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formal field theories (CFTs) of arbitrary dimensions. Assuming local ETH, we compute

the reduced density matrix of a ball-shaped subsystem of finite size in the infinite volume

limit when the full system is an energy eigenstate. This reduced density matrix is close in

trace distance to a density matrix, to which we refer as the ETH density matrix, that is

independent of all the details of an eigenstate except its energy and charges under global

symmetries. In two dimensions, the ETH density matrix is universal for all theories with

the same value of central charge. We argue that the ETH density matrix is close in trace

distance to the reduced density matrix of the (micro)canonical ensemble. We support the

argument in higher dimensions by comparing the Von Neumann entropy of the ETH den-

sity matrix with the entropy of a black hole in holographic systems in the low temperature

limit. Finally, we generalize our analysis to the coherent states with energy density that

varies slowly in space, and show that locally such states are well described by the ETH

density matrix.
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1 Introduction and outline

Quantum information plays an increasingly important role in our understanding and char-

acterization of quantum matter. The holographic duality together with the black hole

information loss paradox give strong hints that quantum information is also likely to play

a central role in our understanding of quantum gravity and the emergence of spacetime.

In this paper, we discuss the quantum information properties of chaotic conformal field

theories (CFTs) expanding on the observations made in an earlier paper [1]. We provide

evidence that the quantum information content of highly excited energy eigenstates of in

conformal theories exhibit a great degree of universality.

We define chaotic quantum field theories (QFT) to be those satisfying a local version of

the Eigenstate Thermalization Hypothesis (ETH) [1] (see [2, 3] for ETH in generic quantum

systems including density matrix formulation [4, 5]). More explicitly, we say that a QFT on

a homogenous compact space satisfies local ETH if for a local operator Op (with p labeling

different operators),

〈Ea|Op|Eb〉 = Op(E)δab + ∆pab, (1.1)

where |Ea〉 is a highly excited energy eigenstate, the diagonal element Op(E) is a smooth

function of E = Ea+Eb
2 , and ∆pab ∼ e−O(S(E)) where eS(E) is the density of states at energy

E. If |Ea〉 has other quantum numbers associated with other global symmetries, Op(E)

can also smoothly depend on those quantum numbers. To simplify the notation, we will

suppress such dependence. In case of CFTs, definition of ETH (1.1) will require additional

clarifications which we explicitly described below.

The high-energy eigenstates of a quantum many-body system are, in general, hard to

access, and until now essentially all discussions of ETH have been limited to direct numer-

ical diagonalizations (for instance see [6]). With the current computational resources, a

direct numerical diagonalization approach to QFT seems unrealistic. In [1], we advocated

that CFTs provide an exciting laboratory for exploring the implications of ETH and po-

tentially even proving it. In a CFT, due to the state-operator correspondence, the energy

eigenstates can be represented as local operators with definite scaling dimensions, and (1.1)

becomes a condition on the operator product expansion (OPE) coefficients. This opens

up many powerful analytic tools for studying ETH. The previous studies of ETH in CFTs

that have been inspiration for our work are [7–12].

More explicitly, consider a (d + 1)-dimensional CFT on a d-dimensional sphere Sd

with radius L. Since a primary operator and its descendants are algebraically related, the

equation (1.1) written for CFTs should restrict only to the states |Ea〉 dual to primary

operators [1]. In particular, for two-dimensional CFTs, |Ea〉 should correspond to Vira-

soro primary operators.1 Without loss of generality, we further restrict to scalar primary

operators Ψa of dimension ha = EaL. The energy density of the system in such a state is

εa =
Ea
Ldωd

=
ha

Ld+1ωd
, (1.2)

1In every two-dimensional CFT there is an infinite number of conserved charges associated to the KdV

hierarchy [13]. As we will discuss later, for a Virasoro primary, all these charges are fixed in terms of the

conformal dimension, therefore Op(E) depends only on E.
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where ωd is the volume of a unit sphere Sd. For a CFT in a thermal state of temperature T ,

εa ∼ dTT d+1 where dT is the normalization of the two-point function of stress tensor (4.20).

This motivates us to define the “thermal” length scale associated with |Ea〉 as

λT =

(
εa
dT

)− 1
d+1

∼ T−1 . (1.3)

In the thermodynamic limit with L → ∞, while keeping energy density εa finite, and

hence a finite λT , the scaling dimension ha scales with L as

ha = dTωd

(
L

λT

)d+1

. (1.4)

Applying the conformal transformation that maps the cylinder Sd × Rt to Rd+1 (the ra-

dial quantization frame) the local ETH condition (1.1) translates into a statement about

the OPE coefficient Cpab multiplying the operator Op appearing in the expansion of two

primaries Ψa and Ψ†b corresponding to |Ea〉 and 〈Eb|,

CpabL
−hp = Op(E)δab + ∆pab ,

〈Ψ†b(∞)Op(1)Ψa(0)〉 = Cpab ,

Ψa ×Ψ†b =
∑

p

CpabOp . (1.5)

We raise and lower the p index of Cpab using the Zamolodchikov metric 〈Op(1)Op(0)〉 = dp.

In the thermodynamic limit, under the assumption that (1.1) applies for any operator Op
of dimension hp, which we keep fixed as L becomes large, the equation (1.5) implies that

the OPE coefficient Cpab must scale with ha →∞ as

Cpab = h
hp
d+1
a (dTωd)

− hp
d+1 δabfp(E) +Rpab . (1.6)

Here, the correction term Rpab = Lhp∆pab ∼ e−O(h
d
d+1
a )+

hp
d+1

log ha is exponentially small in

ha, and fp(E) = λ
hp
T Op(E) is a smooth dimensionless function of E. Since there are no other

dimensionfull parameters in the problem, fp(E) then has to be a constant, independent

of E, i.e.

Cpab = h
hp
d+1
a (dTωd)

− hp
d+1 δabfp +Rpab . (1.7)

We stress that the equation (1.7) encodes the following nontrivial implications of the local

ETH. (i) Operators Op whose Cpaa grow slower than h
hp
d+1
a with ha cannot have a non-

vanishing expectation value in the thermodynamic limit, while it is impossible for the OPE

coefficient Cpab to grow faster than h
hp
d+1
a as that would imply thermodynamic limit for

such a theory does not exist. (ii) The spectrum of operators Op appearing in the OPE

of Ψa and Ψ†a is independent of specific properties of Ψa, and only depends on its scaling

dimension (energy).

Integrable systems are expected not to satisfy the local ETH. A simple example is a

two-dimensional free massless boson on a spatial circle. This theory has heavy coherent
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Figure 1. (a) The cylinder Sd×Rt frame and the Euclidean path-integral that prepares the density

matrix in the eigenstate corresponding to Ψ on subsystem B (b) The same path-integral in the radial

quantization Rd+1 conformal frame (c) The path-integral for ψETH in the radial quantization frame.

primary states eiαφ|Ω〉 with large dimension hα = |α|2/2� 1. The OPE coefficient of this

heavy state with a primary of dimension one, ∂φ, explicitly violates (1.6) since it grows as

C∂φ
eiαφ,e−iαφ

∼ α ∼
√
hα, (1.8)

while from the thermal expectation value of ∂φ we know that f∂φ on the right-hand-side

of (1.6) is zero.

Now consider a chaotic CFT in a highly excited energy eigenstate. We focus on the

reduced density matrix of a ball-shaped region B of size l inside Sd of size L and consider

the thermodynamic limit L→∞ with l kept fixed. The complement of B inside Sd will be

denoted as Bc. It was shown in [1] that the reduced density matrix ψa(B) ≡ TrBc |Ea〉〈Ea|
for the system in state |Ea〉 can be well approximated by a density matrix ψETH(B,E), to

which we will refer as an ETH density matrix. ψETH depends only on B and energy Ea

||ψa(B)− ψETH(B,E = Ea)|| ∼ e−O(S(Ea)) , (1.9)

where ‖ · · · ‖ is the trace distance. In particular, it was shown that the ETH density matrix

ψETH(B,E) can be written as

ψETH(B,E) =
∑

hp

Op(E)lhpÔp(0), Ôp = U †OpU, (1.10)

where Op denotes the family of operators which appear in the OPE of Ψa and Ψ†a, Op(E)

denotes their expectation values (1.1), and U is the unitary operator corresponding to

the conformal transformation from the Rindler frame to the radial quantization frame;

see figure 1(c). Equation (1.10) defines a density matrix on B as being prepared via a

Euclidean path-integral over Rd+1 with the specified boundary conditions “above” and

“below” B within Sd of unit radius, and the sum of local operators on the right hand side

of (1.10) inserted at the origin of Rd+1 (see figure 1). We will see later that the domain of

convergence of this sum is fixed by the conformal symmetry to be infinite.
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Expressing Op(E) in terms of constants fp of (1.7), we find that (1.10) is an expansion

in l
λT

ψETH(B,E) =
∑

p

fp

(
l

λT

)hp
Ôp(0) . (1.11)

In the low temperature regime l
λT
� 1, it is enough to keep the first few terms while in

the high temperature limit l
λT
→ ∞ one has to sum the whole series, which should be

convergent for any large but finite l/λT .

In this paper, we first give a general argument that the ETH density matrix (1.11) is

close in trace distance to the reduced density matrix of a thermal state (there are subtleties

in 2d). Thus, by denoting the set of primary (quasi-primary in 2d) operators of a CFT

that have non-zero thermal one-point functions by Atherm, we can also write (1.11) as

ψETH(B,E) =
∑

p∈Atherm

fp

(
l

λT

)hp
Ôp(0) . (1.12)

All (quasi-)primary operators that are not in Atherm, and all the descendant fields drop out

in the thermodynamic limit from the sum (1.12). We then discuss in detail the structure

of the expansion (1.11) in the low temperature regime.

Note that the reduced density matrix in the eigenstate is close to the ETH density

matrix (1.11) (before we discard descendant fields) with exponential precision in S(E),

as dictated by local ETH. However, the convergence of the ETH density matrix to the

reduced thermal state is controlled with corrections that are polynomially supressed in

S(E), as is the case anytime we compare quantities calculated in the microcanonical and

the canonical ensembles.

1. In two dimensions (d = 1), the only Virasoro primary operator which has non-

zero thermal value is the identity operator. Therefore, the ETH density matrix

ψETH(B,E) of (1.10) is solely expressed in terms of the Virasoro descendants of

identity, i.e. Op(E) that are the polynomials of stress tensors and their derivatives.

All fp’s that correpond to the quasi-primaries in the Virasoro indentity block are

fixed by the Virasoro algebra, and hence are independent of any specific properties

of the 2d CFT except for the value of the central charge. The ETH density matrix

in 2d is universal across all CFTs with the given value of central charge, thus we

refer to it as the universal density matrix. We argue that if (1.1) holds for Virasoro

primaries, the subsystem density matrix in the eigenstate is well approximated by the

universal density matrix. Furthermore, we argue that the universal density matrix in

the thermodynamic limit is close to the reduced Generalized Gibbs Ensemble (GGE)

provided we can map all their conserved charges. That is to say

ψuniv =
1

Z
trBc

(
e−βH+

∑
i µiQi

)
+O(1/

√
L), (1.13)

where the inverse temperature β and the charges µi are chosen such that the GGE has

the same value of Qi charges as the universal density matrix. The conserved charges
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Qi are the infinite set of Korteweg-de Vries integrals of motions in two-dimensional

CFTs [13]. Due to the complexity of evaluating the expectation values of Qi in the

GGE, we are not able to provide a direct support for (1.13) at this point. Note that

CFT formulation of ETH does not require (1.13) to hold. The equation (1.13) should

hold if we further assume that one can solve for µi such that the GGE has the same

values of charges Qi as the pure state.

In the limit that the central charge c goes to ∞, we show that all the µi = 0 and the

universal density matrix becomes close in trace distance to the standard Gibbs state.

This is consistent with previous results of [7, 11].2

2. In higher dimensional CFTs, in general, the polynomials of the stress tensor do not

exist in the spectrum as primary operators. Furthermore, the conformal symmetry is

a lot less restrictive than 2d, and any primary operator can have nonzero Op(E). It

is natural to expect, and we provide further support in section 2.2, that (1.11) sums

into the standard thermal ensemble

ψETH =
1

Z
trBc

(
e−βH

)
+O(1/

√
L) , (1.14)

where the inverse temperature β is again chosen such that the thermal density matrix

has the same energy E as the ETH density matrix. We provide support for (1.14)

by computing the entanglement entropy of the ETH density matrix to the order

(l/λT )2(d+1) and matching the answer with the holographic entanglement entropy

of the same subsystem as computed with the Ryu-Takayanagi formula in a black

hole background. Note that up to this order, the entanglement entropy exhibits

universality and depends only on the energy density and dT , the two-point function

of stress tensor. That is why one can match the answer with holography.

The plan of the paper is as follows. In section 2 we give a general discussion of the

relation between the ETH density matrix and that of a thermal state. In section 3 we

discuss the structure of the ETH density matrix for a two dimensional CFT in detail.

