
Universality of weak selection

Bin Wu,1,2,* Philipp M. Altrock,1 Long Wang,2 and Arne Traulsen1,†

1Research Group Evolutionary Theory, Max-Planck-Institute for Evolutionary Biology, August-Thienemann-Str. 2, 24306 Plön, Germany
2Center for Systems and Control, State Key Laboratory for Turbulence and Complex Systems, College of Engineering, Peking

University, Beijing 100871, China
�Received 27 May 2010; published 13 October 2010�

Weak selection, which means a phenotype is slightly advantageous over another, is an important limiting
case in evolutionary biology. Recently, it has been introduced into evolutionary game theory. In evolutionary
game dynamics, the probability to be imitated or to reproduce depends on the performance in a game. The
influence of the game on the stochastic dynamics in finite populations is governed by the intensity of selection.
In many models of both unstructured and structured populations, a key assumption allowing analytical calcu-
lations is weak selection, which means that all individuals perform approximately equally well. In the weak
selection limit many different microscopic evolutionary models have the same or similar properties. How
universal is weak selection for those microscopic evolutionary processes? We answer this question by inves-
tigating the fixation probability and the average fixation time not only up to linear but also up to higher orders
in selection intensity. We find universal higher order expansions, which allow a rescaling of the selection
intensity. With this, we can identify specific models which violate �linear� weak selection results, such as the
one-third rule of coordination games in finite but large populations.
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I. INTRODUCTION

In evolutionary game theory the outcome of strategic situ-
ations determines the evolution of different traits in a popu-
lation �1�. Typically, individuals are hardwired to a set of
strategies. The performance in an evolutionary game deter-
mines the rate at which strategies spread by imitation or
natural selection. Due to differences in payoff, different strat-
egies spread with different rates under natural selection. In
infinitely large well-mixed populations this is described by
the deterministic replicator dynamics �2–5�. In this set of
nonlinear differential equations the intensity of selection,
which determines how payoff affects fitness, only changes
the time scales but not the direction of selection or the sta-
bility properties. In finite populations fluctuations cannot be
neglected �6–9�. The dynamics becomes stochastic: selection
drives the system into the same direction as the correspond-
ing deterministic process, but sometimes the system can also
move into another direction. The strength of selection deter-
mines the interplay between these two forces. The absence of
selective differences is called neutral selection: moving into
one direction is as probable as moving into any other, inde-
pendent of the payoffs. If selection acts, the transition prob-
abilities become payoff dependent and thus asymmetric. The
asymmetry can be the same in each state �constant selection�
or state dependent �frequency dependent selection�. In gen-
eral, under frequency dependent selection the probability that
one strategy replaces another can be fairly complicated.
However, under the assumption of weak selection, some im-
portant insights can be obtained analytically �9–16�. It has to
be pointed out that these results do, in general, not carry over
to stronger selection.

Weak selection describes situations in which the effects of
payoff differences are small, such that the evolutionary dy-
namics are mainly driven by random fluctuations. This ap-
proach has a long-standing history in population genetics
�17,18�. In evolutionary biology, a phenotype is often found
to be slightly advantageous over another phenotype �19,20�.
Further, a recent experiment suggests that some aspects of
weak selection are reflected in human strategy updating in
behavioral games �21�. In the context of evolutionary game
dynamics, however, weak selection has only recently been
introduced by Nowak et al. �9�. The definition of weak se-
lection is unambiguous in the case of constant selection, but
there are different ways to introduce such a limit under fre-
quency dependent selection �22�.

In the simplest case, frequency dependence can be intro-
duced by an evolutionary game between two types A and B.
In a one shot interaction �where strategies are played simul-
taneously� a type A interacting with another type A receives
payoff a, two interacting B types get d each. Type A inter-
acting with B gets b, whereas B obtains c. This symmetric
2�2 game can be described by the payoff matrix

A

A

B

A B

�a b

c d
� . �1�

Let i denote the number of A individuals in a population of
constant size N. Under the assumption of a well-mixed popu-
lation, excluding self-interactions, the average payoffs for
individuals of either type are given by

�A = a
i − 1

N − 1
+ b

N − i

N − 1
, �2�

�B = c
i

N − 1
+ d

N − i − 1

N − 1
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These expectation values are the basis for the evolutionary
game. In the continuous limit N→�, the state of the system
is characterized by the fraction of A individuals x= i /N. The
dynamics are typically given by the replicator dynamics ẋ
=x�1−x���A−�B�, which has the trivial equilibria x̂=0 and
x̂=1. Additionally, there can be a third equilibrium between 0
and 1, given by x�= �d−b� / �a−b−c+d�. In finite popula-
tions, the probabilistic description does not allow the exis-
tence of equilibrium points anymore. Moreover, the invari-
ance of the replicator dynamics under rescaling of the payoff
matrix �5� is lost in finite population models. Typically, the
average payoffs are mapped to the transition probabilities to
move from state i to other states; only i=0 and i=N are
absorbing states. When only two types compete and there is
only one reproductive event at a time this defines a birth-
death process. The transition probabilities from i to i+1 and
from i to i−1 are then denoted by Ti

+ and Ti
−, respectively.

