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ABSTRACT

The macroscopic entropy-area formula for supersymmetric black holes in N=2,4,8
theories is found to be universal: in d=4 it is always given by the square of the largest
of the central charges extremized in the moduli space. The proof of universality is
based on the fact that the doubling of unbroken supersymmetry near the black hole
horizon requires that all central charges other than Z=M vanish at the attractor point
for N=4,8. The ADM mass at the extremum can be computed in terms of duality
symmetric quartic invariants which are moduli independent. The extension of these
results for d=5, N=1,2,4 is also reported. A duality symmetric expression for the
energy of the ground state with spontaneous breaking of supersymmetry is provided
by the power 1/2 (2/3) of the black hole area of the horizon in d=4 (d=5).

It is suggested that the universal duality symmetric formula for the energy of
the ground state in supersymmetric gravity is given by the modulus of the maximal
central charge at the attractor point in any supersymmetric theory in any dimension.
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1 Introduction

The attractor behavior in the supersymmetric system was discovered in the context of N=2 ex-
tremal magnetic black holes [1]. It was explained in this work that unbroken supersymmetry
leads to the fact that the area of the black hole horizon depends only on conserved charges. The
idea was further developed for more general black hole solutions in [2, 3]. In [3] the complete
treatment of d=4 N=2 and d=5 N=1 supersymmetric attractors was presented as well as some
particular examples of N=4,8 attractors in d=4. The main result of this work was that the area
of the supersymmetric black hole horizon in the theories of N=2 supergravity interacting with ar-
bitrary number of vector and hypermultiplets can be computed by extremizing the central charge
of the theory in the moduli space. The summary of the attractor picture in N=2 theories is the
following. There is only one central charge ZAB where A,B = 1, 2 and the central charge ZAB is
complex and antisymmetric in A,B. Therefore we have only Z12 = Z. Unbroken supersymmetry
of the N=2 black holes requires

M2
ADM(q, p, φ) = |Z(q, p, φ)|2 . (1)

In gravitational theories the ADM mass in asymptotically flat spaces defines the energy of
the space-time MADM = E. Thus in N=2 theories one may have concluded that the area of the
horizon is proportional to the square of the energy in its minimum.

A(q, p)

4
= πE2(q, p, φ)| ∂E

∂φ
=0 . (2)

Vice versa, the minimal energy is given by the square root of the area

E(q, p) =

(
A(q, p)

4π

)1/2

. (3)

In d=5 the minimal energy in N=2 theories was shown to be E(q, p) ∼ (A(q, p))2/3 [3].

The purpose of this paper is to find out how much of this behavior carries over to higher
extended supersymmetries, where the number of central charge eigenvalues is N/2 > 1. We
would like to mention in this respect that the focus of interest to the problem as to whether the
area always does not depend on moduli was stimulated by the work of Larsen and Wilczek [4].

The area formulas for theories with extended supersymmetries are build out of central charges
on the basis of duality invariance and comparison with some known particular black hole solutions.
For example, in N=4 theories there are two eigenvalues of the central charge matrix Z1 and
Z2. The area of the horizon for the particular black holes in N=4 supergravity without matter
multiplets is proportional to [5](

A(q, p)

4

)
N=4

= π(|Z1| − |Z2|
2) . (4)
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In N=8 theory the corresponding formula for the area depends on 4 eigenvalues of the central
charge matrix and is given in agreement with some class of solutions by [6]

(
A(q, p)

4

)
N=8

= π

|(∑
i

|Zi|
4 − 2

∑
i>j

|Zi|
2|Zj|

2 + 8|Z1Z2Z3Z4|)|

1/2

, (5)

Formula (5) corresponds to the Cremmer-Julia [7] E(7) quartic invariant

♦ = Tr
(
ZZ̄

)2
− 1

4

(
Tr ZZ̄

)2
+ 4

(
Pf Z + Pf Z̄

)
(6)

in the normal frame for the central charge matrix [8]. Each central charge depends on moduli
and electro-magnetic charges.

One may have thought that the function to be extremized to get the area will be some
combination of various central charges in N > 2 theories generalizing the one central charge
situation in N=2 theories. However, this is not the case, the result of our study is: the unbroken
supersymmetry leads to the universal formula for the area of the horizon in all d=4 extended
supersymmetric theories. First, let us note that the energy of the space-time, or ADM mass is
equal to the largest eigenvalue of the central charge matrix from the requirement of unbroken
supersymmetry3.

E(q, p, φ) = MADM(q, p, φ) = max |ZC(q, p, φ)| , C = 1, . . . , N/2. (7)

We will find that the square of the minimal energy always defines the area of the horizon of the
supersymmetric black holes.

A(q, p)

4
= πE2(q, p, φ)|

∂E
∂φ

=0
. (8)

Let us relabel the central charges: the largest one max |ZC(q, p, φ)|will be called |Z| so that

max |ZC(q, p, φ)| ≡ |Z| ,

and the remaining (N
2
− 1) eigenvalues of the central charge matrix will be labelled by the index

c which runs from 1 to (N
2
− 1).

