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Abstract. In light of the growing complexity of cryptographic protocols and ap-
plications, it becomes highly desirable to mechanize—and eventually automate—the
security analysis of protocols. A natural step towards automation is to allow for sym-
bolic security analysis. However, the complexity of mechanized symbolic analysis is
typically exponential in the space and time complexities of the analyzed system. Thus,
full automation via direct analysis of the entire given system has so far been impractical
even for systems of modest complexity.

We propose an alternative route to fully automated and efficient security analysis of
systems with no a priori bound on the complexity. We concentrate on systems that have
an unbounded number of components, where each component is of small size. The idea
is to perform symbolic analysis that guarantees composable security. This allows ap-
plying the automated analysis only to individual components, while still guaranteeing
security of the overall system.

We exemplify the approach in the case of authentication and key-exchange proto-
cols of a specific format. Specifically, we formulate and mechanically assert symbolic
properties that correspond to concrete security properties formulated within the Univer-
sally Composable security framework. As an additional contribution, we demonstrate
that the traditional symbolic secrecy criterion for key exchange provides an inadequate
security guarantee (regardless of the complexity of verification) and propose a new
symbolic criterion that guarantees composable concrete security.

Key words. Cryptographic protocols, Security analysis, Symbolic analysis, Auto-
mated analysis, Universal composition.
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1. Introduction

From its very earliest stages, modern cryptography has built mathematical models with
which to represent cryptographic protocols and specify their security properties. A very
partial list of such properties includes pseudorandomness [15,64], semantic security [35,
51], unforgeability [36], zero-knowledge [31,33,37], nonmalleability [27], and general
security properties of protocols [9,17,18,32,34,50,59,65]. Consequently, we now have a
variety of mathematical models with which to analyze cryptographic protocols.

These models are complex, however, and analyzing even very simple protocols within
them is often painstaking and delicate. In particular, such models are based on com-
plexity theory and have a very “computational” nature. Adversaries are represented by
probabilistic Turing machines, and proofs of security reduce a successful attack to some
underlying problem. Such proofs show that if this underlying problem is hard, then
the adversary’s probability of success is bounded above by some (rapidly diminishing)
function of the consumed resources. To show this, however, these proofs use either
asymptotic formalisms or highly parameterized notions of security. Furthermore, these
analyses often require “human ingenuity” and are thus hard to extend and to mechanize.
All in all, full-fledged analysis of even a moderately complex cryptographic system is a
daunting task.

Several abstractions of this “computational” model have been proposed, such as
the Dolev–Yao model [26] and its many extensions and derivatives (e.g., [24,29,63]),
the BAN logic [16], and a number of process calculi (e.g. [2,44,45,48]). In these ap-
proaches, cryptography is axiomatized. That is, cryptographic primitives are represented
as symbolic operations which are defined to guarantee a set of idealized security prop-
erties. For example, the BAN logic models encryption as a communication channel
which is inaccessible to the adversary [16], while others model it as a symbolic oper-
ation which completely hides the message [26]. As a result, these kinds of models are
much simpler than the computational ones: protocols are finite and deterministic, secu-
rity definitions can be stated in absolute terms rather than asymptotic or probabilistic
ones, and proof are unconditional (rather than relying on computational hardness as-
sumptions). This greater simplicity makes analysis in these “symbolic” models much
more amenable to mechanization and automation. (See, e.g., [11,12,47,49,55,61].)

A recent body of work, starting with that of Abadi and Rogaway [4], demonstrates
that such symbolic analyses can be sound with respect to the computational models
and that symbolic analyses can also be used to verify security properties of the com-
putational model. In particular, Abadi and Rogaway showed that one can assert indis-
tinguishability of distribution ensembles from a certain class (such as those produced
by an encryption scheme) by translating these ensembles to symbolic forms and then
verifying a symbolic property.

This work has been extended in a number of ways (e.g., [3,5,42,53]). Two partic-
ularly important works for our purposes are those of Micciancio and Warinschi [54]
and Backes, Pfitzmann, and Waidner ([6,8] and others). Micciancio and Warinschi sub-
stantially extend the approach of Abadi and Rogaway to the case of interactive proto-
cols and unauthenticated communication networks with active adversaries. In particu-
lar, they provide a general soundness theorem for a class of symbolic properties (which,
roughly, correspond to “correctness properties” on the outputs of parties who follow the



Universally Composable Symbolic Security Analysis 85

protocol). They also exemplify their treatment for the task of mutual authentication, as
defined in [10]. That is, they show that the security of concrete mutual authentication
protocols (of a certain format) can be asserted via the following two-step process: First,
translate the concrete protocol into a symbolic one. Then, assert an appropriate sym-
bolic property of the resulting symbolic protocol. Security of the concrete protocol is
then guaranteed.

An alternative approach, taken by Backes, Pfitzmann, and Waidner (e.g., [6,8]) and
discussed further in Sect. 1.2, defines idealized abstractions of cryptographic primi-
tives directly in a full-fledged cryptographic model. These abstractions are realizable
by actual concrete protocols in a cryptographic setting but can simultaneously be used
as abstract primitives by higher-level protocols. Soundness properties, provided via a
general composition theorem, show that protocol executions can be “mapped” from the
computational to abstract setting. Therefore, large classes of security properties can be
verified by analyzing the abstract primitives. (We note that this approach was developed
concurrently to and initially independently of [4].)

These results are attractive in that they demonstrate how one can simplify and mecha-
nize the security analysis of large cryptographic systems. However, they all require that
the symbolic analysis be applied directly to the entire system as a whole: all sessions of
all protocols that might be running on the network should be analyzed together. In some
cases this is not possible at all, since the entire system might not be known at the time
of analysis. But even if it is, mechanical analysis might not be computationally feasi-
ble or possible. Indeed, the general protocol-security problem—does a given protocol
satisfy a given security property when running an unbounded number of sessions—is
undecidable [29]. Even when the number of sessions is bounded and specified in the
problem statement, the protocol-security problem is at least NP-hard and in some cases
PSPACE-hard [28,29]. Thus, mechanical and automated analyses justified by the above
works do not seem to be feasible for systems of interest.

1.1. This Work

We propose a different approach: use symbolic analysis to prove composable secu-
rity properties of cryptographic protocols. Such properties are defined for (and verified
about) individual protocol sessions but remain valid even when the analyzed session is
composed with an unbounded number of other sessions. This allows us to apply auto-
mated security analysis only to a single session and still deduce security properties of
the overall system—even when this system consists of an unbounded number of ses-
sions and is not fully known in advance. More concretely, we propose to modify the
two-step approach of [4,54] as follows:

1. Decompose the system into individual sessions, where each session consists of a
single execution of a relatively simple protocol.

2. Translate the resulting protocol into an abstract, symbolic form.
3. Use the automated analysis tools of the symbolic models to show that a single ses-

sion of the (abstracted) protocol achieves, in isolation, some particular symbolic
property.

4. Conclude that, because the symbolic protocol satisfies those particular symbolic
properties, the original concrete protocol satisfies a composable security property
in the computational model.



86 R. Canetti and J. Herzog

5. Conclude that the protocol provides the same security properties in the original,
multisession system.

Step 5 can be asserted once and for all, using a general composition theorem. We
do this using the universally composable (UC) security framework of Canetti [18].
Step 4 needs to be asserted only once per model, where a model includes the abstraction
method and the task at hand. We do this for a specific abstraction method and for the
tasks of mutual authentication and key exchange. In fact, asserting Step 4 is the main
technical bulk of this work.

The rest of this section discusses some obstacles in the way of the above plan, and
our methods of dealing with them. We postpone full overview to Sect. 2. We first briefly
review the tasks of mutual authentication and key exchange. In both cases, two parties
are communicating over an unauthenticated, adversarially controlled network. For mu-
tual authentication, the two parties wish to learn whether the other party exists in the
system and agrees to communicate. For key exchange, two parties wish to generate a
random key that is known only to the two of them. In both cases, the system of interest
consists of multiple “runs” where in each run two parties attempt to mutually authenti-
cate or exchange a key. Because these two kinds of systems decompose naturally into
individual sessions, each of which consists of a relatively simple interaction, they are
particularly suited to our approach.

Joint State The core idea of our approach is to analyze the individual sessions of a key-
exchange or mutual-authentication protocol and then to use the composition theorems
of the UC framework to extract security properties for the entire multisession system.
However, the basic universal composition theorem of [18] only applies when the parties
running the protocol have disjoint local states and make independent random choices
in the individual sessions. In our setting this is not the case: typically, each party has a
single “long-term authentication module,” where this module is used in all the pairwise
sessions in which the party participates. (Most often, this module is either a public and
private key pair for an encryption or a signature scheme, or a long-term key shared with
some server.) This means that the individual (pairwise) sessions have some amount of
“joint state,” and thus the universal composition theorem cannot be directly applied to
assert security of the re-composed system.

We solve this problem by using the universal composition with joint state (JUC) the-
orem of Canetti and Rabin [22]. Informally, this theorem states the following: Assume
that protocol p has the property that the outputs of the parties from a single instance
of p look like their outputs from multiple independent instances of some other, simpler
protocol, f. Then, the behavior of any multiparty system r that uses multiple instances
of f as subroutines will remain essentially the same even when all the instances of f are
replaced by a single instance of p.

This somewhat abstract theorem is used as follows. We focus on modeling long-term
authentication using public-key encryption. For that purpose, we formulate an “ideal
certified public-key encryption functionality,” denoted FCPKE. This functionality models
ideal encryption and decryption services in the presence of a public key infrastructure.
(FCPKE is a variant of known idealized formulations of public-key encryption, see, e.g.,
[18].) We then proceed in two steps. First, we analyze an overly idealized protocol,



Universally Composable Symbolic Security Analysis 87

where each single (pairwise) session of the mutual-authentication or key-exchange pro-
tocol has access to its own dedicated instance of FCPKE. Here the different protocol
sessions have no joint state, and so the UC theorem can be applied.

Next, we demonstrate how multiple instances of FCPKE can be realized by a single
instance of a concrete encryption scheme—so long as all the instances of FCPKE have
the same party as the designated decryptor, and in addition the concrete scheme is secure
against adaptive chosen ciphertext (CCA) attacks as in [27,60]. By the JUC theorem,
therefore, the security of a system where each single session uses its own dedicated
instance of FCPKE implies security of that same system where all instances of FCPKE that
correspond to the same decryptor are replaced with a single instance of a CCA secure
encryption scheme.

Symbolic Forms of Concrete Protocols Recall that our approach requires that cryp-
tographic protocols be abstracted from a computational model to a symbolic model.
However, an arbitrary protocol in the UC setting may not have a natural or clear sym-
bolic form. In order to enable our approach, therefore, we concentrate on a restricted
class of UC protocols which we call simple protocols. Mirroring Micciancio and Warin-
schi [54], we require, for simplicity of exposition, that simple protocols use no crypto-
graphic primitives other than public-key encryption (with certified keys). In conjunction
with the treatment of joint state, described above, the use of public-key encryption is
modeled as interaction with the functionality FCPKE.

In addition, we require that simple protocols can be expressible as a sequence of com-
mands from a restricted set of operations. More precisely, we define simple protocols
as programs from a high-level “programming language” that regulates their form and
enumerates a specific set of “atomic” operations. While restricted, this format is rich
enough to express some “benchmark” protocols such as the Dwork–Dolev–Naor [27]
protocol and the Needham–Schroeder–Lowe (NSL) protocol [46,47,56].

From Symbolic Properties to UC Security We first formulate composable, concrete
notions of security for mutual authentication and key exchange. Within the UC frame-
work, this is done by way of formulating ideal functionalities which capture the appro-
priate security properties. For key exchange, we simply use the “ideal key-exchange”
functionality F2KE from [18]. Since there is no existing functionality for mutual authen-
tication in the literature, we formulate one here (called F2MA) in a straightforward way.

Our approach now requires us to find criteria for symbolic protocols that imply the
two specific notions of security captured by F2MA and F2KE. For mutual-authentication
protocols, we use the standard symbolic mutual authentication criterion from the
literature—except that we only need to apply this criterion to a single authentication
session. That is, we demonstrate that a concrete symbolic protocol realizes F2MA if and
only if the corresponding symbolic protocol satisfies the standard symbolic mutual au-
thentication criterion, applied to a single session. (This criterion is also reminiscent of
the one used in [54], except that there it is formulated in the more complex terms of
multiple sessions.)

For key-exchange protocols, the traditional symbolic definition turns out to be insuf-
ficient for our needs. In fact, we demonstrate that it provides an inadequate formulation
of security in general. (See further discussion of this point below.) We therefore define a
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new symbolic criterion for key-exchange protocols which is closer in spirit to the “real
or random” test that is prevalent in cryptographic notions of security. Nevertheless, this
criterion is formulated in a symbolic setting. We then show that this criterion (which is
reminiscent of the one used in [12,52]) suffices to guarantee that a protocol achieves our
composable security goals. (That is, it realizes F2KE.) Furthermore, as discussed below,
this criterion can be efficiently verified using the same tools as would be used to verify
the traditional symbolic criterion.

A central tool in these two proofs is a “mapping lemma” which provides a close
correspondence between executions of the abstracted protocol in the symbolic model
and executions of the original protocol in the concrete model. This lemma is similar to
the corresponding lemma by Micciancio and Warinschi [54], except that it is framed
within our model; in particular, it is formulated in terms of a single execution of a two-
party protocol.

Automated Analysis To demonstrate that our approach results in a feasible method
for protocol analysis, we used an automated tool to analyze a number of protocols.
Specifically, we used ProVerif [11–13] to analyze three closely related protocols: the
original Needham–Schroeder–Lowe protocol and two variants proposed in this work.
The original protocol is a mutual-authentication protocol, while the two variants provide
two natural ways to extend this protocol into a key-exchange protocol. As expected,
the tool verified that the original protocol satisfied our symbolic criteria for mutual
authentication. It was also able to correctly analyze the key-exchange variants: In one
case, the tool was able to find an attack and conclude that the protocol fails to realize
F2KE. In the other case, the tool verified that the protocol realizes F2KE.

Again, we emphasize that in our approach, the automatic analysis need only consider
a single instance of the protocol running in isolation. Therefore, our ProVerif analyses
were limited to this small system and executed quite quickly. For each of the above
cases, the tool (running on a 1 GHz G4 processor) finished within less than a second.

On the Insufficiency of Traditional Symbolic Secrecy of Key Exchange The main thrust
of this work is to improve the feasibility of security analysis, and so it suffices to show
(as we do) that composable security properties are implied by some symbolic criteria.
As an additional contribution, however, we also observe that the traditional symbolic
secrecy criterion for key exchange provides an inadequate level of security—regardless
of how easily it can be verified. Specifically, we present a protocol that satisfies the tra-
ditional criterion and an attack against that protocol in a generic computational setting.
Interestingly, the attack is completely “generic” in that it treats the underlying encryp-
tion in a “black-box” way. (In a nutshell, the issue is that the traditional criterion only
requires that no symbolic adversary be able to explicitly output the secret key in any ex-
ecution of the symbolic protocol [26]. This turns out to be too weak of a requirement.)

1.2. Related Work

Pfitzmann and Waidner [59] provide a general definition of integrity properties and
prove that such properties are preserved under protocol composition in their frame-
work. Our symbolic mutual authentication criterion can be cast as such an integrity
property. In addition, Backes, Pfitzmann, and Waidner [6], building on the idealized
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cryptographic library in [8], demonstrate that several known protocols satisfy a property
that is similar to our symbolic mutual authentication criterion. These results differ from
ours in two main respects. First, these results do not address the question of whether
a given concrete cryptographic protocol realizes an ideal functionality (e.g., the mu-
tual authentication functionality) within a cryptographic model (e.g., their framework).
More importantly, since the idealized library of [8] is formulated in an inherently mul-
tisession way, the analysis of protocols (as in, e.g., [6]) has to be directly applied to the
multisession system. Consequently, analysis based on the idealized library [8] is sus-
ceptible to the same complexity limitations which this work circumvents. Furthermore,
the formulation [8] does not seem to enable applying a joint-state composition theorem
along the lines of [22]. See more discussion on this point in [19].