They determine the probability of the process to be absorbed
at a certain boundary, usually called fixation probability, as
well as the average time such an event takes, termed average
fixation time.

An important result of evolutionary game dynamics in
finite populations under weak frequency dependent selection
is the one-third rule. It relates the fixation probability of a
single type A individual, �1, to the position of the internal
equilibrium x� in a coordination game, i.e., when a�c and
d�b. If selection is neutral, we have �1=1 /N. If the internal
equilibrium is less than 1/3, x��1 /3, then �1�1 /N. Origi-
nally, this weak selection result has been found for large
populations in the frequency dependent Moran process �9�.
Subsequently, the one-third rule has been derived from sev-
eral related birth-death processes �23–25� and also for the
frequency dependent Wright-Fisher process �26,27�, which is
still a Markov process, but no longer a birth-death process.
In a seminal paper, Lessard and Ladret showed that the one-
third rule is valid for any process in the domain of King-
man’s coalescence �28�, which captures a huge number of the
stochastic processes typically considered in population ge-
netics. Essentially, this class of processes describes situations
in which the reproductive success is not too different be-
tween different types. Thus, the generality of the one-third
rule under linear weak selection is well established. Here, we
ask a slightly different question: To which order can two
birth-death processes be considered as identical under weak
selection? Some authors have considered higher weak selec-
tion orders for specific processes �29–31�. We investigate
two classes of birth-death processes, a general pairwise imi-
tation process motivated by social learning and a general
Moran process based on reproductive fitness. In this light, we
also discuss cases which violate the one-third rule.

The paper is organized in the following way. In Sec. II we
compute the weak selection expansion of the fixation prob-
ability in a general case of our two classes of birth-death
processes. In Sec. III, we perform the same calculations for
the significantly more complicated fixation times. In Sec. IV
we discuss our analytical results and conclude. Some de-
tailed calculations can be found in Appendixes A and B.

II. PROBABILITIES OF FIXATION

A birth-death process is characterized by the transition
probabilities from each state i to its neighboring states, Ti

+

and Ti
−. We assume that this Markov chain is irreducible on

the interior states and we exclude mutations or spontaneous
switching from one type to another. Thus, the process gets
eventually absorbed at i=0 or N. For any internal state, the
probability to hit i=N starting from 0� i�N, �i, fulfills the
recursion equation �i= �1−Ti

+−Ti
−��i+Ti

−�i−1+Ti
+�i+1

�32–34�. This recursion can be solved explicitly, respecting
the boundary conditions �0=0 and �N=1. For a single A
individual in populations of B, the probability to take over
the population is �32–34�

�1 =
1

1 + �
k=1

N−1

�
i=1

k
Ti

−

Ti
+

. �4�

In any model of neutral selection, the transition probabilities
of the Markov chain fulfill Ti

− /Ti
+=1, and hence the respec-

tive fixation probability of a single mutant amounts to 1 /N.
In this section we focus on the weak selection approxima-

tion of Eq. �4�. We do this for two different approaches to
evolutionary game theory: imitation dynamics and selection
dynamics. In the former case, strategy spreading is based on
pairwise comparison and imitation, in the latter it results
from selection proportional to fitness and random removal.
The most prominent examples are the Fermi process and the
Moran process, respectively.

A. Pairwise comparison

In a pairwise comparison process, two individuals are
chosen randomly to compare their payoffs from the evolu-
tionary game �Eqs. �2� and �3��. One switches to the other
strategy with a given probability �see Fig. 1�. If selection is
neutral, this probability is constant. If selection acts, the
larger the payoff difference, the higher the probability that
the worse imitates the better. But typically there is also a
small chance that the better imitates the worse. Otherwise,
only the strategy of the more successful individual is
adopted. This would lead to a dynamics that is stochastic in
the time spent in each interior state but deterministic in di-
rection �24�. Thus, given that all interior states are transient,
the fixation probabilities are either 0 or 1, and there is no
basis to discuss a weak selection limit.

Selection is parametrized by the intensity of selection �
	0. As a first example we consider the Fermi process
�24,35,36�. Let the two randomly selected individuals X and
Y have payoffs �X and �Y. Then X adopts Y’s strategy with
probability gFermi��Y −�X�=1 / �1+e−���Y−�X��. Thus, the tran-
sition probabilities of an evolutionary game with payoffs
�Eqs. �2� and �3�� are given by

Ti

 =

i

N

N − i

N

1

1 + exp����A−�B� . �5�

The probability to stay in state i is 1−Ti
−−Ti

+. The Fermi
process is closely related to the Glauber dynamics �37�. If we
define individuals’ energy as the exponential function of pay-
off, then the Fermi process can be mapped onto the Ising
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model. The Fermi process has the comfortable property that
the ratio of transition probabilities simplifies to Ti

− /Ti
+

=e−���A−�B�, such that the products in Eq. �4� can be replaced
by sums in the exponent. Defining u= �a−b−c+d� / �N−1�
and v= �Nb−Nd−a+d� / �N−1�, such that �A−�B=ui+v,
leads to