In section 4 we study the subsystem ETH in CFTs of dimensions larger than two. In

section 5 we consider states that have spatial and time dependence at scales much larger

than the subsystem size and show that the same universal density matrix remains a good

approximation to describe local physics.

2 ETH density matrix and thermal states

We start with a brief discussion of various thermal ensembles for CFTs. The goal is to

show that local ETH (1.1) implies that the expectation values of Op in eigenstates as

defined in (1.1) coincide with the thermal averages. This enables us to show that the

reduced density matrix of an energy eigenstate is close in trace distance to those of various

thermal ensembles.
2As we explain in detail in section 3 equivalence of ψETH and the reduced Gibbs state does not imply

that corresponding higher Renyi entropies for n > 1 would have to match, and we find that they, indeed,

do not match.

– 5 –
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2.1 Different ensembles

Consider a QFT with a number of global symmetries living on a sphere. The microcanonical

ensemble ρmicro(E0; {α}) is defined as an equal-weight average over all energy eigenstates

lying within a narrow band around E0 with a given set of quantum numbers {α} under

various global symmetries,

ρmicro(E0; {α}) =
1

N
∑

E∈(E0−∆,E0+∆),given {α}

|E, {α}〉〈E, {α}| . (2.1)

As always, we choose the energy band width ∆ to be much larger than the average level

spacing that scales like exp(−O(Ld)), but much smaller than the typical energy scales of

interest. Here, N is the total number of states in the band. The density matrix of the

canonical ensemble is

ρcan(β, {α}) =
1

Z{α}
e−βHP{α}, Z{α} = Tr P{α}e

−βH (2.2)

where P{α} denotes projection into the subspace of the Hilbert space with given {α}. The

grand canonical density matrix is defined as

ρgrand(β, {µ}) =
1

Z{µ}
e−βH−

∑
i µiQi , Z{µ} = Tr e−βH−

∑
i µiQi (2.3)

where Qi denote the complete set of commuting charges and {µ} denotes the collection of

the corresponding chemical potentials.

For a general quantum field theory, in the thermodynamical limit, for a local operator

O whose quantum numbers we keep fixed as the volume goes to infinity, the microcanonical,

canonical, and grand canonical averages are all equivalent by the standard arguments, pro-

vided that one chooses β and {µ} to give the average energy E0 and the average charges

{α}. For example, the micro-canonical and the canonical ensemble which average over

rotationally-invariant states (i.e. with J2 = 0 where J2 denotes the Casimir operator of

the rotation group) are equivalent to the grand canonical ensemble with the correspond-

ing µi = 0.

The equivalence of ensembles in conformal field theory is more intricate since the rep-

resentations of a conformal group are infinite dimensional. Furthermore, the states which

lie in the same representation of the conformal group in general do not have the same

energy. Let us first consider a CFT in d > 2. In this case, the conformal group is the

higher dimensional Mobius transformations, and there are no new conserved charges be-

yond the generators of the conformal transformations. For convenience, let us introduce

ρ̂
(0)
micro(E0; {J2 = 0}) as the (un-normalized) microcanonical density matrix of scalar pri-

maries with energies in a narrow band around E0, where one sums over only the energy

eigenstates which are scalar primaries. Similarly we can define ρ̂
(n)
micro(E0; {J2 = 0}) to be

the ensemble of states that descend at level n from primary states of energy E0. A state in

the subspace defined by ρ̂
(n)
micro(E0; {J2 = 0}) has energy approximately equal to E0 +O(nL).

The standard microcanonical ensemble can then be expressed as

ρmicro(E0; {J2 = 0}) =
1

N
∑

n

ρ
(n)
micro

(
E0 −O

(n
L

)
; {J2 = 0}

)
, (2.4)

– 6 –
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where N is the total number of states at energy E0 including both primaries and descen-

dants.

Now, we consider the thermodynamic limit that is L → ∞ with E0/L
d fixed. In this

limit, from (1.1) we have that for any n which does not scale with L

〈E0|O|E0〉 =
〈
E0 −O

(n
L

)
|O|E0 −O

(n
L

)〉
+O(L−1),=

〈
E

(n)
0 |O|E

(n)
0

〉
+O(L−1) (2.5)

where |E0〉 denotes a primary state while |E(n)
0 〉 denotes an n-th level descendant state of

a primary state of approximate energy E0 − O(nL); see [1]. The density of states grows

exponentially with energy

log Ω(E) ∼ O(Eα) 0 < α < 1.

The contribution of states in (2.4) with n scaling as L or larger, is exponentially suppressed

compared to the contribution of those with n = 0; hence we neglect such states. We

conclude that in the thermodynamic limit for any local operator

〈E0|O|E0〉 = Tr
(
Oρmicro(E0; {J2 = 0})

)
+O(L−1) (2.6)

and will also be the same as in the canonical and grand canonical ensembles.

A CFT in d = 2 has an infinite number of conserved charges that commute with both

L0 and L̄0. This is the KdV hierarchy of charges {Q2k+1, Q̄2k+1, k = 1, 2, · · · }. Here, the

corresponding microcanonical and canonical ensembles are denoted as

ρmicro(E0; {Q2k+1, Q̄2k+1}), ρcanonical(β; {Q2k+1, Q̄2k+1}) (2.7)

and the corresponding grand canonical ensemble is the so-called Generalized Gibbs En-

semble (GGE)

ρGGE(β; {µ2k+1, µ̄2k+1}) =
e−β(L0+L̄0)−

∑
k µ2k+1Q2k+1−

∑
k µ̄2k+1Q̄2k+1

Z
. (2.8)

Again, ρmicro(E0; {Q2k+1, Q̄2k+1}) contains descendant states. By descendants we are now

referring to Virasoro descendants. Following the same arguments as above we conclude that

〈
E0, {Q2k+1, Q̄2k+1}|O|E0, {Q2k+1, Q̄2k+1}

〉
= Tr

(
Oρmicro(E0; {Q2k+1, Q̄2k+1})

)
. (2.9)

The same holds also for the canonical ensemble and the GGE, provided we assume an

appropriate growth of the density of states Ω as a function of Q.

2.2 Equivalence of reduced density matrices

We now present a general argument showing that given (2.6), the reduced density matrix

for a region B of |E0〉〈E0|, and the ETH density matrix ψETH are close in trace distance

to the reduced state ρ of the subsystem B of a thermal state (the two-dimensional case is

different and will be discussed in more depth in section 4). The argument works for any of

the three ensembles mentioned earlier.

– 7 –
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The reduced density matrix of a region B is a map from the observables living on B to

the expectation values. In conformal field theory, if B is a topologically-trivial region the

set of local operators on B provide a basis for all operators in B. One can compute the

expectation value of a k-point function of operators local in the subsystem B in a reduced

state such as ρ or ψETH by successively applying OPEs to reduce the k-point function

to a one-point function. This is possible because neither ρ nor ψETH have any operator

insertions in their corresponding Euclidean path-integrals that limits the domain of the

convergence of OPEs on the subsystem.

Consider any two reduced density matrices ρ and σ whose Euclidean path-integral

definitions do not involve any operator insertions that limits the subsystem OPE. We will

now show that ρ = σ if and only if they have the same expectation value for all the local

operators. The proof is a simple application of the Pinsker inequality:

‖ρ− σ‖2 ≤ 1

2
(S(ρ‖σ) + S(σ‖ρ)) = Tr ((ρ− σ)(Kσ −Kρ)) (2.10)

where Kρ and Kσ denote the modular operators for ρ and σ, respectively. The modular

operators of both ρ and σ can be expanded as

K =
∑

p

lhp−(d−1)

∫

x
fp(x)Op(x)+

∑

p,q

lhp+hq−2(d−1)

∫

x,y
fp,q(x,y)Op(x)Oq(y)+· · · (2.11)

where p sums over the set of all local operators. We can use the OPEs of operators in

conformal field theory to reduce the expression above to an infinite sum over local operators

K =
∑

p

lhp−(d−1)

∫

x
f̃p(x)Op(x) . (2.12)

From (2.10) it then follows that if all the one-point functions of local operators match

then the density matrices are the same. Now, imagine that the two density matrices have

matching one-point functions of local operators up to precision ε� 1:

Tr ((ρ− σ)Op) = εOρ,σ(p) (2.13)

Then, from the analysis above, we claim that the relative entropy is order ε, which implies

that the density matrices are close. One might worry that the sum over infinite terms (the

coefficient of ε) can diverge. In this case the relative entropy will diverge which implies that

ρ and σ have support on unequal subspaces in the Hilbert space. However, in a continuum

field theory we believe that all finitely excited energy density matrices are full rank.3

In our case, we are comparing ψETH with the reduced state of a thermal density

matrix. From (2.6), the one-point functions of local operators in these two states match

up to volume suppressed corrections ε ∼ 1/L. We thus conclude that the states are close

in trace distance up to volume suppressed corrections.
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Figure 2. (a) The cylinder Sd × Rt conformal frame (b) The radial quantization Rd+1 conformal

frame. (c) The Rindler frame: the conformal frame convenient for the study of the density matrix

on subsystem B.

3 Two dimensional CFTs

In this section, we explore the structure of ψETH (1.11) for a general two-dimensional CFT.

We show that it is universal across all CFTs of the same central charge. That is to say

that the density matrix is comprised of only the polynomials of the stress tensor and the

derivative operator, and thus does not depend on any specific structure of a CFT other

than the central charge. The ETH density matrix (ψETH) enables us to compute the Renyi

and entanglement entropies for primary energy eigenstate. In next section, we will compare

these quantities with those of a generalized Gibbs ensemble.

3.1 Universal reduced density matrix

Consider a two-dimensional CFT on S1 × Rt, where the circle has radius L, in an energy

eigenstate |ψ〉 of energy E. We take the subsystem B to be an interval of length 2l. We will

work with a Euclidean time and it is convenient to use complex coordinates w = t+iσ with

σ ∈ [0, 2πL]. In radial quantization, with z = e
w
L , |ψ〉 and 〈ψ| are mapped to operators

Ψ(0) and Ψ†(+∞) of dimension h = EL, and B is on the unit circle between −θ0 and θ0

with θ0 = l
L . The energy density is

ε =
E

2πL
=

h

2πL2
. (3.1)

In the thermodynamic limit we take L → ∞ with l and ε fixed, and thus h ∝ L2 → ∞.

We define the thermal length as

λT =

(〈ψ|T00|ψ〉
dT

)−1/2

=

(
2πh

cL2

)−1/2

, (3.2)

dT = 2〈T00T00〉 =
c

2π2

where T00 = 1
2π (T + T̄ ).

3If a density matrix is not full rank it means that the state where it was reduced from can be killed by a

local operator with support only on the subsystem, that is the projector to the eigenvector with eigenvalue

zero. This violates the “separating” property of the states of a von Neumann algebra. In the algebraic

formulation of quantum field theory, the states are often chosen to be cyclic and separating [14].
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A convenient conformal frame to study the reduced density matrix of B is the Rindler

frame in which the subsystem is mapped to the negative half-line see figure 2:

ω =
z − q
qz − 1

, q = eiθ0

dzdz̄ = Ω(ω)Ω̄(ω̄)dωdω̄, Ω(ω) =
(q2 − 1)

(qω − 1)2
. (3.3)

The operators Ψ(0) and Ψ†(+∞) are mapped to ω− = q and ω+ = q−1, respectively. This

is the two dimension version of the map written introduced in [1]; see appendix A. The key

observation of [1] is that in the thermodynamical limit, where we take L → ∞ and keep

l fixed, ω± → 1 and ω− − ω+ = 2i sin θ0 → 0. The insertions of Ψ and Ψ† can then be

replaced by their OPEs, and the reduced density matrix for region B in the Rindler frame

can be written as4

ψ̃ = Ψ(ω−, ω̄−)Ψ(ω+, ω̄+) =
∑

p

∑

m,n≥0

(ω−−ω+)hp+m(ω̄−− ω̄+)h̄p+nCp,p̄,m,nΨΨ ∂m∂̄nOp (3.4)

where Op is a quasi-primary of dimension (hp, h̄p). It should be understood that ∂m∂̄nOp
is inserted at ω = 1 which we have suppressed.

The expression (3.4) can be further simplified with the following two observations:

1. The ratios of the OPE coefficients

Cp,p̄,m,nΨ,Ψ

Cp,p̄,0,0Ψ,Ψ

(3.5)

is finite (see also appendix B for explicit expressions). Thus, in the thermodynamic

limit the operators with spatial derivatives are 1/L suppressed as they are multiplied

with extra powers of (ω− − ω+)m(ω̄− − ω̄+)n → 0 for m,n > 0. We can keep only

the terms with m = n = 0.