Sprenger et al. [62] show how to semi-automate the proof process for a class of pro-
tocols that take the [8] approach, via human-assisted theorem proving. However, this
approach does not (in fact, it inherently cannot) lead to fully automated proofs.

Concurrently to the first public version of this work, Backes and Pfitzmann [7] pro-
pose an abstract secrecy criterion for key-exchange protocols that use their crypto-
graphic library and demonstrate that this criterion suffices for guaranteeing cryptograph-
ically sound secrecy. However, their criterion is still formulated within their full-fledged
cryptographic framework, rather than in a simplified symbolic model as done here. Fur-
thermore, it does not carry any secure composability guarantees.

Laud [43] investigates the concrete cryptographic properties guaranteed by certain
symbolic secrecy criteria for protocols using symmetric encryption. He also shows how
these symbolic criteria can be automatically verified. However, these criteria are differ-
ent from the ones discussed here. Specifically, following the traditional symbolic formu-
lation, it is only required that the adversary obtains no information about the key during
the course of the protocol, and “real-or-random secrecy” against active adversaries is
not considered. Consequently, these criteria do not guarantee secure key exchange, nor
are they preserved under composition.

Concurrently to this work, Cortier and Warinschi [25] formulate another symbolic
secrecy criterion for key-exchange protocols, demonstrate how to automatically ver-
ify this criterion, and show that this criterion implies a cryptographic secrecy criterion
against active adversaries. However, also in that work the symbolic criterion follows
the tradition of only requiring that the adversary obtains no information on the secret
key. Consequently, their cryptographic criterion falls short of guaranteeing secrecy in
a general protocol setting, as exhibited in [21]. In particular, their criterion admits the
above-mentioned insecure extension of the NSL protocol to key exchange.

In another concurrent work, Micciancio and Panjwani [52] study computationally
sound symbolic analysis of group key agreement protocols with adaptively changing
membership. Their symbolic secrecy criterion also has a “real-or-random” flavor, set in
a symbolic setting, much like the one here.

Blanchet [12] provides a symbolic criterion (cast in a variant of the spi-calculus [1])
that captures a secrecy property, called “strong secrecy”, that is similar to our symbolic
secrecy criterion for the exchanged key. Essentially, the criterion says that the view of
any adversarial environment remains unchanged (modulo renaming of variables) when
the symbol representing the secret key is replaced by a fresh symbol that is unrelated
to the protocol execution. As opposed to our criterion, however, Blanchet’s directly
considers multisession systems.
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Recently, Blanchet has developed a new automated tool called CryptoVerif [14]
which directly analyzes computational security of concrete protocols. An interesting
direction for future research is to apply this tool to assert composable security proper-
ties.

Herzog, Liskov, and Micali [41] provide an alternative cryptographic realization of
the Dolev–Yao abstraction of public-key encryption. Their realization makes stronger
cryptographic requirements from encryption scheme in use (namely, they require “plain-
text aware encryption”) and assumes a model where both the sender and the receiver
have public keys. Herzog relaxes this requirement to standard CCA-2 security [40],
but that work (lacking any composition theorems) still considers the multisession case.
Furthermore, it only connects executions of protocols in the concrete setting to execu-
tions of protocols in the symbolic setting. It does not investigate whether security in the
symbolic setting implies or is implied by security in the concrete setting.

Patil [57] extends the present work to handle also mutual authentication and key-
exchange protocols that use digital signatures in addition to public-key encryption.

Organization We begin with an informal overview of our approach and results
(Sect. 2). Next, we define our version of the Dolev–Yao model for symbolic encryp-
tion (Sect. 3). We then present the class of simple protocols and the certified public-key
encryption functionality, FCPKE (Sect. 4). Next, we present the mapping from executions
of simple protocols in the UC framework to executions in the symbolic model (Sect. 5).
Mutual authentication and key exchange are presented in Sects. 6 and 7, respectively.
Appendix A provides an overview of the UC framework. Appendix B sketches a stan-
dard method for realizing multiple instances of FCPKE via a single instance of a fully
specified cryptographic protocol.

2. Overview

This section presents an overview of the rest of this work. Section 2.1 contains a brief
review of the UC framework and the traditional symbolic (“Dolev–Yao”) model which
we will be using. Section 2.2 sketches and motivates the notion of simple protocols. Sec-
tion 2.3 informally presents the mapping lemma, which is our main tool for relating runs
of a concrete (simple) protocol to runs of its “symbolic counterpart.” Finally, Sects. 2.4
and 2.5 sketch our treatment of mutual authentication and key exchange, respectively.

2.1. Background

The Universal Composition Framework The universal composition (UC) framework
provides a general way for specifying the security requirements of cryptographic tasks
and asserting whether a given protocol realizes the specification. A salient property
of this framework is that it provides strong composability guarantees: a protocol that
realizes the specification in isolation continues to realize the specification regardless of
the activity in the rest of the network. That is, the composition of the protocol with the
other network activity will not lead to “unexpected side-effects.” We give here a very
high level sketch of the framework. A more detailed description appears in Appendix A.

Defining what it means for a protocol p to “securely realize” a certain task is done
in three steps, as follows. First, we formulate a model for executing the protocol. This
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model consists of the parties running the protocol, plus two adversarial entities: the
environment Z, which generates the inputs for the parties and reads their outputs, and the
adversary A, which reads the outgoing messages generated by the parties and delivers
incoming messages to the parties. The adversary and the environment can interact freely
during the protocol execution.

Next, we formulate an “ideal process” for carrying out the task at hand in a “perfectly
secure way.” In the ideal process the protocol participants simply pass their inputs to an
imaginary “trusted party,” who locally computes the desired outputs and hands them
back to the parties. The program run by the trusted party is called an ideal functionality
and is intended to capture the security and correctness specifications of the task. For
convenience, the ideal process with ideal functionality F is formulated as the process of
running a special protocol IF called the ideal protocol for F. In protocol IF the parties
simply pass all inputs to the trusted party and output whatever information they obtain
from the trusted party. Similarly, the adversary does not interact with the parties; instead,
it interacts directly with F in a way specified by F. The communication between the
adversary and the environment remains arbitrary.

Finally, we say that protocol p UC-emulates protocol f if for any polytime adversary
A, there exists a polytime adversary S (called a simulator) such that no polytime en-
vironment Z can tell with nonnegligible probability whether it is interacting with an
execution of p and adversary A, or alternatively with protocol f and adversary S. We say
that p UC-realizes an ideal functionality F if it UC-emulates the ideal protocol IF. This
in particular means that the I/O behavior of the good parties in the protocol execution
is essentially the same as that of the ideal functionality; in addition, the information
that Z learns from A can be generated (or, “simulated”) by S, who is given only the
information that it can learn legally from interacting with F.

The following basic property holds in this framework.

Theorem (Universal Composition, Informal). Let p be a protocol that UC-
emulates protocol f, and let r be a protocol that has access to (multiple
instances of ) f. Let rp/f be the “composed protocol” which is identical to r
except that inputs to f are replaced by inputs to p, and outputs from p are
treated as outputs from f. Then, protocol rp/f behaves in an indistinguishable
way from the original r.

In particular, if r UC-realizes some ideal functionality G, then so does rp/f.
We sketch a number of additional aspects of the UC framework that our work uses.

First, it turns out that the definition sketched above can be somewhat simplified as fol-
lows. Let the dummy adversary denote the adversary that merely serves as a “channel”
for the environment; that is, it delivers to parties messages provided by the environment
and forwards to the environment all messages sent by the parties. Then, it suffices to
restrict attention to the case where the adversary interacting with the protocol is the
dummy adversary. That is, say that protocol p UC-realizes an ideal functionality F with
respect to dummy adversaries if there exists an adversary S such that no environment
can tell with non-negligible probability whether it is interacting with an execution of p
and the dummy adversary, or alternatively with the ideal process for F and adversary S.
Then we have that p UC-realizes F if and only if p UC-realizes F with respect to dummy
adversaries.
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Another aspect of the UC framework used by our work is the following. To facilitate
distinguishing among different protocol instances in a multi-instance system, the frame-
work makes sure that each protocol instance in a system is associated with an identifier,
called the session ID (SID), that is unique to that protocol instance and is known to all
participants in that instance. In general, the SID of an instance is determined by the ex-
ternal system; typically, it will be chosen by the program instance that “initializes” the
said protocol instance by invoking the first participant in the said instance. See more
details in Appendix A.

Finally, we sketch an additional composition theorem that is necessary for our treat-
ment, namely universal composition with joint state (JUC) [22]. As mentioned in the
Introduction, the UC theorem only applies to protocols rp where the honest parties
maintain completely disjoint local states for the different instances of p. In contrast, the
JUC theorem applies in cases where the different instances of p have some joint state.
Specifically, let p̂ be a protocol that, in one instance, UC-realizes multiple instances of a
simpler protocol f. (Formally, let̂f be the protocol that exhibits, in a single instance, the
behavior of multiple instances of f. Then p̂ is a protocol that UC-emulateŝf.) Let r be an
arbitrary protocol that uses multiple instances of f, and let r[̂p/f] be the composed proto-
col where each party runs a single instance of r plus a single instance of p̂, and where
all the inputs provided by r to all the instances of f are forwarded to the single instance
of p̂. Similarly, the outputs of the single instance of p̂ are given to r as coming from the
various instances of f. Then, the JUC theorem states that protocol r[̂p/f] UC-emulates the
original r.

The Symbolic Model The symbolic model (often dubbed the “Dolev–Yao” model) is
an abstract model for representing and analyzing protocols that use cryptographic prim-
itives. In this model, messages are represented as compound elements in some symbolic
algebra. That is, each compound element represents a “parse tree,” or a sequence of op-
erations needed to obtain the composite symbol from basic symbols. For instance, the
element Enc(M;K) does not represent a distribution on strings; rather, it is a compound
element that results from applying the formal encryption operation to the elements M

and K . While the full-fledged Dolev–Yao model includes a variety of primitives such
as symmetric encryption and signatures, we focus on a submodel which includes only
asymmetric encryption.

The basic element of the model is a symbolic algebra A that represents messages
of a protocol. The atomic elements of the algebra are used to represent primitive struc-
tures such as party identifiers, public encryption keys, random challenges (“nonces”), and
secret keys. (The party identifiers and public keys can be either honest or corrupted.)
The two operations of the algebra represent abstracted pairing (or concatenation) and
encryption. Thus, the compound elements of the algebra (i.e., those messages produced
by the operations) represent those messages that pair or encrypt primitive messages (or
other, simpler, compound messages). The algebra is free: each message has exactly one
representation. Put another way, the algebra admits no equalities other than identity, and
a composite element can be associated with a unique “parse-tree.”

Protocols are defined via a state transition table. When a participant receives a mes-
sage or input, it transitions to a new state and either generates output or sends an out-
going message, as specified in the transition table. Here, messages are elements from
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the algebra; inputs and outputs are either elements from the algebra or special symbols
signaling the beginning and end of an execution.

The symbolic adversary is defined in two parts: its initial knowledge (a set of sym-
bolic messages), and the adversary operations it can use to deduce new messages from
the initial messages and the messages generated by parties running the protocol. The
adversary operations are extremely limited. Specifically, the adversary can concatenate
messages, deconcatenate elements of a message, encrypt a message with a given public
key, or decrypt a given symbolic ciphertext if the corresponding public key is corrupted.
We remark that this list of adversary operations implicitly postulates “ideal” encryption:
the adversary cannot perform any operations to ciphertexts other than the symbolic ones.

A protocol execution in this model consists of a sequence of events where each event
is one of:

• The adversary initializing a participant,
• The adversary delivering a message to a participant,
• A participant sending or outputting a message, or
• The adversary computing some new message from messages it has already com-

puted or intercepted.

A symbolic trace is sequence of these events, and a trace is valid for a protocol if it could
have resulted from an execution of that protocol. That is, a trace is valid for a protocol
if the messages delivered by the adversary to the participants are consistent with the
adversary’s computations, and the messages sent by participants are consistent with the
messages received and the protocol in question.

In the symbolic model security properties are traditionally formalized as predicates
on sets of traces: A protocol satisfies such a security property if the predicate is satisfied
by all of that protocol’s valid traces.

2.2. Simple Protocols

Both the Dolev–Yao model and the UC framework allow protocols much flexibility,
though in different ways. The Dolev–Yao model strictly regulates the forms of legal
messages, restricting messages to the algebra A. However, protocols can consist of any
sequence of messages, including sequences that cannot be efficiently computed. (For
example, a symbolic protocol might have a participant receive a ciphertext encrypted
with another participant’s key but then reply with the plaintext.) The UC framework, on
the other hand, requires only that participants run efficiently. So long as it obeys this
one restriction, the protocol can consist of any sequence of bit-strings (or distribution
on bit-strings). To find a common denominator between these two models, we restrict
our attention to a particular set of protocols which are valid for both settings.

This set of protocols, called simple protocols, are defined to be programs written in
a specific programming language. This language enforces that each operation of the
program is efficiently computable, but also limits the program to commands that reflect
the structure of the Dolev–Yao model. Specifically, the language allows basic operations
such as nonce generation, concatenation and separation, encryption, decryption, testing
equality, and sending messages. (This set of operations is standard; in particular it is
essentially the same as in [54].)
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The programming language of simple protocols is presented in an abstract way that is
not specific to either the UC model or the Dolev–Yao model. We then provide two differ-
ent sets of semantic interpretations of the language: one interpretation is formulated in
terms of interactive Turing machines in the UC framework, and the other interpretation
as a symbolic protocol in the Dolev–Yao model. This gives a natural mapping from the
UC interpretation of a simple protocol to the corresponding Dolev–Yao interpretation,
and vice versa.

In the UC interpretation of a simple protocol, the encryption and decryption opera-
tions are translated to calls to the certified public-key encryption functionality, FCPKE.
(This functionality captures, in an idealized way, the properties of public-key encryp-
tion in the case where parties know the public keys of each other in advance.) In the
Dolev–Yao interpretation of a simple protocol, encryption and decryption are translated
to creating new elements of the algebra using the appropriate symbolic operations. The
UC and Dolev–Yao interpretations of other instructions in a simple protocol are defined
in a similar way.

We demonstrate the expressive power of simple-protocol programming language by
casting several known protocols in that language. One protocol is the Dolev–Dwork–
Naor authentication protocol, which was originally presented in concrete cryptographic
terms [27]. The other protocol is the Needham–Schroeder–Lowe (NSL) protocol, which
is traditionally presented in symbolic form [46,47,56]. This protocol is typically used
for mutual authentication, but we extend it to be also a key-exchange protocol, and
do so in two different ways. More specifically, we leave the messages of the protocol
untouched but identify two different values which the participants might locally output
as a key. While these two extensions look similar at first, they turn out to have very
different security properties. See more details in Sect. 7.

From Simple Protocols to Fully Specified Protocols Even the UC interpretation of
simple protocols are by themselves somewhat abstract, in that they use FCPKE rather
than some fully specified public-key encryption. This abstraction is justified as follows.
First, we show how FCPKE can be realized using functionality FPKE (which represents
the basic properties of public-key encryption schemes) and functionality FREG (which
represents some basic properties of a certification service). Next we recall that FPKE

can be realized given any public-key encryption scheme which is secure against chosen
ciphertext attacks [18].

