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Universally bistable shells with nonzero Gaussian
curvature for two-way transition waves
Nikolaos Vasios1, Bolei Deng1, Benjamin Gorissen 1 & Katia Bertoldi 1✉

Multi-welled energy landscapes arising in shells with nonzero Gaussian curvature typically

fade away as their thickness becomes larger because of the increased bending energy

required for inversion. Motivated by this limitation, we propose a strategy to realize doubly

curved shells that are bistable for any thickness. We then study the nonlinear dynamic

response of one-dimensional (1D) arrays of our universally bistable shells when coupled by

compressible fluid cavities. We find that the system supports the propagation of bidirectional

transition waves whose characteristics can be tuned by varying both geometric parameters

as well as the amount of energy supplied to initiate the waves. However, since our bistable

shells have equal energy minima, the distance traveled by such waves is limited by dis-

sipation. To overcome this limitation, we identify a strategy to realize thick bistable shells

with tunable energy landscape and show that their strategic placement within the 1D array

can extend the propagation distance of the supported bidirectional transition waves.
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C
urved elastic shells have drawn significant interest, not
only because of their outstanding structural performance
but also for their extraordinarily rich nonlinear

behavior1–10. In particular, curved elastic shells with low thick-
ness to radius ratio typically possess two stable
configurations1,6,11,12—a feature that has been exploited to realize
tunable lenses13, as well as valves for autonomous control of soft
actuators14. However, the low thickness to radius ratio of such
shells makes them extremely sensitive to imperfections and,
therefore, limits their possible range of applications. On the other
hand, curved elastic shells with large thickness to radius ratio are
structurally more robust, but typically lack bistability.

Multistable structures comprising arrays of interconnected bistable
elements have recently emerged as a powerful platform to manipulate
and control the propagation of mechanical signals, owing to their
ability to support the propagation of transition waves—nonlinear
waves similar to those of falling dominoes that sequentially switch all
elements15. Such transition waves have been recently exploited to
enable unidirectional propagation16–18, achieve complex shape
reconfigurations19 and realize structures that can be quickly
deployed20, as well as mechanical logic gates21. However, almost all
previous studies have focused on bistable elements that possess two
energy minima of different height16–21 and, therefore, support uni-
directional wave propagation. By contrast, the advantages and chal-
lenges associated with the propagation of transition waves in systems
whose constituents possess equal energy minima have received very
limited attention22.

In this work, we first identify a strategy to realize bistable
doubly curved shells with arbitrary thickness. We then focus on
arrays of such bistable shells and use a combination of

experiments and numerical simulations to study their non-linear
dynamic response. Owing to their doubly–curved nature, the
shells can be connected using rigid tubes, to form airtight cavities
between neighboring elements. Importantly, such fluidic cavities
introduce a coupling between the shells and enable the propa-
gation of transition waves, which sequentially switch the shells
from one stable configuration to the other. Here, we system-
atically study the propagation of transition waves in arrays of
bistable shells with equal energy minima. We show that the
velocity of the propagating transition waves in such systems is not
a fixed system property, but can rather be tuned by controlling
the energy supplied to initiate the pulses. Further, we find that the
propagation of the transition waves is limited by dissipation. To
overcome this limitation, we introduce curved elastic shells with
tunable energy profile and demonstrate that, when few of such
elements are embedded into our arrays, the waves can propagate
for longer distances while maintaining bidirectionality.

Results
Design of thick bistable shells. We begin by considering doubly
curved thick shells (i.e., shells with non-zero Gaussian curvature)
obtained by the 360o revolution of the height profile (see black
dashed line in Fig. 1a)

h ¼ H 1þ 2 r
R

� �3 � 3 r
R

� �2
h i

; r 2 ½0;R�
0; r 2 ½R;Rþ S�;

(

ð1Þ

where H is the maximum shell height, R is the shell radius and S
denotes the length of the flat portion added at the base of the shell
to facilitate the enforcement of boundary conditions in

Fig. 1 Our shells. a–c Single shells. a Shell geometry, obtained by the 360o revolution of the height profile h(r) (dashed line) defined in Eq. (1). Note that H

denotes the maximum shell height, R is the shell radius, T is the shell thickness and S is the length of the flat portion added at the base. The blue shaded region

indicates the portion of the shell that is inflated and deflated and upole represents the pole displacement. b Elastic strain energy landscape as a function of

the pole displacement during the quasi-static inflation/deflation of two shells with H/R=0.59 and T/R=0.0787 (red) and T/R=0.1653 (blue). c Evolution

of the energy released, Ur, upon inversion as a function of H/R and T/R. The red marker corresponds to the energy release for a shell with T/R=0.0787

whereas the blue marker for a shell with T/R=0.1653. All shell geometries that lie in the gray shaded area are found to possess only a single stable state (the

undeformed–"as fabricated" state) and are therefore monostable. d–h Double shells. d Flattening of two identical single shells. e Gluing the two single shells in

the flat deformed configuration to obtain the double shell. f The geometry of the double shell, where Ttotal corresponds to the total thickness of the double shell.