2. From (1.5) the OPE coefficient for quasi-primary Op,p̄ is given by

Cp,p̄Ψ,Ψ =
L(hp+h̄p)

dp,p̄
Op,p̄(E) (3.6)

where we have now allowed an arbitrary normalization factor dp,p̄ for two-point func-

tion of Op,p̄. We then have

(ω− − ω+)hp(ω̄− − ω̄+)h̄pCp,p̄ΨΨ = ihp−h̄p
(2l)hp+h̄p

dp,p̄
Op,p̄(E) (3.7)

where we have used that in the thermodynamic limit 2 sin θ0L = 2θ0L = 2l. Local

ETH implies that Op,p̄ is, up to corrections suppressed in L, the same as the one-

point function in the canonical ensemble. The thermal one-point functions of quasi-

primaries which are outside the identity Virasoro block vanish in the L→∞ limit as

4We use tilde to denote density matrices in ω coordinates: ψ̃ = U†ψU where U is the unitary that

implements the conformal transformation.

– 10 –



J
H
E
P
0
3
(
2
0
1
8
)
0
7
0

they can be mapped to one-point functions on a complex plane.5 This implies that

the contribution of any operator outside of the identity Virasoro block vanishes.

We thus conclude that

ψ̃ '
∑

(p,p̄)∈Viraosoro identitiy block

ihp−h̄p
(2l)hp+h̄p

dp,p̄
Op,p̄(E)OpOp̄ . (3.8)

The Virasoro algebra fixes the dimensions of the operators in the above sum to positive

integers. We can organize the sum (3.8) in terms of quasi-primaries of dimension k and

k̄ constructed from the holomorphic (anti-holomorphic) stress tensor and its derivatives.

More explicitly, Op in (3.8) are given by T (α)
k ’s which can be schematically written as6

T (α)
k =

∑

k1+k2=k

c
(α)
k1k2

∂k1T k2 (3.9)

and satisfies the quasi-primary constraint (Ln denote the Virasoro operators)

L1T (α)
k = 0. (3.10)

At any positive integer k there are several linearly independent T (α)
k that solve the above

quasi-primary constraint, which are labeled by index α. We show in appendix C, for k even

(odd) only one (none) of them survives the thermodynamic limit which is the one with the

T k term in it. We take α = 0 to be the surviving quasi-primary at each level. The same

holds for the anti-holomorphic OPE coefficients. Then (3.8) becomes

ψ̃ '
∑

k,k̄∈N

ik−k̄
(2l)k+k̄

d2kd2k̄

Ok,k̄(E)T (0)
2k T̄

(0)

2k̄
(3.11)

where

Ok,k̄(E) = 〈ψ|T (0)
2k T

(0)

2k̄
|ψ〉, 〈T (0)

2k (z)T (0)
2k 〉 =

d2k

|z|4k . (3.12)

Operator T (0)
2k is a polynomial of order k in holomorphic stress tensor T that starts

with T k ≡ (T (T . . . (TT ))). The first few T (0)
2k are computed in appendix C:

T (0)
2 = T, T (0)

4 = (TT )− 3

10
∂2T

T (0)
6 = (T (TT )) +

9(14c+ 43)

2(70c+ 29)
(∂T∂T )− 3(42c+ 67)

4(70c+ 29)
∂2(TT )− (22c+ 41)

8(70c+ 29)
∂4T

d2 =
c

2
, d4 =

c(5c+ 22)

10
, d6 =

3c(2c− 1)(5c+ 22)(7c+ 68)

4(70c+ 29)
. (3.13)

5In fact, one can compute the one-point function of primaries on a torus with the modular parameter

β/L� 1, and see that the finite-size corrections are exponentially suppressed in volume, see appendix D.
6The expression below should be understood as summing over different ways the derivatives are dis-

tributed among T ’s.

– 11 –



J
H
E
P
0
3
(
2
0
1
8
)
0
7
0

For large h, we have

〈ψ|T (0)
2k |ψ〉 ' 〈ψ|T k|ψ〉 ' L−2k (L−2)k〈ΨΨ〉

〈ΨΨ〉 = (h/L2)k =

(
c

2πλ2
T

)k
(3.14)

where we have used (3.2) and all the other terms in T (0)
2k are suppressed in h:

〈ψ|∂mT |ψ〉
〈ψ|T 1+m/2|ψ〉 ∼ h

−m/2 � 1. (3.15)

We thus find that

ψ̃ '
∑

k,k̄∈N

ik−k̄
(

2l√
2πλT

)2(k+k̄) ck+k̄

d2kd2k̄

T (0)
2k T̄

(0)

2k̄
. (3.16)

The set of thermodynamically relevant observables are those with non-vanishing expec-

tation value in |ψ〉. From the local ETH we know that this set does not include any

operator outside of the Virasoro identity block. The translation-invariance of |ψ〉 further

implies that among the operators in the identity block only quasi-primaries have a chance

of having a non-zero expectation value, because the descendants of quasi-primaries have the

derivative operator which are suppressed by 1/L. The quasi-primaries of dimension k can

be organized in the orthonormal basis introduced in appendix C. Since only T2k appear

in the universal density matrix ψ̃, they are the only quasi-primaries with non-vanishing

expectation value in |ψ〉.
To conclude this subsection we stress that the reduced density matrix (3.16) is universal

across all two-dimensional CFTs.

3.2 Renyi entropies

Renyi entropies are invariant under unitary transformations. Hence, we can directly com-

pute them in the Rindler conformal frame. The n-th Renyi entropy of a spinless quasi-

primary state (h = h̄) is given by the Euclidean path-integral over an n-sheeted complex

plane with 2n operators inserted at q and q−1 on each sheet.7 This manifold is topologically

a Riemann sphere, and can be uniformized to one sheet using the map z = ω1/n. Then,

∆Sn(ψ, l) =
1

1− n log

(
n−4nhψ

〈∏n−1
j=0 Ψ(zj,n, z̄j,n)Ψ(z′j,n, z̄

′
j,n)〉

〈Ψ(z0,1, z̄0,1)Ψ(z′0,1, z̄
′
0,1)〉n

)
(3.17)

=
4nhψ
1− n log

(
sin( lL)

n sin( l
nL)

)
+

1

1− n log

(
〈∏n−1

j=0 Ψj(zj,n, z̄j,n)Ψj(z
′
j,n, z̄

′
j,n)〉

∏n−1
j=0 〈Ψj(zj,n, z̄j,n)Ψj(z′j,n, z̄

′
j,n)〉

)

where zj,n = ei(2πj+l/L)/n and z′j,n = ei(2πj−l/L)/n. Using the universal OPE of Ψ in the

thermodynamic limit we find

∆Sn(ψ,l) =
(n+1)c

12πn
(2l/λT )2+

1

1−n log
〈 n∏

j=1

∑

kj ,k̄j∈N

(
4cl2

2πn2λ2
T

)kj+k̄j T2kj (zj,n)T2k̄j
(z̄j,n)

d2kjd2k̄j

〉
.
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Figure 3. Renyi entropies correspond to 2n-point function of the operator that creates the state.

Figure 3 illustrates the expansion above. The n-point functions in the vacuum block

are universal. In appendix F we compute Renyi entropies perturbatively in subsystem size

up to order O
(
(l/λT )8

)
and find

∆Sn(ψ, l) =
(1 + n)c

12πn
(2l/λT )2 − (1 + n)c

120π2n
(2l/λT )4 (n2 + 11)

12n2
(3.18)

+
(1 + n)c

630π3n
(2l/λT )6 (4− n2)(n2 + 47)

144n4
− (1 + n)c

2800nπ4
(2x/λT )8s8(n, c) + · · ·

with

s8(n,c) =
88(n2−9)(n2−4)

(
n2+119

)
+c
(
−13n6+1647n4−33927n2+58213

)

5184(5c+22)n6
. (3.19)

The authors of [10] computed the Renyi entropies above to the eighth order in the large c

limit. The equation (3.18) is consistent with their result.

3.3 Generalized Gibbs ensembles

In this section, we explore the relation between the ETH density matrix ψETH computed

in the last section with that of a Generalized Gibbs Ensemble (GGE). The comparison of

observables in these two states can be used to study distinguishibility of the corresponding

density matrices. Due to the complexity of computing the value of observables in a GGE,

our comparison is, so far, incomplete. We hope this discussion can set the stage for future

investigations of the properties of GGE.

Two-dimensional CFTs have an infinite number of conserved charges, which are the

KdV hierarchy of charges {Q2k−1, Q̄2k−1, k = 1, 2, · · · } constructed from the polynomials

of stress tensor [13, 15]

Q2k−1 =
1

2πi

∮
dωJ2k(ω) ,

[Q2k−1, Q2l−1] = 0 , (3.20)

7Due to the Zn symmetry of this correlator one can alternatively compute it using a 4-point function

with twist operators in a Zn orbifold theory. This is done in appendix F.
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with the first few local currents given by

J2 = T, J4 = (TT ), J6 = (T (TT ))− c+ 2

12
(∂T∂T ). (3.21)

On a cylinder of circumference 2πL the first two charges are

Q1 =
1

L

(
L0 −

c

24

)

Q3 =
1

L3

(
2

∞∑

n=1

L−nLn + L2
0 −

c+ 2

12
L0 +

c(5c+ 22)

2880

)
. (3.22)

A Virasoro primary |ψ〉 is a simultaneous eigenstate of {Q2k−1, Q̄2k−1, k = 1, 2, · · · },
with all the eigenvalues {q2k−1, q̄2k−1, k = 1, 2, · · · } fixed in terms of only the conformal

dimension hψ = EL. For example, the charges associated to Q1 and Q3 are

q1 = L−1
(
hψ −

c

24

)
, q3 = L−3

(
h2
ψ −

c+ 2

12
hψ +

c(5c+ 22)

2880

)
. (3.23)

In what follows we assume that the hypothesis of local ETH (1.1) holds for any suf-

ficiently excited Virasoro primary Ψ. As we discussed in section 2, we expect that ψETH

for the eigenstate |ψ〉 prepared from Ψ to be close in trace distance to the reduced density

matrix of the GGE

ρGGE = Z−1 exp

(
−
∞∑

k=1

(
µ2k−1Q2k−1 + µ̄2k−1Q̄2k−1

)
)
, (3.24)

where the chemical potentials {µ2k−1, µ̄2k−1} are chosen to match the set of charges

{q2k−1, q̄2k−1} of |ψ〉. If correct, (3.24) would provide a non-trivial consistency check of

the local ETH hypothesis. In the thermodynamic limit the KdV charges of a Virasoro

primary are easy to compute:

q1

L
= 2πε,

q3

L
= (2πε)2, · · · , q2k−1

L
= (2πε)k, · · · (3.25)

where ε is the energy density.

To proceed further, we assume that the central charge c is large. In the c→∞ limit,

all µ2k−1 except µ1 = β vanish; thus we recover the standard Gibbs ensemble [11, 16]. To

see this, note that in the large c limit (see the next subsection for a derivation)

1

Z
Tr
(
J2ke

−βH
)

=

(
π2c

6β2

)k
. (3.26)

The two-dimensional thermal energy density is

ε(β) =
cπ

6β2
. (3.27)

Matching this with the energy density in the eigenstate, using (1.3) and the definition of

dT in (3.2), we find

λ2 =
3β2

π3
. (3.28)
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In the next subsection, we use this change of parameters to compare the one-point functions

in the energy eigenstate in (3.14) with those of the thermal state in (3.26) in the c → ∞
limit and they match exactly.

The reduction of the conventional Gibbs ensemble e−βH/Z is only matching the ETH

density matrix in the infinite central charge limit. The necessity to modify it when the

central charge is finite is suggested by the non-zero values of KdV charges (3.25). His-

torically, first indication that the excited primary state is locally different from thermal

state came from the comparison of entanglement and thermal entropies in [10], although it

should be noted that such a discrepancy by itself does not immediately preclude the cor-

responding density matrices to be trace-distance close [1, 5]. A direct comparison of local

observables unambiguously showing that ETH density matrix can not match the canonical

one was soon performed in [11], with more analysis probing finite 1/c corrections in an

attempt to match ETH density matrix with the GGE one following in [12]. In this paper

we further investigate this question. The main unresolved challenge here is to compute the

expectation value of KdV currents in the GGE at finite c. Despite the fact that for larger

k corresponding µ2k−1 are suppressed by the increasingly negative powers of c, we find

a strong indication that one cannot perform a perturbative analysis by truncating (3.24)

to finite number of µ’s even for the next to the leading order in the 1/c expansion (see

appendix G). Hence to complete the check, one needs a truly non-perturbative expression

for (3.24) both in terms of powers and numbers of included µ’s. We leave this task for a

future investigation.

In the limit ha � c � 1, the universal density matrix in (3.16) simplifies and expo-

nentiates (see appendix C)

ψ̃ = e(DaT+D̄aT̄ ), a2 =
(2πL)2

12β2
(3.29)

Da = a2 − a4

10× 2!
∂2 +

11a6

70× 4!
∂4 − 9a8

140× 6!
∂6 − 34a10

1925× 8!
∂8 + · · · . (3.30)

This is because at large c
1

d2k
' 2k

k!ck
, (3.31)

and we have used the change of parameters in (3.28). Note that in order to properly define

the operator ψ̃ one has to smooth out the exponent on a circle of radius ε around z = 0

where the operator is inserted:

〈ψ̃ · · ·〉 = 〈e
∮
r=εDaT+D̄aT̄ · · ·〉 (3.32)

3.4 Matching with thermal density matrix in the infinite c limit

In two dimensions, the thermal cylinder is conformally flat, therefore the expectation value

of any operator that is outside of the Virasoro identity block vanishes in the Gibbs state.