We will establish that the fixed point of attraction in the theories of extended supersymmetries
with N > 2 is given by the condition of the vanishing of all eigenvalues of the central charge
matrix which are smaller than the largest one, defining the ADM mass.

|(Zc)fix| = 0 , c = 1, . . . , (
N

2
− 1). (9)

The area formula therefore is always given by the extremum value of the central charge, or space-
time energy, which is the point where the other charges vanish. Let for example in N=4 case the
first eigenvalue is larger than the second |Z1| > |Z2|. We will find that the area formula for black

3For simplicity we consider only even N.
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holes in N=4 supergravity with N=4 vector multiplets is given by a duality symmetric formula
which is also an extremum of the ADM mass defined by the vanishing of the next to the largest
eigenvalue of the central charge.

A(q, p) can be explicitly computed, by noticing that π(|Z1| − |Z2|2)Zc=0 = π(|Z1| − |Z2|2) at
the matter attractor point (deduced by setting the gaugino variation δλia = 0 but not fixing the
S-dilaton). In N=4 we have that |Z2| = 0 forces the dilaton to take the fixed value S = Sfix and
the matter scalars to the point δλai (a = 1, . . . , nv) = 0. So

(|Z|2)|fix = (|Z1| − |Z2|
2)S=Sfix, δλ

a
i =0 . (10)

But now we use the fact that (|Z1| − |Z2|2)δλai=0 is independent of S and this allows to give an
explicit formula for |Z1|fix in terms of 2(6+ nv) charges.

|Z1|
2
fix =

1

2

√
q2p2 − (q · p)2 . (11)

Similarly in N=8, the attractor point is the value of the 70 moduli φ = φfix for which |Z2| = |Z3| =
|Z4| = 0. This means that the area formula is given in terms of the Cartan’s quartic invariant
J which depends only on charges and does not depend on moduli. The universality of the area
formula comes from the fact that the Cremmer-Julia E(7) invariant at the attractor point one
hand has to depend only on charges and be E(7) symmetric, and therefore has to coincide with
Cartan’s invariant J, on the other hand at the attractor it is given by

(
A(q, p)

4

)
N=8

= π

|(∑
i

|Zi|
4 − 2

∑
i>j

|Zi|
2|Zj|

2 + 8|Z1Z2Z3Z4|)|

1/2

|Z2|=|Z3|=|Z4|=0

= |Z1|
2
fix , (12)

Therefore
|Z1|

2
fix = (

√
♦)φ=φfix

=
√
J , (13)

and this gives an explicit formula of |Z1|2fix in terms of the 56 charges.

If Cremmer-Julia E(7) invariant ♦ is φ independent in the generic point of the moduli space,
which seems likely, in this case we have also

♦ = J , (14)

as conjectured by Cremmer and Julia [7]. In any case at the attractor point these two invariants
coincide and this is the reason for the universality of our area formula.

Similar results are also obtained for N=2,4 at d=5.

We find it useful to introduce here an additional object Σ(ρ)I for any scalar field φI(r), which
forms part of the black hole solution. It is typical for the attractor problem to have a pair of
phase space variables (x(t), y(t) = x′(t)). In our case the corresponding pair consists of the scalar
field and the first derivative of the scalar field

ΣI(ρ) ≡
∂

∂ρ
φI(ρ) . (15)
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We have plotted the value of the dilaton e−2φ(ρ) and the Σ(ρ) for the dilaton U(1)2 black hole.
We are using here the radial variable ρ = −1/r in terms of which the near horizon geometry
is conformally flat. Fig. 1a) shows that starting with any initial conditions at ρ = 0 (r → ∞)
the field is driven to an attractor value at ρ → −∞ (r = 0). Fig. 1b) shows how the derivative
evolves. The initial condition for the derivative of the scalar field at ρ = 0 (r→∞) is equal to the
so-called scalar charge Σ . It is a function of the moduli at ρ = 0 (r →∞) and electromagnetic
charges, therefore the scalar charge is also called a secondary hair of the black hole. When
evolving into the core of the black hole, independently of the initial value of the scalar charge at
ρ = 0 (r → ∞), the derivative (i.e. the effective scalar charge) Σ(ρ) goes to zero at ρ =→ −∞
(r = 0).

The physical picture of this phenomenon was suggested to us by A. Linde. It reflects the
fact that the values of electric and magnetic charges are protected by gauge invariance and the
associated Gauss low. One can measure the actual values of electric and magnetic charges being
far away from the black hole, which explains why these charges are called the black hole hair.
The scalar charges which can be measured far away from the black hole are not protected by any
conservation low. This is why the derivative of the scalar fields decreases when moving into the
core of the black hole, see Fig. 2b). Whereas the electric and magnetic charges are conserved and
their presence and stability supports the existence of an infinite throat of the Bertotti-Robinson
[9] geometry, the derivative of the scalar charge Σ(ρ) → 0 at ρ → ∞, i.e. it does not penetrate
into the throat to keep its size (the area of the black hole horizon) minimal. This results in
the minimal energy of the ground state. This picture may apply not only for supersymmetric
black holes. One may try to find out if the analogous phenomenon takes place at least for near
extreme black holes, as suggested to us by L. Susskind. The plausibility of this picture relies
on the fact that we may be dealing here with the critical phenomena which have some specific
range of applicability and in particular the attractor behavior of the system may well describe
the nearby trajectories in the phase space of the system.