g Strain energy landscape for double shells with different thickness. h Contour plot of the energy released, Ur, as a function of H and Ttotal.
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experiments and simulations. The final shell geometry, shown in
Fig. 1a, is obtained by offsetting the height profile h by a distance
equal to the shell thickness T. To investigate the quasi-static
response of such shells upon pressurization, we conduct Finite
Element (FE) analyses using the commercial package ABAQUS
2019/Standard. In the analyses we create half shell models, mesh
them using 8-node fully integrated hybrid linear brick elements
(Abaqus Element code C3D8H) and use an incompressible
hyperelastic Neo-Hookean material with initial shear modulus, μ,
to capture the material’s response (see Supplementary Note 1.4
and Supplementary Figs. 9–12). Further, we impose symmetry
boundary conditions and subject the models to inflation and
deflation by controlling the enclosed volume through the fluid
filled cavity interaction (see Fig. 1a). In Fig. 1b we report the
evolution of the elastic strain energy, U, as a function of the pole
displacement, upole, for two shells characterized by H/R= 0.59,
but with T/R= 0.0787 (red line) and T/R= 0.1653 (blue line). We
find that the thinner shell features an elastic strain energy land-
scape with two energy minima at upole= 0 and upole ≈ 2H and,
therefore, is bistable. Importantly, due to finite thickness effects,
the stable configuration at upole ≈ 2H is characterized by an
energy state higher than that of the undeformed one. As a result,
the shell releases energy Ur when transitioning from its inverted
state to its initial one (see Fig. 1b). By contrast, the strain energy
landscape of the thicker shell monotonically increases with the
pole displacement upole, indicating that the particular shell is
monostable. A more systematic analysis on the effect of shell
height H and thickness T to the response of the shells reveals that
those with T/R < 0.159 have two stable states, whereas those with
T/R > 0.159 are monostable (see Fig. 1c).

Next, since the results of Fig. 1c indicate that our thick doubly
curved shells with T/R > 0.159 are monostable for any choice of
H/R, we identify a strategy to realize shells that possess two stable
states for any set of geometric parameters. To obtain such shells,
we combine two identical doubly curved shells with thickness T,
height H and the profile given by Eq. (1). We first compress the
two identical shells until they elastically deform into a flat
configuration (see Fig. 1d) and then glue them together (see
Fig. 1e). To assess the bistability of the resulting shells (see
Fig. 1f), we use FE simulations in which we account for the entire
gluing process (see Supplementary Note 1.4 and Supplementary
Fig. 10). In Fig. 1g we report the strain energy landscape predicted
by our FE analyses for shells with height H/R= 0.59 and total
thickness Ttotal/R∈ [0.078, 0.236] (with Ttotal= 2T). Remarkably,
we find that all considered shells are bistable and characterized by
two strain energy minima with identical height due to the
engineered stress symmetry between the inverted and initial
stable states. Joining the two single shells in a deformed
configuration coinciding with the horizontal symmetry plane,
induces a residual stress field (symmetric about the horizontal
plane) in the joint double shell, which ensures that the resulting
double shell will be bistable. Finally, in Fig. 1h we report the
evolution of the energy release Ur as a function of both H/R and
Ttotal/R for Ttotal/R∈ [0.078, 0.236] and H/R∈ [0.39, 0.78]. Our
results indicate that the energy release Ur is zero for all the
considered geometry combinations, suggesting that our double
shells are bistable for any choice of height and thickness and
always possess equal energy minima.

