
Universally Composable Commitments Using
Random Oracles

Dennis Hofheinz and Jörn Müller-Quade

IAKS, Arbeitsgruppe Systemsicherheit,
Prof. Dr.Th. Beth, Fakultät für Informatik,

Universität Karlsruhe, Germany.
{hofheinz,muellerq}@ira.uka.de

Abstract. In the setting of universal composability [Can01], commit-
ments cannot be implemented without additional assumptions such
as that of a publicly available common reference string [CF01]. Here,
as an alternative to the commitments in the common reference string
model, the use of random oracles to achieve universal composability
of commitment protocols is motivated. Special emphasis is put on the
security in the situation when the additional “helper functionality”
is replaced by a realizable primitive. This contribution gives two
constructions which allow to turn a given non-interactive commitment
scheme into a non-interactive universally composable commitment
scheme in the random oracle model. For both constructions the binding
and the hiding property remain valid when collision-free hash functions
are used instead of random oracles. Moreover the second construction
in this case even preserves the property of perfect binding.

Keywords: cryptographic protocols, universal composition, commit-
ment, random oracle.

1 Introduction

The framework [Can01] for multi-party computations allows to formulate the
security and, in particular, the composition of multi-party protocols in a very
general way. It is possible to treat security notions for rather different multi-party
tasks in a common way. For this, protocols are compared to idealized versions of
the respective protocol task. If a protocol “behaves” exactly like this idealization
with respect to any attacker and in any environment, it is considered a secure
realization of the protocol task in question. In the setting of [Can01] an arbitrary
environment surrounding the protocol execution is mimicked by an environment
machine Z. Furthermore the environment machine Z serves as a distinguisher
between a real protocol and the idealized version. A protocol is securely realizing
an ideal functionality if no environment Z can distinguish between an execution
of the real protocol with a real adversary and a run of the ideal functionality
together with a simulator trying to mimic the effect of the real attack. For the
purpose of distinguishing the environment machine may choose the inputs for all

M. Naor (Ed.): TCC 2004, LNCS 2951, pp. 58–76, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Universally Composable Commitments Using Random Oracles 59

parties, may see the outputs of all parties, and may interact with the adversary
at any time during the protocol.

This notion of security, which implies universal composability [Can01], is very
strict and it was shown in [CF01], that an idealization of a commitment task
cannot be securely realized in this sense without additional assumptions. (With
additional assumptions, we mean special facilities protocol participants may use
and which itself may not be securely realizable; as an example, consider pub-
lic information ideally chosen from some predefined distribution. See below for
details.)

However, in [CF01,DN02,CLOS02], several protocols for securely realizing
an idealization of a commitment functionality are presented; all of them are
formulated in the common reference string model, i. e., all of them expect access
to public information ideally drawn from some predefined distribution.

The selection of this common reference string is crucial for the security of
the commitment protocol. In particular, “imperfect” selections possibly influ-
enced by an adversary may affect the security of the commitment protocol in
a very severe way, as will be discussed in Section 3.1. The common reference
string in [CF01] serves as a public key to which the corresponding secret key
is unknown by assumption. If, in the worst case, the adversary were allowed
to choose the common reference string by himself then the binding property
as well as the hiding property of a commitment scheme built on this common
reference string would be compromised (an analogous statement holds for the
constructions in [DN02,CLOS02]). This is especially dangerous as this security
leak cannot be “detected”, because the public key is chosen with the appropri-
ate distribution. As a different approach, we consider the use of random oracles
for building bit commitment protocols. Of course, like the common reference
string, random oracles are not realizable and the property of universal compos-
ability is lost when concrete functions replace the random oracle calls. This is in
accordance with other results like [CGH98,Nie02,GTK03,BBP03]. These contri-
butions show explicitly that there are protocols which can be proven secure in
the random oracle model, yet lose this security completely when instantiating
the random oracles. In contrast to that, we show that there is a construction
which turns a given bit commitment protocol into a protocol which is universally
composable in the random oracle model and which remains binding and hiding
when substituting the random oracles with a special class of functions (namely,
collision-free hash functions).

As a first solution one might think of using random oracles to derive a com-
mon reference string with which universally composable bit commitment can be
obtained. But if a random oracle would be replaced by any real hash function
no general guarantee for the derived common reference string could be given
and all protocols on its basis would be critical. To ensure the common reference
string to be chosen at random one could think of deriving it by an interactive
protocol which still ensures randomness of the common reference string when
random oracles are replaced by real hash functions. But this is not the approach
chosen here as this additional interactive protocol reduces the efficiency.

60 D. Hofheinz and J. Müller-Quade

In this contribution we use random oracles in a different way to obtain uni-
versal composability which ensures the properties binding and hiding even if the
random oracles are replaced by arbitrary collision free hash functions. A random
oracle will be used as a function which can be evaluated by every participant
of the protocol, but which is not accessible to the environment machine. The
equivocabiltiy of a bit commitment, which is important for simulatability, can
then easily be obtained as in the ideal protocol no random oracle exists and
the ideal adversary can determine the outcome of (simulated) evaluations of
the random oracle. (Note that in [Nie02], a similar method was used to obtain
non-committing encryption in the random oracle model.)

Furthermore this limitation put up on the environment machine will make
it impossible for the environment machine to generate commitments to strings
unknown to the attacker thereby preventing attacks where the environment ma-
chine uses a corrupted party as a relay to insert such bit commitments into the
protocol. Specifically, we give two constructions to convert a bit commitment
scheme into a universally composable bit commitment scheme using random ora-
cles. Both constructions yield bit commitments which remain binding and hiding
if the random oracle used is replaced by an arbitrary collision free hash function.
The first and more simple construction however does not conserve the property
of being perfectly binding, whereas the second construction yields a commitment
scheme which is perfectly binding if the original commitment scheme was.

2 Preliminaries

2.1 The General Framework

To start, we shortly outline the framework for multi-party protocols defined
in [Can01]. First of all, parties (denoted by P1 through Pn) are modeled as
interactive Turing machines (ITMs) (cf. [Can01]) and are supposed to run some
(fixed) protocol π. There also is an adversary (denoted A and modeled as an
ITM as well) carrying out attacks on protocol π. Therefore, A may corrupt
parties (in which case it learns the party’s current state and the contents of
all its tapes, and controls its future actions), and intercept or, when assuming
unauthenticated message transfer, also fake messages sent between parties. If A
corrupts parties only before the actual protocol run of π takes place, A is called
non-adaptive, otherwise A is said to be adaptive. The respective local inputs
for protocol π are supplied by an environment machine (modeled as an ITM
and denoted Z), which may also read all outputs locally made by the parties
and communicate with the adversary. Here we will only deal with environments
guaranteeing a polynomial (in the security parameter) number of total steps all
participating ITMs run. For more discussion on this issue, cf. [HMQS03b].