The translation-invariance further restricts the set of observables with non-vanishing ther-

mal one-point function to the quasi-primaries. Below, we show that at large c the thermal

expectation value of T2k scales as ck, whereas the expectation value of other quasi-primaries

of the same conformal dimension scale with lower powers of c.
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The current J2k is a polynomial of order k in stress tensor, where the normal-ordered

operator (T k) = (T (T · · · (TT ))) is defined by isolating the distance independent term in

the OPE:

(AB)(ω) = lim
ω1→ω

(A(ω1)B(ω)− divergent terms)

=
1

2πi

∮
dω1

(ω − ω1)
A(ω1)B(ω), (3.33)

where in the second line the normal ordering is imposed by a Cauchy integral. In a

thermal state

tr(ρβ(TT )(ω)) =
1

2πi

∮

ω

dω1

ω1 − ω
tr(ρβT (ω1)T (ω))

tr(ρβ(T (TT ))(ω)) =
1

2πi

∮

ω

∮

ω

dω1dω2

(ω − ω1)(ω − ω2)
tr(ρβT (ω1)T (ω2)T (ω)). (3.34)

At large central charge, the multi-point thermal correlators are dominated by the discon-

nected piece:

tr(ρβT (x1) · · ·T (xk)) = tr(ρβT (x))k (1 +O(1/c)) =

(
π2c

6β2

)k
(1 +O(1/c)) . (3.35)

Plugging this in the right hand side of (3.34), and performing the Cauchy integral we obtain

tr(ρβ(T k)) =

(
π2c

6β2

)k
(1 +O(1/c)) . (3.36)

Now, consider a quasi-primary that is not Tk. The first non-trivial such quasi-primary

appears at dimension six:

A = (∂T∂T )− 2

9
∂2(TT ) +

1

42
∂4T. (3.37)

The normal-ordering is imposed by

tr(ρβA(ω)) = tr(ρβ(∂T∂T )(ω)) =
1

2πi

∮

ω

dω1

ω1 − ω
tr(ρβ∂T (ω1)∂T (ω)) = O(c), (3.38)

where we have used the fact that the thermal state is translation-invariant in space and

time; hence, the disconnected piece of the expectation value on the right hand side is zero.

The same conclusion applies to all other quasi-primary operators in the Virasoro identity

block that are not T2k, as they also can be considered as multi-trace operators with at

least one factor containing derivatives. If we redefine the stress tensor in the large c limit

according to T̃ = T/c, the expectation value of T2k become order one, while the expectation

value of any other quasi-primary in the Virasoro identity block is suppressed by negative

powers of c. Thus, the only operators with non-vanishing expectation values in this limit

are T2k.

– 16 –



J
H
E
P
0
3
(
2
0
1
8
)
0
7
0

The quasi-primary operators T2k and the KdV charges J2k are both polynomials of

order k in T and start with (T k). The derivative terms are different, however, as we just

discussed the derivative terms are suppressed in large central charge. Therefore,

tr(ρβT2k) = tr(ρβJ2k) =

(
π2c

6β2

)k
(1 +O(1/c)) (3.39)

This is the same answer as the one-point functions in the eigen-state (3.14) after we replace

β2 = π3λ2
T /3. Since there are no other thermodynamically-relevant observables we have

found that all the one-point functions of the eigenestate matches of those of the Gibbs

state in the large central charge limit. Thus, in the large c limit we have proved that the

universal density matrix of a Virasoro primary eigenstate is indistinguishable from that of

the Gibbs state.

It is interesting to compare the Renyi entropies in the thermal state with the eigenstate

in the large c limit. We can take a large c limit in the low temperature expansion in (3.18)

the perturbation theory of small x/λT :

∆Sn(ψ, x) =
(1 + n)c

12nπ
(2x/λT )2 − (1 + n)c

120nπ2

(n2 + 11)

12n2
(2x/λT )4

+
(1 + n)c

630nπ3

(4− n2)(n2 + 47)

144n4
(2x/λT )6 − (1 + n)c

2800nπ4
(2x/λT )8s8 + · · · (3.40)

with

s8 =
−13n6 + 1647n4 − 33927n2 + 58213

25920n6
. (3.41)

It is clear that the Renyi entropies for n > 1 do not acquire thermal values given by

∆Sn(β, x) =
(n+ 1)c

6
log

(
β

2πx
log

(
2πx

β

))

=
(1 + n)c

12nπ
(2x/λT )2 − (1 + n)c

120nπ2
(2x/λT )4 +

(1 + n)c

630nπ3
(2x/λT )6 + · · · (3.42)

where in the second line we have used the change of parameters in (3.28). This is in

contrast with the entanglement entropies of the states that match to the eighth order that

we have computed.

In the large c limit, one can in fact compute the dominant c piece of the entanglement

entropy of the eigenstate non-perturbatively for finite values of l/λT . In section 3.2, we

computed the Renyi entropies directly by constructing the partition function that repre-

sents tr(ρ2) and uniformizing it. An alternative method to compute the Renyi entropy

of the eigenstate is computing the four-point function of twist operators with Ψn in an

orbifold theory; see (F.1) of Appenix F. The assumption of local ETH tells us that only

the Virasoro identity block contributes to the correlator

G4(z, z̄) = 〈Ψn(∞)σn(z, z̄)σn(1)Ψn(0)〉, (3.43)

where z = eix/L. The leading c piece of the contribution of the Virasoro identity block

to the four point function above in the large c limit was found by solving the monodromy
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equation for n near n = 1 in [7]:

logG4(z, z̄) ' c(1− n)

6
log

(
z(1−αψ)/2z̄(1−ᾱψ)/2(1− zαψ)(1− z̄ᾱψ)

αψᾱψ

)
+O((n− 1)2)

αψ ≡ i
√
hψ
24
. (3.44)

The entanglement entropy computed this way from the identity block in the large c

limit matches the entanglement entropy in the Gibbs state for any l/β. Note that here

we are working in the limit where hψ � c � 1, which in the language of [7] translates to

hψ = αc, c� 1 and α� 1. In our approach the assumption of local ETH guarantees that

only the Virasoro identity block dominates. However, the authors of [7] assumed a sparse

spectrum of low-dimension operators to truncate to the identity block.

4 Higher dimensional CFTs

In this section, we first discuss the general structure of the ETH density matrix in higher

dimensions, and then compute the entanglement entropy to the leading nontrivial order in

l/λT expansion. We compare the result to the holographic entanglement entropy computed

using the Ryu-Takayanagi formula at this order and find agreement. The intuition is that

even though our CFT computation does not assume large N or strong coupling, at this

order the answer is universal because it depends only on dT that is the normalization of

the two-point function of stress tensor. To match the entanglement entropies we have to

set the coefficient dT to be (4.28), as is required in a holographic CFT. This provides a

consistency check of the local ETH.

4.1 ETH density matrix

We observed that in two dimensions assuming local ETH implies that only the polynomials

of stress tensor propagate in the thermodynamic limit of OPE. Here, we consider density

matrices in primary energy eigenstates of higher-dimensional CFTs satisfying local ETH. A

generalization of the map introduced in (3.3) (see appendix A) maps the radial quantization

frame to the Rindler frame. In Rindler coordinates, the subsystem B is mapped to the

negative half-space X1 < 0, and the operators that create and annihilate the state are,

respectively, at X−µ and X+
µ . Since X±i>2 = 0 we can use the two-dimensional complex

coordinates to describe their location: X−0 +iX−1 = e−iθ0 = 1/q and X+
0 +iX+

1 = eiθ0 = q.8

The distance between the two operators in these coordinates is 2 sin θ0 ' 2l/L. The

operator product expansion in the thermodynamic limit l/L→ 0 becomes

Ψ(X+
µ )Ψ(X−µ )

〈Ψ(X+
µ )Ψ(X−)〉 '

∞∑

p

Cp,n̂ψψ |~n|hpOn̂p (X−µ ) =
∞∑

p

f n̂p (l/λT )hpOn̂p (X−µ ) (4.1)

where X+
µ = 2 sin θ0n̂µ+X−µ , n̂ is the unit vector in the X0 directions, and we have dropped

the descendant fields because their contribution is 1/L suppressed. The operator On̂p is a

8Note that compared to the two-dimensional map the location of ω− and ω+ are swapped.
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primary with spin with its indices contracted with n̂ according to

On̂p = (n̂µ1 n̂µ2 · · · − traces) (Op)µ1µ2···

Cp,n̂ψψ =
〈Ψ(∞)On̂p (1)Ψ(0)〉

〈On̂p (1)On̂p (0)〉〈Ψ(∞)Ψ(0)〉 , (4.2)

and finally fp is defined by

f n̂p = (2λT /L)hpCpψψ =
〈ψ|On̂p |ψ〉
dp,n̂

(2λT )hp

dp,n̂ = 〈On̂p (1)On̂p (0)〉. (4.3)

It is customary to define a coefficient dp that is independent of n̂ in the following way:

〈(Op)µ1···µm(xµ)(Op′)ν1···νm(0)〉 = dpδpp′ |x|−2hpIµ1···µm,ν1···νm , (4.4)

where the tensor Iµ1···µm,ν1···νm is fixed by conformal symmetry [17, 18]. Every CFT has a

stress tensor that is a primary of dimensions d + 1. The energy density in primary state

|ψa〉 is

ε =
E

Ldωd
=

ha
Ld+1ωd

, (4.5)

where ωd is the volume of the unit sphere Sd. As an example, consider the term in the

OPE expansion (4.1) that corresponds to stress tensor

ε

dT,τ
(2l)(d+1) (n̂µn̂ν − δµν/(d+ 1))Tµν =

d+ 1

d

(
2l

λT

)(d+1)

(n̂µn̂ν − δµν/(d+ 1))Tµν ,

λT =

(
ε

dT

)−1/(d+1)

(4.6)

where λT is the length associated with the energy density, and dT is the central charge

defined by the two-point function of stress tensor:

〈Tµν(u)Tαβ(v)〉 =
dT

|u− v|2(d+1)
Sµν,αβ(u− v),

Sµν,αβ(u) =
1

2
(Iµα(u)Iνβ(u) + (µ↔ ν))− 1

d+ 1
δµνδαβ

Iµν(u) = δµν −
2uµuν
|u|2 . (4.7)

To obtain the density matrix in the thermodynamic limit we have to study the OPE

in (4.1) in more detail. From the equivalence of the microcanonical ensemble and the

thermal ensemble we expect the coefficient

fp '
(2λT )hp

dp
tr(ρTOp) (4.8)

to have the interpretation of a thermal one-point function up to volume suppressed correc-

tions, where the thermal state is chosen to have the same energy density as the eigenstate
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|ψ〉. In two dimensions, we saw that thermal one-point functions vanish which let to a

truncation of the OPE to only the Virasoro identity block. However, in higher than two

dimensions thermal one-point functions do not vanish, and fp are, potentially, non-zero.

One way to obtain universality in higher dimensions is by restricting the class of

higher dimensional theories we study; for instance the holographic theories. In holographic

CFTs the thermal one-point function of conformal primaries are 1/N suppressed except for

operators constructed from the stress tensor. Tn large N CFTs resemble two-dimensional

CFTs in the sense that they have multi-trace operators Tm in their spectrum that are

primaries of conformal dimension m(d+ 1), up to 1/N corrections. In holographic theories

the thermal correlator is essentially classical, that is to say the thermal variance of the

operator T is 1/N suppressed:

tr(T 2ρT )− tr(TρT )2 = O(1/N) (4.9)

Therefore, from local ETH and the equivalence of ensembles one expects CT
m

ψψ ∼ hm which

implies that they survive the thermodynamic limit and contribute to Atherm. In holographic

theories, Tm are in Atherm and one needs to include them in the sum in the definition of

the “universal” density matrix.9

4.2 Entanglement entropy from ETH density matrix

As opposed as two-dimensional case, the ETH density matrix in (4.1) is not universal.

That is to say that at finite central charge we only know one operator in the set of thermo-

dynamically relevant operators Atherm. If we try to repeat our low temperature analysis of

the ETH density matrix in d > 2 we need to make further assumptions about the spectrum

of the theory.