�1��� =
1

1 + �
k=1

N−1

exp	− �
k2u

2
+ k�u

2
+ v��� . �6�

For large N, the sum can be replaced by an integral, leading
to a closed expression �24�. For weak selection, N��1, Eq.
�6� can be approximated by

�1 

1

N
+

�N − 1���N + 1�u + 3v�
6N

� . �7�

This can also be obtained directly from Ti
− /Ti

+
1−���A
−�B�. The fixation probability under weak selection is
greater than in the neutral case if the term linear in � is
positive, Nu+u+3v�0. In particular, for a coordination
game in a large population, this implies x��1 /3. Thus, natu-
ral selection favors the mutant strategy if the invasion barrier
is less than one-third, which is the well-known one-third rule
�9,24,25,28,30�. It holds when the fixation probability in a
large but finite population can be approximated up to linear
order in selection intensity.

Can we make general statements based on an expansion
of �1 concerning the probability of switching strategies,
g�
��? In a general framework, the probability that X
switches to the strategy of Y, given the difference in their
payoffs, 
�=�X−�Y, is governed by the intensity of selec-
tion. We call g�
�� the imitation probability function of a
general pairwise comparison process. In a well-mixed popu-
lation, the transition probabilities read

Ti

 =

i

N

N − i

N
g�
�
�� . �8�

The larger the payoff difference, the more likely the worse
individual switches to the strategy of the better. Therefore,
the imitation function is nondecreasing, g��
��	0. Addi-
tionally, if the payoffs of the two chosen individuals are
equal, the neutral probability of switching is nonzero, g�0�
�0 �otherwise, the process does not allow a meaningful
definition of weak selection because it would always deter-
ministically follow the direction of selection�. The fixation
probability for this general pairwise comparison process can
be expanded to the second order �see Appendix A 1�,

�1 

1

N
+ C1� + C2�2, �9�

where

C1 =
�N − 1���N + 1�u + 3v�

6N

2g��0�
g�0�

�10�

and

C2 = �u2�N + 1��N + 2� + 15uv�N + 1� + 30v2�

�
�N − 1��N − 2�

360
�2g��0�

g�0� �2

. �11�

C1 is proportional to the increase of the imitation function at

�=0 �see Fig. 2�. Note that for large N, C1�0 is equiva-
lent to Nu+3v�0, which for large N further simplifies to
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FIG. 1. �Color online� Upper panel: pairwise comparison pro-
cesses are characterized by the probability g�
�� to imitate the
strategy of someone else based on the payoff difference 
�. With
increasing payoff difference, the imitation probability becomes
higher, g��
��	0. Weak selection implies a Taylor expansion at

�=0. Thus, it can only be invoked for functions that are differen-
tiable in 0. The figure shows three examples of imitation probability
functions, g1�
�� is a linear function �selection intensity �=0.5�,
and g2�
�� is the Fermi function ��=50�. For the imitation func-
tion g3�
��, a meaningful weak selection limit does not exist since
g3�
�� is not differentiable in 0. Because g3�
��=0 for 
��0,
the associated stochastic process would be stochastic in time but
deterministic in direction. All through the paper, we focus on imi-
tation functions that are differentiable in 0. Lower panel: Moran
processes are characterized by a payoff to fitness mapping f���.
Fitness is a nondecreasing function of the payoff, f����	0. The
figure shows three examples for payoff to fitness mappings �selec-
tion intensity �=1 for all three functions�.
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x��1 /3. Thus, the one-third rule holds for all pairwise com-
parison processes that fulfill g��0��0, and g�0��0. More-
over, C1 is proportional to 2g��0� /g�0�, while C2 is propor-
tional to the square of this quantity. Thus, 2g��0� /g�0� can be
absorbed into the selection intensity by proper rescaling.
Therefore, the more rapid the increases of the imitation
function at 
�=0, the stronger is the sensitivity of the
fixation probability to changes in average payoff. For low
switching probabilities in the neutral case, 
�=0, we have
a fixation probability that changes rapidly when the payoff
difference becomes important, 
��0. While most previous
models have either considered g�0�=0 �which lies out of the

scope of our approach because it does not lead to a reason-
able definition of weak selection� or g�0�=0.5 �which is
the default case�, some authors have also explored imitation
functions with other values of g�0�. For example, Szabó
and Hauert used the imitation function g�x�=1 / �1+e−x+��,
where � is a constant �38�. In this case 2g��0� /g�0�=2 / �1
+exp�−���; thus, an increase in � is equivalent to an increase
in the �small� selection intensity.

Now it is straightforward to come up with an imitation
function that leads to a violation of the one-third rule, for
example, g�
��=1 / �1+exp�−
�3��. Obviously, g��
��
satisfies the conditions g���
��	0, and g�0��0. Further,
both the first- and the second-order expansions vanish.
Therefore, the fixation probability under weak selection can
only be approximated as

�1 

1

N
+ C3�3, �12�

where C3 can be derived in the same way as C1 and C2. In
special games, the sign of C3 can also change at x�=1 /3, but
in general this will not be the case due to the complicated
dependence of C3 on u and v. In more general terms, the
one-third rule is not sustained whenever the linear approxi-
mation of g��
�� vanishes.