The model we have just described is called the real model of computation.
In contrast to this, the ideal model of computation is defined just like the real
model, with the following exceptions: we have an additional ITM called the ideal
functionality F and being able to send messages to and receive messages from
the parties privately (i. e., without the adversary being able to even intercept

Universally Composable Commitments Using Random Oracles 61

these messages). The ideal functionality may not be corrupted by the adversary,
yet may send messages to and receive messages from it. Furthermore, the parties
P1, . . . , Pn are replaced by dummy parties P̃1, . . . , P̃n which simply forward their
respective inputs to F and take messages received from F as output. Finally,
the adversary in the ideal model is called the simulator and denoted S. The only
means of attack the simulator has in the ideal model are those of corrupting par-
ties (which has the same effect as in the real model), delaying or even suppressing
messages sent from F to a party, and all actions that are explicitly specified in
F . However, S has no access to the contents of the messages sent from F to
the dummy parties (except in the case the receiving party is corrupted) nor are
there any messages actually sent between (uncorrupted) parties S could inter-
cept. Intuitively, the ideal model of computation (or, more precisely, the ideal
functionality F itself) should represent what we ideally expect a protocol to do.
In fact, for a number of standard tasks, there are formulations as such ideal
functionalities (see, e. g., [Can01]).

To decide whether or not a given protocol π does what we would ideally
expect some ideal functionality F to do, the framework of [Can01] uses a simu-
latability-based approach: at a time of its choice, Z may enter its halt state and
leave output on its output tape. The random variable describing the first bit of
Z’s output will be denoted by realπ,A,Z(k, z) when Z is run on security param-
eter k ∈ N and initial input z ∈ {0, 1}∗ (which may, in case of a non-uniform
Z, depend on k) in the real model of computation, and idealF,S,Z(k, z) when
Z is run in the ideal model. Now if for any adversary A in the real model, there
exists a simulator S in the ideal model such that for any environment Z and
any initial input z, we have that

|P(realπ,A,Z(k, z) = 1)−P(idealF,S,Z(k, z) = 1)| (1)

is a negligible1 function in k, then protocol π is said to securely realize func-
tionality F .2 Intuitively, this means that any attack carried out by adversary
A in the real model can also be carried out in the idealized modeling with an
ideal functionality by the simulator S (hence the name), such that no environ-
ment is able to tell the difference. By definition, the trivial protocol which does
not generate output realizes any ideal functionality securely. (The corresponding
simulator just has to suppress delivery of messages from the ideal functionality
to the parties.) To avoid such trivial realizations, we will only consider termi-
nating protocols, which eventually generate output when all protocol messages
in the real model are delivered.

To allow for a modular protocol design, in [Can01] also the F-hybrid model
of computation (for an arbitrary ideal functionality F) is introduced. Briefly,
this model is identical to the real model of computation, but the parties have
access to an unbounded number of instances of F , each one identified via a
1 A function f : N → R is called negligible, if for any c ∈ N, there is a k0 ∈ N such

that |f(k)| < k−c for all k > k0.
2 The formulation in [Can01] is slightly different, but equivalent to the one chosen

here which allows to simplify our presentation.

62 D. Hofheinz and J. Müller-Quade

session identifier (SID). The modularity of the hybrid model is legitimated by
the fundamental composition theorem of [Can01]. Summarizing, it states that
once protocol τ securely realizes functionality F , in any protocol π running in
the F-hybrid model, a polynomial number of instances of F can be substituted
by invocations of τ without losing security. Specifically, for every real-life ad-
versary A, there is a hybrid-model adversary H such that no environment can
tell whether it is interacting with A and π (with F-instances substituted by
invocations of τ) in the real model, or with H and π in the F-hybrid model.

2.2 The Common Reference String Model

To catch the notion of information publicly known to all protocol participants,
the modeling of [Can01] can be extended to give any participant (including the
adversary) access to a common reference string, initially chosen from some dis-
tribution D. This can be cast as the FCRS-hybrid model, where FCRS denotes
the ideal functionality that in its first activation chooses a value d from a distri-
bution D (the latter over which FCRS is parameterized). From this point on, it
replies to any request from a party Pi or from the adversary with this value d.

2.3 Collision-Free Hash Functions

A family H = {Hk}k∈N of functions Hk : {0, 1}∗ → {0, 1}k is called a family of
collision-free hash functions, if the following requirements are met:

– There is a probabilistic algorithm A computing Hk in time polynomial in
both k and input length.

– There is no probabilistic algorithm B being able to find x, y ∈ {0, 1}∗ suf-
ficing x �= y and Hk(x) = Hk(y) in polynomial time with non-negligible
probability.

Using the argument in the proof of [Dam90, Lemma 2.1], one can derive a cer-
tain one-way property: for a family of collision-free hash functions H = {Hk} as
above, there can be no probabilistic algorithm C which, on input y = Hk(x) ∈
{0, 1}k for uniformly selected x ∈ {0, 1}k+1, succeeds with non-negligible prob-
ability to find x′ ∈ {0, 1}k+1 sufficing H(x′) = y in polynomial time.

2.4 The Random Oracle Model

The random oracle model (see, e. g., [BR93]) captures an idealization of a hash
function. In particular, the idealized version allows only black-box access and
cannot be “predicted” without explicitly evaluating it. Moreover, the function
values are uniformly selected random k-bit strings. Using the terminology just
described, the random oracle model can be modeled in the setting of [Can01] as
the FRO-hybrid model for the ideal functionality FRO given in Figure 1. In the
presence of more than one party, FRO cannot be realized securely without inter-
party communication. (In this case, its very definition forces any protocol aimed

Universally Composable Commitments Using Random Oracles 63

Functionality FRO

FRO proceeds as follows, running on security parameter k, with parties P1, . . . , Pn

and an adversary S.

1. FRO keeps a list L (which is initially empty) of pairs of bitstrings.
2. Upon receiving a value (sid,m) (with m ∈ {0, 1}∗) from some party Pi or

from S, do:
– If there is a pair (m, h̃) for some h̃ ∈ {0, 1}k in the list L, set h := h̃.
– If there is no such pair, choose uniformly h ∈ {0, 1}k and store the pair

(m, h) in L.
Once h is set, reply to the activating machine (i. e., either Pi or S) with
(sid,h).