One should stress that the extremization of the energy which we study here is performed
under condition that the scalar fields are constant as it is usually done in quantum field theory
by looking for the minima of the energy in the class of configurations with constant scalars. This
is the main feature of supersymmetric attractors, since we study the fixed points of the differential
equations where the scalars have vanishing derivatives [1].

φ′fix(ρ)→ 0 , ρ→∞ . (16)

The massless black holes (solutions with ADM mass going to zero) which one would tend to
associate with the minimum of the ADM energy, do not fit into the class of attractors with
constant scalars in the fixed point and has to be studied separately.

From the point of view of supersymmetry, this distinction comes from the following fact. The
graviphoton charge, which is a linear combination of moduli and electro-magnetic charges, always
represents the ADM mass for supersymmetric solutions, i.e. the energy of the space-time. The
minimization in the class of configurations with constant scalars by supersymmetry requires all
vector fields of the matter multiplets to vanish at the attractor. Their charges also are given
by some linear combinations of moduli and electro-magnetic charges, which vanish at attractor.
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This leads to Bertotti-Robinson-type geometry and black holes with non-vanishing area of the
horizon.

On the other hand one may be interested in the opposite situation when the graviphoton
charge tends to zero, leading to a specific relation between the moduli and electro-magnetic
charges, corresponding to massless black holes. The matter multiplet charges do not vanish,
otherwise the solution would be trivial. By supersymmetry it follows that the scalars do not tend
to a constant near the black hole core, the geometry is very different from the Bertotti-Robinson-
type geometry and this class of configurations has to be studied separately.

Also the configurations with the zero area which have doubled or quadrupled number of
unbroken supersymmetries comparatively to those with non-vanishing area, do not have fixed
points for the scalar fields near the horizon [10].

In what follows we will explain how the result described above follows from unbroken super-
symmetry. In Sec. 2 we will explain the particular case of pure N=4 supergravity, the U(1)2

model. We will present the complete theory of attractors in N=4 supergravity interacting with
arbitrary number of N=4 vector multiplets in Sec. 3. The area formula is presented in various
forms which show the manifest S and T duality as well as moduli independence as the consequence
of supersymmetry. On top of it the area formula is finally reduced to the universal one in terms
of the minimization of the ADM mass in the moduli space. In Sec. 4. we will analyze the simple
N=8 model, an STU attractor, which presents in a nice way the gross features of the attractors
with extended supersymmetries. The general N=8 attractor is described in Sec. 5. Cartan’s
quartic invariant which reflects the E(7) symmetry of the theory is miraculously reduced to the
simple and universal formula for the area as the minimum of the largest eigenvalue of the central
charge. Sec. 6 presents supersymmetric attractors in d=5. We present the area formulas in
N=1,2,4 theories. In particular, the cubic E(6) invariant is described in connection with 3 central
charges of the maximally extended N=4 theory in d=5. The universality of the area formula
again follows from the vanishing of all eigenvalues of the central charges except the largest one.
One more miracle of supersymmetry and we get the universal formula for the area in terms of
the minimization of the ADM energy for all cases considered.

These results should apply to strings theories or generalization thereof (M-theory?). A mi-
croscopic derivation is expected to correct the entropy formula for small values of charges. This
is of course related to the fact that Einstein gravity is only the point-like limit approximation of
the more general theories.

Our study of supersymmetric black holes and their attractor behavior suggest the following
interpretation: we have computed the exact energy of the ground state in supersymmetric gravity
as the function of electric and magnetic charges. The presence of these charges (excitations of
a superstrings) in the vacuum leads to spontaneous breaking of supersymmetry, resulting in a
duality symmetric positive energy of the ground state associated with the non-vanishing area of
the black hole horizon. The recent success in the calculation of the area of the horizon of some 5
and 4 dimensional black holes [11] from the point of view of counting string states with the use of
D-brane technology [12] naturally fits into our interpretation. The non-trivial part of this picture
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is related to the fact that the extreme black holes with the non-vanishing area of the horizon have a
conformal isometry which exchanges the two asymptotic regions. Therefore the calculation of the
area of the horizon of such extreme black holes can be interpreted as the evaluation of the square
of the energy of the ground state of this system. The corresponding conformal factor has one
parameter, the area of the horizon, or the mass of the Bertotti-Robinson universe. The relevance
of the computation of the area of the extreme black hole horizon to spontaneous supersymmetry
breaking is explained in Sec. 7 of the paper.