B. Moran process

In the frequency dependent Moran process the payoff �,
given in Eqs. �2� and �3�, is mapped to fitness f , as illustrated
in Fig. 1. In each reproductive event, one individual is se-
lected for reproduction �producing an identical offspring�
proportional to fitness. To keep the size of the population to
the constant value N, a randomly chosen individual is re-
moved from the population subsequently. As in pairwise
comparison processes, the state i can at most change by one
per time step.

In the simplest case, fitness is a linear function of payoff.
With a background fitness of one, the fitnesses of types A and
B read fA=1+��A and fB=1+��B, respectively. The quan-
tity �	0 serves as the intensity of selection. Note that �
is bound such that fitness never becomes negative. The prob-
ability that the number of A individuals increases by 1,
i→ i+1, is given by

Ti
+ =

ifA

ifA + �N − i�fB

N − i

N
. �13�

The other possible transition, i→ i−1, occurs with probabil-
ity

Ti
− =

�N − i�fB

ifA + �N − i�fB

i

N
. �14�

When selection is neutral, �=0, we have Ti

= i�N− i� /N2. Up

to linear order in � the Moran process has the same fixation
probability as the Fermi process �Eq. �7��, such that in this
approximation the one-third rule is fulfilled. This is because
under first-order weak selection, Ti

− /Ti
+ is again a linear func-

tion of the payoff difference.
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FIG. 2. Approximation of the fixation probability of a single
mutant under weak selection. Upper panel: pairwise comparison
process with the Fermi function 1 / �1+exp�−�
��� as an imitation
function. As shown in the main text, up to the second order the
approximation is valid for any imitation function g��
�� after ap-
propriate rescaling of the selection intensity �. Lower panel: Moran
process with fitness as a linear function of the payoff, f =1+��.
Any other function leads to the same first-order approximation after
rescaling of �. However, the second order depends on choice of the
function transforming payoff to fitness. Exact analytical results are
numerical evaluations of Eq. �4�. �Parameters N=100, �=1, a=4,
b=1, c=1, and d=5 in both panels�.
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In general, let fitness be any non-negative function of the
product of payoff and selection intensity, f����, which ful-
fills f�����	0. For simplicity, we assume that the baseline
fitness f�0� is 1. The transition probabilities in a population
with types A and B read

Ti
+ =

if���A�
if���A� + �N − i�f���B�

N − i

N
, �15�

Ti
− =

�N − i�f���B�
if���A� + �N − i�f���B�

i

N
. �16�

Note that Ti
− /Ti

+= f���B� / f���A�. Up to second order in �,
the fixation probability of a single A mutant in a population
of B is �see Appendix A 2�

�1 

1

N
+ D1� + D2�2, �17�

where

D1 = �N − 1�
�N + 1�u + 3v

6N
f��0� �18�

and

D2 = �u2�N + 1��N + 2� + 15uv�N + 1� + 30v2�
�N − 1��N − 2�

360

�f��0�2 − ��2a2 + 4ab + 4cd − 10d2� + �11d2 + 2cd − c2

− 3b2 − 6ab − 3a2�N + �a2 + 2ab + 3b2 − c2 − 2cd

− 3d2�N2�
�N − 1�
24N3 �f��0�2 − f��0�� , �19�

with u and v as above. Note that the first-order term depends
on payoff differences only, but the second-order term also
depends on the payoff values directly. An example for such
an approximation is shown in Fig. 2. The first-order term D1
is proportional to the increase in fitness at �=0, f��0�. The
first-order term D1 is proportional to Nu+3v for large N.
Hence, the one-third rule holds for every Moran model for
which f��0� does not vanish under weak selection. Addition-
ally, f��0� can be absorbed into the selection intensity by
rescaling: changing this rate is equivalent to changing the
intensity of selection. Note that this is not possible with D2,
where not only the slope but also the curvature of the fitness
function at the origin play a role. However, when the expo-
nential fitness function f =exp���� is employed �39�, the
second term of Eq. �19� vanishes. This allows us to incorpo-
rate f��0� into the selection intensity even for the second-
order term.

Again, we conclude the section with an example where
the one-third rule is violated. Consider the fitness function
f����=1+�3�3, which obviously satisfies f�0�=1, and
f�����	0. Both first- and second-order corrections in �
vanish, D1=D2=0. Therefore, the first nontrivial approxima-
tion of the fixation probability is

�1 

1

N
+ D3�3. �20�

If D3 changes sign at x�=1 /3, we recover the one-third rule.
This is only the case for very special games. In analogy to
the previous section, the general one-third rule does not hold
anymore.

III. TIMES OF FIXATION

In this section we address the conditional fixation time �i
A.