To quantify the validity of our numerical simulations we
fabricate a double shell with a total thickness of Ttotal= 4 mm, out
of silicone rubber (Elite Double 8, Zhermack–with an initial shear
modulus μ= 83 kPa23) and two identical shells with radius
H/R= 0.59, T/R= 0.079, and R= 25.4 mm (see Supplementary
Note 1.2 and Supplementary Figs. 4–5). We then characterize its
quasi-static response by attaching its boundaries to an enclosed
rigid cylinder and supplying water with a syringe pump (Pump

33DS, Harvard Apparatus) at a constant rate of 30 mL/min to
inflate it and deflate it (see Fig. 2a). The pressure-volume curve of
our shell is obtained by monitoring the pressure during the tests
with a pressure sensor (MPXV7025DP by NXP USA), whereas to
monitor the displacement of the shell’s pole we recorded videos
which we processed to extract the displacement history of its
center point (see Supplementary Note 1.3 and Supplementary
Figs. 6–8). The experimental results shown in Fig. 2b,c do not
only confirm bistability (see region of negative pressure in
Fig. 2b), but also indicate that the engineered stress symmetry of
our shells leads to pressure-volume and pole displacement-
volume curves which are entirely symmetric between loading and
unloading. Further, the good agreement between the experi-
mental and numerical data, verifies the predictive ability of our
FE simulations.

Propagation of transition waves in arrays of universally bis-
table shells. Having identified a strategy to realize doubly curved
shells that are bistable for any combination of geometric para-
meters, we now arrange our universally bistable elements in 1D
arrays and study their non-linear dynamic behavior. Specifically,
we focus on double shells with H/R= 0.59, Ttotal/R= 0.158 and
R= 25.4 mm, and connect them using acrylic tube segments with
length Lt and internal radius equal to the radius of the shells (see
Fig. 3a). When the array is assembled, each tube segment encloses
a finite volume of air Vair= πR2Lt. Importantly, such finite air
volumes act as nonlinear nearest neighbor springs, since any
deformation of the adjacent shells causes a volume change, which
generates a resistant force to the shells. As such, our system
comprises a 1D array of nonlinear bistable elements (i.e., bistable
shells) with nearest neighbor interactions. To study its nonlinear

Fig. 2 Experimental characterization of our universally bistable thick

shells. a Schematic of the experimental setup used to quasi-statically

inflate and deflate the universally bistable shells using water, while being

submerged in a water tank. b, with c Quasi-static pressure-volume and pole

displacement-volume relationships obtained upon inflation (blue lines) and

deflation (red lines) of a double shell with H/R= 0.59 and Ttotal/R= 0.158

(with R= 25.4mm) in experiments (dashed lines) and FE simulations (solid

lines). Vertical black lines indicate the location of the two stable states for

the shell.
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dynamic response, we apply a pressure pulse (i.e., a constant
pressure Δp for 100 ms) to the first/last shell of the array (while
keeping the other end at atmospheric pressure) and monitor the
propagation of the initiated pulse.

In Fig. 3b, we report results for an array comprising N= 10
double shells connected via 11 acrylic tubes with length Lt= 28
mm. We first arrange all shells with the pole pointing to the
left (i.e., upole,i= 0 mm with i= 1, 10) and apply a pressure pulse
with magnitude Δp= 69 kPa to the first unit on the left. We
find that the applied pressure initiates a transition wave that
sequentially switches all shells to their inverted state correspond-
ing to upole,i= 2H. We then apply an identical pressure pulse to
the last shell in the array and observe the propagation of another
transition wave that sequentially resets all shells back to their
initial configuration (Fig. 3c). To better characterize these elastic
waves, in Fig. 3d we report the evolution of their velocity
(calculated by monitoring the time at which upole,i=H) during
propagation. We then find that the two pulses considered in
Fig. 3b and c propagate with similar velocities through the array
(see red and pink markers in Fig. 3d), indicating that our system
supports bidirectional transition waves. While the resetting of
bistable systems typically requires application of external
forces16,19–21, such bidirectionality provides a simple mechanism
to bring the system back to its initial configuration. Importantly,
Fig. 3d also reveals that the wave velocity is not constant during
propagation, but rather “v-shaped” because of the combined
effect of dissipation (introduced by both the fluid cavities and
the elastomeric shells) and the free boundary. Damping
progressively reduces the energy carried by the waves, thereby
reducing the transition wave velocity. On the other hand, when
the head of the pulse reaches the end of the array, the energy
required to switch the last few units decreases, thereby leading
to an increase of the transition wave velocity. It is important to
note that propagation of the pulses through the entire array is
only possible when dissipation and the size of the array (i.e., N)
are carefully balanced. For instance, if in our structure N is
increased to 12, we find that the pulse stops after switching
6 shells, since it loses all its energy before being sufficiently close
to the free end so as to benefit from boundary effects (see blue
markers in Fig. 3d). Finally, the results of Fig. 3d highlight two
promising strategies to tune the wave speed. First, the wave
velocity can be controlled by varying the length of the connected
tube segments, as this alters the effective stiffness of the nearest-
neighbor springs provided by the air cavities. By reducing Lt to
22 mm we find that the pulse maintains a higher velocity for
longer distance and is less affected by dissipation (see yellow
markers in Fig. 3d). Second, the wave velocity in our array can be
tuned by controlling the energy supplied to initiate the pulses. In
an array with N= 10 shells, we find that an increase of the
magnitude of the applied input pressure from Δp= 69 kPa to
Δp= 172 kPa results in a substantially faster pulse (see green
markers in Fig. 3d). Note that this feature marks an important
difference between our system and bistable structures with energy
minima of different height, since for the latter the wave velocity is
governed by the energy difference between their two stable states
and, therefore, is a fixed system property given a certain
geometry16,19–21.