2 Attractor in pure N=4 supergravity, U(1)2 model

The basic feature of the extended supersymmetry attractors can be easily understood already in
the case of pure N=4 supergravity with one gravitational multiplet only. The bosonic fields in
the SU(4) version consist of a complex axion-dilaton scalar, three vectors and three axial vectors
and the metric. It was explained in [10] that near the horizon the unbroken supersymmetry of
the U(1)2 black hole is doubled. Instead of 1/4 of N=4 supersymmetry, near the horizon 1/2 of
N=4 supersymmetry is restored. In the basis chosen in [5] we have the following situation near
the horizon: for positive pq the unbroken N = 2 supersymmetry consists of the third and the
fourth ones, and for negative values of pq it is reverse, the first and the second supersymmetries
are unbroken whereas the third and the fourth are broken. The dilatino transformations rules in
the notation of [5] is,

1

2
δΛI = −γµεI∂µφ+

1
√

2
σµν

(
e−φFµναIJ − e

φG̃µνβIJ
)−
εJ = 0 . (17)

The first term in (17) vanishes at the fixed point, since we are looking for φ′ = 0. Thus at the
attractor we get for pq > 0, J = 3, 4 as well as for pq < 0, J = 1, 2 the second term in eq. (17)

Σfix ε
J = 1

2
(e−φ|p| − eφ|q|)fix ε

J = 0, (18)

which leads to the condition of the vanishing of the dilaton charge at the attractor:

Σfix = 1
2
(e−φ|p|−eφ|q|)fix = 0 ⇐⇒ e−φfix =

|p|

|q|
. (19)

We may also rewrite the dilatino transformation rule at the attractor in the form

(ZIJ)fixε
J = 0. (20)

For pq > 0, ε3, ε4 are non-vanishing, therefore at the attractor using also the gravitino transfor-
mation rule we learn that

Z34 = 0 , |Z12| = (MADM )Z34=0 pq > 0 , (21)

and for pq < 0, ε1, ε2 are non-vanishing, therefore at the attractor

Z12 = 0 , |Z34| = (MADM )Z12=0 pq < 0 . (22)
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3 Attractor in N=4 supergravity with nv vector multi-

plets: general case

The geometry of the N=4 supergravity coupled to nv matter vector multiplets 4 is based on the
non-linear sigma model SU(1,1)

U(1)
× O(6,nv)

O(6)×O(nv)
. The SU(1,1)

U(1)
manifold is parametrized by a complex

scalar field S and the vector multiplet manifold by the coset representatives LAΛ = (LijΛ , L
a
Λ):

LijΛ = −LijΛ = L∗Λij =
1

2
εijklLΛkl , (23)

where i, j = 1, 2, 3, 4, Λ = 1, . . . , 6 + nv, a = 1, . . . , nv, and there are orthogonality relations

−LaΛLaΣ + LijΛLΣij = ηλΣ , LaΛL
Λ
b = −δab , (24)

and

LijΛL
Λ
kl =

1

2
(δi[kδ

j
l]) , LaΛL

Λ
ij = 0 . (25)

The vector field (complexified) kinetic matrix is

NΛΣ = (S − S̄)LijΛLΣij + S̄ ηΛΣ , (26)

and the symplectic sections are

(LΛ
ij , NΛΣL

Σ
ij = S LΛij) ,

(LΛ
a , NΛΣL

Σ
a = S̄ LΛa) . (27)

In terms of these sections the central charge Zij is

Zij = eK/2[LΛ
ijqΛ − SLijΛP

Λ] , (28)

whereK = − log i(S−S̄) is the S-field Kahler potential. For the x-independent scalars (S, LΛ
ij, L

Λ
a )

unbroken supersymmetry for the matter gaugino’s δλai = 0 requires at the attractor point

SLaΛp
Λ − LaΛqΛ = 0 , (29)

while unbroken N=1 supersymmetry for the dilatino χi requires that the central charge |Z2| <
|Z1| = MADM given by

|Z2|
2 = ZijZ̄

ij −
1

4

√
(ZijZ̄ij)2 −

1

4
|εijklZijZkl)|2 (30)

should vanish. Equation (30) fixes the value of S at its attractor point:

Z2 = 0 . (31)

4We describe here the version of N=4 theory closely related to the one in [13]. The version here has the
property of being symplectic covariant. The details of this construction will be presented elsewhere.
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It can be proved using the symplectic formulation of N=4 theory given above that the quantity

|Z1|
2 − |Z2|

2 =
1

2

√
(ZijZ̄ij)2 −

1

4
|εijklZijZkl)|2 (32)

is S-independent. This would be sufficient to prove the moduli independence of this expression
in pure N=4 supergravity. However, in presence of N=4 vector multiplets this expression as a
function of attractor variables corresponding to α, β charge vectors of string theory does depend
on the scalars of these multiplets (the asymptotic value of the matrix M used in various black
holes constructions). This was established in [14] (see eq. (8.13) of this paper) starting with
ten dimensional supersymmetry and using the Witten-Israel-Nestor construction. However our
formalism shows that at the matter attractor point defined in eq. (29) this expression does not
depend on matter moduli anymore and becomes the function of charges only:

(|Z1|
2 − |Z2|

2)|Z2|=0 =
1

2

√
q2p2 − (q · p)2 , (33)

where Lorentzian O(6, nv) norm for qΛ, p
Λ doublet is understood. It then follows that the area is

A = 2π
√
q2p2 − (q · p)2 . (34)

Note that the 2(6+nv) electric and magnetic charges form an SU(1, 1) doublet and (6, nv)
Lorentzian vectors. This coincides with the minimum of the ADM mass

A(q, p) = 4π(M2
ADM ) ∂M

∂φ
=0 (35)

in the axion-dilaton and matter moduli space.