Let us assume that there are no relevant primary operators in the set Atherm. In other

words, we are assuming that fp = 0 for all operators Op in (4.1) with hp < d. Then, to the

first non-trivial order the ETH density matrix is

tr(ψ̃ · · · ) '
〈(

1 +

(
d+ 1

d

)(
2l

λT

)d+1

n̂µn̂νTµν + · · ·
)
· · ·
〉
. (4.10)

In a CFT the operator T µ
µ = 0 in flat space. Now, we can compute the entanglement

entropy of the ETH density matrix at this order and compare it with the reduced density

matrix of the Gibbs state. Renyi entropies are unitarily invariant, and it is more convenient

9At finite central charge the only primaries one can construct from T are large spin operators of

type (TT )n,l ≡ T∂µ1 · · · ∂µl(∂
2)nT . In fact for large l there are operators of this type for all m ∈ N:

(Tm)(n1,l1)···(nm,lm) = ((TT )n1,l1Tn2,l2) · · ·Tn,lm). However, every derivative suffers a 1/L suppression and

hence one expects their OPE coefficients to scale, at best, as hm rather than hm+(2n+l)/(d+1) that is required

to survive the thermodynamic limit. An explicit calculation of the OPE coefficients C
[TT ]n,l

ψψ confirms this

expectation [9]. This calculation is done assuming that the spin is largest parameter. However, for our case

of interest we want the conformal dimension of the operator to be much larger than its spin which is much

larger than one. It is plausible that in our limit of interest these operators survive the thermodynamic limit

and contribute to Atherm. We thank Liam Fitzpatrick and Sasha Zhiboedov for pointing this out to us.
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to compute the entanglement entropy in Rindler coordinates. The vacuum-subtracted

Renyi entropy in primary state |ψ〉 is given by

∆Sn(ψ, l) =
1

1− n log
〈∏n

j=1 ψjψj〉(2πn)

〈ψψ〉(2π)
(4.11)

where the subscript (2πn) refers to the angle around the boundary of B: X0 = X1 = 0 in

Rindler space. We denote the generator of rotation around this hypersurface as ∂τ :

X0 + iX1 = ω, ω/ω̄ = e2iτ . (4.12)

We are interested in entanglement entropy which is found from the n→ 1 limit of

∆S(ψ, l) = δ(1)S + δ(2)S

δ(1)S = −∂n
[
n log

〈ψψ〉(2πn)

〈ψψ〉(2π)

]

n→1

δ(2)S = −∂n log

[
〈∏n

j=1 ψjψj〉(2πn)

〈ψψ〉n(2πn)

]

n→1

. (4.13)

Our calculation closely follows the method used in [19], and uses the Hamiltonian language:

〈ψψ〉(2πn) = tr
(
e−2πnHP(ψψ)

)
(4.14)

where P is the path-ordering operator in the Euclidean space. The first term in (4.13) is

the change in the expectation value of the vacuum modular operator H:

δ(1)S=−
∂ntr(e

−2πnHP(ψψ))
∣∣∣
n→1

〈ψψ〉(2π)
=

2π〈Hψψ〉(2π)

〈ψψ〉(2π)
=

2πωd−1εl
d+1

d(d+2)
=

2πωd−1dT
d(d+2)

(
l

λT

)d+1

ωd−1 =
2πd/2

Γ(d/2)
. (4.15)

This is the so-called first law of entanglement entropy; for small variation of density matrix

δS = 2πδH, where H is the generator of Euclidean rotation in the τ direction. The

second term in (4.13) is the relative entropy of the eigenstate with respect to the vacuum

reduced to the subsystem B: S(ψ‖σ). The task is to compute the relative entropy above

perturbatively in powers of l/λT .

Since Ψ’s approach each other pairwise in Rindler space, one can use the flat space

OPE. At the next-to-leading order the entanglement entropy is

δ(2)S =
(d+ 1)2

d2

(
2l

λT

)2(d+1)

∂n


n

2

n−1∑

j=1

G00
n (2πj)



n→1

Gµνn (2πj) = 〈Tµµ(0)Tνν(2πj)〉(2πn), (4.16)

where the index 0 signifies the X0 in Rindler coordinates. We follow the method advocated

in [19] to analytically continue the expression above in n:

Aµν(n) =

n−1∑

j=1

Gµνn (2πj) =

∫

C

ds

2πi

Gµνn (−is)
es − 1
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s s0 0

2⇡n2⇡n

···

···

CC

(a) (b)

Figure 4. (a) The path-integral over complexified τ picks up n poles at τ = 2πj. (b) The contour

C is deformed to run over (−∞+ i(2πn− ε),∞+ i(2πn− ε)) and (∞+ iε,−∞+ iε).

where s is the complexified τ angle. The contour C is deformed to run over (−∞+ i(2πn−
ε),∞+ i(2πn− ε)) and (∞+ iε,−∞+ iε); see figure 4:

Aµν(n) =

∫ ∞

−∞

ds

2πi

(
Gµνn (−is+ ε)

es+iε − 1
− Gµνn (−is+ 2πn− ε)

es+2πin−iε − 1

)
(4.17)

The analytic continuation is the choice to set e2πin = 1 in the denominator.

∂nG
µν
n (−is+ ε)

∣∣
n→1

= ∂ntr
[
e−2πnHTµµ(0)Tνν(s+ iε)

]
n→1

= −2πtr
[
e−2πHHTµµ(0)Tνν(s+ iε)

]

and

∂nA(n)µν
∣∣
n→1

= i

∫ ∞

−∞
ds

[
tr(e−2πHHTµµ(0)Tνν(s+iε))

es+iε−1
− tr(e

−2πHHTµµ(s−iε)Tνν(0))

es−iε−1

]

The second term can be further simplified using the commutator [H,Tµµ(s)] = −idTµµds and

the KMS condition

tr(e−2πHHTµµ(s− iε)Tνν(0)) = tr(e−2πH(Tµµ(s− iε)H − [H,Tµµ(s− iε)])Tνν(0))

= tr(e−2πHHTµµ(0)Tνν(s+ 2πi− iε)) + i
d

ds
tr(e−2πHTµµ(s− iε)Tνν(0))

Putting this back in A(n) gives

∂nA
µν(n)

∣∣
n→1

= i

∫ ∞

−∞
ds

(
Gµν1 (−is+ ε)

es+iε − 1
− Gµν1 (−is− ε)

es−iε − 1

)

+

∫ ∞

−∞

ds

es−iε − 1

d

ds
tr(e−2πHTµµ(s− iε)Tνν(0)) (4.18)

The term in the first line vanishes since there are no poles in the region encircled by the

contour integration. Using integration by parts we can write the second term as

∂nA
µν(n)

∣∣
n→1

= −
∫ ∞

−∞

ds

4 sinh2((s− iε)/2)
〈Tµµ(Xs)Tνν(X0)〉 (4.19)
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where X0 = (1,−is/2, · · · ) and Xs = (1, is/2, 0, · · · ) in Rindler coordinates. Therefore,

∂nA
µν(n)

∣∣
n→1

= (−1)d+1

∫ ∞

−∞

ds dT

(2 sinh(s̃/2))2(d+2)
Sµµ,νν

where s̃ = s− iε and

〈Tµν(u)Tαβ(v)〉 =
dT

|u− v|2(d+1)
Sµν,αβ(u− v),

Sµν,αβ(u) =
1

2
(Iµα(u)Iνβ(u) + (µ↔ ν))− 1

d+ 1
δµνδαβ

Iµν(u) = δµν −
2uµuν
|u|2 (4.20)

Then,

∂nA
00(n)

∣∣
n→1

=
dCddT
d+ 1

Cd = (−1)d
∫ ∞

−∞

ds

(2 sinh(s̃/2))2(d+2)
. (4.21)

One can perform the integral explicitly

Cd =
2

(d+ 2)
2F1 [2(2 + d), 2 + d, 3 + d,−1] =

2

(d+ 2)

Γ(d+ 3)2

Γ(5 + 2d)

Therefore,

δ(2)S = −(d+ 1) CddT
2d

(
2l

λT

)2(d+1)

(4.22)

= −2(d+ 1)2 Γ(d+ 3)Γ(d)dT
2Γ(5 + 2d)

(
2l

λT

)2(d+1)

Note that here dT = 〈T00T00〉(d+ 1)/d, and in d = 1 we have dT = c/(2π2) therefore

δ(2)S = − 4c

15π2

(
l

λT

)4

(4.23)

which is the same as the result we found in two dimensions.

In d > 2 we do not know the entanglement entropy in the reduced state of the Gibbs

ensemble, ρTl , however, if the theory is holographic we can compare the result with the

prediction of the Ryu-Takayanagi formula. Next, we show that the above result can be

reproduced using a gravitational calculation in a black hole background.

4.3 Holographic theories

Consider the thermal state of a holographic CFT in flat space dual to the planar black hole

ds2 =
L2

z2

(
−f(z)dt2 + d~x2

d +
dz2

f(z)

)
, f(z) = 1− zd+1

zd+1
h

. (4.24)
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Here, zh is related to the thermal wavelength zh = (d+1)β
4π . The entanglement entropy of the

reduced state on a ball of radius l is the area of an extremal surface in the bulk anchoring

on the boundary of the subsystem:

S(ρT , l) =
LdSd−1

4G

∫ l

0
dr
rd−1

zd

√
1 +

(∂rz)2

f(z)
(4.25)

It is convenient to switch to the Fefferman-Graham coordinates to compute the entangle-

ment entropy perturbatively in l/β ∼ l/zh:

ds2 =
L2

z2
(dz2 + gµν(z, xµ)dxµdxν),

gµν(z, xµ) = ηµν + azd+1Tµν + a2z2(d+1)(n1TµαT
α
ν + n2ηµνTαβT

αβ) + · · · (4.26)

where a = 16πG
(d+1)Ld

, n1 = 1/2 and n2 = − 1
8d . The bulk Ricci tensor written in these

coordinates with ρ = z2/L2 (dimensionless) is

Rρρ = − d

ρ2
− 1

2
gµνg′′µν +

1

4
(gµµ)2(g′µµ)2

L2Rµµ = −2ρg′′µµ + 2ρgµµ(g′µµ)2 − ρg′µµgννg′νν + (d− 2)g′µµ + gµµg
ννg′νν −

d

ρ
gµµ.

Perturbatively in l we find that the vacuum subtracted entropy is [20]10

δ(1)S =
2πωd−1T00l

d+1

d(d+ 2)
=

2πωd−1dT
d(d+ 2)

(
l

λT

)d+1

δ(2)S = − π3/2(d+ 1)ωd−1Γ(d)

2d+2(d+ 2)Γ(d+ 5/2)

(
8πG

Ld

)
T 2

00l
2(d+1)

= − π3/2(d+ 1)ωd−1Γ(d)

2d+2(d+ 2)Γ(d+ 5/2)

(
8πGdT
Ld

)
dT

(
l

λT

)2(d+1)

(4.27)

where we have used T00 = dT
λd+1
T

and ωd = 2π(d+1)/2

Γ((d+1)/2) . The first term is simply the first law

of entanglement entropy. The quantity Ld

8πG is related to the two-point function of stress

tensor as:

dT =
d+ 2

d

Γ(d+ 2)

π(d+1)/2Γ((d+ 1)/2)

Ld

8πG
. (4.28)

Plugging this back in (4.27) gives

δ(2)S = −(d+ 1)2Γ(d+ 3)Γ(d)dT
Γ(2d+ 5)

(
2l

λT

)2(d+1)

(4.29)

This is exactly the answer we found in the field theory in (4.22) for the entanglement

entropy of the universal density matrix in arbitrary dimension d.

If the local ETH hypothesis is correct in holographic CFTs, the reduced density matrix

in any energy eigenstate is well approximated by the ETH density matrix (4.10). According

10Note that there is a typo in equation (3.55) of that paper.
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to holography, the gravity dual of a heavy energy eigenstate is a black hole of the same

energy density. Therefore, if the local ETH holds the entanglement entropy of the ETH

density matrix should match the entanglement entropy computed holographically in the

dual black hole geometry. In this section, we checked that in the same temperature limit

l/λT � 1, indeed, the local ETH hypothesis passes this consistency check.

5 Local equilibrium

Up to this point we were only concerned with the eigenstate thermalization hypothesis.

We showed that the reduced density matrix of small subsystems in energy eigenstates are

universal. Energy eigenstates are highly fine tuned and that their time-evolution is given

by just an overall phase. Intuitively, we expect the density matrix of small subsystems to

be only a function of energy not only in translationally-invariant energy eigenstates but

also in all states that have spatial and time dependence over scalecs much larger than the

size of the subsystem. In this section, we establish that this is indeed the case by studying

the reduced density matrices in two classes of time-dependent states: “coherent” states,

and arbitrary superpositions of N � eS(E)/2 energy eigenstates.

5.1 Time-dependent coherent states

We define “coherent states” |Φ(~s)〉 via a Euclidean path-integral with a local operator

inserted at ~s inside the unit ball in the radial quantization frame:

|Φ(~s)〉 = es
µPµΦ(0)e−s

µPµ |Ω〉 (5.1)

We can use the rotational symmetry of the unit ball to bring the operator insertion to the

point (r = eτ , θ1 = α) and θi = 0 for all i > 1. Coherent states include a superposition of

many energy eigenstates, and hence evolve non-trivially in time. Mapping to the Rindler

space the operators that create and annihilate the state go to, respectively, Y µ
− and Y µ

+ :

(Y 0
±, Y

1
±) =

( − sin θ0 sinh τ±
cos(θ0 + α)− cosh τ±

,
cosα− cos θ0 cosh τ±
cos(θ0 + α)− cosh τ±

)
, Y i>1

± = 0 (5.2)

where τ± = ±τ0 − it and we have analytically continued to the real time to keep track of

the time evolution of the state. The analytic continuation in time is achieved by treating

τ± as a real parameter.