Fig. 1. Functionality FRO

at realizing FRO to behave like an “almost” deterministic function evaluation;
yet such a—by construction easily computable and explicitly given—function can
be distinguished easily from FRO, which chooses its return values completely at
random in each run.) In particular, one cannot hope to securely realize FRO by,
e. g., a family of collision-free hash functions. Below we will investigate possible
consequences of such “imperfect” realizations of FRO.

2.5 Security Notions for Commitments

First a general remark: for any probabilistic algorithm A we write A(x; r) to
indicate execution of A on input x ∈ {0, 1}∗ and with explicitly supplied
random coins r ∈ {0, 1}∗. Now a non-interactive string commitment scheme
C = {Ck, Vk}, indexed by a security parameter k ∈ N, is a family of polynomial-
time (in both k and input length) algorithms Ck and Vk, where the Ck may be
probabilistic. We mandate that Ck outputs a tuple (com, dec) of bitstrings com
and dec on input m ∈ {0, 1}∗, while Vk generates output m ∈ {0, 1}∗ ∪ {⊥} on
input (com, dec). Furthermore, we require:

1. (Meaningfulness.) Vk(Ck(m)) = m for all k ∈ N and m ∈ {0, 1}∗.
2. (Hiding property.) For any m ∈ {0, 1}∗, let {com(m)} denote the distribution
{com; (com, dec)← Ck(m)}. We require that for arbitrary m1, m2 ∈ {0, 1}∗
with |m1| = |m2|, the distributions {com(m1)} and {com(m2)} are compu-
tationally indistinguishable. If any two such distributions are also indistin-
guishable for computationally unbounded algorithms, we say that the scheme
is unconditionally hiding.

3. (Binding property.) There is no probabilistic, polynomial-time (in k) algo-
rithm B which is able to produce with non-negligible probability (in k) a
tuple (com, dec1, dec2) such that ⊥ �= Vk(com, dec1) �= Vk(com, dec2) �= ⊥.
If this holds even for computationally unbounded B, then the scheme is said
to be unconditionally binding.

64 D. Hofheinz and J. Müller-Quade

It will be convenient to denote by comC
k (m) (resp. decC

k (m)) the first (resp., the
second) component of Ck’s output when run on input m; in particular, comC

k

and decC
k can be viewed as probabilistic algorithms.

3 Commitment in the Random Oracle Model

3.1 Motivation

The common reference string model proved extremely useful for realizing general
ideal functionalities: in [CLOS02], it is shown that almost any two-party ideal
functionality F can be realized in the FCRS-hybrid model, under the assumption
that trapdoor permutations and augmented two-party non-committing encryp-
tion protocols exist. It is also shown there that this result can be extended to
the multi-party case when we additionally assume a broadcast channel avail-
able (which can also be modeled as an ideal functionality). A key point in the
constructions of [CLOS02] is the realization of the commitment functionality
FMCOM (see also Appendix A) in the FCRS-hybrid model. Since FMCOM cannot
be securely realized as a two-party computation in the real model (see [CF01]),
one must assume some “helper functionality” such as FCRS available. Indeed,
in [CF01,DN02,CLOS02], several realizations of different commitment function-
alities are described in the common reference string model.

Let’s shortly recall which additional features the common reference string is
to give us, when having in mind securely realizing, e. g., FMCOM (cf. also the
discussion in [CLOS02, Section 5]). First, note that at a time one party initiates
a commitment in the ideal model, the simulator S must be able to supply the
environment Z with a valid commitment without knowing to which value Pi

is actually committed. Furthermore, in case of a corrupted committer, S must
be able to extract the committed bit out of a valid commitment. Since alone
choosing the common reference string must enable the simulator do to so, the
whole security of a commitment protocol formulated in the common reference
string model relies on the fact that FCRS chooses the common reference string
ideally and in a trusted manner.

Moreover, once we assume “imperfect” implementations of the ideal function-
ality FCRS (i. e., publicly available random strings whose choice may somehow
be influenced by an adversary), any protocol which realizes FMCOM in the FCRS-
hybrid model may get insecure in a fatal way: in the extreme case in which an
adversary may freely choose the common reference string, it can generate “fake”
commitments which it can later open as 0 or 1, as well as “look into” legitimately
generated commitments at wish. Specifically, such imperfect common reference
strings can damage the security of the general constructions in [CLOS02] in a
serious way. That is, a protocol which is to realize some ideal functionality F
using commitments loses not only its universal composability property, but also
may lose security in a very “intuitive” way, since the underlying commitment
scheme does so.

One way to avoid this is to use another “helper functionality”. In this con-
tribution we will present two constructions in the FRO-hybrid model where a

Universally Composable Commitments Using Random Oracles 65

random oracle FRO is available. The constructions of this work allow to turn
a given non-interactive string commitment scheme into a non-interactive string
commitment scheme in the FRO-hybrid model which is universally composable.
Moreover the constructions ensure the hiding and binding proprties even when
the random oracles are replaced by arbitrary collision free hash functions. The
second construction even preserves the property of perfect binding. In fact, when
implementing the ideal commitment functionality via a hiding and uncondition-
ally binding commitment scheme, the construction in [CLOS02] (formulated in
the framework of [Can01]) for realizing general ideal functionalities is essentially
the one presented in [GMW87,Gol02] in the special case of a secure function
evaluation.

3.2 A Universally Composable Commitment Scheme

First, let’s have a look at the abovementioned functionality FSCOM, which is
derived from the functionality FMCOM of [CLOS02] (the latter which is also given
in Appendix A). A description of FSCOM is given in Figure 2. The commitment
phase described is different than that of FMCOM. This is to take into account the
following attack, which is described for the case of key exchange in [HMQS03a],
and goes back to an argument of Damg̊ard for the case of bit commitment. For
this attack, one party Pi is invoked with input b by the environment. Then, before
any messages are delivered, the environment instructs the adversary to corrupt
Pi and to let it perform the protocol from the start, but using input b′ �= b. In
the ideal model, Pi’s input b is already forwarded to FMCOM and can not be
changed anymore, although Pi gets corrupted later on. On the other hand, in the
real model, the bit committed to will be b′ �= b, as Pi is “reset” when corrupted
and no messages were delivered before. This allows for a “trivial” distinction of
real and ideal model for any protocol aimed at realizing FMCOM; we solved this
situation by a modified functionality FSCOM which lets the adversary decide
on the point in time when a commit input is accepted. An alternative to our
formulation would be to change the framework to let the adversary also delay
messages sent from parties to the ideal functionality. This approach was taken
in [CLOS02, revision dated July 14th].