We would like to stress here that in [3] we have introduced the concept of attractor variables
for the black hole solutions: variables in which the ADM mass depends on charges and moduli
however, the area depends only on charges. The area formula (34) in the attractor variables
appeared in the recently revised version of ref. [15]. Our choice of what are attractor variables
is defined by the formulation of the theory with manifest symplectic symmetry. Simultaneously
this form provides the proof of the independence of the area from the moduli and leads to the
universality of the area formula in terms of the extrema of the ADM mass in the moduli space.
On the other hand the heterotic area formula given in [15] as well as our proof of independence
on all moduli at the attractor point applied to the expression for central charges in [14] provides
the link to the properties of a string theory. Indeed the corresponding attractor variables are the
conserved α, β charge vectors of string theory introduced into the black hole physics by Sen [16]
long time before it was realized that the area of supersymmetric black holes depends only on α, β
by the reason of supersymmetry, as explained in this paper. Our N=4 results and formulas, since
they entirely rely on general theory of N=4 supergravity coupled to vector multiplets, should
equally apply to the heterotic string compactified on T6 or to the type II string compactified on
K3 × T2.
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4 STU Attractor in N=8 SU(8) Supergravity

In [3] we have described STU model in the attractor variables. Here, as the preparation to
general N=8 attractor we would like to check whether the main principle of the minimization of
the largest eigenvalue of the central charge will produce the moduli independent area. We will
denote e−η0 = ImS = s, e−σ0 = ImT = t, e−ρ0 = ImU = u.

The ADM mass considered as a function of charges in generic point of the moduli space (s, t, u)
is

MADM =
1

4

(
stu|q1|+

s

tu
|q3|+

u

st
|p2|+

t

su
|p4|

)
. (36)

The variation of the mass over the moduli gives 3 attractor equations:(
stu|q1|+

s

tu
|q3| −

u

st
|p2| −

t

su
|p4|

)
= 0 ,

(
stu|q1| −

s

tu
|q3|+

u

st
|p2| −

t

su
|p4|

)
= 0 ,

(
stu|q1| −

s

tu
|q3| −

u

st
|p2|+

t

su
|p4|

)
= 0 . (37)

The solution of these equations puts the moduli into the fixed points where they become functions
of charges.

(stu)fix |q1| =
(
u

st

)
fix
|p2| =

(
s

tu

)
fix
|q3| =

(
t

su

)
fix
|p4| . (38)

We get the useful relations

(s2t2)fix =
|p2|

|q1|
, (u2t2)fix =

|q3|

|q1|
, (s2u2)fix =

|p4|

|q1|
, (39)

and

(stu)fix =

(
|p2q3p4|

|q1|3

)1/4

. (40)

This allows to get the value of the ADM mass at the attractor:

(MADM )fix = (stu)fix|q1| = |q1p2q3p4| . (41)

We may now conjecture that the generalization of the 4 eigenvalues of the N=8 supergravity
central charges [6] is the following

4Z1 =
(
stu|q1|+

s

tu
|q3|

)
+
( u
st
|p2|+

t

su
|p4|

)
,

4Z2 =
(
stu|q1|+

s

tu
|q3|

)
−
( u
st
|p2|+

t

su
|p4|

)
,

4Z3 =
(
stu|q1| −

s

tu
|q3|

)
+
( u
st
|p2| −

t

su
|p4|

)
,

4Z4 =
(
stu|q1| −

s

tu
|q3|

)
−
( u
st
|p2| −

t

su
|p4|

)
. (42)
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Now one can see that indeed the 3 attractor equations (37) mean exactly the following:

Z2 = Z3 = Z4 = 0 , Z1|Z2=Z3=Z4=0
= (MADM )fix = |q1p2q3p4| = E(p, q) . (43)

This example makes it natural to look for the general N=8 attractor expecting to get the area
from the minimum in the moduli space of the largest of the 4 eigenvalues of the central charge
matrix.

5 N=8 attractor: general case

N=8 theory has only one gravitational multiplet. Therefore all 28 vector fields are graviphotons,
there are no vector fields which are not supersymmetric partners of the graviton. The 28 electric
and 28 magnetic charges all together are in 56 fundamental representation of E7. The black hole
solutions of this theory with 1/8 of supersymmetry unbroken are known to have a non-vanishing
area. The manifestly E(7) symmetric area formula is given by the unique quartic invariant of
E(7). However, how can we find out if the area is independent on 70 moduli and depends only on
56 charges? Let us first analyze the supersymmetry transformation rules [7] near the attractor
where all 70 moduli tend to a constant values.

δΨµA = DµεA + ZAB µνγ
νεB , (44)

δχABC = Z[AB µνσ
µνεC] . (45)

Let us decompose N=8 into SU(4) × SU(4) as (4,1) + (1,4), keeping all fields of n=8 theory.
Then N=8 supergravity multiplet will split into one gravitational multiplet of N=4 theory

[(2) 4(3/2) 6(1) 4(1/2) 2(0)]

4 spin 3/2 multiplets
4[(3/2) 4(1) 6 + 1(1/2) 8(0)]

and 6 vector multiplets
6[(1) 4(1/2) 6(0)].