The parameter τ0 controls the width and angular dependence of the energy profile

around Sd at time t = 0. To see that we compute the energy density in this spinless

primary state:

〈φα,τ0(t)|T00(θ,0, · · ·)|φα,τ0(t)〉Cyl = ha
Ld+1ωd

[
sinh2

(
τ−−τ+

2

)
(cos(α−θ)−coshτ−)(cos(α−θ)−coshτ+)

] d+1
2

=
ha

Ld+1ωd

1

(
(
cos tcothτ0−cos(α−θ)cschτ0)2+sin2 t

)(d+1)/2
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At t = 0 the energy density around Sd has its peak value coth2(τ0/2) at the point (α, 0, · · · ).
In the thermodynamic limit of small subsystem l/L � 1 the energy density is constant

over the subsystem

ε(t, θ ∈ B) =
ha

Ld+1ωdξd+1(t)
(1 +O(1/L))

ξ2(t) = (cos t coth τ0 − cosα csch τ0)2 + sin2 t

(Y 0
±, Y

1
±) =

(
l sinh τ±

L(cosh τ± − cosα)
, 1− l sinα

L(cosh τ± − cosα)

)
(5.3)

The “local” length scale associated to the energy density is

λT (τ0, α, t) = ξ(t)L

(
ωddT
ha

) 1
(d+1)

(5.4)

Then, the distance between the operator insertions is

|Y+ − Y−|2 =
4l2

L2ξ(t)
(5.5)

and the density matrix becomes

tr(ψ̃ · · · ) =
∑

p∈Atherm

Cp,n̂φ,φξ
−hp |n̂|hpOn̂p (Y−) =

∑

p∈Atherm

f n̂p (l/λ̃T (t))hpOn̂p (Y−), (5.6)

which shows that the reduced density matrix is universal with λT multiplied by ξ(t). That

is to say at any time t the reduced density matrix is in equilibrium with a time-dependent

thermal wavelength ξ(t).

5.2 Arbitrary initial states

An arbitrary CFT state in the Schrodinger picture expanded in the energy eigen-basis is

|χ(t)〉 =

N∑

a=1

eihat/Lca|ψa〉 (5.7)

The reduced density matrix on a ball-shaped region in this state is a partial trace over the

complement region

ρBR(t) = trBcR |χ(t)〉〈χ(t)| =
∑

ab

cac
∗
b e

it(ha−hb)trBcR |ψa〉〈ψb| (5.8)

Now, it is straightforward to see

‖ρBR(t)−
∑

a

|ca|2ρuni(E = Ea)‖ ≤ supa 6=b‖σab‖
∣∣∣
∑

a 6=b
cac
∗
b

∣∣∣|

≤ ηe−S(E)/2(
N∑

a=1

|ca|)2 ≤ ηNe−S(E)/2 (5.9)
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for some η = O(1). Therefore, as long as the number of superposed energy eigenstates

N does not scale with entropy the reduced density matrix is well-approximated with a

classical mixture of universal density matrices:

∫
dE p(E)ρuni(E) (5.10)

which does not evolve in time. If the state has 〈χ(t)|H|χ(t)〉 = E0 and 〈χ(t)|H2−E2
0 |χ(t)〉 =

∆E0 then the density matrix is approximately

ρuni(E0) +
∆E0

2
∂2
Eρuni(E)|E0 + · · · (5.11)

Quenching an energy eigenstate with a local operator of energy order one is an example

of a state that necessarily includes a large number of energy eigenstates.

6 Conclusions

In this work, we continue the study of the Eigenstate Thermalization Hypothesis (ETH)

in the context of Conformal Field Theories initiated in [1]. In that paper, we formulated

the subsystem ETH in CFTs as a statement about the smooth dependence of the reduced

density matrix of an energy eigenstate on energy. We proved that if ETH is satisfied at

the level of individual local operators (local ETH ), the subsystem ETH follows.

In [1] it was shown that the ETH density matrix exhibits a great degree of universality

provided that the subsystem in question is small compared to the total volume. When the

subsystem is small in comparison to the inverse effective temperature, the ETH density

matrix admits a perturbative expansion in terms of the light primary operators (1.12). In 2d

CFTs the statement of ETH implies that no operator outside of the Virasoro descendants of

identity contributes to the OPE of any two heavy Virasoro primaries. As a result the ETH

density matrix exhibits a greater degree of universality, depending only on the effective

temperature and the central charge, but on other detail of the underlying theory (3.16).

In section 2 of the paper we provided an argument based on the equivalence of en-

sembles, modified for the case of CFTs, to argue that the ETH density matrix for a small

subsystem is trace-distance close to other thermal ensembles, the reduced canonical and

the microcanonical ones. This general argument is further supported by the calculation

and comparison of the eigenstate entanglement entropy with the holographic one in sec-

tion 4. In case of two dimensions, because of the additional conservation laws, the canonical

ensemble must be substituted by the grand canonical ensemble that includes an infinite

number of conserved KdV charges — the Generalized Gibbs Ensemble. A new represen-

tation of the ETH density matrix and its equivalence with the thermal one in the limit

of infinite central charge is demonstrated in section 3. There we also calculate the von

Neumann and the Renyi entropies for the eigenstate and discuss the finite c case.

Finally, in section 5 we discuss the reduced density matrix of time-dependent coherent

states and show that their reduced density matrix on a small subsystem is well-described

by the universal ETH density matrix with time-dependent effective temperature.
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A Rindler space: a convenient conformal frame

Consider a (d + 1)-dimensional CFT in radial quantization with a ball-shaped subsystem

of angular size θ0 on Sd at r = 1. According to the operator/state correspondence the

density matrix in the subsystem is given by a path-integral over the (d + 1)-dimensional

space with two operators inserted, Ψ at r = ε and Ψ† at r = 1/ε with ε → 0, and a cut

open at the location of the subsystem. The initial metric in the radial quantization is

ds2 = dr2 + r2dΩ2
d (A.1)

with (θ1, · · · θd) the coordinates on Sd. We perform the following conformal transformation

L(r2 − 1)

1 + r2 + 2r cos θ1
=

X0

1− 2X1 +X ·X ,
2Lr sin θ1 cos θ2

1 + r2 + 2r cos θ1
=

(1−X ·X)/2

1− 2X1 +X ·X ,

2Lr sin θ1 sin θ2 · · · cos θi+1

1 + r2 + 2r cos θ1
=

Xi

1− 2X1 +X ·X , d > i > 1

2Lr sin θ1 sin θ2 · · · sin θd
1 + r2 + 2r cos θ1

=
Xd

1− 2X1 +X ·X , L =
1

2
cot(θ0/2),

that maps the subsystem at r = 0 and θ1 ≤ θ0 to the negative half-space, i.e. (0, X1 <

0, 0 · · · 0). Here L is the radius of Sd in units where R is set to one. The new metric in the

X-coordinates that we call Rindler frame is given by

ds2 = Λ(X)2dX idX i

Λ(X) =

(
X0 − LV−

2
− V+

8L

)−1

V± = (1± 2X1 +X ·X). (A.2)

In these coordinates the path-integral without operator insertions prepares the Rindler

density matrix in vacuum. The operators Ψ and Ψ† are now inserted at X− and X+ re-

spectively.

X± = (± sin θ0, cos θ0, 0 · · · , 0),

Λ(X−) = (2 sin θ0)−1,

Λ(X+) = ε−2(2 sin θ0)−1. (A.3)
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Under this map a conformal primary transforms according to

〈Ψ(r = 0) · · ·〉Λ(X)δij = Λ(X(r = 0))−h〈Ψ(X(r = 0) · · ·〉δij

Therefore,

〈Ψ(1/ε)Ψ(ε) · · ·〉radial = (2ε sin θ0)2h〈Ψ(X+)Ψ(X−) · · ·〉Rind

In the thermodynamic limit θ0 � 1 the distance between Ψ and Ψ† goes to zero: |X+ −
X−| = 2 sin θ0 � 1, and we use the OPE to obtain

〈Ψ(1/ε)Ψ(ε) · · ·〉radial = ε2h
∑

p

Cpψψ(2 sin θ0)hp〈Op(X0) · · ·〉.

B Global descendants in two dimensions

Consider the OPE of two quasi-primaries Ψ in CFT2

Ψ(z, z̄)Ψ(0, 0)

〈Ψ(z, z̄)Ψ(0, 0)〉 =
∑

p

Cpψψ

∑

j,j̄

ajψψpā
j̄
ψψp

j!j̄!
zhp+j z̄h̄p+j̄∂j ∂̄ j̄Φp (B.1)

where Φp are quasi-primaries and

ajψψp =
C(j, hp + j − 1)

C(j, 2hp + j − 1)
, ājψψp =

C(j̄, h̄p + j̄ − 1)

C(j̄, 2hp + j̄ − 1)

Cpψψ =
1

〈ΦpΦp〉
〈ψ|Φp|ψ〉, C(j, h) =

Γ(h+ 1)

Γ(j + 1)Γ(h− j + 1)
(B.2)

In the thermodynamic limit z = l/L, h and L go to infinity with λT ∼ L/
√
h kept fixed

we have

ajψψpz
j → 0 ∀j > 0. (B.3)

Therefore, all the derivative terms are subleading, and we have

Ψ(z, z̄)Ψ(0, 0)

〈Ψ(z, z̄)Ψ(0, 0)〉 =
∑

p

Cpψψz
hp z̄h̄pΦp +O(1/L). (B.4)

This argument generalizes to higher dimensions. Consider a primary Op and its first

descendant. Then, the OPE coefficients are the same order

C
∂Op
ψψ

C
Op
ψψ

=
dOp
d∂Op

〈Ψ(∞)∂Op(1)Ψ(0)〉
〈Ψ(∞)Op(1)Ψ(0)〉 = 2hp(2hp − 1)hp = O(h0

ψ) (B.5)

however, by in the OPE of Ψs, the derivative term has an extra power of l/L and is hence

more suppressed.
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C Thermodynamically relevant quasi-primaries

In this appendix, we expand the reduced state on an interval of length 2k in a highly excited

primary energy eigenstate, and find the quasi-primaries that contribute to the universal

density matrix, that are T2k in (3.11). Consider a primary energy eigenstate |ψa〉 and its

correponding operator Ψa. In Rindler coordinates, the density matrix is created by the

insertion of operator

Ψa(z, z̄)Ψa(0)

〈Ψa(z, z̄)Ψa(0)〉 =
∑

p

∑

{k,k̄}

Cp{k,k̄}aa zhp+K z̄h̄p+K̄L−{k}L̄−{k̄}Op (C.1)

in the Euclidean path-integral. Here, {k} = {k1 · · · kl}, K = k1 + · · · + kl, and z = x/L

with L going to infinity in the thermodynamic limit. The OPE coefficient C
p,{k,k̄}
aa (growing

with ha) competes with the vanishing coefficient (x/L)hp+K .

To determine what operator survive the thermodynamic limit in (C.1) we need to

investigate the growth of this OPE coefficient with ha. It is convenient to define the OPE

coefficient with lowered indices [21]

Cp,{k,k̄}aa =
∑

{k′,k̄′}

[
M−1

]p{k}{k′} [M−1
]p,{k̄}{k̄′}

Caa,p{k′}{k̄′}

Caa,p{k′}{k̄′} = L−{k′}L̄−{k̄′}〈Ψa(∞)Ψa(1)Op(y)〉
∣∣∣
y=0

. (C.2)

The matrix M is the Kac matrix defined by M{k},{k′}(hp, c) = 〈hp|L{k}L−{k′}|hp〉, and

is independent of ha. We only need to consider Caa,p{k}{k̄}. The differential operator

L−{k} ≡ L−k1 · · · L−kl with each L−k acting as

L−k〈Ψa(∞)Ψa(1)Op(y)〉=
Cpaa lim

(z,ω)→(∞,1)
z2ha

(
ha(k−1)(z−k+ω−k)−(z1−k∂z+ω1−k∂ω)

)
(z−ω)hp−2ha(zω)−hp

=Cpaa(ha(k−1)+hp)'Cpaaha(k−1) . (C.3)

At order K we are comparing OPE coefficients of operators of the form Lk1Lk2 · · ·LklOp
with k1 + · · · + kl = K. From (C.3) it is clear that the OPE coefficient of operators with

L−1 does not grow fast enough with ha and they drop out of the thermodynamic limit,

which is consistent with the result in appendix B. We only need to consider the case with

ki > 1. Then,

Caa,p{k1,··· ,kl}{k̄1,···k̄m} ∼ h
l+m
a . (C.4)

For even K the OPE coefficient of the quasi-primary that includes L
K/2
−2 wins over other

terms. When K is odd none of the OPE coefficients are large enough to compete with

(x/L)K+K̄ . Therefore, the sum over {k′, k̄′} in (C.2) only has one term, and

Cp{k,k̄}aa = Cpaab
p,{k,k̄}hK/2+K̄/2

a

bp,{k,k̄} =
[
M−1

]{2,··· ,2}{k} [M−1
]{2̄,··· ,2̄}{k̄}

(C.5)
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where K and K̄ are both even. Note that in two dimensions Cpaa = 0 for all non-identity

Virasoro primaries p. Therefore,

Ψa(e
iθ0 ,e−iθ0)Ψa(e

−iθ0 ,eiθ0)

〈Ψa(e−iθ0 ,eiθ)Ψa(e−iθ0 ,eiθ0)〉 =


∑

{k}

b{k}(2
√
ha sinθ0)KL−{k}


×h.c.