These facts, combined with the UC theorem, provide a way to instantiate simple
protocols, while preserving security: Replace each instance of FCPKE by an instance of
a CCA-secure encryption scheme and use the certification authority to publicize the
public keys. However, this results in highly inefficient protocols, where each instance
of the instantiated simple protocol uses its own instance of the public-key encryption
scheme. Instead, we would like to obtain a protocol where each party uses a single
instance of the public-key encryption scheme for multiple instances of the instantiated
simple protocol.

One way to do that would be to consider the entire multisession interaction as a single
instance of a more complex protocol. That protocol can now use a single instance of
FCPKE per party. But this approach would force us to directly analyze the more complex
multisession protocols as a single unit. Instead we would like to be able to specify and
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analyze simple protocols in terms of a single instance (e.g., a single exchange of a key
in the case of key exchange), while making sure that the instantiated protocol uses only
a single instance of FCPKE per party. This can be obtained using the UC with joint state
theorem, along with an additional simple technique from [22]. We sketch this technique.

First, we observe that the following protocol realizes multiple instances of FCPKE

which has the same decryptor, using only a single instance of FCPKE: Whenever some
party asks to encrypt a message m for an instance of FCPKE with session identifier sid, the
protocol encrypts the pair (m, sid). Whenever some party asks to decrypt a ciphertext
c for an instance sid, the protocol decrypts c, verifies that the decrypted value is of
the form (m, sid) for some m, and returns m; else an error value is returned. Denote
this protocol by ES, for “Encrypt the Session ID.” (This protocol and its analysis are
analogous to the [22] protocol for realizing multiple instances of an ideal signature
functionality using a single instance.)

Now, consider some protocol P that involves multiple instances of a simple proto-
col p. (Protocol P may simply describe an adversarially controlled invocation of multi-
ple instances of p, or alternatively P may be geared towards realizing some other ideal
functionality, potentially calling other protocols as subroutines.) In P, each party uses
a different instance of FCPKE per instance of p. We can now use the JUC theorem to

assert that the protocol P[ES] behaves in the same way as P. Furthermore, in P[ES], each
party uses a single instance of FCPKE throughout the interaction. See more details in
Appendix B.

2.3. The Mapping Lemma

A central tool in our analysis is a mapping lemma that establishes a correspondence
between executions of concrete simple protocols and executions of the corresponding
symbolic protocols. (This lemma can be regarded as a restatement in our framework of
the corresponding lemma in [54].) We proceed as follows. First, we define the trace of
an execution of a simple protocol in the presence of an environment and an adversary
within the UC framework. The trace provides a global view of the execution, including
the views of the environment and the participants. It consists of a sequence of input,
outputs, messages, and local variables (represented in bit-strings). It also contains the
participants’ calls to FCPKE, thus capturing their internal cryptographic operations. Sim-
ilarly, we define the trace of an execution of a symbolic protocol within the symbolic
model. Again, the trace represents a global view of the (now symbolic) execution. Here,
the trace consists of a sequence of expressions from the underlying symbolic algebra.
However, in contrast with concrete traces, the internal cryptographic operations of par-
ticipants are not represented.

Next, we define a trace mapping, also denoted t , which translates a trace of a concrete
simple protocol into a symbolic trace. This mapping is straightforward except that the
calls to FCPKE in the concrete trace do not map to events in the symbolic trace but are
instead used as intermediate values in the mapping.

Finally, we show that this mapping provides soundness to trace properties in the sym-
bolic protocol. That is, t almost always translates a trace of a concrete simple protocol
to a trace of the corresponding symbolic protocol that is valid (meaning: one that could
have been produced by the symbolic adversary and symbolic protocol):
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Mapping Lemma (Informal). Let p be a simple protocol, and let Env be
an environment (all in the UC framework). Let t denote the trace of the
execution of p with Z and the dummy adversary, and let t denote the derived
symbolic trace. Let p be the symbolic protocol derived from p. Then t is a
valid trace of p, except with negligible probability (over the random choices
in t).

In other words, the adversary in the UC setting can do nothing the symbolic adversary
cannot also do (except with negligible probability).

We note that the statement of the mapping lemma is unconditional. Furthermore, it
applies even to computationally unbounded environments and adversaries. In fact, the
only source of error in the mapping is in cases where the environment in the concrete
model “guesses” the value of some nonce. Since nonces are chosen at random from a
large enough domain, the probability of error is negligible (in fact, it is exponentially
small in the length of the nonces).

2.4. Mutual Authentication

Having established a general correspondence between concrete traces in the UC frame-
work and the symbolic traces of the Dolev–Yao model, we turn to specific security
goals for protocols. Similar to [54] and [6], we demonstrate that the standard symbolic
mutual authentication criterion is equivalent to the standard concrete criterion. The sym-
bolic criterion essentially states that if a party P successfully completes a session with
the specified peer P ′, then P ′ has started a session with the specified peer P .

The concrete (UC) criterion is formalized via an ideal functionality F2MA which guar-
antees the same property: F2MA waits to receive two session initiation inputs. If the iden-
tities in these inputs match (i.e., one input is by party P with specified peer P ′, and the
other is by party P ′ with specified peer P ), then, upon request of the adversary, F2MA

generates a successful completion output to either P or P ′. It is stressed that both the
symbolic and the concrete criteria are formulated with respect to a single session of the
authentication protocol. We then show:

Theorem (Informal). Let p be a simple concrete protocol. Then p UC-
realizes F2MA if and only if the symbolic protocol p satisfies the symbolic
mutual authentication criterion.

The proof is rather straightforward, given the mapping lemma. On the one hand, it
is easy to turn any symbolic trace of p that violates the symbolic mutual authentication
criterion into a strategy for a concrete environment for distinguishing between an exe-
cution of p and the ideal process for F2MA. On the other hand, given a simple protocol p,
we construct a general strategy for a simulator (i.e., an ideal-process adversary) within
the UC framework, such that any environment that distinguishes between real and ideal
executions can be turned into a symbolic trace of p that violates the symbolic mutual
authentication criterion. It is in this last part that the mapping lemma is used in a central
way.

2.5. Key Exchange

The basic security properties for key exchange are agreement and secrecy for the output
key. The agreement property states that if two parties P and P ′ obtain keys and associate
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these keys with each other, then the two keys are equal. The secrecy requirement states
that in this case the joint key should be “unknown” to the adversary. (Note that these
requirements neither imply nor are implied by mutual authentication.)

The UC criterion combines agreement and secrecy into a single ideal functionality,
F2KE. This functionality waits to receive requests from two parties to exchange a key
with each other and then hands a secretly chosen random key to the parties. (Each party
gets the output key only when the adversary instructs.)

The traditional symbolic criterion separately requires agreement and key secrecy. The
agreement criterion is straightforward. The secrecy criterion turns out to be less so. The
traditional requirement is that the symbolic adversary be unable to generate the secret
key, namely that the symbol that corresponds to the secret key is not in the closure of the
messages seen by the adversary. This requirement is different in flavor than standard de-
finitional approach in cryptographic security, where it is typically required that a secret
value be indistinguishable from a random key. It is tempting at first to believe that, since
in the symbolic model the security guarantees are “all or nothing” in flavor, the ability
to symbolically generate a secret and the ability to distinguish it from random should be
equivalent. However, it turns out that this is not the case: we show that the traditional
symbolic criterion is insufficient for guaranteeing security of concrete key-exchange
protocols, under any reasonable definition, even if all the cryptography is “perfect.” Our
proof is by counterexample: We show that one of the two Needham–Schroeder–Lowe
mentioned earlier satisfies the traditional symbolic definition of secrecy but not a com-
putational one. Thus, the traditional symbolic notion of key secrecy cannot imply the
UC notion of security for key-exchange protocols. The key insight of the example is that
while the protocol never explicitly leaks the key, it give the adversary an opportunity to
verify candidate values for the key.

We formulate a new symbolic secrecy criterion for the shared key. Unlike the tra-
ditional symbolic criterion, our new definition is not expressed as a predicate on valid
traces. Instead, it translates the real-or-random secrecy criterion from cryptographic de-
finitions of secrecy into the symbolic model. To that end, we formalize two things: the
notion of a symbolic adversary strategy, and the observable portion of a trace (using
public-key patterns due originally to Abadi and Rogaway [4]). Our new symbolic def-
inition of secure key exchange requires that, for all adversary strategies, when a given
strategy is applied to the protocol, the observable portion of the resulting trace looks the
same when the protocol outputs the shared key as when it outputs a fresh key symbol
(representing a fresh random key). The reader is referred to the Introduction for a review
of other recent and concurrent works that formulate symbolic secrecy in similar ways.

Having defined this new notion of key-exchange security for the symbolic model, we
demonstrate that it is equivalent to the UC criterion. That is, we show:

Theorem (Informal). Let p be a simple concrete protocol. Then p UC-
realizes F2KE if and only if the symbolic protocol p satisfies the symbolic
key-exchange criterion.

As was the case with mutual authentication, this equivalence holds unconditionally.
The proof proceeds with the same logical structure as before. First, we show how to

turn any symbolic trace of p that violates the symbolic key-exchange criterion into a
strategy of a concrete environment for distinguishing between an execution of p and the



98 R. Canetti and J. Herzog

ideal process for F2KE. Next, given a simple protocol p, we construct a general strategy
for a simulator (i.e., an ideal-process adversary) within the UC framework, such that
any environment that distinguishes between real and ideal executions can be turned into
a symbolic trace of p that violates the symbolic key-exchange criterion. Here, however,
the proof is more delicate. In particular, demonstrating the second property with respect
to the symbolic secrecy criterion requires some work.

3. The Dolev–Yao Model for Symbolic Encryption

There are several variations on Dolev and Yao’s original symbolic model [26], each of
which is tailored to a specific tool or application. In this section, we formulate a variant
which is appropriate for our needs. This variant is very close to Paulson’s formalism [58]
but with the following changes:

• We consider only public-key encryption (ignoring symmetric encryption, signa-
tures, and so on),

• We add a few new messages (for garbage terms, errors, and starting/finishing a
protocol),

• We partition the set of nonces among the participants and the adversary,
• We add the notion of a local output, and
• We make explicit the internal states of protocol participants.

3.1. The Message Algebra

We begin by defining the algebra of possible messages.

Definition 1 (The Message Algebra). The messages of our model are elements of an
algebra A. There are enumerably many atomic messages, divided into the following
types:

• Identifiers (M), which are denoted by P1,P2, . . . .

• Random-string (Nonce) symbols (R), which are denoted by R1,R2, . . . . The set
of nonces is partitioned among the participants: participant Pi is given the set

RPi
⊆ R. (The adversary, introduced in Sect. 3.3, will also be given its own set

of nonces RAdv.)
• Public keys (KPub), denoted K1, K2, . . . .

• Garbage terms, written G, G1, G2 . . . .

Compound messages are created by two operations:

• encrypt : KPub × A → A.
• pair : A × A → A.

Mirroring the standard notation of the symbolic model, write Enc(m;K) for
encrypt(K,m) and m1|m2 for pair(m1,m2).1

1 When three or more terms are written together, such as m1|m2|m3, we assume they are grouped to the
left. That is, m1|m2|m3 = pair(pair(m1,m2),m3).
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The algebra is free: Every compound message has a unique representation. In other
words, each compound message can be equated with the “parse tree” which describes
the unique way in which the message was constructed.

Identifiers are used to model the names of protocol participants. Each identifier-
symbol is assumed to name a unique entity. (That is, no name is shared by multiple
entities, and no entity has multiple names.)

Random-string symbols are used to represent just that: freshly generated random bit-
strings. It is assumed that no two random strings are the same. These symbols have two
purposes: First, they can be used as “nonces” to ensure freshness of messages and re-
sponses. Second, they can also be used as symmetric keys (i.e., output by key-exchange
protocols).

We assume the existence of a function keyof : M → KPub which maps each identifier
to one public key. This function is assumed to be injective but not surjective: a key
cannot be associated with more than one identifier, but there is no requirement that every
key be associated with a name. This function is used to model a PKI infrastructure, and
so every principal is assumed to be able to compute this function.

3.2. Symbolic Protocols

A symbolic protocol P consists of a set L P of roles, each of which describes a program
for a protocol participant. That is, a role describes how a participant should react to an
input or an incoming message. The reaction might involve some state transition and in
addition one out of the following three possibilities:2

1. It might generate a new message M to another participant.
2. It might generate a local output.
3. It might do neither.

We represent the third case (no observable reaction) by the symbol ⊥. We represent the
first case (sending a message) by 〈message,M〉. To represent the second case, we need to
define the set of local outputs. In addition to messages from the algebra A, local outputs
can contain either of two special signals for starting and ending the protocol. However,
such outputs can only contain one such signal, and we assume (for simplicity) that such
signals are also accompanied by a message from the algebra:

Definition 2 (Outputs). Let the set of outputs O be

O = A ∪ ({Starting,Finished} × A
)

.

To distinguish local outputs from outgoing messages, we represent the former as
〈output,O〉 for some O ∈ O.

Although each role defines its own transition table, it will be convenient to combine
the transition-tables of the individual roles into a single transition-table for the protocol
as a whole:

2 In keeping with the UC framework, we allow only one outgoing message or only one input per activation.
The sub-partitioning of a protocol into roles is not explicitly defined within the UC framework, but it can be
easily implemented. We use it here for convenience of use (see the examples in Sect. 4.4).
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Definition 3. A symbolic protocol P is a set of roles L P , a set of states S and a
mapping fP from the set of states S , the set L P of roles, an incoming message (either
from the algebra A or an empty message ε), and the set M of identities, to a new state
and one of:

• ⊥, indicating no visible reaction,
• 〈message,M〉 for some M ∈ A, indicating a message-transmission, or
• 〈output,O〉 for some O ∈ O, indicating a local output.

That is,

fP : S × L P × ({ε} ∪ A
) × M → ({⊥} ∪ ({message} × A

) ∪ ({output} × O
)) × S.

For convenience, we will write (〈message,M〉, S) as (message,M,S) and
(〈output,O〉, S) as (output,O,S).

Remarks. The definition above does not explicitly determine an initial state or a termi-
nating state. Termination can be represented as a state which transitions only to itself
and outputs only ⊥. We delay discussion of initial states until the definition of protocol-
execution in Sect. 3.3.

Also, note that the formalism does not strictly require that the transition mapping
above be written in terms of the participants’ states. It could have been written without
them, by mapping directly from the sequence of past inputs and incoming messages
to the next message or local output. In fact, most versions of the symbolic model take
this approach and define protocols only in terms of observable behaviors such as the
transmissions and receptions of messages. (See, for example, [63].) However, we in-
clude state as an explicit parameter as it will be useful for relating symbolic protocols
to concrete protocols.

Lastly, the definition above does not require that symbolic protocols be efficiently
executable. For example, it is perfectly valid to define a protocol in which a participant
can receive the encryption of any message under any public key and output the plain-
text as its next action. This generality is characteristic of symbolic approaches. (See, for
example, [58] and [63] again.) Although these approaches are often applied only to ef-
ficient protocols, efficient execution is not often required by their proof-techniques and
is thus not required by their definitions.3 In this work, however, we wish to only con-
sider protocols that have an efficient implementation in the UC framework, and so we
limit our attention to symbolic protocols that are derived from some concrete, efficiently
implementable protocol (see Sect. 4).