In a finite population of N− i individuals of type B and i
individuals of type A, �i

A measures the expected number of
imitation or birth-death events until the population consists
of type A only under the condition that this event occurs. In
general, the probability Pi

A�t� that after exactly t events the
process moved from any i to N, which is the all A state,
obeys the master equation Pi

A�t�= �1−Ti
+−Ti

−�Pi
A�t−1�

+Ti
−Pi−1

A �t−1�+Ti
+Pi+1

A �t−1�. The average fixation time �i
A

=�t=0
� tPi

A�t� /�i is the stationary first moment of this prob-
ability distribution, resulting from a recursive solution of
�i�i

A= �1−Ti
+−Ti

−��i�i
A+Ti

−�i−1��i−1
A +1�+Ti

+�i+1��i+1
A +1�. In

a similar way one can find �i
B=�t=0

� tPi
B�t� / �1−�i�, such that

the average total lifetime of the Markov process amounts to
�i�i

A+ �1−�i��i
B �32,40,41�. Following Sec. II B we restrict

our analysis to the biologically most relevant case i=1,
which yields �32,40�

�1
A = �

k=1

N−1

�
l=1

k
�l

Tl
+ �

m=l+1

k
Tm

−

Tm
+ . �21�

Maruyama and Kimura �42�, Antal and Scheuring �41�, as
well as Taylor et al. �43� showed that the conditional fixation
time of a single mutant of either type is the same, �1

A=�N−1
B .

This remarkable identity holds for any evolutionary birth-
death process and is thus valid for any 2�2 game and for
any selection intensity. However, for j�1 we have � j

A

��N−j
B unless � vanishes. Since �1

A and �N−1
B are identical up

to any order in �, we obtain


 �n

��n�1
A�

�=0
= 
 �n

��n�N−1
B �

�=0
�22�

for any n. This symmetry can help to obtain several proper-
ties of the expansion of the conditional fixation time �Eq.
�21��, without brute force calculations.

A. Pairwise comparison

Let us first consider the fixation time in the special case of
the Fermi process �Eq. �5��. When the selection intensity
vanishes, �=0, we have �1

A�0�=2N�N−1� �13,33�. When se-
lection is weak, N��1, the conditional fixation time is ap-
proximately �1

A
�1
A�0�+���1

A��� ��=0�+��
2�1

A��� ��=0�2 /2. For
the Fermi process, the first-order term is then given by �13�


 �

��
�1

A�
�=0

= − uN�N − 1�
N2 + N − 6

18
, �23�

where u stems from �A−�B=ui+v �compare Appendix B 1�.
The first-order expansion of �1

A is only proportional to the i
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dependent term u in this special case. This can also be seen
from a symmetry argument �41,43�: since �1

A=�N−1
B , the fixa-

tion time does not change under a↔d and b↔c. Since u,
but not v, is invariant under this exchange of strategy names,
�1

A can depend under linear weak selection only on u, but not
on v. The second-order term of the conditional fixation time
for the Fermi process yields


 d2

d�2�1
A�

�=0
= E1u2 + E2uv + E3v

2, �24�

where

E1 = −
�N − 2��N − 1�N

5400
�180 − 122N + 177N2 + 59N3� ,

E2 = −
N2�6 − 7N + N3�

18
,

E3 =
1

N
E2. �25�

Now, in contrast to the first-order expansion �Eq. �23��, both
u and v enter. An interesting relation is E3=E2 /N. In the
following, we show that this is found for any pairwise com-
parison process and not only in the special case of the Fermi
process.

For general pairwise comparison processes under neutral
selection, the conditional fixation time is �1

A�0�=N�N
−1� /g�0�, where g�0��0. When selection acts �Eq. �8��, the
transition probabilities become dependent on the derivative
of the imitation function, g��0�	0. We are now interested in
the imitation function’s influence on the first- and second-
order terms in �. In general, the first-order term in � reads

�

��
�1

A = �
���=1

�
k=1

N−1

�
l=1

k

h�, �26�

h� = � ��1

���1

1

Ti
+�� ��2

���2
�l�� ��3

���3
�

m=l+1

k
Tm

−

Tm
+ � , �27�

with the multi-index �= ��1 ,�2 ,�3�, ���=�1+�2+�3 �see
Appendix B 1 for details of the calculation�. The general
structure of this term is determined by h�, which is linear in
u and v, as ��� equals 1. Thus, ���1

A ��=0=F1u+F2v is also of
this form, where F1 and F2 only depend on the population
size N. With the same symmetry argument as above, based
on �41,43�, we can conclude that F2=0. This yields

�1
A = �N−1

B 

N�N − 1�

g�0�
+ F1u� . �28�

We can now calculate the payoff independent term F1 for
any g�
�� from the special case u=1 and v=0, which reads

F1 = −
g��0�
g�0�2 N�N − 1�

N2 + N − 6

18
. �29�

Here, � can be rescaled by g��0� /g�0�2. Changing g��0� or
g�0� is equivalent to changing the selection intensity appro-

priately. In particular, when u�0, which is true, e.g., for
coordination games such as the stag-hunt game �44�, the con-
ditional time it takes on average for a mutant type to take
over decreases with the intensity of selection. Moreover, for
a�c and b�d in combination with u�0, a mutant which
is always advantageous over the wild type needs longer to
reach fixation than a neutral mutant. This phenomenon,
termed stochastic slowdown in �45�, occurs in any imitation
process since Eq. �28� only depends on u.