=


∑

m∈N
(2
√
ha sinθ0)2m

∑

k1+···kl=2m

[M−1]{2···2}{k1···kl}L−k1 · · ·L−kl


×h.c.

=

(∑

m∈N

(
2l√

2πλT

)2m cm

d2m
T (0)

2m

)
×h.c.

1

d2m
T (0)

2m ≡
∑

k1+···kl=2m

[M−1]{2···2}{k1···kl}L−k1 · · ·L−kl (C.6)

where in the last two lines we have defined an operator T (0)
2m with the norm d2m =

〈T (0)
2m (1)T (0)

2m (0)〉. The first few T (0)
2k are

T (0)
2 =L−2, T (0)

4 =L2
−2−

3

5
L−4

T (0)
6 =L3

−2+
93

70c+29
L2
−3−

3(42c+67)

70c+29
L−4L−2− 6(10c+13)

70c+29
L−6

T (0)
8 =L4

−2+−6
(
630c2+3471c−557

)
L−4L

2
−2

5c(210c+661)−251
+

(5844−1512c)L−5L−3

5c(210c+661)−251

+
27(c(42c+265)−167)L2

−4

5c(210c+661)−251
− 24(c(150c+569)+67)L−6L−2

5c(210c+661)−251
− 6(5c(126c+463)−543)L−8

5c(210c+661)−251

T (0)
10 =L5

−2−
12

(
8250c2+58115c−7161

)
L−6L

2
−2

25c(462c+3067)+3767
+
(
− 12(11650c+15341)

25c(462c+3067)+3767
−18

)
L−8L−2

+
36(4358−3225c)L−7L−3

25c(462c+3067)+3767
+

36(c(1650c+16783)−8405)L−6L−4

25c(462c+3067)+3767
+

(31032c+220236)L2
−5

25c(462c+3067)+3767

+
9(45c(154c+1873)+25133)L2

−4L−2

25c(462c+3067)+3767
+
(
− 48(5115c+1081)

25c(462c+3067)+3767
−6
)
L−4L

3
−2

+
30(5115c+1081)L2

−3L
2
−2

25c(462c+3067)+3767
− 924(90c+259)L−5L−3L−2

25c(462c+3067)+3767
− 18(5115c+1081)L−4L

2
−3

25c(462c+3067)+3767

− 504(c(300c+1693)+266)L−10

25c(462c+3067)+3767

d2 =
c

2
, d4 =

c(5c+22)

10
, d6 =

3c(2c−1)(5c+22)(7c+68)

4(70c+29)
(C.7)

d8 =
3c(2c−1)(3c+46)(5c+3)(5c+22)(7c+68)

10c(210c+661)−502

d10 =
15c(2c−1)(3c+46)(5c+3)(5c+22)(7c+68)(11c+232)

4(25c(462c+3067)+3767)
(C.8)

Note that

(L−n−2Φ)(ω) =
1

n!
∂nT (ω),

L3
−2(ω) = (T (TT ))(ω), L2

−3(ω) = (∂T∂T )(ω),

(
L2
−3 + L−4L−2 + L−2L−4

)
(ω) =

1

2
∂2(TT )(ω). (C.9)
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Then, we find

T (0)
2 = T, T (0)

4 = (TT )− 3

10
∂2T

T (0)
6 = (T (TT )) +

9(14c+ 43)

2(70c+ 29)
(∂T∂T )− 3(42c+ 67)

4(70c+ 29)
∂2(TT )− (22c+ 41)

8(70c+ 29)
∂4T.

An alternative way to construct the quasi-primary operators T2k is by choosing the

basis where the Kac matrix is diagonal. In this basis, it is evident that the only quasi-

primaries that include the term Lm−2 = Tm(0) propagate. Here, Tm = (T (T (T · · ·T ))). We

can choose our operator basis such that at even order K only one quasi-primary includes

L
K/2
−2 which becomes our operator of interest T (0)

2k . Below, we describe how to construct it

at any even order K.

1. Consider an arbitrary superposition of L−{k} with no L−2,···−2:∑
{k}6=(2,··· ,2) akL−{k}(0).

2. Choose a{k} such that this state is annihilated by L1. The result is the most generic

quasi-primary with no L−2,···−2.

3. Find an arbitrary superposition state with L−2,···−2 that is perpendicular to the state

above, and demand that it is killed by L1. The resulting state is T (0)
K .

We end this appendix by consider the quasi-primaries T2k in the limit h� c� 1. In

this limit, the expressions for the first T2k simplify to

1

d2m
=

1

m!

(
2

c

)m
(C.10)

T (0)
2 = L−2, T (0)

4 = L2
−2 −

3

5
L−4,

T (0)
6 = L3

−2 −
9

5
L−4L−2 −

6

7
L−6

T (0)
8 = L4

−2 −
24

7
L−6L−2 +

27

25
L2
−4 −

18

5
L−4L

2
−2 −

18

5
L−8

T (0)
10 = L5

−2 − 18L−8L−2 +
36

7
L−6L−4 −

60

7
L−6L

2
−2 +

27

5
L2
−4L−2 − 6L−4L

3
−2 −

144

11
L−10 .

Therefore, the holomorphic part of the density matrix operator becomes

∑

m∈N

(
4l2

πλ2
T

)m
1

m!
T (0)

2m =
∑

m∈N

(
4π2l2

3β2

)m
1

m!
T (0)

2m (C.11)

It is convenient to write the universal density matrix in an exponentiated form in this limit:

exp

( ∑

0<m∈N
a2m

(
2l√
πλT

)2m

L−2m

)

a2 = 1, a4 = − 3

10
, a6 =

11

70
, a8 = − 9

140
, a10 = − 34

1925
, · · · .
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D One-point functions on a torus

The finite temperature expectation value of a primary operator at finite volume in two-

dimensions is a one-point function on a torus with modular parameter τ = iβ
L where L

and β are the periodicities of the spatial and time circles, respectively. Modular invariance

related the one-point function at high temperatures to low temperatures

〈Op〉−1/τ = (−1)hp−h̄pτhp τ̄ h̄p〈Op〉τ . (D.1)

Therefore, for β̃ = L
β we have

tr(ρβOp) = (LT )2hp tr(ρβ̃O) (D.2)

The parameter q = e2πiτ at τ = iLT becomes q = e−2πLT and small at large LT .

Therefore, we can expand the one-point function perturbatively in small q:

〈Op〉q =
∑

h,h̄

Cp
(h,h̄)(h,h̄)

qh−
c−1
24 q̄h̄−

c−1
24

1

η(q)η(q̄)

∞∑

N=0

qNHN,h,p. (D.3)

The coefficients HN are found using a recursive relation with the first term H0,h,p = 1 [22].

At large LT only the lowest dimension primary of dimension (∆, ∆̄) contributes

tr(ρβ̃Op) '
∑

h,h̄C
p

(h,h̄)(h,h̄)
e−2πLT (h+h̄−c/12)

∑
h,h̄ e

−2πLT (h+h̄−c/12)
' Cp

∆,∆̄
e−2πLT (∆+∆̄). (D.4)

This conclude our estimate of the size of one-point function probes in the thermodynamic

limit

tr(ρβOp) = (TL)2hpe−2πLT (∆+∆̄)Cp
∆,∆̄

. (D.5)

As expected in the limit LT → ∞ the thermal one-point functions are exponentially

suppressed.

E Perturbative Renyi entropies

In this appendix, we compute the Renyi entropies of the universal density matrix ψ via a

direct calculation of tr(ψn). We take the subsystem to have size 2x, and the length scale

associated with the energy density in ψ to be λT . The trace of ψn is computed by sewing

n copies of the path-integrals that prepares ψ (the path-integral in Rindler space with the

operator (3.16) on each copy). Therefore, the vacuum subtracted Renyi entropy of ψ is

∆Sn(ψ, x) =
(n+ 1)c

12nπ
(2x/λT )2

+
1

1− n log
〈 n∏

j=1

∑

KjK̄j

(
2x
√
c√

2πnλT

)Kj+K̄j
e2πij(Kj−K̄j)/n

TKj (e2πij/n)TK̄j (e−2πij/n)

dKjdK̄j

〉
.

We expand the above expression in powers of 2x/λT and consider the first few terms. The

first term corresponds to (Kj , K̄j) = (0, 0) for all j except for K0 and K̄0. This term is

– 33 –



J
H
E
P
0
3
(
2
0
1
8
)
0
7
0

equal to one by the normalization of two point functions. The first non-trivial term appears

at j = 2 and (2x/λT )4:

n

2

n−1∑

l=1

∑

K1K2=0,2,4
K̄1K̄2=0̄,2̄,4̄

(
2x
√
c√

2πnλT

)K1+K̄1+K2+K̄2 e2πil/n(K2−K̄2)

d2
K1
d2
K2

〈(TK1TK̄1
)(1)(TK2TK̄2

)(e2πil/n)〉

=
n

2

n−1∑

l=1

∑

K,K̄

(
2x
√
c

2
√

2πnλT

)2K+2K̄
sin(πl/n)−2(K+K̄)

dKdK̄
=
c(x/λT )4

16π2

(n2−1)(n2+11)

90n3
.

At j = 3 we have 6-point functions of Ψa (3-point functions of TK)

∑

1≤l<m<q≤n−1

∑

K1K2K3=2

(
2x
√
c√

2πnλT

)∑3
i=1(Ki+K̄i) e2πi(lδK1+mδK2+qδK3)/n

d2
K1
d2
K2
d2
K3

×
〈
TK1(e2πil/n)TK2(e2πim/n)TK3(e2πiq/n)TK̄1

(e−2πil/n)TK̄2
(e−2πim/n)TK̄3

(e−2πiq/n)
〉

=
∑

1≤l<m<q≤n−1

1

(8d2)3

(
2x
√
c

n
√
πλT

)6
2CTTT
s2
lms

2
mqs

2
ql

= (2x/λT )6 c

32π3

(n2−1)(n4−4)(n2+47)

2835n5

where δKi = Ki − K̄i and slm = sin(π(l −m)/n). We have used the summation identities

in [23]. It is important to note that up to the order (l/λT )6 the density matrix depends

only on the energy density of the pure state.

Therefore, to the sixth order we find

∆Sn(ψ, x) =
(1 + n)c

12nπ
(2x/λT )2 − (1 + n)c

120nπ2

(n2 + 11)

12n2
(2x/λT )4

+
(1 + n)c

630nπ3

(4− n2)(n2 + 47)

144n4
(2x/λT )6 (E.1)

The next non-trivial one-point function 〈ψ|T4|ψ〉 contributes to the entanglement entropy

at order (l/λT )8. In the next appendix, we result above to the sixth order and compute

the eighth-order term using the twist operator method.

F Twist operators

The correlation function (E.1) that appears in the calculation of the Renyi entropy of

the universal density matrix is Zn symmetric. That is to say that it is invariant under

z → e2πi/nz. An alternative way to compute this correlator is by employing twist operators

in a Zn-orbifold theory. Here, we use the orbifold theory to reproduce the result of the last

subsection and extend it to the eighth order in subsystem size. In the orbifold theory, the

vaccum-subtracted Renyi entropy in terms of the four-point function below

∆Sn(ψ, x) =
1

1− n logG4(z, z̄),

G4(z, z̄) =
〈Ψn(∞)σn(z)σn(1)Ψn(0)〉
〈Ψ(∞)Ψ(0)〉n〈σn(z)σn(0)〉 (F.1)
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where z = eix/L. The quasi-primaries of the orbifold theory take the form
∏n
i=1O(i), where

Oi is the primary on the ith copy. Local ETH implies that this correlator is dominated by

the Virasoro identity block. Below we use perturbation theory to compute Renyi entropies

order by order in 2x/λT .