In order to obtain a better understanding for the dynamic
response of our system and ensure that the behaviors observed in
the tests are not introduced by experimental artifacts, we develop
a numerical model. To this end, we focus on the [i]-th shell,
which is connected to the [i− 1]-th and [i+ 1]-th shell through
tubes with radius R and length Lt (see Fig. 4a), and write its
equation of motion as (see Supplementary 2.3)

m
d2upole;i

dt2
þ β

dupole;i

dt
þ
dUðupole;iÞ
dupole;i

þ f i�1 � f i ¼ 0; ð2Þ

where m is the mass of the shell, β is a viscous damping
parameter whereas upole,i and U(upole,i) denote the pole

Fig. 3 Bidirectional transition waves in 1D arrays of bistable shells

connected with compressible fluid cavities. a Schematic of the 1D array.

b,c Bidirectional propagation of transition waves in an array of 10

universally bistable shells with H= 15 mm, R= 25.5 mm and Ttotal= 4mm,

excited by supplying Δp= 69 kPa of pressure for 100ms. d Evolution of the

transition wave velocity during propagation for an array of 10 universally

bistable shells excited at the left (red markers) and right (pink markers)

ends by applying a pressure Δp= 69 kPa for 100ms. Blue markers

represent the velocity for an identical pulse propagating in an array of N=

12 universally bistable shells, whereas green and yellow markers

correspond to the wave velocity for a pulse excited using Δp= 172 kPa and

a pulse in an array with reduced shell to shell spacing (Lt= 22 mm),

respectively.
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displacement and the strain energy potential of the [i]-th shell,
respectively. Finally, fi−1 and fi represent the interaction forces
acting on the [i]-th shell due to the changes in volume in tubes
[i− 1] and [i], respectively. Such interaction forces can be

determined using Boyle’s law as,

f i ¼ πR2patm
πR2Lt

πR2Lt þ ΔV iþ1 � ΔV i

� 1

� �

;

f i�1 ¼ πR2patm
πR2Lt

πR2Lt þ ΔV i � ΔV i�1

� 1

� �

;

ð3Þ

where patm is the atmospheric pressure, and ΔVj is the volume
change associated with the pole displacement of the [j]-th shell
(see Supplementary 1.3). For an array comprising N double shells,
Eqs. (2) results in a system of N coupled differential equations,
which we numerically solve (using a Python implementation of
the Dormand Prince 8(5,3) method24) to determine the pole
displacement of the [i]-th shell as a function of time t.

To test the relevance of our discrete model, we first compare its
predictions to the experimental results shown in Fig. 3. In all our
numerical analyses we use m= 30 g and β= 2.5 kg/s (note that β is
determined by fitting the result from our discrete model to the
experimental results of Fig. 3b and its then kept fixed for all other
numerical simulations) and determine ΔVi and U associated with
upole,i by linearly interpolating the FE results shown in Fig. 1g–h
(see Supplementary Fig. 11). Further, to ensure identical boundary
conditions, we apply the experimentally extracted displacement
signal to the shell from which the pulse is initiated and leave the
opposite end at atmospheric pressure. We find that our numerical
analyses can successfully reproduce all the experimental results
reported in Fig. 3, confirming the validity of our discrete model.

Next, in an attempt to derive analytical expressions for the
wave velocity, we neglect dissipative phenomena and approx-
imate the interaction forces acting on the [i]-th shell as

f i � kðupole;i � upole;iþ1Þ
f i�1 � kðupole;i�1 � upole;iÞ;

ð4Þ

where k is a linear approximation for the effective stiffness of the
nonlinear nearest neighbor springs provided by the air cavities
(see Supplementary Note 2.4 and Supplementary Fig. 23). By
substituting Eq. (4) into Eq. (2) and setting β= 0, we obtain

m
d2upole;i

dt2
þ
dUðupole;iÞ
dupole;i

þ

þ kðupole;iþ1 � 2upole;i þ upole;i�1Þ ¼ 0:

ð5Þ

Then, we introduce a continuous function uð~x; tÞ that
interpolates the pole displacement of [i]-th shell located at ~x ¼
xi=Lt ¼ i as uð~x ¼ i; tÞ ¼ upole;i. We also assume that the width of

the propagating pulses is much larger than the shell to shell
distance and express upole,i±1 using Taylor expansion as

upole;i ± 1 ¼ u i± 1; tð Þ ¼ u±
∂u

∂~x
þ 1

2

∂
2u

∂~x2

� �

~x¼i

: ð6Þ

Substitution of Eq. (6) into Eq. (5) yields

ðc20 � c2Þ ∂
2u

∂ζ2
¼ 1

m

dUðuÞ
du

; ð7Þ

where ζ ¼ ~x � c t is the traveling wave coordinate, c is the wave
velocity and c20 ¼ k=m (see Supplementary Note 2.4). Finally, to
analytically solve Eq. (7) we assume that the bistable energy
potential for the double shells can be approximated as

UðuÞ � 1

4
ksu

2 u

H
� 2

� 	2

þ C; ð8Þ

where C denotes the height of the two energy minima located at
u= 0 and 2H and 0.25ksH2 is the height of the energy barrier that
has to be overcome to switch the shells from one stable state to

Fig. 4 Analytical and numerical results in the absence of dissipation.

a Schematic of our system, showcasing the i− 1, i and i+ 1 shells during the

propagation of a transition waves that sequentially switches the shells from

one stable state to another. b Discrete mass-spring model used to

represent the response of our system. c,d Effect of the input energy

provided to initiate the pulse on (c) the pulse velocity, c, and (d) the pulse

width, w, for three shell geometries with (H, Ttotal)= (12.5, 3) mm (yellow),

(H, Ttotal)= (15, 4) mm (blue) and (H, Ttotal)= (17.5, 5) mm (red) and R=

25.4mm, as predicted by the discrete (markers) and continuum models

(lines). e Wave velocity, c, and (f) width, w, vs. input energy, Ein, for an

array of universally bistable shells with (H, Ttotal)= (15, 4) mm and R=

25.4mm, for three values of shell-to-shell spacing, Lt= 32 mm (yellow), 28

mm (blue) and 22mm (red), as predicted by the discrete (markers) and

continuum model (lines). Note that in c–f we report two analytical

solutions: one in which c is obtained by solving Eq. (13) (solid lines) and one

in which c is given by Eq. (14) (dashed lines).
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the other. By introducing Eq. (8), Eq. (7) simplifies to

∂
2u

∂ζ2
¼ c2s

c20 � c2
u

u

H
� 1

� 	 u

H
� 2

� 	

; ð9Þ

where c2s ¼ ks=m. Eq. (9) has the form of a Klein–Gordon
equation with quadratic and cubic nonlinearities (see Supple-
mentary Note 2.4). Importantly, such equation admits solitary
wave solutions of the form25

u ¼ H 1 ± tanh
x � ct

w

� 	h i

; ð10Þ

where w is the width of the propagating pulses.
Next, we determine c and w as a function of the geometry

of the system and the energy supplied to the first shell to
initiate the pulse. To begin with, we substitute the solution Eq.
(10) into Eq. (7) and find that the latter is identically satisfied
only if

w ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ðc20 � c2Þ
c2s

s

: ð11Þ

Then, we calculate the total energy carried by the transition
wave defined by Eq. (10)

E ¼
Z 1

�1

1

2
m

∂u

∂t

� �2

þ 1

2
k

∂
2u

∂x2

� �

þ UðuÞ
" #

dx

¼ H2 2

3w
ðkþmc2Þ þ 1

3
wks

� �

:

ð12Þ

Since in the absence of dissipation E is equal to the energy
supplied to the first unit to initiate the pulse, Ein, we find that

H2 2

3wðcÞ ðkþmc2Þ þ 1

3
wðcÞks

� �

¼ Ein; ð13Þ

which we can numerically solve to obtain c for a given Ein.
Further, to obtain an explicit expression for c as a function of
Ein, we take a Taylor’s series expansion of Eq. (13) around
c/c0= 0 (since in our system c/c0 ~ 0.2), while retaining terms
up to the third order. This yields

c ¼
ffiffiffi

2
p

c0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Ein

Emin

� 1

s

; ð14Þ

where

Emin ¼
2

ffiffiffi

2
p

3
H2

ffiffiffiffiffiffi

ksk
p

; ð15Þ

represents the minimum amount of input energy required to
initiate the transition wave. Eq. (14) confirms that the speed of
the propagating transition waves can be tuned by modifying
the amount of energy supplied to the system.