Notice that different commitments are handled via different subsession identi-
fiers, each one of them handling at most one commitment per committer–receiver
pair. Furthermore, FSCOM allows committing to a string of bits rather than only
to a single bit. It is worthwhile to point out that no information (not even length
information) about the string m committed to is given to the adversary.

Now assume that C = {Ck, Vk} is a non-interactive string commitment
scheme as described in Section 2.5. Consider protocol hcC given in Figure 3.
This protocol is formulated in the FRO-hybrid model and aimed at realizing the
ideal functionality FSCOM.

Proposition 1. Assuming authenticated links, protocol hcC securely realizes
FSCOM with respect to adaptive adversaries as soon as C = {Ck, Vk} is a non-
interactive string commitment scheme.

66 D. Hofheinz and J. Müller-Quade

Functionality FSCOM

FSCOM proceeds as follows, running with parties P1, . . . , Pn and an adversary S:

– Commit Phase:
1. When receiving a message (commit,sid,ssid,Pi,Pj,m) from Pi, where

m ∈ {0, 1}∗, first send the message (request,sid,ssid,Pi,Pj) to the
adversary S and, if S then issues a corresponding ready message (see
below), proceed to the third step.

2. When receiving (ready,sid,ssid,Pi,Pj,�) from the adversary, and at
least � messages (commit,sid,ssid,Pi,Pj,m) (possibly with different m’s)
have been received from Pi, perform the third step described below with
the message m contained in the �th of these messages.

3. Record the tuple (ssid, Pi, Pj , m) and send (receipt,sid,ssid,Pi,Pj) to
Pj . Ignore any future commit messages with the same ssid from Pi to Pj .

– Reveal Phase: Upon receiving a message (reveal,sid,ssid,Pj) from Pi:
If a tuple (ssid, Pi, Pj , m) was previously recorded, then send the message
(reveal,sid,ssid,Pi,Pj,m) to Pj and S. Otherwise, ignore.

Fig. 2. Functionality FSCOM

Proof. For any adversary H mounting attacks on protocol hcC in the FRO-
hybrid model, we describe a simulator S = SH emulating such attacks in the
ideal model. S internally keeps a complete simulation of a run of H in the FRO-
hybrid model. That is, S keeps a simulation of parties P

(s)
1 through P

(s)
n running

protocol hcC , a simulation of H interacting with these parties, and (as needed)
simulated instances of the ideal functionality FRO. Communication of H with
the environment is forwarded to the (non-simulated) environment Z with which
S is to interact. Similarly, messages from Z to S are forwarded to the adversary
H in the simulation.

Of course, S still needs to keep its simulation consistent with all inputs the
dummy parties receive from Z; similarly, the output behaviour of the dummy
parties has to be the same as that of the simulated parties. (Note that generally,
S has no information about inputs and only existence information about outputs
of the dummy parties, unless the ideal functionality explicitly informs S about
incoming input, or about output sent to the parties.) Therefore, S acts as follows:

– When the simulated H corrupts a simulated party P
(s)
i , S first corrupts

the corresponding dummy party Pi and modifies P
(s)
i ’s state to account for

ignored inputs possibly handed from Z to Pi. (Upon corruption of Pi, S gets
to know about such messages when receiving the state of Pi.)

– Upon receiving (receipt,sid,ssid,Pi,Pj) from FSCOM (in which case Pi

and thus P
(s)
i must be uncorrupted), S picks s ∈ {0, 1}k uniformly and com-

putes com1 ← comC
k (s; r2) and com2 ← comC

k (Osid(r2); r3) for a uniformly
chosen r3 (here the simulated random oracle FRO is queried). Then, S sim-

Universally Composable Commitments Using Random Oracles 67

Protocol hcC

These are instructions for parties P1 through Pn to carry out commitments. The
parties expect to be run in the FRO-hybrid model. For ease of notation, here
Osid(x) denotes the reply of the FRO-instance with session ID sid to the query x.

– When activated with input (commit,sid,ssid,Pi,Pj,m), where m ∈ {0, 1}∗,
Pi computes (com1, dec1) ← Ck(Osid(ssid, i, j, m, r1); r2) for a uniformly
chosen k-bit string r1. Note that by r2 ∈ {0, 1}∗, we denote the random
coins used by Ck during this process. Then, Pi computes (com2, dec2) ←
Ck(Osid(r2)) and sends the message (sid,ssid,com1,com2) to Pj while stor-
ing (ssid, j, m, r1, r2, dec2). Further (commit,sid,ssid,Pi,Pj,·) inputs are ig-
nored.

– When receiving (sid, ssid, com1, com2) from Pi, where com1, com2 ∈ {0, 1}∗
and ssid is a subsession ID under which Pj did not yet get such a message
from any party, Pj stores the pair (ssid, i, com1, com2) and locally outputs
(receipt,sid,ssid,Pi,Pj). Any future messages (sid, ssid, com′

1, com′
2) with

the same subsession ID ssid from Pi are ignored.
– When activated on input (reveal,sid,ssid,Pj), party Pi checks if it has a

tuple (ssid, j, m, r1, dec2) (for any m, r1, dec2) stored. If so, Pi sends the tu-
ple (sid, ssid, m, r1, r2, dec2) to Pj . Further inputs (reveal,sid,ssid,Pj) are
ignored.

– When receiving (sid, ssid, m, r1, r2, dec2) with m, dec2, r1, r2 ∈ {0, 1}∗ from
Pi while already having received a value (sid, ssid, com1, com2) also from
Pi, Pj first computes o2 ← Vk(com2, dec2). Then, if o2 = Osid(r2), Pj

checks if comC
k (Osid(ssid, i, j, m, r1); r2) equals com1. If so, Pj locally outputs

(reveal,sid,ssid,Pi,Pj,m) and ignores all further (sid, ssid, . . .) messages.
In any other case, Pj does nothing.

Fig. 3. Protocol hcC

ulates a message (sid, ssid, com1, com2) from P
(s)
i to P

(s)
j and stores this

message together with r2, r3, and s.

– When H delivers a message (sid, ssid, com1, com2) from P
(s)
i to P

(s)
j , and

P
(s)
j did not yet get such a message with subsession ID ssid from Pi, S

proceeds as follows: if P
(s)
i (and hence Pi as well) is uncorrupted, S sends

(ready,sid,ssid,Pi,Pj,1) to FSCOM, and delivers the receipt message
then sent from FSCOM to Pj as soon as P

(s)
j outputs such a receipt message

(i. e., immediately afterwards).