3.3. The Symbolic Adversary and Symbolic Executions

We start with an informal discussion. An execution of a protocol in the Dolev–Yao
model starts by assigning a role and an initial state to each participant involved. Then,
each participant reacts to incoming messages and inputs according to its current state
and the transition function of the protocol. As in the UC model, the participants can

3 A very notable exception to this rule is the spi-calculus approach [2] which does enforce efficient execu-
tion.
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generate outputs and receive inputs. Also like the UC model, the participants cannot
communicate directly with each other but must send messages to (and receive messages
from) the adversary only.

As in the UC model, the adversary does not need to follow the protocol and can send
to participants any message that it can compute. However, as opposed to the UC model,
the symbolic adversary has only limited power to create new messages. In particular,
every message transmitted by the adversary must be derived from the adversary’s initial
knowledge and the messages previously received from honest participants. The initial
knowledge of the adversary includes:

1. All the public keys (KPub).
2. The identifiers of all the principals (M).
3. The random-string symbols which the adversary itself generates, namely RAdv ⊆

R. Because the set of nonces is partitioned among the participants and the ad-
versary, the set RAdv will not overlap with the set RPi

for any honest participant
Pi . (The fact that the adversary cannot generate the random-string symbols as-
signed to uncorrupted parties represents the fact that in a concrete protocol the
adversary’s probability of guessing random strings generated by an honest party
is negligible.)

4. The decryption keys corresponding to public encryption keys in KAdv. This in-
cludes the public keys for all the parties in M except for the legitimate (and hon-
est) participants in the protocol.

To derive new messages, the adversary has access only to a small number of rewrite
rules:

• decryption of messages with known private keys,
• encryption with public keys,
• pairing of two known elements, and
• separation of a pair into its components.

The trace of a Dolev–Yao execution represents the sequence of adversarial activities
in an execution, where each activity is one of the activities mentioned above. More
precisely, the trace of a Dolev–Yao execution consists of events of four kinds:

1. Initial-input events of the form [“input”, P,o,P′, S] in which participant P ∈ M is
initialized with role o ∈ L, the identity P′ ∈ M of the peer with which to interact,
and initial state S ∈ S .

2. Input event of the form [“input”, Pi ,mi ] in which participant P ∈ M receives input
mi from the environment,

3. Participant events of the form [Pi ,Li ,mi], where participant Pi ∈ M either sends
mi ∈ O to the adversary or outputs it as a local output, depending on the value of
Li ∈ {output,message}.

4. Adversary events (given in the definition below) which represent the atomic (sym-
bolic) computations of the adversary.

The above intuitive discussion is formalized in two steps. First, we define the syntac-
tic structure of a trace, disregarding the question of consistency with a specific protocol.
Next, we define what it means for a trace to be consistent with a given symbolic proto-
col.



102 R. Canetti and J. Herzog

Definition 4 (Dolev–Yao Traces). A Dolev–Yao trace is a sequence of events

H0 H1 H2 H3 . . . Hn−2 Hn−1 Hn

where Hi is an event of one of the following forms. (Below, mi is an element of the
algebra A, Pi and P′ are participant names in M, Li is either output or message, and i

and j are natural numbers.)

• An initial-input event of the form [“initialize”,Pi ,o,P′, S] which initializes partic-
ipant Pi with role o, initial state S, and with party P′,

• An input event of the form [“input”,Pi ,mi],
• A participant event of the form [Pi ,Li ,mi], or
• An adversary event of one of the following forms (where j , k < i):

– [“enc”, j, k,mi] (representing the encryption of mj with the public key of mk),
– [“dec”, j, k,mi] (representing the decryption of mj with the private key of mk),
– [“pair”, j, k,mi] (representing the pairing of mj with message mk),
– [“extract-l”, j,mi] (representing the extraction of messages mj ’s first compo-

nent),
– [“extract-r”, j,mi] (representing extraction of mj ’s second component),
– [“random”,R] for some R ∈ R (representing the generation of a new random

nonce),
– [“name”,P] for some P ∈ M (representing introduction of some participant’s

name),
– [“pubkey”,K] for some K ∈ KPub (representing the introduction of an encryp-

tion key), or
– [“privkey”,K] for some K ∈ KAdv (representing the introduction of an encryp-

tion key), or
– [“deliver”, j,Pi] (representing the delivery of message mj to participant Pi ).

To be a valid trace for a protocol, a trace must be consistent with the protocol and
the limits on the adversary: the adversary-events must represent valid adversary actions,
and each participant-event must be consistent with the protocol’s transition-relation.

Definition 5 (Valid Dolev–Yao Traces). A Dolev–Yao trace

H0 H1 H2 H3 . . . Hn−2 Hn−1 Hn

is valid for protocol P if for each Hi :

• If Hi = [“enc”, j, k,mi], then j, k < i, mk ∈ KPub, and mi = Enc
(

mj ;mk

)

,
• If Hi = [“dec”, j, k,mi], then j, k < i, mk ∈ KAdv, mj = Enc(mi;mk),
• If Hi = [“pair”, j, k,mi], then j, k < i and mi = mj |mk ,
• If Hi = [“extract-l”, j,mi], then j < i and mj = mi |mk for some mk ∈ A,
• If Hi = [“extract-r”, j,mi], then j < i and mj = mk|mi for some mk ∈ A,
• If Hi = [“initialize”,Pi ,o,P′, S], then no previous event of the form [“initialize”,

Pi ,o,P′′, S′] has occurred in the trace (for any participant P′′ or state S′),
• If Hi = (Pi ,Li ,mi ), then
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1. The event [“initialize”, Pi ,o,P′, S] appears previously in the trace (for some
o, P′, and S),

2. The previous event in the trace is an adversary trace of the form [“deliver”,
k,Pi ] (in which case, let m = mk) or [“input”,Pi ,m],

3. Si is the current state of Pi ,
4. P (Si,o,m,Pi) = (Li ,mi , S

′
i ) for some Li ∈ {output,message} and S′

i ∈ S ,
and

5. S′
i becomes the new state of Pi .

4. Simple Protocols

Following [54], we define a class of protocols, called simple protocols, which use only
operations from a small set. In particular, we provide three things: a domain-specific
programming language for expressing simple protocols, a semantics for this language in
the UC framework, and a mapping from such protocols to their Dolev–Yao counterparts.
Said otherwise, we provide two alternative semantic interpretations of a program written
in the devised language: A concrete interpretation in the UC framework, and a symbolic
interpretation in the Dolev–Yao model.

The programming language for simple protocols is extremely limited, providing only
a small number of commands: randomness generation; encryption and decryption; join-
ing and separation; sending, receiving, and outputting of messages; and equality testing.
Despite having relatively few operations, however, this language can represent a num-
ber of prevalent mutual-authentication and key-exchange protocols from the literature.
We provide examples at the end of this section.

The rest of this section is organized as follows. In Sect. 4.1, we start by defining the
certified public-key encryption functionality, which will be necessary for expressing the
UC semantics. In Sect. 4.2, we define both the actual syntax of simple protocols and
their semantics. Section 4.3 describes the mapping from concrete simple protocol to
symbolic ones. In Sect. 4.4, we conclude by presenting two specific simple protocols:
the Dolev–Dwork–Naor protocol and the Needham–Schroeder–Lowe protocol. (It is
in Sect. 4.4.2 that we present the two forms of the Needham–Schroeder–Lower key-
exchange protocol that we will use as examples later in the paper.)

4.1. The Certified Public-Key Encryption Functionality

First, we present the certified public-key encryption ideal functionality, FCPKE. This
functionality can be viewed as providing a “bridge” between the cryptographic notion
of CCA-security and the Dolev–Yao abstraction of public-key encryption.

Functionality FCPKE is presented in Fig. 1. The formalization here is based on past
formalizations of the public-key encryption functionality, FPKE, the closest being the one
in [18]. Still, the formulation here differs from previous ones in a number of respects,
outlined below. (We assume familiarity with the formulation of [18] and the motivating
discussions for the approach that appear there. Here, we merely highlight and motivate
the main differences between the formulations.)

FCPKE is intended to represent an instance of a public-key encryption scheme together
with a “key registration service” which provides ideal binding between the public-key
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Functionality FCPKE

FCPKE proceeds as follows, when parameterized by message domain M , a “formal encryp-
tion” algorithm E with domain M and range {0,1}∗, and a “formal decryption” algorithm
D of domain {0,1}∗ and range M ∪ error. The SID is assumed to consist of a pair
SID = (PIDowner,SID′), where PIDowner is the identity of a special party, called the owner
of this instance.

Encryption: Upon receiving a value (Encrypt,SID,m) from a party P, where SID =
(PIDowner,SID′), proceed as follows:

1. If this is the first encryption request made by P, then notify the adversary that P made
an encryption request.

2. If m /∈ M , then return an error message to P.
3. If m ∈ M , then:

• If PIDowner is corrupted, then let c ← Ek(m) (here k is the security parameter).
• Otherwise, let c ← Ek(1

|m|).
Record the pair (m, c), and return c.

Decryption: Upon receiving a value (Decrypt,SID, c), with SID = (PIDowner,SID′), from
PIDowner, proceed as follows. (If the input is received from another party then do nothing.)

1. If this is the first decryption request made, then notify the adversary that a decryption
request was made.

2. If there is a recorded pair (c,m) for some m, then hand m to PIDowner. (If there
is more than one value m that corresponds to c then output an error message to
PIDowner.)

3. Otherwise, compute m = D(c), and hand m to PIDowner.

Fig. 1. The certified public-key encryption functionality, FCPKE.

and the identity of the owner of the corresponding decryption key. In FCPKE, therefore,
there is no explicit key generation. Instead, the session identifier (SID) of FCPKE contains
the identity of the legitimate receiver of encrypted messages. That is, if an instance of
FCPKE has session identifier SID, then SID is of the form 〈PIDowner,SID′〉 where PIDowner
is the party identifier (PID) of the legitimate decryptor. Thus, it is guaranteed that only
the legitimate receiver can decrypt messages.4

Also, FCPKE notifies the adversary whenever a party makes the first encryption re-
quest. This is intended to reflect the fact that in the certified public-key setting, the first
encryption must be preceded by some process that retrieves the appropriate key from
the certificate authority or other repository. Similarly, the adversary is notified at the
first decryption request to reflect the fact that participants must publicize their public
keys to the certificate authority.

Finally, we need to make the following additional requirement, which does not appear
in [18]. For the mapping lemma to hold, we need that no string will be too likely to

4 The distinction between FPKE and FCPKE is analogous to the distinction between FSIG and FCERT in [20].
There, FSIG represents a “bare” signature scheme, and FCERT represents a signature scheme augmented with
a trusted registration service that allows parties to register their public keys. See more details in Appendix B.
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PROGRAM ::= initialize(sid,pid-self,pid-other, role); COMMAND-LIST
COMMAND-LIST ::= COMMAND COMMAND-LIST

| done
COMMAND ::= receive(v);

| send(vc);
| output(vc);
| newrandom(v);
| encrypt(vc1, vc2, v);
| decrypt(vc1, vc2, v);
| pair(vc1, vc2, v);
| separate(vc, v1, v2);
| test(vc1 == vc2);

Symbols sid, pid-self, pid-other, v, v1, v2, and so on represent program variables. Symbols vc,
vc1, vc2, and so on represent either a variable or constant. The symbol role can take on of two

values: either initiator or responder.

Fig. 2. Grammar for Simple Protocols.

be used as a ciphertext by FCPKE. In other words, we need that the formal encryption
algorithm E induces a well-spread distribution on ciphertexts:

Definition 6. A function family {fk}k∈N , fk : M → R, is well spread if for any c ∈ R,
Prr←M(fk(r) = c) is negligible in k.

This requirement is equivalent to requiring that the min-entropy of fk is super-
logarithmic in k or that collisions occur with negligible probability. Also, the require-
ment that E be well spread only guarantees that a given string is used as a ciphertext with
at most negligible probability (rather than, say, exponentially small). Still, the guarantee
is unconditional and independent of the adversary.

Recall that a public-key encryption scheme UC-realizes FPKE (with respect to non-
adaptive corruptions) if and only if it is CCA-secure [18,23]. Using techniques similar
to those of [20], we have that FCPKE (with a well-spread formal encryption function) is
realizable given any CCA-secure encryption scheme, plus an ideal “registration service”
that allows parties to register their public keys, and obtain in an ideally authenticated
way the values registered by other parties. See Appendix B for more details on how
FCPKE can be realized.

4.2. The Definition of Simple Protocols

In this section, we provide the programming language for simple protocols. This lan-
guage contains a small number of operations for inter-process communication and
message-manipulation (including public-key encryption and decryption). For simplic-
ity, we restrict the presentation to two-party protocols, where a participant in a protocol
instance has only one peer. First, we describe the syntax, or grammar, of simple proto-
cols, and then we provide the semantics.



106 R. Canetti and J. Herzog

Definition 7 (Simple Protocols: Grammar). A simple protocol is a pair of programs
(Π0,Π1), each of which is generated by the grammar in Fig. 2.

This language bears many similarities to other languages in the literature. The Cryp-
tographic Protocol Programming Language (CPPL) [38], for example, also can be used
to produce nonlooping protocols with cryptographic messages.5 Closer to our purposes,
Micciancio and Warinschi [54] also capture a similar notion of simple protocols (though
not by that name) via a grammar for cryptographic protocols with Dolev–Yao–style
messages and public-key encryption.

Our grammar, however, differs from these two previous examples in one major re-
spect. In both the language of [54] and CPPL, one defines a protocol by specifying only
the messages. That is, these languages do not explicitly represent the internal actions of
the participants. For our purposes, however, it will be essential to formalize the internal
state and actions of honest participants. In particular, we will need to be able to specif-
ically discuss the points at which a participant encrypts or decrypts a message, and so
we make such actions explicit in our grammar.

UC Semantics of Simple Protocols The concrete semantics of a simple protocol is
rather straightforward: it is a protocol in the UC framework in which the participants
execute the relevant programs (see Definition 8). There are a few points worth noting:

• The syntax of Definition 7 defines a simple protocol to be a pair of programs,
(Π0,Π1). In keeping with UC framework, however, the semantics of a simple pro-
tocol will be phrased in terms of one Turing machine. This single Turing machine
will encode both sides of the protocol and can be initialized (through its initial
input) to execute exactly one of those two sides.

• This initial input of a UC protocol corresponds to the initial statement of every sim-
ple protocol: initialize(sid,pid-self,pid-other, role). This will initialize the
Turing machine with a session identifier, SID, a party identifier, PID, a boolean
variable role for the role, and the PID of its peer pid2. The machine runs the pro-
gram Πrole and will use its SID and PID in the calls to FCPKE, as described next.

• All encryption and decryption operations are performed by calling FCPKE with ses-
sion identifier (SID,PID) and the appropriate parameters. We note that the use of
the session and party identifiers is crucial for the separation among the various in-
stances of FCPKE. It is also crucial for the cryptographic realization of FCPKE; see
Appendix B.

• For convenience, the code will enforce a type-scheme like that of the Dolev–Yao
framework. It will do so by “tagging” bit-string values with their type. That is, we
let the ITM implementing a simple protocol tag all variables with a string describ-
ing their type. Specifically, a PID is tagged as “name,” the SID for an instance of
FCPKE is tagged as “pubkey,” a random value is tagged as a “random,” and the out-
put of an FCPKE instance is tagged both as an “ciphertext” and with the SID of the
FCPKE instance that produced it. Furthermore, messages which represent pairs also
contain enough information to uniquely determine the two components of the pair.

5 It also contains additional cryptographic operations and, for that matter, has a compiler.
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• To match the UC framework, the semantics will deliberately distinguish between
“waiting” (i.e., entering a waiting state) and “terminating.” In the UC framework,
a Turing machine will enter a waiting state whenever it produces a communica-
tion or output. It can then be reactivated to continue computation. When a Turing
machine “terminates” however, it has ceased computation. If reactivated, it will
simply reterminate without producing any communication or output.