For the second-order term in the expansion in � we can
write

�2

��2�1
A = �

���=2
�
k=1

N−1

�
l=1

k

h�, �30�

where h� is of the form G1u2+G2uv+G3v2. Thus, ��
2�1

A ��=0 is
also of this form, where the Gi’s only depend on N. Again,
we consider the transformations a↔d and b↔c which cor-
respond to exchanging the names of the strategies. For the
transformed game, we obtain ��

2�N−1
B ��=0=G1u2+G2uṽ

+G3ṽ2 with ṽ= �Nc−Na−d+a� / �N−1�. Using Eq. �22�, we
obtain G2u�v− ṽ�+G3�v2− ṽ2�=0. With v+ ṽ=−Nu, we then
get G3=G2 /N—the symmetry discussed above for a special
case holds for any imitation function. Eventually, the second-
order term in � for general imitation probability is given by

�2

��2�1
A = G1u2 + G2uv +

G2

N
v2. �31�

The special cases u=1,v=0, as well as u=0,v=1, allow us
to compute G1 and G2 explicitly. Thus, we have �see Appen-
dix B 1�

G1 = −
�N − 2��N − 1�N

5400
�180 − 122N + 177N2 + 59N3�

�	2�g��0��2

g�0�3 � −
N2�N − 1��2N − 1�

6

g��0�

g�0�2� , �32�

G2 = −
N2�6 − 7N + N3�

18
	2�g��0��2

g�0�3 � − N2�N − 1�
g��0�
g�0�2 .

�33�

Obviously, Eq. �31� does not allow a rescaling of the inten-
sity of selection. Instead, the properties of the imitation func-
tion enter in a more intricate way. An example of this ap-
proximation is shown in Fig. 3.

B. Moran process

To close this section, we consider the Moran process,
where selection at birth is proportional to fitness and selec-
tion at death is random. For neutral selection �=0, it is well
known that �1

A�0�=N�N−1� �13,33,41�. When selection is
weak ��1, the conditional mean fixation time is approxi-
mately �1

A
�1
A�0�+���1

A ��=0�. For the Moran process with
linear fitness function, fA=1+��A, we have ���1

A ��=0
=−uN2�N2−3N+2� /36 �compare �13,43��. The first-order
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expansion of �1
A again depends only on u, but not on v. This

can be shown based on �41,43� or explicitly �13�.
With general fitness mapping f���� with transition rates

�15� and �16�, we have


 �

��
�1

A����
�=0

= − f��0�N2N2 − 3N + 2

36
u , �34�

which allows a rescaling of the intensity of selection when �1
A

is approximated up to linear order.
With general fitness function f�x�, it becomes unwieldy

to calculate higher order terms in �. However, the general

calculations are similar to that of the general pairwise com-
parison rules. Equation �19� reveals that already the second-
order expansion of the fixation probability �1 with general
fitness mapping is tedious in form. Thus, the equivalent
terms for the fixation time �1

A are even more complicated and
do not lead to further insight in this case. Since it would be
only an academic exercise to calculate them, we do not give
them explicitly here. It is clear that the weak selection ap-
proximation is not universal over a large class of processes in
second order in the fixation times.

IV. DISCUSSION

In the past years, weak selection has become an important
approximation in evolutionary game theory �9–15�. Weak se-
lection means that the game has only a small influence on
evolutionary dynamics. In evolutionary biology and popula-
tion genetics, the idea that most mutations confer small se-
lective differences is widely accepted. In social learning
models, it refers to a case where imitation is mostly random,
but there is a tendency to imitate others that are more suc-
cessful. Since weak selection is the basis of many recent
results in evolutionary dynamics �10,11,46–48�, it is of inter-
est how universal these results are. It has been shown that
they are remarkably robust and the choice of evolutionary
dynamics has only a small impact in unstructured popula-
tions �28,49�. In structured populations, however, the choice
of evolutionary dynamics can have a crucial impact on the
outcome �11,47,50–54�. For example, for a prisoner’s di-
lemma on a graph under weak selection, cooperation may be
favored by a death-birth process while it is never favored by
a birth-death process. In a well-mixed population, however,
the transition probabilities for those two processes are iden-
tical; thus, they lead to the same result. However, in general,
spatial structure has a less pronounced effect under weak
selection than under strong selection �53,54�.

We have addressed the question as to what extent two
evolutionary processes can be considered as identical by in-
vestigating the fixation probability and the fixation time. For
any given 2�2 payoff matrix, we have considered two
classes of evolutionary processes: pairwise comparison and
Moran processes. An interesting special case is the Moran
process with exponential fitness mapping, which is equiva-
lent to the Fermi process �a special case of the pairwise com-
parison rule� in terms of fixation probabilities.

