPE. But away from free theory
they will acquire an anomalous dimension y(n, ¢).

From the AdS viewpoint, this anomalous dimension arises due to the interaction energy
between the two objects. This means that at large ¢ we can use the relationship between
(k) and ¢ from equation (2.6) to write the total dimension of [O1Os), s as

A1+A2+2n+€—|—7(n,€(5)), (211)

where k is the geodesic distance between the objects in AdS. Since ¢ grows exponentially
with &, the strength of the AdS interaction at large distances is determined by the magni-
tude of the anomalous dimensions ~(n, ¢) at very large ¢. In perturbative examples [31-33]
the anomalous dimension ~(n, ¢) falls off as a power-law in ¢ as ¢ — oo in the case d > 3.

Do operators like [010s],, ¢ always exist in the OPE of Oy and Oy in any CFT? If
so, then every CFT has a Hilbert space that can be interpreted in terms of states moving
in AdS. The anomalous dimensions 7(n, £) would give information about the properties of
AdS interactions, with the large £ behavior corresponding to the effects of long-range forces
in AdS.

We are finally ready to formulate our version of the AdS cluster decomposition principle
as a statement about the OPE and the CFT spectrum: In the OPFE of any two primary
operators O1 and O, for each non-negative integer n, there exists an infinite tower of
operators [O10s)y ¢ in the limit that £ — oo, with dimension Ay + Ay + 2n + €+ y(n, )
where y(n,¢) — 0 as £ — oo. Furthermore, one can show that

Y. 0) = 2=, (2.12)

where T, s the twist of the minimal twist operator appearing in the OPE of both O1 with
OI and Oy with (’); Generically 7,, < d—2, since the energy momentum tensor 7}, always
appears in both of these OPEs, and in fact it is straightforward to go beyond equation (2.12)
to derive the anomalous dimension at subleading order in 1/¢. In section 2.1 we will give an
explicit computation of the long-distance gravitational effects for d > 3, which match the
universal contribution from 7}, that we will obtain from the CFT bootstrap in section 3.4.

This theorem has been proven [6, 7] for all CFT>3, without any assumptions beyond
unitarity. However, our formulation of the cluster decomposition principle is false in the
case of AdS3/CFTs. In fact, the 2d Ising model provides an explicit counter-example [7].

We will see what goes wrong in section 2.2, but the intuition from AdSs is simple.
Gravitational effects in 2 + 1 dimensions lead to deficit angles surrounding massive sub-
Planckian objects, and these deficit angles can be detected from arbitrarily large distances.
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Figure 5. This figure is suggestive of the relationship between certain ¢ > 1 operators in the
OPE of O and Oy and a ‘2-blob’ state in AdS, corresponding to the two states created by the
CFT primaries O1(0) and O3(0) in an orbit about each other at large separation x ~ log¢. The
existence and asymptotic dimension of these 2-blob operators at large ¢ in the CF'T defines a cluster
decomposition principle in AdS.

This means that they make finite corrections to the spectrum of operator dimensions, so
that «y(n, ¢) approaches a finite constant v(n) as £ — oo. The CFTy interpretation is that
the presence of zero twist operators, such as the Virasoro descendants of the identity, imply
that in equation (2.12) we have 7, = 0. However, with proper caveats we will show that
a modified theorem holds, and that we can compute the finite anomalous dimensions ~y(n)
directly from the CFT bootstrap in two dimensions. We study the AdSs expectations
for deficit angles in section 2.2. Then in section 2.3 we will obtain even more interesting
expectations when we consider BTZ black holes. We will review the fact that there are
no stable orbits about these objects, so we do not expect that cluster decomposition can
hold above the BTZ threshold. However, what we can expect is a thermal spectrum of
quasi-normal modes. In the remainder of this work we will then provide a universal CF'T
proof of these results without making further reference to AdS expectations.

2.1 AdS34: the Newtonian gravitational potential

In this section we will compute the shift in energy due to the gravitational interactions
between very distant, uncharged, scalar masses in AdS>4. This corresponds to the CFT
computation of the anomalous dimension of the primary operator [O1 O3], ¢ in the OPE of
primaries O and Qs, in the large ¢ limit. We will derive this anomalous dimension directly
from the CFT bootstrap in section 3.4 and find that the results match.
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The idea of the calculation is to do perturbation theory in the inverse distance between
the objects, resulting in a ‘Newtonian’ approximation in AdS. This approximation is good
only when d > 3, because gravitational interactions do not fall off with distance in 2 + 1
bulk dimensions. In section 2.2, we use a different method to derive the interaction energy
in 2 + 1 dimensions assuming that G is sufficiently small.

We will obtain the first order energy shift by computing the expectation value of the
gravitational interaction Hamiltonian using the unperturbed wavefunction for the orbiting
object. First we will compute the interaction Hamiltonian (gravitational potential) at large
distances due to the presence of a point mass, and then we will evaluate the expectation
value.