The 8-dimensional index A is split as A = (i, a) where i = 1, . . . , 4 and a = 1, . . . , 4. The
fermions are ΨµA = (Ψµi ,Ψµa) and χABC = (χijk , χiab , χaij , χabc). In N=4 theory χijk is in spin
2 multiplet, χaij , χabc belong to spin 3/2 multiplet and χiab to spin 1 multiplet. We may solve
eqs. (45) using the ansatz

εa = 0, εi = {ε1, ε2 6= 0, ε3 = ε4 = 0}. (46)

The transformation of 4 gravitino from the gravitational multiplets and of those from the spin
3/2 multiplets are

δψµi = Dµεi + Zij µνγ
νεi , (47)

δψµa = Dµεa + Zai µνγ
νεi . (48)
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The central charge matrix can be put into the normal frame [8] by means of a SU(N) transfor-
mation. In this frame the off diagonal elements Zai are absent, Zai = 0.

ZAB =
(
Zij 0
0 Zab

)
. (49)

Matrices Zij and Zab are diagonal,

Zij =
(
z1σ2 0

0 z2σ2

)
, Zab =

(
z3σ2 0

0 z4σ2

)
, (50)

where

σ2 = i

(
0 1
−1 0

)
. (51)

Thus the transformation of 4 gravitino from spin 3/2 multiplets vanishes δψµa = 0 due to the fact
that 4 εa supersymmetries are broken and that in the normal frame the off diagonal elements of
the central charge matrix Zai are absent. The variation of spin 1/2 fields vanishes

δχabc = 0, δχaij = Zijεa + Ziaεj = 0 . (52)

It remains to check the spin 1/2 transformations from the gravitational multiplet and from the
vector multiplet of N=4 theory at the attractor point :

δχiab = Zabµνσ
µνεi , (53)

δχijk = Zijµνσ
µνεj . (54)

The first of these two equations implies that Zab = 0, i.e. z3 = z4 = 0. The second one
yields z2 = 0, as in N = 4. Thus we have proved that the attractor condition indeed requires
all eigenvalues of the central charge which are smaller than the one equal to the ADM mass to
vanish. This again leads us to the universal formula for the area, starting with an E(7) symmetric
formula.

6 Attractors in d=5 N=2,4 theories

The general formulas for N=4, N=8 derived in this paper have an obvious extension at d=5. In
our previous paper [3] we gave the general area formula for an arbitrary N=1 theory in d=5 in
terms of the symmetric constant dABC

A ∼ Z3/2
fix =

(
dAB(q)−1qAqB

)3/4
, (55)

where dAB(q)−1 is the inverse of the moduli dependent matrix dAB = dABCt
C computed at the

attraction point Z = Zfix. There was only one central charge Z = tA(z)qA ( dABCtAtBtC = 1)
and ∂iZ = 0 =⇒ Z = Zfix

12



For N=2, N=4 in d=5 we have 2 and 3 central charges respectively5 [17]. Again the ADM
mass is given by the largest eigenvalue. Let us call it Z and the other Zc. As before

A ∼ (Z)
3/2
fix . (56)

For N=2 coupled to nv matter multiplets there are 6+nv electric charges. They are in the (5,nv)
vector representation of O(5, nv) + a singlet. The singlet is the charge of the vector dual to the
Bµν field.

The general formula for Z at the attractor point coincides with the macroscopic formula given
by Strominger and Vafa [11],

Z|
fix

= (QHQ
2
F )1/3, (57)

where QH is the singlet charge and Q2
F is a Lorentzian (5, nν) norm of the other 5 + nν charges.

For the N = 4 theory we have 27 charges which are in the 27 irreducible representation of E7.
The formula for Z is given by the cubic root of the unique E6 invariant constructed out of the
27 dimensional representation of E6, which is the central charge Zij (i, j = 1, ..., 8). (Note that
the 27 can be represented as a traceless Sp(8) symplectic matrix.)

Z|
fix

= (4)1/3 =
(
qijΩ

jlqlmΩmnqnρΩ
ρi
)1/3

, (58)

where qij is a 27 integer charge vector transforming under E6(Z) (integer valued E6 group).

These N = 4 results are expected to apply to the type II strings compactified on the 5-torus
or eleven-dimensional supergravity (or M-theory) on the six-torus.

7 Exact Total-Energy of the Ground State and Sponta-

neous Breaking of Supersymmetry

We would like to use here the experience from the study of supersymmetric black holes in string
theory, accumulated in the community over the recent years and also some ideas from duality
symmetric quantization of superstring theory [18] to learn about the properties of the exact
Hamiltonian in quantum theories with local supersymmetry. It has been pointed out in [18] that
the consistent quantization of κ-symmetry in the backgrounds with unbroken supersymmetry
can be performed with the help of the supercharge of the background in which the extended
κ-symmetric object can exist. The supercharge of the gravitational supersymmetric theory was
defined by Teitelboim [19] as the surface integral in terms of the gravitino Ψµ field of the config-
uration, solving the field equations:

Q =
∮
∂Σ
dΣµνγ

µνλΨλ . (59)

5The reason why in N=4 supergravity in d=5 there are only 3 central charges in the normal frame is due to
the fact that the Zij (i,j=1,. . . 8) central charge matrix is traceless ZijΩ

ij = 0 with respect to the Sp(8) metric
Ωij = −Ωji. By reducing d=5 to d=4 on S1 one gets a fourth charge from Kaluza-Klein vector gµ5.
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The surface over which the integration has to be performed depends on the choice of config-
uration. In all cases it is the same surface the integration over which defines the ADM mass of a
given system or the ADM mass per unit area (length). The on-shell backgrounds with some num-
ber of supersymmetries unbroken in bosonic sectors have the vanishing supersymmetry variation
of the gravitino, when the parameters are Killing spinors.