To assess the validity of the analytical solution, in Fig. 4c–f we
compare the evolution of the transition wave velocity c and width
w as predicted by our continuum model (lines) and discrete
model (triangular markers). In particular, in Fig. 4c and d we
consider three arrays all with Lt= 28 mm, but made out of shells
with (H, Ttotal)= (12.5, 3.0) mm (red), (15.0, 4.0) mm (purple)
and (17.5, 5.0) mm (yellow) and report the evolution of c and w as
a function of Ein. Differently, in Fig. 4d and f we investigate the
evolution of c and w as a function of Ein for arrays realized using
shells with (H, Ttotal)= (15, 4.0) mm when we vary Lt. Note that
in each plot we report two analytical solutions: one in which c is
obtained by solving Eq. (13) (solid lines) and one in which c is
given by Eq. (14) (dashed lines). As for the numerical results,
these are obtained by conducting simulations with N= 500 and
β= 0, using Eq. (10) (with x= 10 and c varied to tune Ein) to

prescribe the pole displacement of the first shell and initiate the
pulse and numerically evaluating the integral in Eq. (12) to
calculate Ein (which is equal to the total energy carried by the
pulse). We observe good agreement between the predictions of
the discrete model and corresponding results from the continuum
model with c obtained by solving Eq. (13) for all considered levels
of input energy. Differently, when using Eq. (14) to determine c in
the continuum model, the analytical solution matches the
experimental results only for low input energies, since the
assumption c/c0→ 0 is violated for large enough values of Ein.
Finally, in full agreement with our experimental observations,
both our numerical and analytical results indicate that c increases
with Ein for all considered double shell arrays, whereas the width
w decreases.

While Eq. (14) enables us to calculate c as a function of the
input energy and geometric parameters, it does not capture its
experimentally observed reduction during propagation caused by
dissipation (see Fig. 3d). To overcome this limitation, we assume
linear viscous dissipation with damping coefficient β and
compute the energy dissipated by each shell in the array upon
its inversion as (see Supplementary Note 2.4),

Edamped ¼
Z 1

�1
β

∂u

∂t

� �2

dt ¼ 4βcH2

w
: ð16Þ

By introducing Eq. (11), Eq. (16) can be rewritten as

Edamped ¼
2

ffiffiffi

2
p

βH2csc
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c20 � c2
p ; ð17Þ

which, by taking a Taylor’s series expansion around c/c0= 0 and
retaining terms up to the second order, can be further simplified
to

Edamped �
2

ffiffiffi

2
p

βH2csc

c0
: ð18Þ

Finally, introduction of Eq. (14) into Eq. (18) yields

Edamped ¼ 4βH2cs

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Ei

Emin

� 1

s

; ð19Þ

where Ei denotes the energy carried by the transition wave when
propagating through the i-th unit.

Note that Eq. (19) can be used to adjust the velocity and
account for the effect of damping in our continuum model.
Specifically, focusing on the [i]-th shell we calculate Ei by
subtracting the energy dissipated in the inversion of the previous
i− 1 shells from the energy supplied to initiate the pulse and
subsequently calculate the adjusted velocity using Eq. (14). In
Fig. 5a we focus on an array with N= 10 double shells identical to
those considered in Fig. 3b, with c and report the evolution of c
during propagation for different values of input energy, assuming
β= 2.5 kg/s. Notably, we find that the prediction of the
continuum model (dashed lines in Fig. 5) nicely agree with the
numerical results (continuum lines) up to the fifth shell for
moderate and large values of the input energy. Beyond the fifth
shell, the free boundary starts to play an important role and this
cannot be captured with our continuum model (since we assume
the array to be infinitely long). Once again, we observe that by
increasing the amount of energy supplied to the first unit, pulses
with higher velocity are initiated. However, irrespectively of Ein,
for the level of dissipation present in our structure all transition
waves are found to stop after the inversion of the first few units in
the absence of favorable end effects.