In AdS>4, the AdS-Schwarzschild metric [34] is the solution to Einstein’s equations in
the presence of a spherically symmetric, uncharged mass. In d + 1 dimensions it is

ds* = U(r)dt* — 0 dr® — r2dQ?, (2.13)
where
=1 H o (2.14)
rd=2 " R3gs
and the mass of the black hole is
d—1)Qq 1p
M= (1673GN, (2.15)

where Qg_; = vol(S9~1). This coordinate system is useful because \/—g is independent of
M, so only g% and ¢g'" are affected by the mass M. We need compute only to first order
in M, since this is equivalent to expanding in the inverse distance.

The energy shift to first order in M is then

0Eon = <na éorbMH’na forb>
1% d—1 jd—1 2 2, .2-d 2

Y /d”" d* 8, Lo ((l_i_rg)g(atqb) + 10, 9) > 12, Lorb) - (2.16)
The two pre-factors of % in the above equation come from the normalization of the action for
a scalar field in AdS and the inclusion of both the scalar and gravitational energy shifts (see
g. [35]). We have attached an ‘orb’ label to emphasize that we are currently studying one
mass, described by the scalar field ¢, orbiting a second mass M at the origin of AdS. This
is not a primary state in the CFT, since its center of mass is not at rest, and so we will need
to translate this result to obtain the anomalous dimension of a primary operator [O1Os], -
Using the wavefunctions from equation (2.4) transformed to r = tan p coordinates, we

find

i rdr 1
5E0rb(n’ EOI‘b) = _2/ NZ ' <(1 + TQ)QEZTLéorb|’(/JTLZQrb (T)|2 + (arq?[}neorb (T))2> ’(217)
Nlorb
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where 1y, , () just includes the r dependence of the wavefunctions. Taking the n = 0 case
as an example and expanding the result as £ — oo, we find the two terms

_ 8rGyMA T(A) 1\% 1\?
B [ <2F (—4+ A+ 1)) (<€orb> - <£orb> ) (218)

and clearly the first term is dominant at large fu,. This follows from the familiar fact

that the Newtonian approximation requires us to keep track only of shifts in the metric
component g;. In fact, we could have obtained this energy shift to leading order at large
A via a computation in classical gravitational perturbation theory.

Equation (2.18) is not yet the formula of interest, since it is the energy shift associated
with a configuration where one mass is at rest at the center of AdS, while the other orbits.
To get the energy shift or anomalous dimension of the primary operator [O10s],, ¢, we need
to use equation (2.10) to relate the double-trace primary to this ‘orbit’ state. In the semi-
classical limit the orbit state has the same energy shift as a primary with equal geodesic
separation between the two objects, so that ko, = K1 + Ko with

. 1 eprim o 1 Eprim
n1—210g< A > and Hg—Qlog< A, > (2.19)

Using equation (2.6) for the geodesic radius of an orbit, the angular momentum of orbit

can be related to that of the primary by

2

‘ bprim 2.20
orb — 2A1 . ( . )

Taking lprim — ¢, M ~ Ay, and A = Ay, we find a semi-classical energy shift

vl

2% TGy (A1Ay)s (1N (2.21)
Qai(d—1) \¢ ‘

in the approximation that ¢ > Aj,As > 1. In the case of d = 4, using the relation

0E(0,0) = —

o L
C=gan: this gives

2 2
+(0,6) ~ _é(AlCAQ) <2) , (2.22)

which matches the result we will derive from the CFT bootstrap in section 3.4.

As a final consideration, one might ask if these AdS>4 configurations are unstable due
to the emission of gravitational and other radiation.” For a variety of reasons we expect that
radiation will be an extremely small effect at large £. First, it is worth emphasizing that
unlike binary star systems in our own universe, the pair of objects we consider here are held
in their orbit by the AdS curvature. The gravitational binding energy between the objects
vanishes at large ¢ even though the orbital period remains constant. Each object in the

"We thank Gary Horowitz for discussions of this point.
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orbiting pair closely resembles a conformal descendant, as indicated in equation (2.8), and
such states are exactly stable. This means that an emitted graviton would have to ‘know’
about both objects, despite their very large separation, and so we would expect emission to
be exponentially suppressed. Furthermore, since the gravitational binding energies vanish
at large ¢, while gravitons in AdS have an energy or dilatation gap d/Ragqs, considerations
of energy and angular momentum conservation also suggest that graviton emission should
be an exponentially suppressed process. Thus we expect that our orbiting pairs will have
a highly suppressed radiation rate at very large /.

2.2 Deficit angles in AdS3 from sub-Planckian objects

Although there are no propagating gravitons in 2 4 1 dimensional gravity, Einstein’s equa-
tions have well-known, non-trivial solutions [36, 37] in the presence of sources. In particular,
a point particle of sub-Planckian mass placed in AdSs will produce a deficit angle at its
location, while the spacetime remains locally AdS3 everywhere else. This explicit solution
for a particle at the origin can be written as

1 —-8GNM) <dt2 A

d82 == ( COSQ(p) m - Slnz(p)d02> 3 (223)

where M is the mass of the particle and 6 € [0,27). This looks exactly like the usual
AdS3 metric except for the presence of an angular deficit of 27(1 — /1 — 8G y M), which
is &~ 81G yM in the limit GyM < 1. We have made our choice for the normalization of ¢
and 6 so that these coordinates have the usual relationship with CFT coordinates in radial
quantization. In particular, the Dilatation operator D = i0;.