For the fixation probability, the first-order term in the se-
lection intensity always has the same form, given that it does
not vanish. In addition, regardless of the choice of imitation
functions, two pairwise comparison processes are always
identical up to second-order weak selection in the fixation
probabilities. For the Moran processes, an equivalent state-
ment does not hold. Recently, a paper has shown that in
3�3 games under weak selection, the Fermi update rule can
be quite different from the Moran process and the local up-
date rule �an imitation process with linear imitation function
�23��, while the Moran process and the local update rule are
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Exact analytical result

Second order approximation
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Exact analytical result

First order approximation

FIG. 3. Weak selection approximation of the conditional fixation
time of a single mutant, the exact result is given in Eq. �21�. Upper
panel: the approximations are shown for the Fermi process, but they
would be identical up to the second order for any other pairwise
comparison process after appropriate rescaling of the selection in-
tensity. Lower panel: for any Moran process the first-order approxi-
mation is independent of the precise function mapping payoff to
fitness �here it is linear�. Any higher order approximation depends
on the details of the function. Note that the first-order approxima-
tion in the two panels is not identical due to a difference in the
dependence on population size N �same parameters as in Fig. 2�.
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more similar to each other �55�. Our result shows that for
weak selection in 2�2 games, these three processes can be
mapped to each other by an appropriate rescaling of the in-
tensity of selection.

For the first-order approximation of the average fixation
time, there are differences in the dependence on the system
size, but all processes depend on the game in the same way.
This follows from a symmetry in fixation times �41,43�. For
higher orders in the intensity of selection, a simple rescaling
of the selection intensity does not exist for the fixation times
and a general statement on the relation between two pro-
cesses cannot be made.

The robustness of weak selection results, i.e., the invari-
ance to changes of the underlying stochastic process, found
in the linear approximation is remarkable but follows from
basic assumptions on evolutionary dynamics. Moreover, the
universality of weak selection breaks down when higher or-
der terms are discussed.
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APPENDIX A: THIRD ORDER EXPANSION
OF THE FIXATION PROBABILITIES

Here, we expand the fixation probability �1 for general
birth-death processes up to the third order. Let �i=Ti

− /Ti
+ and


 �s

��s�i�
�=0

= psi. �A1�

Note that the first index of psi refers to the order of the
derivative and the second index gives the position in state
space. We expand Eq. �4� to the third order under weak se-
lection �i
1+ p1i�+ p2i�

2 /2+ p3i�
3 /6. Hence, we have

�
i=1

k

�i � 1 + �
j=1

k

p1j

L1k

� + ��
j=1

k

�p2j − p1j
2 � + ��

j=1

k

p1j�2�
L2k

�2

2

+ ��
j=1

k

p3j + 3��
j=1

k

p1j���
s=1

k

p2s� − 3�
j=1

k

p1jp2j�
L3k

�3

6
.

�A2�

Then, the fixation probability can be written as

�1 ��N + ��
k=1

N−1

L1k

Q1

+
�2

2 �
k=1

N−1

L2k

Q2

+
�3

6 �
k=1

N−1

L3k

Q3

�−1 �A3�



1

N
−

Q1

N2 � + 
Q1
2

N3 −
Q2

2N2��2 − 
Q1
3

N4 −
Q1Q2

N3 +
Q3

6N2��3.

�A4�

This now serves as a starting point for our particular pro-
cesses with certain choices of �i=Ti

− /Ti
+ and particular psi

resulting from this.

1. General pairwise comparison process

For general switching probabilities in a pairwise compari-
son process, we have

p1i = −
2g��0�
g�0�


�i, �A5�

p2i = �2g��0�
g�0�


�i�2

, �A6�

p3i = − 2
6�g��0��3 − 3g�0�g��0�g��0� + g�0�2g��0�

g�0�3 �
�i�3.

�A7�

Inserting these quantities into Eqs. �A2� and �A3� leads to

Q1 = −
2g��0�
g�0� �

k=1

N−1

�
i=1

k


�i, �A8�

Q2 = �2g��0�
g�0� �2

�
k=1

N−1 ��
i=1

k


�i�2

, �A9�

Q3 = 2
6�g��0��3 + 3g�0�g��0�g��0� − g�0�2g��0�

g�0�3

��
k=1

N−1

�
i=1

k

�
�i�3−
24�g��0��3

g�0�3

��
k=1

N−1 ��
i=1

k


�i���
s=1

k

�
�s�2� . �A10�

Here, Q1 and Q2 have been calculated in the main text. Note
that they only depend on g��0� /g�0�, whereas Q3 also de-
pends on higher order derivatives of the imitation function.
Thus, two pairwise comparison processes that are identical in
first order are also identical in second order. Only in third
order, differences start to emerge.