• Lastly, recall that simple protocols have no loops and their length must be bounded
by a constant with respect to the security parameter. Furthermore, all of the al-
lowed operations will execute in polynomial time in the security parameter. Con-
sequently, simple protocols run in polynomial time.

More formally:

Definition 8 (Simple Protocols: Concrete Semantics). The UC simple protocol asso-
ciated with a pair of programs (Π0,Π1) is an ITM M. The transition function for this
machine is defined over states SM = {init} ∪ S0 ∪ S1, where init represents the initial
state of M, and each state in Si (for i ∈ {0,1}) represents three things:

1. The program Πi ,
2. A program program counter ci which indicates the “current” command of Πi , and
3. A store Σi which holds a mapping of variable names in Πi to locations on the

work tape.

The transition function over these states encodes the execution of either program Π0
or Π1. For convenience, we will describe this execution in terms of the program Πi ,
counter ci , and store Σi directly, rather than in terms of states s = (Πi, ci,Σi).

• If M is in the initial state init, then it will read the following information off its
input tape:
– The security parameter k,
– An ID= (SID,PID),
– A role r (either 0 or 1),
– A PID1 which represents the party ID for the other participant of this protocol

execution.
It then initializes the store to be a default garbage value G, except for

Σr(self) = 〈“name”,SID,PID〉 ,

Σr(other) = 〈“name”,SID,PID1〉 .

It also sets the program counter cr to the second statement of program Πr and
executes that statement.

• After initialization, the behavior of M depends on the command of Πi indicated by
the counter cr :
– receive(v): If a receive command has already been executed this activa-

tion, M will wait to be reactivated. If not, or after reactivation, M will read a
message from communication tape and store in v. It will then proceed to next
command.
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– send(vc): M will write the value of vc on output tape, set the program counter,
and wait for reactivation.

– output(vc): M will write value of vc to local output, set the program counter,
and wait for reactivation.

– newrandom(v): M will generate a k-bit random string r , store 〈“random”, r〉 in
v, and proceed to next command.

– encrypt(vc1, vc2, v): M will send (Encrypt, (vc1, ID, ), vc2) to FCPKE with
SID = (SID, vc1), receive c, and store 〈“ciphertext”, c, vc1〉 in v. It will then
proceed to next command.

– decrypt(vc1, vc2, v): Mwill send (Decrypt, (vc1, ID), vc2) to FCPKE, receive
some value m, and store m in v. It will then proceed to next command.

– pair(vc1, vc2, v): M will store 〈“pair”, σ1, σ2〉 in v, where σ1 and σ2 are the
values of vc1 and vc2, respectively. It will the proceed to next command.

– separate(vc, v1, v2): If the value of vc is 〈“pair”, σ1, σ2〉, M will store σ1 in
v1 and σ2 in v2 (else, M will terminate). It then will proceed to next command.

– test(vc1 == vc2): M will evaluate vc1 and vc2. If they are equal, M will con-
tinue. (Otherwise, M will terminate.)

Having provided both the syntax and UC semantics for simple protocols, we turn to
their symbolic interpretation.

4.3. Symbolic Semantics of Simple Protocols

The structure of simple protocols allows us to associate a Dolev–Yao counterpart with
any simple protocol. We note that the translation of simple protocols to symbolic proto-
cols is phrased entirely in terms of the grammar of Definition 7 and does not explicitly
use the ITM representation of the protocol. Still, given an ITM representation of a sim-
ple protocol, it is straightforward to extract the original program in the grammar of
Fig. 2 and the corresponding symbolic protocol.

Definition 9 (Symbolic Semantics of Simple Protocols). Let p = (Π0,Π1) be a sim-
ple protocol. Then p is the Dolev–Yao protocol where:

• The set Sp of states of the protocol p are tuples, containing

1. A program counter c, specifying which is the “next” command of the pro-
gram to execute, and

2. A store function Σ from variables to elements of A. For simplicity, Σ will
also map constants to themselves. Furthermore, the store will begin with
names (in M) for variables self and other.

In addition, there is a special “finished” state S⊥.
• The roles of the protocol are Lp = {0,1}.
• The transition function fp (from Definition 3) is defined as follows. If the state S

is the “finished” state S⊥, then for all (Σ, c) ∈ Sp, o ∈ Lp, m ∈ A, and A ∈ M,

fp(S, o,m,A) = (⊥, S⊥).

Else, if S = (Σ, c), then fp(S, o,m,A) is defined inductively on the sequence of
commands in Π0 and Π1:
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– If c points at a command of the form receive(v), then

fp
(

(Σ, c), o, ε,A
) = (⊥, (Σ, c)

)

.

For m �= ε,

fp
(

(Σ, c), o,m,A
) = fp

(

(Σ ′, c′), o, ε,A
)

,

where Σ ′ is exactly equal to Σ except that Σ ′(v) = m and c′ points to the
command after that pointed to by c in Πo.

– If c points at a command of the form output(vc), then

fp
(

(Σ, c), o,m,A
) = (

output,Σ(vc), (Σ, c′)
)

,

where c′ points at the next command in Πo.
– If c points at a command of the form send(vc), then

fp
(

(Σ, c), o,m,A
) = (

message,Σ(vc), (Σ, c′)
)

,

where c′ points at the next command in Πo.
– If c points at a command of the form newrandom(v), then

fp
(

(Σ, c), o,m,A
) = fp

(

(Σ ′, c′), o,m,A
)

,

where c′ points to the command after that pointed to by c in Πo, and Σ ′ is
exactly equal to Σ except that Σ ′(v) is set to the first nonce-symbol in RA not
already in the range of Σ ′.

– If c points at a command of the form encrypt(vc1, vc2, v), then

fp
(

(Σ, c), o,m,A
) = fp

(

(Σ ′, c′), o,m,A
)

,

where c′ points to the command after that pointed to by c in Πo, and Σ ′ is
exactly equal to Σ except that
∗ Σ ′(v) = Enc(Σ(vc2);Σ(vc1)) if Σ(vc1) is a public key, and
∗ Σ ′(v) = G otherwise.

– If c points at a command of the form decrypt(vc1, vc2, v), then

fp
(

(Σ, c), o,m,A
) = fp

(

(Σ ′, c′), o,m,A
)

,

where c′ points to the command after that pointed to by c in Πo, and Σ ′ is
exactly equal to Σ except that
∗ Σ ′(v) = m if Σ(vc2) = Enc(m;Σ(vc1)), and
∗ Σ ′(v) = G otherwise.

– If c points at a command of the form pair(vc1, vc2, v), then

fp
(

(Σ, c), o,m,A
) = fp

(

(Σ ′, c′), o,m,A
)

,

where c′ points to the command after that pointed to by c in Πo, and Σ ′ is
exactly equal to Σ except that Σ ′(v) = Σ(vc1) − Σ(vc2).
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– If c points at a command of the form separate(vc1, vc2, v), then there are
two cases:

1. If Σ(vc1) = m1 − m2, then

fp
(

(Σ, c), o,m,A
) = fp

(

(Σ ′, c′), o,m,A
)

,

where c′ points to the command after that pointed to by c in Πo, and Σ ′ is
exactly equal to Σ except that Σ ′(v1) = m1 and Σ ′(v2) = m2.

2. Else,

fp
(

(Σ, c), o,m,A
) = (⊥, S⊥).

– If c points at a command of the form test(vc1 == vc2), then:
∗ If Σ(vc1) = Σ(vc2), then

fp
(

(Σ, c), o,m,A
) = fp

(

(Σ, c′), o,m,A
)

,

where c′ points to the next command in Πo.
∗ If Σ(vc1) �= Σ(vc2), then

fp
(

(Σ, c), o,m,A
) = (⊥, S⊥).

– If c points past the last statement in the program, then

fp
(

(Σ, c), o,m,A
) = (⊥, S⊥).

4.4. Examples

Having defined the language of simple protocols and two interpretations for them, we
show that this language is expressive enough to express some well-known protocols. We
start with the Dolev–Dwork–Naor protocol and the Needham–Schroeder–Lowe (NSL)
mutual-authentication protocols based on public key encryption. We also provide two
extensions of NSL to a key-exchange protocol.

4.4.1. The Dolev–Dwork–Naor Protocol

By the “Dolev–Dwork–Naor protocol” we mean the “message authentication” protocol
from the Dolev, Dwork, and Naor paper on nonmalleable encryption [27]. (Although
we do not consider the specific goal of message authentication in this paper, we still
find this protocol to be a useful demonstration of simple protocols.) In this protocol, the
receiver (B) wishes to authenticate6 a message (m) coming from the initiator(A). The
protocol begins with the initiator sending the message in question to the responder:7

A → B : m.

6 That is, guarantee message integrity and sender identification.
7 For convenience, we will use the Dolev–Yao notation for this exposition.



Universally Composable Symbolic Security Analysis 111

Initiator (Minit):

initialize(sid,pid-self, initiator,pid-other);
pair(pid-self,pid-other,o1);
pair(sid,o1,02);
send(o2);
receive(m2_enc);
decrypt(m2_enc,p)

separate(p,m, r);
test(pid-other == m);
send(r);
done;

Responder (Mresp):

initialize(sid,pid-self, responder,pid-other);
receive(i1);
separate(i1, sid′, i2);
test(sid′ == sid);
separate(i2,other′, i3);
test(other == other′);
separate(i3, self′,msg);
test(self == self′);
newrandom(r);
pair(i3, r,p);
encrypt(other,p, c);
send(c);
receive(r′);
test(r == r′);
output(msg);
done;

Fig. 3. The Dolev–Dwork–Naor protocol. WE assume that the input variable pid-other to the sender consists
of a pair (other, msg), where other it the sender’s pid and msg is the message to be authenticated.

The responder chooses a random bit-string (r) and encrypts the message and this string
in the initiator’s public key:

B → A : Enc(r|m;KA).

The initiator decrypts and verifies the “message” component of the plaintext. If the
message component is the message in question, it releases the “random” component:

A → B : r.

The simple protocols for the Dolev–Dwork–Naor protocol are in Fig. 3.

4.4.2. The Needham–Schroeder–Lowe Protocol

The Needham–Schroeder (public-key) protocol was originally proposed by Needham
and Schroeder in 1978 [56]. It is unclear what formal security goals this protocol was
proposed to fulfill: few formal, appropriate definitions existed in 1978. Since that time,
however, the protocol was most commonly associated with the goal of mutual authenti-
cation. Informally speaking, this goal requires that A only successfully complete a run
of the protocol with input B only if B has begun a run of the protocol with input A, and
the same from B to A. (We define this security goal more formally in Sect. 6.) How-
ever, it was shown by Lowe in 1995 that the protocol fails to meet this goal and that a
corrected version does [46,47].

In this section, we present the “Needham–Schroeder–Lowe” protocol: the Needham–
Schroeder protocol as fixed by Lowe. We also discuss how this protocol might be ex-
tended to also act as a key-exchange protocol: one by which the two participants come
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to agree on a shared key for symmetric encryption. (We define this security goal more
formally in Sect. 7.1.) In fact, we will provide two such extensions, which we will later
use to motivate our new definition of symbolic security for key-exchange protocols
(Sect. 7.2).

At its most basic form, the Needham–Schroeder–Lowe protocol consists of three
messages between an initiator A and a responder B . Both parties are assumed to have
the public key of the other party. The initiator A begins the protocol by generating a
new random-string symbol (denoted Na for its original designation as “A’s nonce”).
The first message consists of A’s name and this string, encrypted under B’s public key
(KB ):

A → B : encrypt(A|Na;KB)

B , upon receiving this message, creates a random string Nb of its own. It then sends
back its name, the received random string, and the new random string—all encrypted in
A’s public key:

B → A : encrypt(B|Na |Nb;KA).

A, upon receiving this message, checks two things: that the first component is the name
of the intended responder and that second component is the random string that it recently
created. If so, it re-encrypts the third component in B’s public key:

A → B : encrypt(Nb;KB).

At this point, A terminates and signals a successful protocol execution. B will do the
same upon receiving the third message iff the plaintext is its recently generated random
string.

Figure 4 holds the simple programs for the Needham–Schroeder–Lowe initiator and
responder roles. In particular, it specifies two versions of these roles which differ only
in the values they output. As described by its authors, the Needham–Schroeder–Lowe
protocol has no defined outputs. It has been later noted, however, that the participants
of this protocol exchange random strings and that either of these strings might subse-
quently be used as a symmetric key. We incorporate this observation into our simple
programs by having both roles output one of the two random strings to be used as a
symmetric key. In the first version of this protocol, the participants output the random
string chosen by the initiator, and in the second they output the random string chosen by
the responder. In Sect. 7 we show that Version 1 is a secure key-exchange protocol but
that Version 2 is insecure. Before we can do so, however, we must introduce a central
technical lemma.

5. The Mapping Lemma

This section presents the Mapping Lemma, sketched in Sect. 2.3. Recall that this lemma
states that for any simple protocol, the computational adversary (in the UC setting) has
only a negligible chance of producing executions that do not correspond to an execution
of a Dolev–Yao adversary. Our presentation proceeds in a number of steps, as follows:
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Initiator (Minit):
initialize(sid,pid-self, initiator,pid-other);
newrandom(na);
pair(self,na,a_na);
encrypt(other,a_na,a_na_enc);
send(a_na_enc);
receive(b_na_nb_enc);
decrypt(self,b_na_nb_enc,b_na_nb);
separate(b_na_nb,b,na_nb);
test(b == other);
separate(na_nb,na2,nb);
test(na == na2);
encrypt(other,nb,nb_enc);
send(nb_enc);
output(x);
done;

Responder (Mresp):
initialize(sid,pid-self, responder,pid-other);
receive(a_na_enc);
decrypt(self,a_na_enc,a_na);
separate(a_na,a,na);
test(a == other);
newrandom(nb);
pair(other,na,b_na);
pair(b_na,nb,b_na_nb);
encrypt(other,b_na_nb,b_na_nb_enc);
send(b_na_nb_enc);
receive(nb_enc);
decrypt(self,nb_enc,nb2);
test(nb == nb2);
output(x);
done;

Version 1: x=na (Initiator’s nonce output as secret key)
Version 2: x=nb (Responder’s nonce output as secret key)

Fig. 4. The Needham–Schroeder–Lowe protocol for key exchange.

1. We define the trace of a protocol-execution in the UC setting with a particular
environment and on a particular input and random input.

2. We define a mapping between such traces and traces of symbolic executions.
3. We show that, for any environment, and except with negligible probability over

the random inputs of the parties, the trace of running the environment with a
given protocol p maps to a valid Dolev–Yao trace against the symbolic proto-
col PUC.

Although simple in intent, these three steps require a great deal of technical formalism.
The reader may wish to skim or skip this section on a first read.

First, we define the trace of a protocol-execution with a particular environment. (Re-
call that without loss of generality the adversary is assumed to be the dummy adversary.
See Appendix A.) Intuitively, the trace of an execution is a sequence of events, each pro-
duced by the activation of either the environment, an honest participant, or an instance
of functionality FCPKE. Each activation produces either zero or one events, and the event
(if produced) records the type of activation, the party activated, and any relevant inputs
and outputs.