If, on the other hand, P
(s)
i (and thus Pi) is corrupted, then first the message

m committed to may have to be extracted from com1 and com2 which could
have been supplied by Z without appropriate commit input. By looking
up all queries to the simulated FRO-instance with session ID sid, we can
reduce to a polynomial number of possible m-r1-r2-combinations. Hence by
verifying whether com1 equals comC

k (Osid(ssid, i, j, m, r1); r2), S can extract

68 D. Hofheinz and J. Müller-Quade

m alone from com1, provided that the commitment can be unveiled according
to hc and FRO did never output the same value twice. (Note that here we
use the binding property of C.) In these latter cases, it suffices to set m
to 0 (or any other value), since FRO produces collisions only in a negligible
fraction of runs and commitments generated without explicitly querying the
random oracle can be unveiled only with negligible probability. (Here it is
important that since the subsession identifier sid and the party identities
i and j are hashed together with m, hash values cannot be “re-used” in a
different subsession.)
Once m is determined, S sends (commit,sid,ssid,Pi,Pj,m) in the name of
the corrupted relay Pi to functionality FSCOM, followed by a corresponding
(ready,sid,ssid,Pi,Pj,�) signal. Here � denotes the number of already
received request notifications plus 1, and thus indicates that the message
m just sent is to be committed to. This causes the ideal functionality to send
a receipt message to Pj , which then can be delivered by S as soon as P

(s)
j

generates output in the simulation.
– Upon receiving (reveal,sid,ssid,Pi,Pj,m) from FSCOM (which means

that Pi is still uncorrupted), S lets P
(s)
i compute a commitment to m at

Pj (under session ID sid and subsession ID ssid), but forces
• the simulated FRO with session ID sid to output s when queried by

P
(s)
i with (ssid, i, j, m, r1) (this is not possible when FRO was queried

on (ssid, i, j, m, r1) before; yet, since r1 is chosen uniformly from {0, 1}k
by P

(s)
i , this only occurs with negligible probability)

• P
(s)
i to use the values r2 and r3 which S stored together with the message

(sid, ssid, j, com1, com2).
Now S dismisses the actual commitment message sent from P

(s)
i to P

(s)
j

(note that by construction, this message is exactly the message simulated
by S) and modifies P

(s)
i ’s internal state so as to look as if this commit-

ment had been performed exactly at the time the corresponding message
(sid, ssid, com1, com2) was simulated from P

(s)
i to P

(s)
j .

Finally, Pi is fed with input (reveal,sid,ssid,Pi,Pj,m) to reflect in the
simulation the actual decommitment operation S was informed about. The
reveal message sent from FSCOM to Pj is delivered as soon as P

(s)
j generates

as output the corresponding reveal message.
– The same procedure is applied to all commitments Pi has not yet opened

when P
(s)
i gets corrupted. (Note that then, S gets to know the corresponding

messages committed to by receiving Pi’s state.)
– Finally, if P

(s)
j generates reveal output while uncorrupted, the correspond-

ing dummy party Pj has to generate output as well. The steps above take
care that this output is the same in the ideal model as in the simulation, ex-
cept in a negligible fraction of runs. Particularly, S only needs to deliver the
corresponding reveal message from FSCOM to Pj when the corresponding
committer Pi was uncorrupted at the time it got its reveal input. If, on the
other hand, Pi was corrupted at that time, S must first supply FSCOM with

Universally Composable Commitments Using Random Oracles 69

the corresponding reveal input via the corrupted relay Pi. In this case, S
has already extracted the message m needed for this reveal input either
from Pi’s state (when Pi’s corruption took place after the delivery of the
commitment), or, otherwise, from the actual commitment message delivered
to P

(s)
j . (Here we use that except with negligible probability, there is no

efficient way to unveil a commitment in more than one way; by construction
of protocol hcC , this follows from the “collision-freeness” of FRO.)

By construction, S provides Z with a view identical to one of a run in the hybrid
model, until a reveal output of a party Pj differs from that of the respective
simulated party P

(s)
j . However, this can only happen when S is unable to extract

a message out of a commitment sent from a corrupted committer P
(s)
i to an

uncorrupted receiver P
(s)
j , or when S cannot unveil a commitment generated by

S itself. As reasoned above, the probability for any of these is only negligible,
henceforth we are done. Note that we did not use the hiding property of C. ��

For achieving universal composability, we had to incorporate subsession
identifiers and the identities of committer and receiver into the message ac-
tually committed to. To allow for statements independent of such protocol-
inherent information, we drop that requirement on the format of the mes-
sage and, to be able to formally view the protocol hcC as a non-interactive
string commitment scheme, we set hcC = {Ck,Vk}. Here algorithm Ck computes
com← (comC

k (O(m, r1); r2), comC
k (O(r2); r3)) for uniformly chosen r1 ∈ {0, 1}k

and random coins r2, r3 ∈ {0, 1}∗, then dec ← (m, r1, r2, decC
k (O(r2); r3)) and

returns (com, dec). On input (com, dec) of the form com = (com1, com2) and
dec = (m, r1, r2, dec2), algorithm Vk computes o2 ← Vk(com2, dec2) and, if
o2 = O(r2), checks whether com1 equals Ck(O(m, r1); r2). Only in this case
Vk returns m, otherwise it returns ⊥.

As mentioned above, we would like to be able to deduce security properties of
the scheme hcC even when having substituted all random oracles O by suitable
hash functions. Let therefore hcC,H denote the scheme which is identical to hcC ,
except that all O-queries are replaced by evaluations of Hk, where H = {Hk} is
a family of collision-free hash functions as defined in the preliminaries.

Proposition 2. Once H = {Hk} is a family of collision-free hash functions
and C = {Ck, Vk} is a non-interactive string commitment scheme, the scheme
hcC,H = {Ck,Vk} (as described above) is also a non-interactive string commit-
ment scheme. Furthermore, if C is unconditionally hiding, then so is hcC,H.

Proof. Meaningfulness, binding and hiding properties of hc = hcC,H need to
be checked. The meaningfulness of hc follows directly from that of C. Fur-
thermore, every algorithm B which supplies a hc-commitment together with
two decommitments yielding different messages has to supply in particular a C-
commitment together with two C-decommitments yielding messages Hk(m, r1),
resp. Hk(m′, r′

1). If both are equal, B has found a Hk-collision (since m �= m′ by
assumption); if the hash values are different, then B breaks the binding property
of C. In either case, we have shown the binding property of hc.