Qk =
∮
∂Σ
dΣµνγ

µνλδεkΨµ =
∮
∂Σ
dΣµνγ

µνλ∇̂λεk = 0 . (60)

For anti-Killing spinors the supercharge is not vanishing. For the black hole multiplets it defines
the so-called superhair of the black hole:

Ssuperhair ≡ Qk̄ =
∮
∂Σ
dΣµνγ

µνλ∇̂λεk̄ . (61)

The concept of the superhair was defined for the first time for extreme Reissner-Nordström black
holes in [20] and studied more recently in the context of more general extreme black holes in [21].

In the theories with local supersymmetry the total-energy operator (Hamiltonian) [22] is
defined via the quadratic combination of supercharges

P0 = (8πGhN)−1
N∑
I=1

4∑
A=1

Q2
AI . (62)

The computation of the area of the horizon of the supersymmetric black holes performed above
via the extremum of the ADM energy suggest the following interpretation: the ADM mass at
the extremum in the moduli space is the value of the total-energy operator (Hamiltonian) of the
ground state. The ground state has a non-vanishing vacuum energy due to the presence of electric
and magnetic charges, which cause spontaneous breaking of supersymmetry.

Hvac = E(p, q) =

√
A(p, q)

4π
. (63)

The electric and magnetic charges are due to the excitation of the microscopical degrees of
freedom of the string theory or alternatively due to the near horizon black hole geometry of
Bertotti-Robinson, which exists only when the charges are non-vanishing. For the string theory
interpretation of the ground state energy the appropriate formulas are: for the heterotic string
compactified on T6 (or type II compactified on K3 × T2) the SL(2,Z) × SO(6, 22; Z) symmetric
expression for the ground state energy is

E(p, q)het =

√
A(p, q)

4π
=
(
q2p2 − (q · p)2

)1/4
, (64)

where the 2 (6+22) electric and magnetic charges form SL(2,Z) doublets and (6,22) Lorentzian
vectors. For Type II string compactified on T6 the vacuum energy is given by the E7(Z) symmetric
expression.

E(q, p)II = J1/4 , (65)
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where the quartic Cartan E(7) invariant is

J = qijpjkq
klpli − 1

4
qijpijq

klpkl

+ 1
96

(
εijklmnop pijpklpmnpop + εijklmnop q

ijqklqmnqop
)
. (66)

and the charges qij and pij , i, j = 1, . . . , 8 span the 56 dimensional space. Our interpretation is
supported by the following space-time picture. The black hole configurations interpolate between
two vacua, one trivial at asymptotic infinity and the second one described by the Bertotti-
Robinson geometry, which is known to have an unbroken N=2 supersymmetry [23, 24, 10, 3]. In
particular, due to conformal flatness of the geometry and due to covariantly constant gravipho-
ton field strength, the supersymmetry variation of the gravitino field strength vanishes without
enforcing any linear combination of the supersymmetry parameter to vanish.

δsusy (D[µψν])BR = 0, ε1 6= 0, ε2 6= 0,

δsusy (D[µψν])triv = 0, ε1 6= 0, ε2 6= 0. (67)

At asymptotic infinity the trivially flat vacuum is also characterized by the unbroken space-time
supersymmetry. Moreover, for the trivial vacuum the variation of the gravitino itself vanishes,
since both spin connections as well as vector field strengths vanish at asymptotic infinity. Consider
now the second vacuum, the near horizon configuration of the supersymmetric black holes. The
space is only conformally flat, it is characterized by some electric and magnetic charges. The
unique parameter, characterizing the geometry, the Bertotti-Robinson mass, is given by duality
symmetric function of all available electric and magnetic charges. One can check that despite the
supersymmetry transformation of the field strength of gravitino in this background vanishes the
transformation of gravitino does not for non-vanishing charges p,= q, p. This causes the main
difference with the trivial asymptotically flat vacuum with zero energy.

δsusy (ψν)BR 6= 0, ε1 6= 0, ε2 6= 0, (68)

δsusy (ψν)triv = 0, ε1 6= 0, ε2 6= 0. (69)

The ground state energy, which is proportional to the square root of the area of the black hole
horizon (or to the Bertotti-Robinson mass) is positive, duality symmetric and presents a non-
trivial computation of an eigenvalue of the energy-operator of a ground state of quantum gravity
system. The energy of the ground state

(P0)vac = (8πGhN)−1
N∑
I=1

4∑
A=1

(QAI)
2
vac (70)

is always non-negative, however, for the ground state to have a positive energy one has to require
that the supercharge of the ground state is non-vanishing. This happens in our system since the
ground state supercharge does not vanish in presence of the covariantly constant graviphoton
field strength: This makes the calculation of the ground state energy of the theory with local
supersymmetry consistent with the idea of spontaneous breaking of supersymmetry with the
non-vanishing constant value of the vacuum supercharge.
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8 Discussion

In this paper we have established the universality of the black hole area formula for extended
supersymmetric theories N ≥ 2 in d=4. It is based on the fact that all central charges of the
theory except the one which equals the ADM mass have to vanish near the black hole horizon
by requirement of supersymmetry. In this way supersymmetry realizes the principle of lowest
possible ground state. The fact that the ADM mass as a function of charges and moduli is equal
to the central charge does not mean yet that it is a ground state. Since the central charge depends
on conserved electric and magnetic charges and moduli in the generic point the energy is not the
minimal one. One has to minimize it in the moduli space and this is how we get the minimal
energy of the ground state.