Next, we use our analytical model to predict the finite
propagation distance in systems with a nonzero dissipation.
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Towards this end, we impose conservation of energy

Eiþ1 � Ei ¼ �Edamped ¼ �4βH2cs

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Ei

Emin

� 1

s

: ð20Þ

To solve Eq. (20) and determine the number of units that the
wave switches before stopping, Nstop, we take the continuum limit
of Eq. (20),

dE
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E
Emin

� 1
q ¼ �4βH2csd~x; ð21Þ

where Eð~xÞ is a continuum function that interpolates Ei as

Eð~x ¼ iÞ ¼ Ei: ð22Þ

By integrating both sides of Eq. (21) we obtain

2Emin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E

Emin

� 1

s �

�

�

�

�

ENstop

E0

¼ �4βH2csNstop; ð23Þ

Since E0= Ein and ENstop
¼ Emin, Nstop can be solved from Eq. (23)

as (see Supplementary Note 2.4)

Nstop ¼
Emin

2βH2cs

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E

Emin

� 1

s

: ð24Þ

In Fig. 5b we consider an array comprising 500 double shells with
R= 25.4 mm, H= 15 mm, Ttotal= 4 mm and report the evolution
of Nstop as predicted by Eq. (24) and by our discrete model for
different values of β. We find excellent agreement between
analytical and numerical results, with Nstop that monotonically
increases as either the damping coefficient and the energy input
become larger.

Shells with tunable strain energy landscape. So far we have
shown via a combination of experiments and analyses that a
system comprising an array of universally bistable shells sepa-
rated by air cavities supports the propagation of bidirectional
transition waves with characteristics that can be tuned by varying
both geometric parameters and the amount of energy supplied to
initiate them. However, our results also indicate that the propa-
gation of these pulses in real systems is heavily obstructed by
unavoidable dissipation. Motivated by this limitation, we design
shells with tunable strain energy landscape and demonstrate that
their strategic placement within the array can successfully extend
the propagation distance of the waves in dissipative systems. Even
though several strategies have been proposed to bias the strain
energy landscape of bistable structures21,26, the approach pre-
sented here results in bistable shells with energy landscape that
can be easily and actively tuned without the need for further
assembly or fabrication. Our tunable shells comprise a double
bistable shell (shown in green in Fig. 6a) encapsulated between
two single shells (shown in purple in Fig. 6a, see Supplementary
Note 1.5 and Supplementary Figs. 13–15). Note that this fabri-
cation process results in the formation of two inflatable cavities
(see Fig. 6b). Importantly, the control of their volume enables us
to modify on the fly the strain energy landscape of the shell. To
demonstrate the concept, in Fig. 6c we consider a tunable shell
realized using two shells with H/R= 0.59, T/R= 0.0395, and R=
25.4 mm as caps and a double shell with H/R= 0.59, Ttotal/R=
0.158 and R= 25.4 mm made out of a stiffer silicone rubber (Elite
Double 32, Zhermack—see Supplementary Note 1.5). To char-
acterize the static behavior of this shell, we conduct inflation and
deflation at different levels of pre-inflation for the two internal
cavities. Specifically, in our first test both internal cavities are
empty (ΔVp,1= ΔVp,2= 0), whereas in the second one we pre-
inflate one cavity with 10 ml of water (ΔVp,1= 0, ΔVp,2= 10ml)
and in the third one we further add another 10 ml of water to the
pre-inflated cavity (ΔVp,1= 0, ΔVp,2= 20 ml). We find that for
ΔVp,1= ΔVp,2= 0 the pressure-volume curve of our tunable shell
(see Fig. 6c) is qualitatively identical to the one of the double shell
(see Fig. 2g). Differently, when one of the internal cavities is pre-
inflated (i.e., ΔVp,2 ≠ 0) the maximum pressure required to invert
the tunable shell during inflation drops, whereas the magnitude of
the negative pressure required to bring it back to its original state
increases. This indicates that the pre-inflation of an internal
cavity increases the elastic strain energy stored in the initial state,
but simultaneously decreases that associated to the inverted
configuration. As a result, only a small input pressure is required
to invert a tunable shell with a pre-inflated internal cavity and
such inversion leads to the release of a large amount of energy.
Finally, we note that, by pre-inflating the other internal cavity
(i.e., ΔVp,1 ≠ 0, ΔVp,2= 0) we can decrease the elastic energy
stored in the initial state and increase that associated to the
inverted configuration, thus realizing a shell that release a large
amount of energy when snapping back to the initial state.