70 D. Hofheinz and J. Müller-Quade

Now for the hiding property, consider the scheme hc′ = {C′
k,V ′

k}, which is
identical to hc, except that the C-commitment to Hk(r2) (where r2 denotes
the random coins used in the C-commitment to Hk(m, r1)) is replaced by a C-
commitment to 0k. More formally, C′

k(m) computes to (com′, dec′) with com′ ←
(comC

k (Hk(m, r1); r2), comC
k (0k)) and dec′ ← (m, r1, r2); the definition of V ′

k is
obvious.

Let A be a probabilistic, polynomial-time algorithm which breaks the com-
putational hiding property of hc. More specifically, say that there are messages
m1, m2 ∈ {0, 1}∗, such that the difference

Adv(A,hc, m1, m2) := P(A(comhc
k (m1))→ 1)−P(A(comhc

k (m2))→ 1)

is a non-negligible function in k. Assume first that

Adv(A,hc′, m1, m2) := P(A(comhc′
k (m1))→ 1)−P(A(comhc′

k (m2))→ 1)

is non-negligible in k as well. Since by construction, a C-commitment to a mes-
sage Hk(m, r1) can be extended to an hc′-commitment to the message m with-
out knowledge of m or r1, it follows that from A, we can build a probabilistic,
polynomial-time algorithm A1 with

P(A1(comC
k (Hk(m1, r1))→ 1))−P(A1(comC

k (Hk(m2, r1))→ 1)

non-negligible in k for a certain, fixed r1 ∈ {0, 1}k. Such an A1 would break the
hiding property of C, thereby yielding a contradiction.

On the other hand, suppose that Adv(A,hc′, m1, m2) is negligible in k. As
then,

Adv(A,hc, m1, m2)−Adv(A,hc′, m1, m2)

=
(
P(A(comhc

k (m1))→ 1)−P(A(comhc′
k (m1))→ 1)

)

−
(
P(A(comhc

k (m2))→ 1)−P(A(comhc′
k (m2))→ 1)

)

is non-negligible, at least one of the addends on the right-hand side of the equa-
tion must be as well. So say that P(A(comhc

k (mi))→ 1)−P(A(comhc′
k (mi))→

1) is non-negligible (with fixed i ∈ {1, 2}). Then there have to be certain, fixed
r1, r2 for which A can distinguish tuples (comC

k (Hk(mi, r1); r2), comC
k (Hk(r2)))

from tuples (comC
k (Hk(mi, r1); r2), comC

k (0k)). Hence from A we can construct
a probabilistic, polynomial-time algorithm A2 with

P(A2(comC
k (Hk(r2))→ 1))−P(A2(comC

k (0k))→ 1)

non-negligible in k, thereby breaking the hiding property of C. So in either case,
we have a contradiction and there can be no such algorithm A; consequently, hc
must be computationally hiding. As this reduction also applies to computation-
ally unbounded algorithms A, a possible unconditional hiding property of C is
preserved. ��

Universally Composable Commitments Using Random Oracles 71

3.3 Preserving Unconditional Binding

Although we have shown that the construction hcC,H preserves hiding and com-
putational binding properties of C, this is not true for a potential unconditional
binding property: Any algorithm breaking the collision-freeness of H can be used
to generate hc-commitments together with multiple decommitments to different
messages. (Note that with hc, we are actually committed only to the hash value
of a message.)

An unconditionally binding string commitment scheme cannot completely
hide the length of the message committed to; to reflect this in an idealization,
we define the ideal functionality FBSCOM to be identical to FSCOM (cf. Figure 2),
except that FBSCOM supplies the simulator S upon a commitment to a message
m with the bit length |m| of this message. This length information is included
in the respective request message sent to the simulator.

Let FH be the following probabilistic, polynomial-time (in both the security
parameter k and its input length) algorithm, where H = {Hk}k is a family of
functions Hk : {0, 1}∗ → {0, 1}k which in turn are computable in polynomial
time. Upon input m = m1 · · ·mn ∈ {0, 1}n, FH uniformly selects s1, . . . , sn ∈
{0, 1}k with each si satisfying siHk(si) �= Hk(si)si and outputs

FH(m) = π(m1, s1, Hk(s1)) · · ·π(mn, sn, Hk(sn)),

where π(0, s, t) = (s, t) and π(1, s, t) = (t, s) for arbitrary s, t ∈ {0, 1}∗. Algo-
rithm FH will be used to encode a message in a (for the simulator) equivocable
yet (for parties) binding way. To extract the encoded message, we will use the
following polynomial-time computable function F−1

H . We set

F−1
H (m) =

0 if r = Hk(l) and l �= Hk(r)
1 if r �= Hk(l) and l = Hk(r)
⊥ else

for m = lr with l, r ∈ {0, 1}k. For m = m1 · · ·m� with � > 1 and all mi ∈
{0, 1}2k, we define F−1

H (m) = F−1
H (m1) · · ·F−1

H (m�). In all other cases, we set
F−1

H (m) = ⊥.
Given a non-interactive string commitment scheme C, consider a protocol

bhcC , whose “infrastructure” is identical to that of protocol hcC , but the com-
mitment and decommitment messages differ slightly, as does the verification
procedure. Protocol bhcC is described in Figure 4.

Proposition 3. Assuming authenticated links, protocol bhcC securely realizes
FBSCOM with respect to adaptive adversaries as soon as C = {Ck, Vk} is a non-
interactive string commitment scheme.

Proof. The proof is very similar to the one of Proposition 1, and we will only
describe the necessary modifications to the simulator S. For generating an equiv-
ocable commitment to a message of length � (here we use the length information
with which FBSCOM supplies S upon commitment requests), S picks s ∈ {0, 1}k,
f ∈ {0, 1}2�k, then generates C-commitments Ck(s, f ; r2) and Ck(Osid(r2)) and

72 D. Hofheinz and J. Müller-Quade

Protocol bhcC

These are instructions for parties P1 through Pn to carry out commitments in the
FRO-hybrid model.

– When activated with input (commit,sid,ssid,Pi,Pj,m), where m ∈ {0, 1}∗,
Pi computes f ← FOsid(m) and (com1, dec1) ← Ck(Osid(ssid, i, j, f), f ; r2).
Then, Pi computes (com2, dec2) ← Ck(Osid(r2)) and sends the message
(sid,ssid,com1,com2) to Pj while storing (ssid, j, f, r2, dec2). Any further
(commit,sid,ssid,Pi,Pj,·) inputs are ignored.