Definition 10 (Traces of Concrete Protocols). Let p be a simple protocol. Then
define TRACEp,Z(k, z), the trace of executing protocol p with the dummy adver-
sary and environment Z on input z and security parameter k, to be the distribu-
tion of the sequences of events E1||E2|| . . .En produced by translating each activa-
tion in an execution in EXECp,Z(k, z) into an event according to the description in
Fig. 5. (EXECp,Z(k, z) is defined in Appendix A.) Let TRACEp,Z denote the ensemble
{TRACEp,Z(k, z)}k∈N ,z∈{0,1}∗ .
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Activation The resulting event, E

Environment initializes a party with SID, PID,
PID1, and role.

initialize, (SID,PID), 〈“name”, SID,PID, 〈“name”,
SID,PID1〉

Adversary delivers message m to party PID [adv, (PID,m].
Adversary outputs message m to the environment (No event is added to the trace)
Party (SID, RID) generates local output m [output,PID,m]
Party (SID, RID) generates a message m [message,PID,m]
FCPKE is called via (Encrypt, 〈SID,PID〉,m) and
returns ciphertext c �=⊥ (if c =⊥ then no event is
added)

[ciphertext, 〈SID,PID〉,m, c]

FCPKE is activated via (Decrypt, 〈SID,PID〉, c) and
returns message m �=⊥

[dec, 〈SID,PID〉, c,m]

Fig. 5. The translation of activations to abstract events. These events are used internally by the transforma-
tion of concrete traces into symbolic ones. Some activations that do not result in events are not listed.

Next, we define a mapping from concrete traces to symbolic traces. This mapping
is defined as the output of a “two-pass” computation, i.e., an algorithm that scans the
concrete trace twice. The first pass builds a partial function from concrete messages
(namely, binary strings) to Dolev–Yao messages (namely, elements from the algebra);
the second pass uses that function to map concrete events to events in the Dolev–Yao
trace. We use two phases for clarity; in particular, because a ciphertext may appear in
the trace well before it is actually decrypted by FCPKE, the translation of a concrete
ciphertext to a symbolic ciphertext might require knowledge of events that occur later
in the trace. To handle this dependency, we first scan the trace to observe all calls to
FCPKE and update the partial map accordingly. We then use this information to actually
perform the concrete-to-symbolic mapping on a second pass.

For simplicity, we assume that the atomic symbols of the Dolev–Yao message algebra
are ordered in some way. This is solely so that we may meaningfully speak of the “first
unused” symbol of any given type.

Definition 11 (The Mapping from Concrete Traces to Symbolic Traces). Let p be
a simple protocol, and let t be a trace of an execution of p with security parameter
k, environment Z with input z, and some fixed random input for the involved parties.
We define the mapping t of t to a Dolev-Yao trace t to be the output of the following
two-pass algorithm.

1. In the first pass, the algorithm reads through the trace t character by character, in
order, and builds a partial mapping f from {0,1}∗ to elements of the algebra A
according to the cases below. (Note that the patterns below may be nested and
overlapping. A pattern is recognized as soon as the last character in the pattern is
read.)

• The dedicated UC garbage string }�∇� is mapped to the symbolic garbage
symbol G .

• When recognizing a pattern 〈“name”,SID,PID〉: if f (〈“pid”,SID,PID〉) is
not yet defined, then f (〈“pid”,SID,PID〉) := P, where P is the first element
of M not in the range of f so far. Also, if f (〈“key”, 〈SID,PID〉〉) is not yet
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defined, then f (〈“key”, 〈SID,PID〉〉) := K, where K is the first element of
KPub not yet in the range of f .

• When recognizing a pattern 〈“random”, σ 〉: if f (〈“random”, σ 〉) is not yet
defined, then f (〈“random”, σ 〉) := N where N is a nonce symbol. If the
current trace event being scanned is an adversary event, then N is the first
symbol in RAdv not already used in the range of f . Otherwise, N is the first
symbol in NP not in the range of f , where P = f (〈“name”,SID,PID〉), and
PID is the active principal in the event, namely PID is the principal sending
the message or output, or receiving the input, initialization, or ciphertext.
(Note that f (〈“name”,SID,PID〉) is guaranteed to be defined at this point.)

• When recognizing a pattern 〈“pair”, σ1, σ2〉: If f (σ1) is not yet defined, then
f (σ1) := G , where G is the garbage symbol. Similarly, if f (σ2) is not yet
defined, then f (σ2) := G . Finally, f (〈“pair”, σ1, σ2〉) := f (σ1)|f (σ2).

• When recognizing a pattern 〈“ciphertext”, 〈SID,PID〉,m, c〉: At this point
both f (m) and f (〈“pubkey”, 〈SID,PID〉〉) must already be defined. If
f (〈“ciphertext”, 〈SID,PID〉, c〉) is not defined, then f (〈“ciphertext”,
〈SID,PID〉, c〉) := Enc(f (m);f (〈“key”, 〈SID,PID〉〉)).

• When recognizing a pattern 〈“dec”, 〈SID,PID〉, c,m〉: If f (m) is not yet de-
fined, then f (m) := G , where G is the garbage symbol. Next, if
f (〈“ciphertext”, 〈SID,PID〉, c〉) is undefined, then f (〈“dec”, 〈SID,PID〉, c〉)
:= Enc(f (m);f (〈“key”, 〈SID,PID〉〉)).

2. In the second pass, the algorithm constructs the actual G Dolev–Yao trace. Let
t = E1||E2|| . . . ||En be the concrete trace. Then the resulting Dolev–Yao trace t
is produced by simulating the execution of the Dolev–Yao participants. That is,
it creates a store (initially empty) to hold a state for each (PID, role) pair, where
states are as defined in Definition 9. It then steps through the events of the concrete
trace as follows.

• If Ei = [initialize, (SID,PID), 〈“name”,SID,PID〉 , 〈“name”,SID,PID1〉],
then find Pi = f (〈“name”,SID,PID〉), set P′ = 〈“name”,SID,PID1〉 and
generate the symbolic event H = [“initialize”,Pi ,o,P′, S], where o is the
given role.

• If Ei = [output,PID,m], then Ei is mapped to the symbolic participant event

[

f (〈“PID”,PID〉),output, f (m)
]

.

• If Ei = [message,PID,m], then Ei is mapped to the symbolic participant
event

[

f (〈“PID”,PID〉),message, f (m)
]

.

• If E = [adv,PID,m], then let m = f (m). There are two cases:
(a) There exists a finite sequence of adversary events that produces mi from

previous messages of the trace. Then E is mapped to this sequence of
events Hi1 , Hi,2. . . Hi,n′ so that the message of Hi,n′−1 is mi and Hi,n′ =
[“deliver”, (i, n′ −1),P′] (Here P′ is the Dolev–Yao name of the concrete
participant who received the message from the concrete adversary.)



116 R. Canetti and J. Herzog

(b) Otherwise, m is not in the above closure. In this case, E maps to the
Dolev–Yao event [“fail”,mi].

We now show that the mapping defined above is valid. That is, we show that if t is a
trace of a simple protocol p, then t is a valid Dolev–Yao trace of the symbolic protocol p,
except for negligible probability. We need to take care of several issues. First, we need
to show that the actions of the concrete participants map to valid actions of the symbolic
participants. That is, the messages from the execution of concrete protocol p map only to
symbolic messages that are compatible with the symbolic protocol p. Second, we need
to show that the concrete environment is no more powerful than the symbolic adversary.
That is, the trace t does not contain adversary messages whose symbolic interpretations
are beyond the ability of the symbolic adversary to produce.

In the following lemma, we show that these failures occur only with negligible prob-
ability, and thus any concrete execution is almost always mapped to a valid symbolic
interpretation. In fact, the only potential causes for error are the events where the envi-
ronment guesses either the value of a random string chosen by an uncorrupted party or
the value of a ciphertext generated by FCPKE.

Lemma 12. For all simple protocols p, environments Z, and inputs z of length poly-
nomial in the security parameter k,

Pr
[

t ← TRACEp,Z(k, z) : t is not a valid DY trace for p
] ≤ neg(k).

Proof. Let t be a trace of a simple protocol p. We first show that the probability that t
includes an event of the form [“fail”,mi] is negligible. Next, we show that whenever t
does not include such an event, it is a valid DY trace of protocol p.

Let m1,m2, . . . denote the messages that appear in the [message, . . .] events in t,
in order of appearance. Suppose that adversary event of the form [“fail”,mi] occurs,
which means that the concrete adversary created a message mi which cannot be created
through a sequence of symbolic-adversary computations. We show that the odds of such
an event are negligible:

Let C[S] be the set of symbolic terms that can be generated from “initial set” S ⊆ A
through a sequence of adversary actions. (These actions can include the introduction
of public names, public keys, and nonces in RAdv.) Thus, C[mj : j < i] is the set of
messages that can be generated from messages in the trace previous to mi , and the
situation in question is that mi �∈ C[mj : j < i].

With this in mind, examine the parse tree of mi .8 By definition, membership in
C[{mj : j < i}] is closed under pairing and encryption. Thus, if two siblings in the
parse tree are both in C[{mj : j < i}], then their parent is in C[{mj : j < i}] as well.
Consequently, if every path from root to leaf in the parse tree of mi has a node in
C[{mj : j < i}], then mi ∈ C[{mj : j < i}] as well—a contradiction. Thus, there ex-
ists some leaf ml in the parse tree of mi such that the path to ml has no node in
C[{mj : j < i}].

8 The parse tree of a message is the (unique) tree whose root is the message, and there is an edge from
node m to nodes m′ and m′′ if there is a derivation rule in the algebra A that derives message m from messages
m′,m′′. Note that the leaves of the tree are the basic symbols in A. Also, the out-degree of a node is at most 2.
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However, since mi is in t, we have that in t the adversary has generated a bit-string m

that was mapped to mi . Call this adversary A0. Then there exists another adversary, A1
that can produce a bit-string m∗ which parses to m∗, where m∗ is the following message
on the path from m to ml :

• If the path contains a message Enc
(

m′;K)

which is also not in the set C[{mj : j <

i}] but is a sub-encryption (i.e., it appears in the plaintext of some outer encryption)
of some mj (j < i), then m∗ is the first such message.

• If not, then m∗ = ml .

A1 first simulates A0 to produce mi and then recursively walks down the parse tree of
mi to m∗ by applying deconstructors:

• If ml is a pair m1|m2, then A1 separates m = 〈“pair”, σ1||σ2〉 into σ1 and σ2 and
recursively operates on the appropriate one of them (depending on whether m∗ is
a leaf of m1 or m2).

• If ml = 〈“ciphertext”, σ 〉, then A1 adversary must “decrypt” σ to continue down
to m∗. That is, A1 must produce what FCPKE would return to the appropriate honest
party when called with (Decrypt, σ ). As mentioned before, mi �∈ C[{mj : j <

i}]. If mi is a sub-encryption of some mj (j < i), then mi = m∗, and no further
decomposition is necessary. Else, A1 must “decrypt” σ . If the pair (m,σ ) is stored
in FCPKE (for some m), then because mi is not a sub-encryption of any mj (j < i), it
must be that the call (Encrypt,m) was made to FCPKE by A0. Hence, A1 (which
simulates A0) records and recalls the message m which is the plaintext used to
generate of σ and recursively operates on it. If, on the other hand, no pair (m,σ )

is stored in FCPKE, then the decryption of σ is the result of D(σ ), where D is the
formal description algorithm supplied by A0 to FCPKE. Thus, A1 runs D(σ ) to learn
the decryption of σ .

By recursively applying the above deconstruction operations, A1 produces a string m∗
that maps to m∗. We’ll see that this happens only with negligible probability. There are
two possibilities:

First, m∗ could be an atomic symbol of the Dolev–Yao algebra which is not in
C[{mj : j < i}]. Notice that the only atomic symbols that are not in the initial view
of the adversary are the random-number symbols (i.e., symbols in R) that were not
generated by the adversary. However, if m∗ is not in the closure of the adversary’s view,
then the view of A1 is completely independent from the string m∗. (Independence is
argued as follows. If m∗ is never included in the parse tree of a message seen by A1,
then independence is trivial. The only way for m∗ to be included in the parse tree of
a message seen by A1 and still not be in the closure of A1’s view is if m∗ is sent en-
crypted. However, in this case independence is guaranteed by the code of FCPKE.) Also,
since m∗ was generated by a protocol participant, we know that it is chosen uniformly
from {0,1}k . Thus the probability that A1 generates the string m∗ is 2−k . Since there are
at most a polynomial number of k-bit strings in the view of A1, we have that the overall
probability that A1 generates a string that maps to m∗ is poly(k) · 2−k . This means that
the probability that t includes an event of the form [“fail”,mi] is poly(k) · 2−k , which is
a negligible function.

The second possibility is that m∗ is of the form Enc(mj ;K) for j < i. However,
since m∗ is not in C[{mj : j < i}], it is also the case that the view of A1 is completely
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independent from the string m∗. The value of m∗ was produced by selecting a random
r and then evaluating the well-spread function Ek(r). By the definition of well-spread
functions, the probability that the adversary can produce Ek(r), for randomly chosen
r ∈ M , is negligible in k. Thus, the adversary has only a negligible chance of creating
the encoding of an mi �∈ C[mj : j < i], which means that the event [“fail”,mi] occurs
with only negligible probability.

To prove the lemma, it remains to show that, whenever event [“fail”,mi] does not
occur, the trace t is a valid trace for p. By definition of the fail event, we have that all the
adversary events in t are valid. We now show that the participant events in t are valid as
well. Suppose that a participant event of the form (P′

i ,Li ,mi ) occurs. Then we need to
show that

P (Sj ,oi ,m,Pi ) = (Li ,m′, Si)

where

1. The previous event in the trace is an adversary trace of the form [“deliver”, k,Pi]
(in which case, let m = mk),

2. The event [“initialize”,Pi ,oi ,P′, S] appears previously in the trace (for some o,
P′ and S), and

3. Sj is the current state of Pi .

However, these facts follow immediately from the definition of the symbolic coun-
terpart of a simple protocol (Definition 9). The symbolic protocol defined by that map-
ping exactly mirrors, on the symbolic level, the UC semantics of the simple protocol.
Both the simple protocol and the corresponding symbolic protocol maintain a store (i.e.,
mapping) from variables to values. Both protocols also maintain a program counter and
modify the store as the program counter steps through the program. Furthermore, the
symbolic protocol enforces that for all roles and at all points in the execution, if Σi

UC is
the store of the UC ITM running role i, Σi

symb is the store of the symbolic participant
running role i, and for all variables v,

Σi
symb(v) = f

(

Σi
UC(v)

)

where f is the mapping created in part 1 of Definition 11. We conclude that the trace t
is a valid trace for p. �

6. Symbolic Analysis of UC Mutual Authentication

In this section, we demonstrate that one can use symbolic analysis to prove that a given
simple protocol is a secure UC mutual-authentication protocol. We do this in three steps.
First, we formulate the ideal mutual-authentication functionality, F2MA. Next, we formu-
late a symbolic criterion that represents mutual authentication for symbolic protocols.
Lastly, we show that a simple protocol p UC-realizes F2MA if and only the corresponding
symbolic protocol p satisfies the symbolic criterion.

As discussed in the Introduction, the results in this section follow in the footsteps of
Micciancio and Warinschi [54]. Our results differ from theirs, however, in three ways.
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First, our concrete protocols are simple protocols that use FCPKE rather than a fully in-
stantiated encryption scheme. This allows our analysis to be simple and unconditional,
yet still apply to concrete protocols via the composition theorem. Secondly, the com-
position theorem allows us to simplify our analysis even further by considering only
a single execution of the protocol execution, while the analysis of [54] directly deals
with the much more complex multiexecution case. Lastly, our result provides a strong
security and composition guarantee which is not present in the results of [54].