Let us briefly come back to our example of an
imitation function that violates the one-third rule,
g�x�= �1+exp�−x3��−1. In this case, we have g�0�=1 /2,
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g��0�=g��0�=0, and g��0�=3 /2. Thus, both Q1 and Q2 van-
ish and the third-order expansion of the fixation probability
is

�1 

1

N
+

N − 1

60N
��N + 1��3N2 − 2�u3 + 15�N + 1�Nu2v

+ 30�N + 1�uv2 + 30v3��3. �A11�

2. Moran processes

For the Moran processes with general fitness functions,
we have p1i=−f��0�
�i and p2i=2�f��0��2�A
�i− f��0���A
+�B�
�i. Inserting these quantities into Eqs. �A2� and �A3�
leads to

Q1 = − f��0��
k=1

N−1

�
i=1

k


�i,

Q2 = ��f��0��2 − f��0���
k=1

N−1

�
i=1

k

��A
2 − �B

2�

+ �f��0��2�
k=1

N−1 ��
i=1

k


�i�2

. �A12�

Thus, the first- and the second-order expansions of the fixa-
tion probability of such processes are given in Eqs. �18� and
�19�, respectively. In particular, for f���=1+�3, both p1i and
p2i vanish and p3i=−6��A

3 −�B
3�. In Eq. �A3�, this yields

�1 =
1

N
+

1

N2 �
k=1

N−1

�
i=1

k

��A
3 − �B

3�

D3

�3 + o��3� ,

�A13�

where

D3 = �1/60N�N − 1�2��− 3c2d�N − 2��1 + N��2N − 1�

− 3cd2�N − 2��N + 1��3N − 4� + 6a2b�N − 2��N2 − 2N

+ 2� + a�a2 + 3b2��N − 2��3N2 − 6N + 1� − c3�1 + N�

��3N2 − 2� + 2b3�1 + N − 9N2 + 6N3�

− d3�N − 2��29 − 39N + 12N2�� .

APPENDIX B: TIMES OF FIXATION

General expressions for the first- and second-order expan-
sions of the fixation time for the birth-death process have
been given in Eqs. �26� and �30�. Based on these, we show
the results for the general pairwise comparison rule first and
then discuss the Moran process.

1. General pairwise comparison process

For the first-order term of the fixation time �Eq. �26��,
each h� on the right-hand side is proportional to g��0� /g2�0�.
Thus, the first-order term of the fixation time is of the form
Rg��0� /g2�0�. In particular, when g�
�� is the Fermi func-

tion, g��0� /g2�0� is 1. Hence, the first order of the fixation
time for the Fermi process is R �cf. Eq. �23��. This leads to
the first-order expansion of the fixation time for general pair-
wise comparison rule �Eq. �29��.

For the second order, we write Eq. �30� explicitly as

�2

��2�1
A = �

k=1

N−1

�
l=1

k

h�2,0,0�

K1

+ �
k=1

N−1

�
l=1

k

h�0,2,0�

K2

+ �
k=1

N−1

�
l=1

k

h�0,0,2�

K3

+ 2�
k=1

N−1

�
l=1

k

h�1,1,0�

K4

+ 2�
k=1

N−1

�
l=1

k

h�1,0,1�

K5

+ 2�
k=1

N−1

�
l=1

k

h�0,1,1�

K6

.

�B1�

As shown in the main text, the second-order term is of the
form G1u2+G2uv+ �G2 /N�v2. Letting u=1 and v=0 leads to

K1 =
N2�N − 1��2N − 1�

6

2�g��0��2 − g�0�g��0�
g�0�3 ,

K2 = −
N2�N − 2��N − 1��17 + 63N + 16N2�

2700

2�g��0��2

g�0�3 ,

K3 =
N�− 120 + 4N + 350N2 − 65N3 − 290N4 + 121N5�

1800

�
2�g��0��2

g�0�3 ,

K4 = −
N3�N2 − 1�

12

2�g��0��2

g�0�3 ,

K5 =
N3�2 − 3N + N2�

9

2�g��0��2

g�0�3 ,

K6 = −
N2�2 + 25N − 15N2 − 25N3 + 13N4�

180

2�g��0��2

g�0�3

�B2�

after some tedious calculations using the identity �k=1
M �l=1

k

=�l=1
M �k=l

M �56�. Summing these Ki’s leads to G1 in Eq. �32�.
On the other hand, letting u=0 and v=1 yields

K1 = N�N − 1�
2�g��0��2 − g�0�g��0�

g�0�3 ,

K2 =
N2�N − 1��N − 2�

18

2�g��0��2

g�0�3 ,

K3 =
N�4N3 − 15N2 + 17N − 6�

18

2�g��0��2

g�0�3 ,

K4 = −
N2�N − 1�

2

2�g��0��2

g�0�3 ,
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K5 =
N�N − 1��N − 2�

2

2�g��0��2

g�0�3 ,

K6 = −
N2�N − 1��N − 2�

3

2�g��0��2

g�0�3 . �B3�

Adding these Ki’s yields G2 /N as in Eq. �33�. Thus, the
quantities in Eq. �31� are finally derived.

2. Moran processes

For Moran processes, the approach is fully equivalent to
pairwise comparison processes. However, the results do not
only depend on payoff differences u and v but also on the
full payoff matrix with entries a, b, c, and d. This makes the
calculations a matter of diligence and leads to quite long
expressions, but not to additional insights. Thus, we do not
give details of the derivation here.
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