– When receiving (sid, ssid, com1, com2) from Pi, where com1, com2 ∈ {0, 1}∗
and ssid is a subsession ID under which Pj did not yet get such a message
from any party, Pj stores the pair (ssid, i, com1, com2) and locally outputs
(receipt,sid,ssid,Pi,Pj). Any future messages (sid, ssid, com′

1, com′
2) from

Pi (with the same sid and ssid) are ignored.
– When activated on input (reveal,sid,ssid,Pj), Pi checks if it has stored a

tuple (ssid, j, f, r2, dec2) (for any f, dec2). If so, Pi sends (sid, ssid, f, dec2) to
Pj . Any future inputs (reveal,sid,ssid,Pj) are ignored.

– When receiving (sid, ssid, f, r2, dec2) with f, r2, dec2 ∈ {0, 1}∗ from Pi while
already having received a value (sid, ssid, com1, com2) also from Pi, party
Pj first computes o2 ← Vk(com2, dec2). Then, if o2 = Osid(r2), Pj checks if
comC

k (Osid(ssid, i, j, m, f), f ; r2) equals com1 and if m �= ⊥ for m← F −1
H (f).

If so, Pj locally outputs (reveal,sid,ssid,Pi,Pj,m) and ignores further
(sid, ssid, . . .) messages. In any other case, Pj does nothing.

Fig. 4. Protocol bhcC

with these simulates a commitment as before. Later, when being forced to un-
veil this commitment as a commitment to m ∈ {0, 1}�, S lets the simulated
committer P

(s)
i perform a commitment to m as before, but forces

– P
(s)
i to compute FOsid

(m) as the given f by altering P
(s)
i ’s random tape,

resp. the random tape of FRO

– the simulated FRO to output s when queried by P
(s)
i on (ssid, i, j, f).

Again, this “tampering” with FRO is possible only if FRO was not queried on
any of these values before. By the hiding property of C and the randomization
of FOsid

, this is guaranteed to occur only negligibly often. Note here also that
both hash values s and f are valid for only one subsession (i. e., for one single
commitment).

The extraction of the message committed to from a commitment that was
generated according to bhcC is straightforward; again, if a commitment was
not generated as specified by bhcC , it can only be unveiled with negligible
probability. With these changes, the proof of Proposition 1 applies. ��
Once again, by dropping protocol-inherent information, protocol bhcC may for-
mally be regarded as a non-interactive commitment scheme. Therefore, we set
bhcC = {Ck,Vk}, where algorithm Ck computes f ← FO(m), then com ←
(comC

k (O(f), f ; r2), comC
k (O(r2); r3)) and dec← (f, r2, decC

k (O(r2); r3)) for ran-
dom coins r2, r3 ∈ {0, 1}∗, and finally returns (com, dec). On input (com, dec)

Universally Composable Commitments Using Random Oracles 73

of the form com = (com1, com2) and dec = (f, r2, dec2), algorithm Vk com-
putes o2 ← Vk(com2, dec2) and, if o2 = O(r2), checks whether com1 equals
Ck(O(f), f ; r2)). Only in this case Vk returns F−1

O (f), otherwise it returns ⊥.
As will be shown, bhcC preserves not only hiding properties of C, but also a

possible unconditional binding property, albeit for the price of being less efficient
than hcC and leaking information about the length |m| of the message being
committed to.

Proposition 4. Once H = {Hk} is a family of collision-free hash functions for
which FH is efficiently computable and C = {Ck, Vk} is a non-interactive string
commitment scheme, the scheme bhcC,H = {Ck,Vk} (as described above) is also
a non-interactive string commitment scheme. If C is unconditionally hiding, then
so is bhcC,H. If C is unconditionally binding, then so is bhcC,H.

Proof. The meaningfulness of bhcC,H = bhc follows from that of C. The com-
putational binding property of bhc follows as in the proof of Proposition 2;
furthermore, as F−1

H (FH(m)) = m for any H, m, the same argument shows that
bhc is unconditionally binding if C is. Also for the hiding properties of bhc, the
argument of the proof of Proposition 2 applies when we set bhc′ = {C′

k,V ′
k}.

When being run on input m, algorithm C′
k computes the tuple (com′, dec′) with

com′ ← (comC
k (Hk(f), f ; r2), comC

k (0k; r3)) and dec′ ← (f, r2) for f ← FH(m).
The definition of V ′

k is obvious. ��

4 Conclusions

In the model of [Can01] bit commitment cannot be securely realized without
additional assumptions, e. g. the availability of an additional functionality like
a common reference string or, as proposed in this work, a random oracle. As
a motivation for the use of random oracles we discussed difficulties which may
arise when a common reference string functionality is replaced by a cryptographic
primitive which is realizable from scratch.

This contribution gave two constructions which allow to turn a given non-
interactive bit commitment into a universally composable commitment scheme
in the random oracle model. The resulting commitment schemes remain bind-
ing and hiding even if the random oracles are replaced by collision resistant
hash functions. The second construction even preserves the property of perfect
binding.

One referee pointed out that a separation of the random oracle model and the
CRS model is a consequence of our result. Namely, [DG03] showed that from the
existence of a universally composable bit commitment in a CRS model, a secure
key exchange protocol can be derived. However, in the random oracle model, we
proved that a binding and concealing bit commitment can be transformed into a
universally composable one. So if a random oracle could be implemented using a
common reference string (drawn from a suitable distribution), the existence of a

74 D. Hofheinz and J. Müller-Quade

binding and concealing bit commitment alone would imply a secure key exchange
protocol. (In fact, it seems that a universally composable bit commitment can be
implemented in the random oracle model without any further assumptions, thus
yielding a stronger separation.) On the other hand, implementing a common ref-
erence string in the random oracle model can be—depending on the distribution
of the reference string—non-trivial.

It is an interesting open question how the constructions given here affect the
non-malleability of a given commitment scheme. To the best of our knowledge it
is not clear how relations among committed values behave with respect to the
use of hash functions in the given constructions.

Acknowledgements. The authors would like to thank Rainer Steinwandt and
Dominique Unruh for interesting and valuable discussions, and the anonymous
referees for helpful comments.

References

[BBP03] Mihir Bellare, Alexandra Boldyreva, and Adriana Palacio. An un-
instantiable random-oracle-model scheme for a hybrid-encryption prob-
lem. IACR ePrint Archive, August 2003. Online available at
http://eprint.iacr.org/2003/077.ps.