This universality can be understood also from the fact that in supersymmetric theories with
asymptotically flat spaces there exists a well defined universal expression for the Hamiltonian
in terms of the sum over all supercharges [22]. The presence of an extended microscopic object
like superstring introduces spontaneous breaking of the supersymmetry, from the point of view
of the space-time Hamiltonian, since it has a non-vanishing value on the ground state of the
system. The electric and magnetic charges which are interpreted as charges (q, p) defining the
Bertotti-Robinson geometry and defining the size of its infinite throat A(q, p), from the point of

view of string theory are simply the conserved charge vectors of string theory(~α, ~β).

If one accepts the point of view that the calculation of the area of the black hole horizon was a
tool to get the ground state energy, it become clear that any supersymmetric black hole solution
with particular area formula actually provides the calculation of the ground state energy and
gives a specific example of the ground state energy calculation. However, the general expression
for the energy of the ground state is simultaneously universal and duality invariant as explained
in this paper,

E(q, p) = E(~α, ~β) =

(
A(q, p)

4π

)1/2

. (71)

This result can be associated with the fact discovered by Gaillard and Zumino [25] that the
energy momentum tensor in supergravities is duality invariant whereas the off-shell Lagrangian
is not. Our analysis also predicts that the most general S and T duality invariant area formulas
in the heterotic theory compactified on T6 (or type II, compactified on K3×T2 , given in eq. (64)
or with U duality for type II string theory compactified on T6 as given in eqs. (65) should be
reachable by the counting of string states, as it was already demonstrated in particular examples
[11].

The space-time picture is that the most general 4 dimensional supersymmetric black holes
with the non-vanishing area of the horizon, covering the singularities, interpolate between 4
dimensional Minkowski space-time M4, at spatial infinity r→∞ and adS2×S2 down the infinite
wormhole throat r → 0 as was noticed by Gibbons [23] with respect to Reissner-Nordström
geometry. In addition the near horizon geometry upon the change of variables

r = −
E2(p, q)

ρ
(72)
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was also interpreted in [3] as the second conformally flat M4. The conformal factor relating these
two asymptotic regions M4(r) and M4(ρ) was found to be equal to [3]

E(q, p)2

ρ2
=

r2

E(q, p)2
. (73)

Thus the total stability of this picture of the space-time geometry is constrained severely by the
fact that the space-time energy of the ground state E(q, p) is not vanishing. The existence of
these charges is explained by the existence of the string states. Moreover, from the point of view
of string theory the two M4 do not seem to be distinguishable. This is one possible explanation
of the spontaneous supersymmetry breaking behind the non-vanishing of the ground state energy
E(q, p) 6= 0. When the energy of the ground state vanishes and the area of the black hole horizon
shrinks to zero this picture of two asymptotically M4 regions is not valid anymore, scalar fields do
not stop evolving inside the throat. In the duality symmetric area formulas the vertices described
in [5, 6] are reached, double or quadruple number of supersymmetries is restored and singularities
become naked unless the ground state energy E(q, p) is non-vanishing. Our macroscopic formulae
are supposed to be valid for large values of charges but one may expect corrections to them
from microscopic physics, for example one can find some disagreement between microscopic and
macroscopic calculation of the entropy for small charges [11]. Therefore the status of the zero
entropy limit may be changed by microscopic physics.

In higher dimensions and for higher extended objects one can expect to find an analogous
phenomena to the one studied here for 4 dimensional black holes. In particular, the p-branes are
known to interpolate [26] between Md and adSp+2×Sd−p−2. Obviously, the size of the Sd−p−2 must
be given by a nice duality symmetric formula, since under dualities the total metric is invariant.
In particular, the computation of the area formula for the solutions in the case d=5, p=0 studied
in Sec. 6 is reduced to the calculation of the wormhole throat of Sd−p−2 = S3. A particularly
interesting case to study in this respect is given by the self-dual three-brane, which also has a
conformal isometry exchanging two asymptotic regions [26] . Another interesting object to study
is a d=10 five-brane, which interpolates between M10 and M4 × S3. Here again the analysis
analogous to the one performed in this paper may lead to an interesting duality invariant formula
for the size of the S3 sphere. Thus we expect various possible developments of the ideas of this
paper in application to higher dimensions and to higher extended supersymmetric objects.
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Figure 1: Evolution of the dilaton field e−2φ and of the effective dilaton charge Σ(ρ) = −dφ
dρ

for

various initial conditions at ρ = 0 (r =∞) to a common fixed point at ρ = −∞ (r = 0).
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