The quasi-primaries that contribute to the Virasoro identity block at even orders up

to z6 are

order z2 T (j)

order z4 T (i)T (j)(i 6= j), T (j)
4

order z6 T (i)T (j)T (l)(i 6= j 6= l 6= i), T (j)
4 T

(l)
2 (j 6= l), T (j)

6

order z8 T (i)T (j)T (l)T (m)( 6=), T (i)T (j)T (l)
4 ( 6=)

T (j)
4 T

(l)
4 (j 6= l), T (j)

6 T (l)(j 6= l), T8(j)

where the symbol 6= means that all pairs of indices are unequal. These operators are listed

in [23]. The correlator factorizes into the holomorphic and anti-holomorphic parts

G4(z, z̄) = |F (z, n, c)|2 (F.2)

where the vacuum conformal block F is only a function of cross ratio z, Renyi index n and

central charge c.

F (z) = 1+
∑

ordered

(
CT

(j)

σnσnC
T (j)

ψnψn(1−z)2+

(
CT

(j)T (l)

ψnψn CT
(j)T (l)

σnσn +C
T (j)
4
σnσnC

T (j)
4
ψnψn

)
(1−z)4

+

(
CT

(j)T (l)T (q)

ψnψn CT
(j)T (l)T (q)

σnσn +2C
T (j)
4 T (l)

ψnψn C
T (j)
4 T (l)

σnσn +C
T (j)
6
σnσnC

T (j)
6
ψnψn

)
(1−z)6

+
(
CTTTTψnψn C

TTTT
σnσn +3CTTT4ψnψnC

TTT4
σnσn +CT4T4ψnψnC

T4T4
σnσn+2CT6TψnψnC

T6T
σnσn+CT8ψnψnC

T8
σnσn

)
(1−z)8

· · · (F.3)

where
∑

ordered runs over all indices of the operator as 1 ≤ j1 < j2 < · · · < jk ≤ n. At

large h we have C
Tk1 ···Tkm
ψnψn = hk1+···km , and define bTk1 ···Tkm =

∑
orderedC

Tk1 ···Tkm
σnσn . These

sums are computed in [10]:

bT =
n2−1

12n
, bT4 =

(
n2−1

)2

288n3
, bT6 =

(
n2−1

)3

10368n5
, bT8 =

(
n2−1

)4

497664n7

bTT =

(
n2−1

)(
5c(n+1)(n−1)2+2n2+22

)

1440cn3
,

bTT4 =

(
n2−1

)2 (
5c(n+1)(n−1)2+4n2+44

)

17280cn5

bTT6 =

(
n2−1

)3 (
5c(n+1)(n−1)2+6n2+66

)

622080cn7

bT4T4 =
1

5806080c(5c+22)n7

(
175c2(n+1)4(n−1)5

+70c
(
n2−1

)3 (
11n3−7n2−11n+55

)
+8
(
n2−1

)(
n2+11

)(
157n4−298n2+381

))
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bTTT =
(n−2)

(
n2−1

)(
35c2(n+1)2(n−1)3+42c

(
n4+10n2−11

)
−16(n+2)

(
n2+47

))

362880c2n5

bTTT4 =
(n−2)

(
n2−1

)

14515200c2n7

(
175c2(n+1)3(n−1)4+350c

(
n2−1

)2 (
n2+11

)

−128(n+2)
(
n4+50n2−111

))

bTTTT =
(n−3)(n−2)

(
n2−1

)

87091200c3n7

(
175c3(n+1)3(n−1)4+420c2

(
n2−1

)2 (
n2+11

)

−4c
(
59n5+121n4+3170n3+6550n2−6829n−11711

)

+192(n+2)(n+3)
(
n2+119

))

Performing the Zn sums over trigonometric functions we find

F (z) = 1+a2h(1−z)2+a4h
2(1−z)4+a6h

3(1−z)6+· · ·

a2 =
(n2−1)

12n
, a4 =

(n2−1)2

288n2
+

(n2−1)(n2+11)

720n3c

a6 =
(n2−1)3

10368n3
+

(n2−1)2(n2+11)

8640n4c
+

(n2−1)(4−n2)(n2+47)

22680n5c2

a8 =

(
n3−3n+3

)(
n2−1

)4

497664n7
+

(
n4+9n2−22

)(
n2−1

)3

207360cn7

− (n−2)(n−1)(n+1)(59n6+136n5+3191n4+6640n3−7279n2−12536n−7491)

21772800c2n7

+
(n−3)(n−2)(n−1)(n+1)(n+2)(n+3)

(
n2+119

)

453600c3n7
+bT4T4 (F.4)

Squaring the above vacuum block we find

∆Sn(ψ,x) =
(1+n)c

12nπ
(2x/λT )2− (1+n)c

120nπ2

(n2+11)

12n2
(2x/λT )4

+
(1+n)c

630nπ3

(4−n2)(n2+47)

144n4
(2x/λT )6− (1+n)c

2800nπ4
(2x/λT )8s8(n,c)+· · ·

s8(n,c) =
88(n2−9)(n2−4)

(
n2+119

)
+c
(
−13n6+1647n4−33927n2+58213

)

5184(5c+22)n6
.

The entanglement entropy is

∆S1(ψ, x) =
c

6π
(2x/λT )2 − c

60π2
(2x/λT )4 +

c

315π3
(2x/λT )6

− c

1400π4
(2x/λT )8

(
1 +

242

9(5c+ 22)

)
+ · · · (F.5)

Note again that up to the order (l/λT )6 all the contributions to the entanglement entropy

come from T and TiTj and TiTjTk. That is because bT2k ∼ (n − 1)k and bTT4 ∼ (n − 1)2.

Therefore, up to this order the one-point function of 〈ψ|T4|ψ〉 does not appear. However,

at the eighth order in l/λT there is a term in bT4T4 and bT4TT that are proportional to the

first power of (n− 1) and hence contribute to the entanglement entropy.
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G Failure of perturbation theory for GGE

In this appendix, we expand the GGE in small KdV chemical potential in a perturbative

expansion. We show that demanding that the one-point functions of GGE to match those

of the eigenstate is inconsistent in perturbation theory. All orders of chemical potential

contribute to the one-first correction in 1/c, and one needs a non-pertubative expression

for one-point functions of GGE to compare with the eigenstate. We choose the following

simplifying notation

1

Z
tr
(
e−βHA

)
= 〈A〉β

1

Z
tr
(
e−βH−µiQiA

)
= 〈A〉β,µi

Ã = A− 〈A〉β (G.1)

where repeated indices are summed over. Then, assuming a perturbative expansion for the

GGE we have

〈A〉β,µi = 〈A〉β − µi〈Ã Q̃i〉β +
µiµj

2
〈ÃQ̃iQ̃j〉β +O(µiµjµk) (G.2)

Taking A to be the KdV current J2k we have

〈T 〉β,µi = 〈T 〉β − µi〈T̃ Q̃i〉β +
µiµj

2
〈T̃ Q̃iQ̃j〉β +O(µiµjµk)

〈J2k〉β,µi = 〈J2k〉β − µi〈J̃2k Q̃i〉β +
µiµj

2
〈J̃2kQ̃iQ̃j〉β +O(µiµjµk) (G.3)

In (G.3) it is understood that the index i = 2m − 1 is summed over, and m runs

over 2 to ∞. The first term in the series above 〈J2k〉β ∼ ck at large c. The above

expansion is a valid perturbation theory if chemical potentials are suppressed at large c

by µ2m−1 ∼ c−α(m). Since the disconnected piece of 〈J̃2kQ̃2m−1〉β is zero, at large central

charge 〈J̃2kQ̃2m−1〉β = O(ck+m−1). The first order term gives us the condition α(m) >

m− 1, and from the second order term we find α(m) > m.

In order to match this with the energy eigenstate we should solve for µi such that

〈T 〉kβ,µi = 〈J2k〉β,µi . (G.4)

If µi are suppressed by powers of c, we can try to impose the above condition by setting

∞∑

m=2

µ2m−1

(
k〈T 〉k−1

β 〈T̃ Q̃2m−1〉β − 〈J̃2kQ̃2m−1〉β
)

= 〈J2k〉β − 〈T 〉kβ +O(ck−2) (G.5)

The coefficient of µ2m−1 in the left hand side of (G.5) is O(ck+m−1), hence the each term

in the sum on the left is scales at bet as ck−1; while on the right hand side we have terms

that are order ck−1. The only option is to take α = m. According to the perturbation

expansion (G.3) this means that the higher orders terms in µ contribute to the same order

in c. In order to make sense of the perturbation theory we should be able to truncate the

sum on the left to a finite number of terms. Say we keep the coefficients µ2m−1 ∼ c−α(m)
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with for α(m) = m for m ≤ C and α(m) < m for m > C, where C is a finite number.

Then, we have C unknowns (µ2m−1 for m ≥ C) that should satisfy an infinite number

of equations at the firt order in 1/c in (G.5). We take this over-constrained system of

equations as an indication that the question of finding a GGE with the same one-point

functions as the energy eigenstate is non-perturbative in nature.

Below, we develop the perturbation theory in small chemical potential further, even

though it does not shed light on our study of ETH. In the remainder of this appendix,

we compute some of the one-point function of J4 and T in an example of a GGE with

only µ3 turned on. The conserved currents are T (ω) and (TT )(ω) = T4(ω) + 3
10∂

2
ωT (ω) on

the thermal cylinder of circumference β. Under a conformal transformation z = f(ω) the

currents change according to

T (ω) = f ′2T (f) +
c

12
Schw(f)

(TT )(ω) = T4(ω) +
3

10
∂2
ωT (ω)

= f ′4T (f) +
(5c+ 22)

30
Schw(f)

(
f ′2T (f) +

c

24
Schw(f)

)

+
3

10
∂2
ω

(
f ′2T (f) +

c

12
Schw(f)

)

Schw(f) =
f ′′′

f ′
− 3

2

(
f ′′

f ′

)2

. (G.6)

Mapping the thermal cylinder to the complex plane by z = e2πω/β we find (see [24])

T (ω) =

(
2π

β

)2 (
z2T − c

24

)

(TT )(ω) =

(
2π

β

)4(
z4T4(z) +D2T (z) +

c(5c+ 22)

2880

)

D2 =
3

10

(
z4∂2 + 5z3∂ − 5(c− 10)

18
z2

)
. (G.7)

From this it is immediately clear that on the complex plane

T̃ (z) =

(
2π

β

)2

z2T (z)

J̃4(z) =

(
2π

β

)4 (
z4T4(z) +D2T (z)

)
. (G.8)

After some straightforward algebra we find

〈T̃ (0)Q̃3〉β =

(
2π

β

)3 ∫ ∞

0

dz

z
〈T (−1)

(
z4T4(z) +D2T (z)

)
〉 = −

(
2π

β

)3 c(5c+ 22)

720

〈T̃ (0)Q̃3Q̃3〉β =

(
2π

β

)6 ∫ ∞

0

dzdz′

zz′
〈T (−1)

(
z4T4(z) +D2T (z)

) (
z′4T4(z′) +D2T (z′)

)
〉

=

(
2π

β

)6 c(5c+ 22)(7c+ 74)

8640
, (G.9)
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and for the KdV current

〈J̃4(0)Q̃3〉β =

(
2π

β

)3 c(5c+ 22)(7c+ 74)

60480

〈J̃4(0)Q̃3Q̃3〉β =

(
2π

β

)6 c(5c+ 22)

10

((
5c+ 22

360

)2

+
(5c+ 43)

300

)
(G.10)

Here, we have used the following three-point functions

〈T (∞)T (1)T (0)〉 = c, 〈T (∞)T (1)T4(0)〉 =
c(5c+ 22)

10

〈T4(∞)T (1)T4(0)〉 =
2c(5c+ 22)

5
, 〈T4(∞)T4(1)T4(0)〉 =

c(5c+ 22)(5c+ 64)

25
.

After some algebra we find that the expectation value of currents in the GGE in the

small chemical potential limit is given by

tr(ρβ,µT (0)) =

(
2π

β

)2(
− c

24
+

(2π)3µ3

β3

c(5c+22)

720

)

+
µ2

2

(
2π

β

)6(c(5c+22)(7c+74)

8640

)
+O(µ3/β9)

tr(ρβ,µ(TT )(0)) =

(
2π

β

)4(c(5c+22)

2880
− (2π)3µ

β3

c(5c+22)(7c+74)

60480

)

+
µ2

2

(
2π

β

)6 c(5c+22)

10

((
5c+22

360

)2

+
(5c+43)

300

)
+O(µ3/β9). (G.11)

From which we obtain

tr(ρGGEH) = L

(
2π

β

)2( c

12
− (2π)3µ3

β3

c(5c+ 22)

360

)

+
µ2

2

(
2π

β

)6(c(5c+ 22)(7c+ 74)

4320

)
+O(µ3/β9)

tr(ρGGEQ3) = L

(
2π

β

)4(c(5c+ 22)

2880
− (2π)3µ

β3

c(5c+ 22)(7c+ 74)

60480

)

+
µ2

2

(
2π

β

)6 c(5c+ 22)

10

((
5c+ 22

360

)2

+
(5c+ 43)

300

)
+O(µ3/β9) (G.12)

where we have suppressed the µ3/β9 corrections.
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