When formalizing the definition of mutual authentication, one is presented surpris-
ingly many choices. The intuition is simple: when one participant in a protocol ter-
minates, it should be the case that the correct other participant has at least begun and
it has the right peer in mind. However, this simple statement leaves several questions
unanswered. Should a protocol guarantee that when one participant has finished the
protocol, the other participant has finished as well as begun? (Although the protocol
might guarantee this for one of the two participants, however, it cannot guarantee this
for both.) Should the two participants agree on their respective roles? For example, is it
an error if two participants successfully complete the protocol, but both are running the
role “initiator?” And as a last example, should the protocol enforce a bijection between
successful outputs of the protocol made by the two participants? That is, if the initiator
started the protocol, is it an error for there to be two or more outputs by the responder?

For simplicity, we will use in this paper the most basic variant of mutual authentica-
tion. That is, we only guarantee that if a party P outputs success, then the other party
at least began the protocol with peer P . There is no guarantee that the roles are different,
and nonequivalent outputs are allowed. Our results, however, can be easily applied to
more restrictive forms of mutual authentication.

6.1. The Ideal Two-Party Mutual Authentication Functionality

The UC definition of two-party mutual authentication is embodied in the functionality
F2MA (Fig. 6). The functionality simply waits until two parties P and P′ have provided
input

(SID,P, initiator,P′) and (SID,P′, responder,P)

respectively. Then, upon request of the simulator/adversary, it sends a (Finished)

output to either party. Note that it is possible for a party to get multiple (Finished)

outputs and that there is no requirement that a (Finished) message is received by
both parties.

6.2. Dolev–Yao Mutual Authentication

In this work, we use the well-accepted symbolic definition of mutual authentication:

Definition 13 (Dolev–Yao Two-Party Mutual Authentication). A Dolev–Yao protocol
P provides Dolev–Yao mutual authentication (DY-MA) if all Dolev–Yao traces for P that
include a party event of the form [Pi,output,Pj ] by participant Pi (where Pi,Pj �∈
MAdv) include also a previous input event [input,Pj ,Pi] by Pj .



120 R. Canetti and J. Herzog

Functionality F2MA

1. Initially, set a variable Finished to false.
2. Upon receiving an input (SID,P,RID,P′) from some party P, where RID ∈

{Initiator,Responder}, do:
(a) If this is the first input (i.e., no tuple is recorded), then record the pair

(P,P′).
(b) Else, if the pair (P′,P) is recorded, then set Finished to true.
(c) In either case, send the pair (P,P′,RID) to the adversary.

3. Upon receiving from the simulator/adversary a request (Output,SID,P′′), if
P′′ is either P or P′, and Finished is true, then send Finished to P′′. Else, do
nothing.

Fig. 6. The 2-party mutual-authentication functionality.

That is, if one party outputs a “finished” message indicating a successful execution,
the other party has at least output a “starting” message indicating that an execution (with
matching values for the participants) has been at least initiated.

6.3. Soundness and Completeness of the Symbolic Criterion

Theorem 14. Let p be a simple two-party protocol. Then p realizes F2MA if and only
if the corresponding symbolic protocol p satisfies Dolev–Yao two-party mutual authen-
tication.

Proof. Assume first that p does not achieve Dolev–Yao secure mutual authentica-
tion. Then there exists a valid Dolev–Yao trace where one party outputs (locally)
〈Finished|P |P ′|m〉 before P ′ outputs 〈Starting|P ′|P, |m′〉. Given this trace, we con-
struct an environment Z in the UC framework that simply follows the adversary instruc-
tions in the given Dolev–Yao trace. (More precisely, Z follows the concrete operations
that correspond to the given Dolev–Yao trace.) Also, we point out that this environment
is polynomial in the security parameter: the number of operations in the Dolev–Yao
trace is constant, and performing each operation takes polynomial time in the security
parameter.

When the environment interacts with p, this strategy will produce the same result
as in the Dolev–Yao model: one participant will output Finished before the other
party outputs (SID,P,RID,P′). However, this same behavior is simply impossible when
interacting with the ideal process for F2MA, since in that protocol no simulator can force
the dummy parties to produce unmatched output. Thus, this environment can distinguish
the ideal execution model from the real execution model with probability close to 1, and
so the protocol p cannot securely realize F2MA.

For the other direction, we need to show that if p satisfies Dolev–Yao mutual authen-
tication, then p UC-realizes F2MA. Recall that we use the alternative and equivalent for-
mulation where the adversary that interacts with p is the dummy adversary that simply
forwards all messages from the environment to the parties and back (see Appendix A).
That is, we need to show that there exists a simulator S such that no environment can
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Fig. 7. Simulator for F2MA.

distinguish between an interaction with the dummy adversary and the concrete protocol,
and an interaction with S and the ideal protocol for F2MA.

The simulator S (shown in Fig. 7) essentially simulates an interaction of p with Z in
a straightforward way. That is:

• S internally simulates the participants ′P, ′P′, and a copy of FCPKE for each. At the
beginning, neither of these simulated participants are running.

• When the simulator receives a message (P′′,P′′′) from the functionality F2MA (in-
dicating that the external dummy participant P′′ has received input from the envi-
ronment and has passed it on to F2MA), it activates both instances of FCPKE with
SIDs 〈P,SID〉 and 〈P′,SID〉, respectively (if they have not been activated yet). It
then activates the simulated participant ′P′′ on input ((SID,′ P′′, RID, ′P′′′).

• When the simulator receives a message from the environment sent to participant
P′′, it forwards that input to the simulated copy ′P′′.

• Likewise, when simulated participant ′P′′ produces a message to send on its com-
munication tape, the simulator sends this message to the environment.

• When simulated participant ′P′′ produces a message to send an instance of FCPKE,
the simulator forwards this to the appropriate instance of FCPKE that it is simulating.

• When the simulated participant ′P′′ produces local output Finished, the simula-
tor sends the message (Output,SID,P′′) to the functionality F2MA.

It remains to show that the simulation is valid. Let Z be an environment. We show
that, conditioned on the event that the mapping of the transcript of concrete execution
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to a symbolic one does not fail, Z outputs 1 with exactly the same probability in the two
executions. Valiity of the simulation now follows directly from the Mapping Lemma
(Lemma 12).

Fix a value k for the security parameter. We observe that the above simulator pro-
duces a perfect simulation except when the following bad event occurs: the simulator
sends (Output,SID,P′′) to the functionality F2MA, but F2MA does not send Finished
to dummy party P′′. Furthermore, this event only occurs if the functionality did not
previously receive both (SID,P′′,RID,P′′′) and (SID,P′′′,RID,P′′). Because the sim-
ulator sends (SID,P′′) to F2MA, the simulated participant P′′ produces an output indi-
cating success. Hence, simulated participant P′′ must have been started by the simu-
lator, which means that the simulator must have received (P′′,P′′′,RID) from F2MA.
Thus, the functionality must have received (SID,P′′,RID,P′′′). Hence, it must have
been (SID,P′′′,RID,P′′) that was not received by the functionality F2MA.

Thus, the simulated party P′′′ was not initialized in the simulator. If we look at
the trace t of the simulated parties of the execution, it must be that party P′′ output
Finished before party P′′ output (SID,P′′′,RID,P′′). Thus, the Dolev–Yao trace t
that is constructed from the trace t includes the event [P′′,output,P′′′] before the event
[P′′′, initialize,P′′]. However, the protocol p satisfies Dolev–Yao mutual authentication,
and so this trace cannot be valid. Thus the probability that the environment distinguishes
the ideal execution from the real one is at most its probability to generate traces that
translate to invalid symbolic traces—i.e., negligible. �

7. Symbolic Analysis of UC Key Exchange

In this section, we demonstrate that one can use symbolic analysis to prove that a given
simple protocol is a secure UC key exchange protocol. The structure of this section is
similar to that of the previous section: we first recall the ideal key-exchange functional-
ity, F2KE. Next, we formulate a symbolic criterion that represents key-exchange security
for symbolic protocols. (For reasons we explain below, this criterion is not the symbolic
model’s traditional definition of security but a new one.) Lastly, we show that a concrete
protocol p UC-realizes F2KE if and only if the corresponding abstract protocol p satisfies
the symbolic criterion.

7.1. The Ideal Key-Exchange Functionality

Key-exchange protocols guarantee two security properties: an agreement property and
a secrecy property. The agreement property requires that if two parties P and P ′ ob-
tain keys and associate these keys with each other, then the two keys are equal. The
secrecy property requires that in this case the joint key should be “unknown” to the
adversary.

In the UC model, these requirements are both embodied in the ideal functionality
F2KE (Fig. 8). This functionality waits to receive requests from two parties to exchange
a key with each other and then hands a secretly chosen random key to the parties. (Each
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Functionality F2KE

F2KE proceeds as follows, running with security parameter k. At the first activation,
choose and record a value κ

R← {0,1}k . Next:

1. Upon receiving an input (EstablishSession,SID,P,P′) from some party
P, send this input to the adversary. In addition, if no pair is recorded, or the
pair (P′,P) is recorded, then record (P,P′). (Note that at most two pairs are
ever recorded, and if there are two pairs, then they consist of the same party
identities in reverse order.)

2. Upon receiving a request (SessionKey,SID,P′′, k̃) from the adversary, do:
(a) If a tuple (P′′,P′′′) is recorded and P′′′ is corrupted, then output

(Finished, sid, k̃) to P′′. (Here the adversary determines the key.)
(b) If P′′′ is uncorrupted, then output (Finished,SID, κ) to P′′.
(c) If no tuple (P′′,P′′′) is recorded, then ignore the request.

Fig. 8. The Key-Exchange functionality.

party gets the output key only when the adversary instructs. Furthermore, the key is
guaranteed to be random and secret only if both parties are uncorrupted.9)

7.2. Dolev–Yao Key Exchange

Our definition of Dolev–Yao key exchange is somewhat more complex than for mutual
authentication. As in the case of mutual authentication, the intuition is simple: If both
participants terminate, then they must output the same secret symmetric key R. (Recall
that in our version of the Dolev–Yao model, random strings can also be used as sym-
metric keys.) However, our symbolic definition of “secrecy” will differ from existing
ones. Most previous work in the Dolev–Yao model defines a “secret” key to be one
which adversary is unable to reproduce in totality. By contrast, the standard definitions
in cryptographic security define a “secret” key as one which is indistinguishable from
random. We show that the traditional criterion is insufficient for guaranteeing security
of key exchange protocols, even if all the cryptography is “perfect.” We will thus use,
in this work, a symbolic criterion approach which requires that the adversary be unable
to distinguish the real secret key from a random one even when presented with both
during the protocol.

We first demonstrate the weakness of the traditional symbolic criterion, via an exam-
ple. Then, we formulate the new criterion.

7.2.1. The Traditional Symbolic Criterion

Most previous attempts to formalize a symbolic security goal for key-exchange proto-
cols have the same basic intuition: A protocol is a secure key-exchange protocol if there

9 The present formulation of F2KE is slightly different than the formulation in [18]. But the difference only
affects the expected order of receiving the initial inputs from the parties and does not affect the secrecy and
authenticity properties of the exchange.
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is no run of the protocol between two honest and uncorrupted participants in which the
adversary also learns the secret key. In our terminology, this could be stated as follows.

A symbolic key-exchange protocol P is secure if there is no Dolev–
Yao trace t valid for P , where there is a party event of the form
[P,output,R,P ′], where P,P ′ /∈ M, and where there is an adversary event
containing exactly the symbolic expression R.

That is, the trace may contain adversary events that have messages in which R appears
as an (encrypted) element, but none of these messages will be the expression R.

We show that this criterion does not guarantee key-secrecy in reasonable protocol
environments. Specifically, we show an example of a protocol that satisfies the above
symbolic criterion, but which is arguably insecure in any reasonable sense. The proto-
col is Version 2 of the Needham–Schroeder–Lowe protocol in Fig. 4. (In this version,
the key is the random string Nb chosen by the responder.) It has been shown that this
protocol satisfies the above symbolic criterion and that Nb cannot be produced by the
adversary. (See, for example, [63].) However, consider the scenario where the initiator
completes an exchange and locally outputs Nb as its session key. It then begins execut-
ing another protocol with the responder and uses Nb to send an encrypted message M .
Furthermore, the encryption method is one-time-pad, and M is either “buy” or “sell.”
In this scenario, then, the adversary obtains the ciphertext C = M ⊕ Nb. If then it can
distinguish Nb from a random nonce, note, then it can tell if M is “buy” or “sell.”

How can it do this? Note that the initiator might send this ciphertext before the re-
sponder has received its third message. The adversary knows that the plaintext of the
third message is either C ⊕“buy” or C ⊕“sell.” Consequently, the adversary can choose
one of these, encrypt it in the responder’s public key, and send it to the responder as the
third message of the Needham–Schroeder–Lowe protocol. The responder will regard
the Needham–Schroeder–Lowe protocol as successfully completed only if the plain-
text of the third message is Nb. This, if the adversary can tell whether the responder
completed the protocol successfully (which is a safe assumption), it can also tell if it
correctly guessed the value of the plaintext, which in turn tells it whether the initiator
wanted to buy or sell.

We note that the above scenario can be translated to an attack in the UC framework.
Indeed, it is possible to show that this protocol (or, rather, its concrete counterpart) does
not UC-realize F2KE. Specifically, suppose the environment lets the protocol execute
normally until the point where the initiator terminates and outputs N . The environment
wishes to learn whether N is the session key of the protocol or a random key generated
by F2KE. It therefore follows the following strategy:

• It chooses a random bit.
• If it chose 1, it encrypts N in the responder’s public key and sends the ciphertext

to the responder.
• If it chose 0, it chooses a random value N ′, encrypts that in the responder’s public

key, and sends that ciphertext to the responder.

If the protocol is being executed and N is the valid key, then the ciphertext sent to
the responder will be valid exactly half the time—and the environment knows which
half. Thus, the adversary will be able to predict the participant’s behavior perfectly.
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If the protocol execution is being simulated, on the other hand, then both ciphertexts
will be completely independent of the simulated execution. Therefore, no simulator
will be able to guess the expected response with probability greater than 1/2, and the
adversary’s prediction will be wrong half of the time. By taking advantage of this gap,
the environment will be able to distinguish between the real and ideal settings with
high advantage. Thus, the traditional symbolic criterion (though interesting and perhaps
valid for some contexts) cannot imply that a simple protocol implements F2KE. For our
purposes, then, we need a new symbolic criterion of our own devising.

As a final remark, we note that the other variant of the Needham–Schroeder–Lowe
protocol (where the session keys is Na rather than Nb) does not fall prey to the above
attack. It is, in fact secure—a fact that we prove later via automated analysis (Sect. 8).

7.2.2. The New Symbolic Criterion

Our symbolic criterion essentially translates to the symbolic model the approach of
“real or random security” that is typical in cryptographic notions of security. That is, we
consider two worlds. In the first, real, world, the adversary is given the real (symbolic)
session key as soon as one participant outputs it. In the other, fake, world, the adversary
is given a symbolic key at the same point, but the symbol so provided is a new fresh
symbol. The key is “secret” if the two situations looks exactly the same to the adversary,
no matter how the adversary behaves. More precisely, we define the adversary strategy
as the sequence of adversary deductions and transmissions made by an adversary in
an execution. Then we wish to require that any adversary strategy will produce the
same trace in the both scenarios. While this captures the desired intuition, there are two
technical complications that must be considered:

1. Traces in the fake world will include a key symbol not found in the first world,
and so direct equivalence will be impossible. What we require instead is that, for
any adversary strategy, the trace produced in the real world and the trace produced
in the fake world be the same when the fresh key is ex post facto renamed to the
real session key.