[BR93] Mihir Bellare and Phillip Rogaway. Random oracles are practical:
A paradigm for designing efficient protocols. In 1st ACM Confer-
ence on Computer and Communications Security, Proceedings of CCS
1993, pages 62–73. ACM Press, 1993. Full version online available at
http://www.cs.ucsd.edu/users/mihir/papers/ro.ps.

[Can01] Ran Canetti. Universally composable security: A new paradigm for
cryptographic protocols. In 42th Annual Symposium on Founda-
tions of Computer Science, Proceedings of FOCS 2001, pages 136–
145. IEEE Computer Society, 2001. Full version online available at
http://eprint.iacr.org/2000/067.ps.

[CF01] Ran Canetti and Marc Fischlin. Universally composable commit-
ments. In Joe Kilian, editor, Advances in Cryptology, Proceedings of
CRYPTO 2001, volume 2139 of Lecture Notes in Computer Science,
pages 19–40. Springer-Verlag, 2001. Full version online available at
http://eprint.iacr.org/2001/055.ps.

[CGH98] Ran Canetti, Oded Goldreich, and Shai Halevi. The random oracle
methodology, revisited. In Thirtieth Annual ACM Symposium on The-
ory of Computing, Proceedings of STOC 1998, pages 209–218. ACM
Press, 1998. Preliminary version, extended version online available at
http://eprint.iacr.org/1998/011.ps.

[CLOS02] Ran Canetti, Yehuda Lindell, Rafail Ostrovsky, and Amit Sahai. Uni-
versally composable two-party and multi-party secure computation. In
34th Annual ACM Symposium on Theory of Computing, Proceedings of
STOC 2002, pages 494–503. ACM Press, 2002. Extended abstract, full
version online available at http://eprint.iacr.org/2002/140.ps.

http://eprint.iacr.org/2003/077.ps
http://www.cs.ucsd.edu/users/mihir/papers/ro.ps
http://eprint.iacr.org/2000/067.ps
http://eprint.iacr.org/2001/055.ps
http://eprint.iacr.org/1998/011.ps
http://eprint.iacr.org/2002/140.ps

Universally Composable Commitments Using Random Oracles 75

[Dam90] Ivan Bjerre Damg̊ard. A design principle for hash functions. In
Gilles Brassard, editor, Advances in Cryptology, Proceedings of CRYPTO
’89, volume 435 of Lecture Notes in Computer Science, pages 416–427.
Springer-Verlag, 1990.

[DG03] Ivan Damg̊ard and Jens Groth. Non-interactive and reusable non-
malleable commitment schemes. In 35th Annual ACM Symposium on
Theory of Computing, Proceedings of STOC 2003, pages 426–437. ACM
Press, 2003. Full version online available at
http://eprint.iacr.org/2003/080.ps.

[DN02] Ivan Damg̊ard and Jesper Buus Nielsen. Perfect hiding and perfect bind-
ing universally composable commitment schemes with constant expan-
sion factor. In Moti Yung, editor, Advances in Cryptology, Proceedings
of CRYPTO 2002, volume 2442 of Lecture Notes in Computer Science,
pages 581–596. Springer-Verlag, 2002. Full version online available at
http://eprint.iacr.org/2001/091.

[GMW87] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any
mental game—a completeness theorem for protocols with honest major-
ity. In Nineteenth Annual ACM Symposium on Theory of Computing,
Proceedings of STOC 1987, pages 218–229. ACM Press, 1987. Extended
abstract.

[Gol02] Oded Goldreich. Secure multi-party computation. Online available at
http://www.wisdom.weizmann.ac.il/˜oded/PS/prot.ps,October 2002.

[GTK03] Shafi Goldwasser and Yael Tauman Kalai. On the (in)security of
the Fiat-Shamir paradigm. In 44th Annual Symposium on Founda-
tions of Computer Science, Proceedings of FOCS 2003, pages 102–
113. IEEE Computer Society, 2003. Full version online available at
http://eprint.iacr.org/2003/034.

[HMQS03a] Dennis Hofheinz, Jörn Müller-Quade, and Rainer Steinwandt. Initiator-
resilient universally composable key exchange. In Einar Snekkenes and
Dieter Gollmann, editors, Computer Security, Proceedings of ESORICS
2003, volume 2808 of Lecture Notes in Computer Science, pages 61–84.
Springer-Verlag, 2003. Online available at
http://eprint.iacr.org/2003/063.ps.

[HMQS03b] Dennis Hofheinz, Jörn Müller-Quade, and Rainer Steinwandt. On model-
ing IND-CCA security in cryptographic protocols. IACR ePrint Archive,
February 2003. Online available at
http://eprint.iacr.org/2003/024.ps.

[Nie02] Jesper B. Nielsen. Separating random oracle proofs from complexity
theoretic proofs: The non-committing encryption case. In Moti Yung,
editor, Advances in Cryptology, Proceedings of CRYPTO 2002, volume
2442 of Lecture Notes in Computer Science, pages 111–126. Springer-
Verlag, 2002.

http://eprint.iacr.org/2003/080.ps
http://eprint.iacr.org/2001/091
http://www.wisdom.weizmann.ac.il/~oded/PS/prot.ps
http://eprint.iacr.org/2003/034
http://eprint.iacr.org/2003/063.ps
http://eprint.iacr.org/2003/024.ps

76 D. Hofheinz and J. Müller-Quade

A The Functionality FMCOM

For convenience, here we reproduce the description of the ideal functionality
FMCOM from [CLOS02]:

Functionality FMCOM

FMCOM proceeds as follows, running with parties P1, . . . , Pn and an adver-
sary S:

– Commit Phase: Upon receiving a message (commit,sid,ssid,Pi,Pj,
b) from Pi, where b ∈ {0, 1}, record the tuple (ssid, Pi, Pj , b) and send
the message (receipt,sid,ssid,Pi,Pj) to Pj and S. Ignore any future
commit messages with the same ssid from Pi to Pj .

– Reveal Phase: Upon receiving a message (reveal,sid,ssid) from Pi:
If a tuple (ssid, Pi, Pj , b) was previously recorded, then send the message
(reveal,sid,ssid,Pi,Pj,b) to Pj and S. Otherwise, ignore.

	Introduction
	Preliminaries
	The General Framework
	The Common Reference String Model
	Collision-Free Hash Functions
	The Random Oracle Model
	Security Notions for Commitments

	Commitment in the Random Oracle Model
	Motivation
	A Universally Composable Commitment Scheme
	Preserving Unconditional Binding

	Conclusions
	The Functionality $@mathcal {F}_{rm MCOM}$