Fig. 5 Effect of dissipation. a Comparison of the continuum and discrete

model predictions for the transition wave velocity as a function of the

propagation distance for an array of 10 double shells with R= 25.4mm,

H= 15 mm, Ttotal= 4mm and β= 2.5 kg/s. b Theoretical (solid lines,

Eq. (24)) and discrete (markers) model predictions for the number of shells

flipped before the transition wave stops Nstop as a function of the input

energy provided to an array of 500 double shells with R= 25.4mm,

H= 15 mm, Ttotal= 4 mm, for different levels of viscous dissipation β. Note

that the levels of dissipation investigated in b are much lower than that

considered in a.
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To test the capability of such tunable shells to extend the
propagation distance of transition waves in dissipative systems,
we consider an array with N= 12 double shells identical to the
ones used in the experiments of Fig. 3. Since dissipation prevents
the transition waves to switch all elements in the array when
those are simple double shells (see blue markers in Fig. 3d), we
place our tunable shell in between the 6th and 7th shell of the
array, as shown in Fig. 7a–b. First, we charge the tunable shell by
pre-inflating the cavity that faces the end to which the pressure
pulse is applied with 20ml of water (see Fig. 7a,b). Then, we
initiate a pulse by applying an input pressure Δp= 69 kPa to
either the first or last unit in the array. Remarkably, we find that
the charged tunable shell enables the transition wave to propagate
through the entire array of 12 double shells (see Fig. 7c,d), since
the energy that it releases when snapping to its inverted state
compensates for the energy lost by the pulse because of
dissipation. Furthermore, we emphasize that the introduction of
the tunable shell in the array does not inhibit the bidirectionality
of the supported transition waves (see Fig. 7c,d). This is because
by simply changing the polarity of the tunable shell (i.e., pre-
inflating the opposite cavity), we can reverse the direction in
which energy will be released. Finally, we note that the control of
the tunable shell by adding or removing volume to one of its
internal cavities is extremely simple, and does not require re-
assembly of the array.

Discussion
In summary, we have demonstrated a robust strategy for the
design of doubly curved thick shells which are bistable for any
combination of geometric parameters. Further, we have studied
the propagation of transition waves in 1D arrays of such shells
coupled by compressible fluid cavities and demonstrated that the
supported pulses are bidirectional. Our combined experimental,
numerical and analytical results reveal that the characteristics of
the supported non-linear waves can be tuned not only by altering
the geometry of the system but also by controlling the amount of
energy supplied to initiate them. However, since our universally
bistable shells do not release energy when transitioning between
their two stable states, the distance traveled by the supported
transition waves is limited by unavoidable dissipative phenomena.
To compensate for this without sacrificing bidirectionality, we
designed thick bistable shells with tunable energy landscape. We
then demonstrated that their strategic placement in 1D shell
arrays can extend the propagation distance of transition waves,
since they can be easily set to release the energy required to
compensate for dissipation. As such, by combining universally
bistable and tunable shells we realized 1D arrays that support the
bidirectional propagation of transition waves over finite distances
while being easy to reset and tune.

Even though in this study we used rigid chambers to connect
adjacent shells, we envision the proposed strategy to provide a
new route for soft robotic locomotion. By making the chambers
unidirectionally stretchable, they would sequentially extend dur-
ing the propagation of transition waves and emulate the recti-
linear locomotion of snakes. In addition, our system’s unique
property, namely the dependence of transition wave velocity to
the input energy, could enable the design of smart energy
absorption devices which effectively transfer energy but are able
to avoid energy concentrations through dissipation. Further,
systems based on our strategy could also serve as energy sensors,
as the energy input can be determined by monitoring the effective
transition wave velocity.

Finally, we believe that the proposed strategies to design bis-
table doubly curved shells have the potential to impact

Fig. 6 Shells with tunable energy landscape. a Our tunable shell comprises

a double shell and two single shell caps. b Geometry of the tunable shell.

c Experimental pressure-volume relationship for the tunable shell during its

quasi-static inflation (blue) and deflation (red) for 3 different levels of pre-

inflation for an internal cavity.

Fig. 7 Transition waves in arrays of shells with tunable energy landscape.

a, b Arrays of 12 double shells, where a charged tunable shell is placed

between the 6th and 7th shell of the array. c, d Experimental pole

displacement histories for each shell in the array upon propagation of a

transition waves initiated by supplying Δp= 69 kPa of pressure for 100ms.

Vertical black arrows point to the shell number and location of the charged

tunable shell in the array.
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applications that extend beyond transition waves, including soft
mechanical logic gates and reconfigurable structures.

Methods
Details on the geometry, design, fabrication, testing, and Finite Element modeling
of the doubly curved shells, universally bistable shells and shells with tunable
energy landscape are provided in Supplementary Note 1. The full details for the
experimental setup, as well as for the testing and modeling of transition waves in
1D arrays of bistable doubly curved shells are provided in Supplementary Note 2.

Data availability
The experimental and numerical data in support of the findings in this study are available

from the corresponding author upon request.

Code availability
All numerical codes used to computationally study the propagation of transition waves

and all Abaqus Python scripts used to create the FE models are available from the

corresponding author upon request.
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