Now let us compute the energy shift of a particle in AdSs due to the presence of
the deficit angle. In fact, there is no computation to do. The usual bulk wavefunctions
Une(t, p,0) in AdSs from equation (2.4) are also the wavefunctions in our AdS-deficit space-
time if we send

A — A\V1-8GNM, n—ny1-8GNM, (-1 (2.24)

In particular, this means that the eigenspectrum for a scalar field in this spacetime is

Eng = (A+2n)y/1—8GNM + L. (2.25)

An interesting feature of this equation is that as 8GyM — 1 the spectrum of twists,
labeled by n, becomes more and more closely spaced, until we obtain a dense spectrum
at 8GyM = 1, the BTZ black hole threshold. In section 4.1 we will derive this result in
CFT, with large central charge in the large ¢ limit, without making reference to AdSs.

It is also useful to consider an expansion in the limit that GyM < 1. Using this
result, we thus have a prediction that in the limit 1,n < Ay, Ay < ¢, we should find an
anomalous dimension

’y(n,é) ~ —gAlAQ (226)
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for the shift in dimension of large ¢ operators that dominate the OPE of O; and Os, where
we have identified ¢ = ﬁ for the case [38] of AdS3/CFTs.

2.3 Quasi-normal mode spectrum from super-Planckian objects

In AdS; there exist the well-known BTZ black hole [8] solutions. As our last example we

will be interested in the quantum mechanical spectrum associated with a sub-Planckian

object moving with large angular momentum around a 2 4+ 1 dimensional black hole. We

can approach this question by studying the scalar wave equation in the BTZ background.
The BTZ metric for a spinless, uncharged black hole is

7,2
——— —r?d¢”. (2.27)

ds? = (r? —r2)dt? —
( +) r2 —r3

The black hole has a horizon at the coordinate » = r,. Unlike in the case of higher
dimensional AdS black holes, there are no timelike geodesics [39] in this spacetime that
avoid entering the black hole horizon. This is easy to see from the metric of equation (2.13),
which naturally accords with the BTZ metric when d = 2. Timelike geodesics in this metric
can be characterized by a radial equation

2
72 =E?—V(r) where V(r)= (1 - Td% + r2) (1 + fz> (2.28)
We see that when d = 2, the effective potential V' (r) is always monotonic in the presence
of a BTZ black hole (when p > 1), whereas V(r) can have a stable minimum in d > 2. So
there are no classical orbits about the BTZ black hole, sharply differentiating the behavior
in AdS3 from AdS>4.
The wave equation for a scalar with squared mass m? = A(A —2) in the spinless BTZ
background has solutions of the form

O(t,r,0) = e~ Uyy(r), (2.29)

where the normalizable radial wavefunction is

o o 1 it
Unelr) = (2 = 12) 55 ()7 A2F1 <z£+zw A il — iw

= +iaa 7&> (2.30)
27y 277 2ry 2772 )7 ’
One can check that these solutions analytically continue to the pure AdSs solutions of
equation (2.4) if one takes r, — i.

The BTZ-background solutions differ in an important qualitative way from those for
a scalar in empty AdS;. The BTZ solutions are oscillatory in logr, whereas the AdSs
solutions are exponentially suppressed as logr — —oo. As a consequence, even at very
large ¢, the BTZ solutions are not suppressed in the vicinity of the black hole horizon.
This is the quantum mechanical reflection of the absence of stable orbits. This behavior
sharply distinguishes the BTZ solutions from those in d > 3, as in the latter we can make
the orbital lifetime as large as desired by taking the limit of large angular momentum.
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This feature of the solutions has an immediate consequence for the quasi-normal mode
frequencies w. To determine these frequencies we need to impose some sort of boundary
condition on the radial wavefunction, and quasi-normal modes are taken to be purely
ingoing solutions at r, the black hole horizon. Imposing this boundary condition leads to

wne =L+ ir (A +2n), (2.31)

where / is the angular momentum, and n is another quantum number analogous to that
which labels the twist in the pure AdS3 case. In fact this is just the analytic continuation
of equation (2.25). We see that for all values of the angular momentum ¢ the AdS3 energies
have a constant, finite imaginary part. We therefore expect that after diagonalizing the
CFT, Dilatation operator we will obtain a dense spectrum of twists 7 = A — |¢|. This
matches expectations from equation (2.25), which showed that as the mass of a deficit
angle approaches the minimal BTZ mass, the spectrum of twists becomes more and more
closely spaced. We also expect to reproduce the quasi-normal mode spectrum (2.31) after
analytic continuation in radial time of the CFT correlators. We will prove both of these
predictions using the CFTy bootstrap in section 4.2.

The fact that there are no stable orbits aro