2. Although equality after renaming is strong enough to imply security of a protocol
in the UC framework, it is too strong to allow the converse. That is, a Dolev–Yao
protocol that satisfies this definition will correspond to a concrete protocol that se-
curely realizes F2KE, but the opposite is not necessarily true. The reason for this is
that the definition, as stated above, requires that the “real” trace and “fake” trace
be exactly the same (after renaming). This prohibits the possibility that the two
traces might differ, but only in a way that is unobservable by the adversary. (For
example, the two traces might have different encrypted messages, as long as the
encryption key is the same and is not known to the adversary.) Thus, our final
definition requires only that the two traces be equivalent in their observable be-
havior. Fortunately, previous work by Abadi and Rogaway [4] (expanded upon by
Herzog [39]) has already captured the observable part of a trace in their definition
of a pattern. Thus, we will only require that the patterns of the “real” trace and the
“fake” trace be the same.

We formalize this criterion as follows. First, we define the notion of an adversary
strategy. This definition specifies the sequence of operations performed by the adversary
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in a given execution. It is different from the trace in that it does not specify the actual
symbols being processed and can thus be thought of as the “code” of the symbolic
adversary. Next, we define the notion of a public pattern of a message.

Definition 15 (Adversary Strategy). Let an adversary strategy be a sequence of adver-
sary events that respect the Dolev–Yao assumptions. That is, a strategy Ψ is a sequence
of instructions I1, I2, . . . , In, where each Ii has one of the following forms, where i, j, k

are integers:

• [“receive”, j ]
• [“enc”, j, k, i]
• [“dec”, j, k, i]
• [“pair”, j, k, i]
• [“extract-l”, j, i]
• [“extract-r”, j, i]
• [“random”, i]
• [“name”, i]
• [“pubkey”, i]
• [“privkey”, i]
• [“deliver”, j,Pi]

When executed against protocol P , a strategy Ψ produces the following Dolev–Yao
trace Ψ (P ). Go over the instructions in Ψ one by one, and:

• For each [“receive”, j ] instruction, if this is the first activation of party Pj , or Pj

was just activated with a delivered message m, then add to the trace a participant
event (Pj ,L,m) which corresponds to the execution of the protocol P . Else output
the trace ⊥.

• For any other instruction, add the corresponding event to the trace, where the in-
dex i (resp., j, k) is replaced by mi (resp., mj ,mk), the message expression in the
ith event in the trace so far. (If adding the event results in an invalid trace, then
output the trace ⊥.)

Definition 16 (Public-Key Pattern [4,39]). Let T ⊆ KPub and m ∈ A. We recursively
define the function p(m, T ) to be:

• p(K,T ) = K if K ∈ K
• p(A,T ) = A if A ∈ M
• p(N,T ) = N if N ∈ R
• p(N1|N2, T ) = p(N1, T )|p(N2, T )

• p(Enc(m;K) ,T ) =
⎧

⎨

⎩

Enc(p(m, T );K) if K ∈ T ,
〈|T |〉K (where T is the type tree of m)

otherwise.

Then patternpk (m, T ), the public-key pattern of an Dolev–Yao message m relative to
the set T , is

p
(

m, KPub ∩ C
[{m} ∪ T

])

.
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If t = H1,H2, . . . ,Hn is a Dolev–Yao trace where event Hi contains message mi

then patternpk (t, T ) is exactly the same as t except that each mi is replaced by
p(mi , KPub ∩C[S ∪T ]) where S = {m1,m2, . . . ,mn}. The base pattern of a message m,
denoted pattern(m), is defined to be patternpk (m,∅), and pattern(t) is defined to be
patternpk (t,∅).

Definition 17 (Variable Renaming). Let R1, R2 be random-strings symbols, and let t
be an expression in the algebra A. Then t[R1 �→R2] is the expression where every instance
of R1 is replaced by R2.

Definition 18 (Symbolic Criterion for Key Exchange). A Dolev–Yao protocol P pro-
vides Dolev–Yao two-party secure key exchange (DY-2SKE) if

1. (Agreement) For all P0 and P1 �∈ MAdv and Dolev-Yao traces valid for P in which
there are initial-input events [P0,initialize,P1] and [P1,initialize,P0],
and also party events of the form [P0,output,m1] and [P1,output,m0], it
holds that m0 = P0|P1|R and m1 = P1|P0|R for some R ∈ R.

2. (Real-or-random secrecy) Let Pf be the protocol P except that a fresh fake key
Rf is output by terminating participants in place of the real key Rr . Then for every
adversary strategy Ψ ,

pattern
(

Ψ (P )
) = pattern

(

Ψ (Pf )[Rf �→Rr ]
)

.

Note that this criterion neither implies nor is implied by our symbolic mutual-
authentication criterion. The MA criterion does not imply secrecy of any values. This
criterion, on the other hand, allows successful termination of one party without any
participation by the peer.

7.3. Soundness and Completeness of the Symbolic Criterion

Theorem 19. Let p be a simple protocol. Then p UC-realizes F2KE if and only if p
achieves Dolev–Yao secure key exchange.

Proof. We first consider the “if” direction of the statement. Suppose that p does not
satisfy Dolev–Yao key exchange. Then one of two events occur, each of which allows
the environment to distinguish an interaction with F2KE from an interaction with p.
Either:

• There exists a DY trace with party events [P,output,Px |R] and [P,output,

Py |R], where either R′ �= R, or P �= Py , or P′ �= Px . The adversary strategy for
this trace is then mapped to a concrete environment that simply performs the same
sequence of calculations, receptions, and transmissions. (Recall that this sequence
has some constant, finite length.) Thus, the environment can produce the same
behavior in the concrete model. However, this behavior will never arise in the ideal
model with F2KE, since the functionality will always distribute the same κ to both
parties. Thus, the environment can easily tell whether it is interacting with F2KE or
with p.
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• Or, it might be the case that there exists an adversary strategy Ψ such that

pattern
(

Ψ (p)
) �= pattern

(

Ψ (pf )[Rf �→Rr ]
)

.

Also here, there exists an environment which distinguishes between an execution
of the concrete protocol and the ideal process for F2KE: the environment simply per-
forms the constant-length sequence of calculations, receptions, and transmissions
that is described in the strategy Ψ . It then translates the trace t of the execution to
a symbolic trace t using the transformation in Definition 11, except that it makes
sure that the key exchanged by the protocol and key output by the participants are
mapped to the same symbol; that is, if they are mapped to different symbols, the
one which receives the mapping second is mapped to the symbol already assigned
to the other. (Notice that the trace of the concrete execution is deducible from the
view of the environment.)

Then, the environment checks whether the pattern of t equals
pattern(Ψ (pf )[Rf �→Rr ]). If the patterns are equal, then the environments outputs
“ideal.” Otherwise, it outputs “real.”

To see that this environment is a good distinguisher between the real and the
ideal cases, we observe that: (a) If the environment interacts with protocol p,
then t is the result of strategy Ψ interacting with the p. Thus, t = Ψ (p), and
pattern(t) = pattern(Ψ (p)). (b) In contrast, if the environment interacts with the
ideal protocol for F2KE, then the key output by the participants is independent from
the simulator’s view. Thus, t results from strategy Ψ interacting with a protocol
run which is actually independent of the key output by the participants. Thus,
t = Ψ (pf )[Rf �→Rr ], and pattern(t) = pattern(Ψ (p)[Rf �→Rr ]). Thus, the fact that

pattern
(

Ψ (p)
) �= pattern

(

Ψ (pf )[Rf �→Rr ]
)

means that the environment can always distinguish the real setting from the ideal
setting.

We conclude that, if the Dolev–Yao protocol p does not satisfy Dolev–Yao key ex-
change, then there exists an environment which can distinguish the F2KE model from p.

To show the other direction, we need to provide a simulator (i.e., an adversary) S
such that no environment can tell whether it is interacting with the ideal protocol for
F2KE and S or with the concrete protocol p and the dummy adversary. The simulator S
proceeds as follows. (S is similar to the simulator used in the proof of soundness of the
symbolic mutual-authentication criterion.)

• S internally simulates the participants P, P′, and two instances of FCPKE. At the
beginning, none of these simulated participants are running.

• When the simulator receives a message (SID,P ,P ′,RID) from the functionality
F2KE (indicating that the external dummy participant P has received input from
the environment and has passed it on to F2KE), it activates the simulated participant
P with input

(SID,P ,P ′,RID).
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Fig. 9. The simulator for F2KE.

• Likewise, when simulated participant P ′′ produces a message to send on its com-
munication tape, the simulator sends this message to the environment.

• When the simulator receives input for the dummy adversary to send to participant
P ′′, it sends that input to the copy P ′′ that it is simulating internally.

• When simulated participant P ′′ produces a message to send an instance of FCPKE,
the simulator forwards this to the appropriate instance of FCPKE that it is simulating.
When FCPKE generates on output to one of the parties, the simulator forwards the
output value to the corresponding internally simulated adversary.

• When the simulated participant P ′′ produces local output 〈“Finished”, sid, v〉,
the simulator sends the message (Session-key, sid,P ′′, v) to the functional-
ity F2KE.

It remains to show that the simulation is valid, namely that any environment distin-
guishes between the above-simulated execution and a real execution only with negligi-
ble probability. We first assert two facts. The first fact essentially shows that the envi-
ronments view of an execution of the protocol is distributed identically to its view of the
ideal interaction, as long as the traces of the two executions translate to symbolic traces
whose public patterns are identical. This means that the only way for an environment
to distinguish between the protocol execution and the ideal process is to make sure that
the pattern of the symbolic trace generated from its interaction is different in the two
cases. The second fact states that, for any environment, the random variable describing
the public pattern of the symbolic trace generated from its concrete trace is distributed
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identically in the protocol execution and the ideal process. (Both facts hold only under
the condition that the mapping from concrete to symbolic traces does not fail. However,
the mapping lemma guarantees that failure occurs only with negligible probability.)

Let t be the random variable describing the trace of the execution of p, and let t be
the random variable describing symbolic trace obtained from t by applying the map-
ping from the Mapping Lemma (Lemma 12). Similarly, let tF2KE be the random variable
describing the trace of the interaction of Z with F2KE and S, and let tF2KE be the ran-
dom variable describing the symbolic trace obtained from tF2KE by applying the same
mapping. (tF2KE is a distribution on traces which are not necessarily traces of simple
protocols. Still, we can apply the mapping to such traces.) Then, we have:

Claim 20. Fix an environment Z and a value k of the security parameter. Let τ ′ be
some valid trace of the symbolic protocol p, and let τ = pattern(τ ′) be the public-key
pattern of τ ′. Then, the following two distributions are identical:

• The view of Z from an execution of p, given that pattern(t) = τ .
• The view of Z from an ideal interaction with F2KE and S, given that

pattern(tF2KE ) = τ .

Proof. Whenever τ ′ is a valid trace of p, the value of τ completely determines the view
of Z in both executions, up to the choices of the nonces and the ciphertexts. However,
by the definition of simple protocols we have that in both the concrete execution and the
symbolic executions the distribution of each new nonce and ciphertext is independent
of all other choices made in the system. (Here we use the fact that ciphertexts generated
by FCPKE are statistically independent of the plaintext.) �

Claim 21. Fix an environment Z. Then, conditioned on the events that t and tF2KE are
valid traces of p, we have that pattern(t) is distributed identically to pattern(tF2KE ).

Proof. Assume for simplicity that Z is deterministic. (No generality is lost here since
Z gets arbitrary, non-uniform input.) Now, the only randomness in the interaction with
the protocol p comes from p; specifically it comes from the generation of nonces by
parties and the generation of ciphertexts by FCPKE. Let tr denote the concrete UC trace
of executing protocol p when the protocol’s randomness is fixed to value r .

Similarly, the only randomness in the ideal process comes from the simulator S and

F2KE. Let tF2KE
r,s denote the concrete UC trace resulting from running Z in the ideal process

with F2KE and S, with randomness r for S and randomness s for F2KE. Here we make
use of the fact that S essentially simulates a full execution of the protocol: We require
that the use of r by S is identical to the use of r by the protocol, in the sense that each
value r results in the same values for the nonces and ciphertext in the ideal and real
traces.

We claim that, for any r and s, pattern(tF2KE
r,s ) = pattern(tr ). (Note that this in partic-

ular means that pattern(tF2KE
r,s ) does not depend on s.) To see this, we observe that the

difference between tF2KE
r,s and tr is that in tr the outputs of the parties are the outputs of
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the protocol p, whereas in tF2KE
r,s the outputs of the parties are generated by F2KE. These

outputs contain the identities of the peers and the session key.
We first note that, in both cases, the identities in the outputs are the true identities of

the peers. In tF2KE
r,s this fact is guaranteed by the definition of F2KE, whereas in tr this fact

holds since tr is a valid trace of the symbolic protocol p, and p satisfies the symbolic
agreement property for key exchange.

Now, assume for contradiction that pattern(tF2KE
r,s ) �= pattern(tr ) for some r and s, and

let τ be the longest joint prefix of the two public patterns. Let m denote the next ele-

ment in pattern(tr ), and let mF2KE denote the next element in pattern(tF2KE
r,s ). Then, we

have that m �= mF2KE , and both m and mF2KE are the public patterns of either a message
or an output generated by one of the parties. We show that this contradicts the sym-
bolic real-or-random criterion for p: Let Ψ be the adversary strategy that corresponds
to the trace τ . That is, Ψ is the (unique) strategy such that τ = Ψ (p). Then, (τ,m) =
pattern(Ψ (p)). However, we have that (τ,mF2KE ) = pattern(tF2KE

r,s ), and it follows from

the definition of the ideal process (i.e., F2KE and the simulator S) that pattern(tF2KE
r,s ) =

pattern(Ψ (pf )[Rf →Rr ]). Consequently, pattern(Ψ (p)) �= pattern(Ψ (pf )[Rf →Rr ]), in
contradiction to the symbolic real-or-random property of p. �

We prove the validity of the simulation based on the above two claims and the map-
ping lemma. Let t be the distribution over traces of the interaction of Z in the real setting.
From the Mapping Lemma, t is overwhelmingly likely (i.e., the probability is negligi-
bly less than 1) to map to a valid symbolic trace t. In this case, Claim 21 above asserts
that the probability distribution of pattern(t) is distributed identically to pattern(tF2KE ).
Claim 20 then implies that the view of the environment is distributed identically to
the view the environment would have seen had it been interacting with the functional-
ity/simulator. Thus, it is only with negligible probability that the view of the environ-
ment will depend on whether the environment is interacting with the protocol execution
or with the ideal process. �

8. Automated Analysis of Needham–Schroeder–Lowe

In this section, we report how an automated protocol verification tool was used to verify
that the Needham–Schroeder–Lowe protocol (version 2 of Sect. 4.4.2) satisfies our new
symbolic key-exchange property. In particular, we note that our definition of “real-or-
random” secrecy is very close to Blanchet’s notion of “strong secrecy” [12]. Intuitively,
a protocol maintains “strong secrecy” of a value if a change to the value is undetectable
to any “observational context” (i.e., adversary strategy). Thus, a key-exchange protocol
P maintains real-or-random secrecy for the session key if and only if a protocol P ′
maintains strong secrecy, where P ′ is derived by adding to P a final event where a
candidate (real or random) session key is released to the adversary.

Thus, real-or-random secrecy of Needham–Schroeder–Lowe version 1 (NSLv1) is
verified by the ProVerif [13] specification of Fig. 10.10 (This same specification veri-

10 This specification was derived from the pineedham− corr− orig specification distributed with
the ProVerif source.
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(***** Header *******)
free c.

(*Session key*)
private free sesk.

(* Public key cryptography *)
fun pk/1.
fun encrypt/2.
reduc decrypt(encrypt(x,pk(y)),y) = x.

(* Host *)
fun host/1.

(* Secrecy assumptions *)
not skA.
not skB.

(* Prove real-or-random and agreement *)
noninterf sesk among (Na, Naa).
query ev:Bkey(x) ==> ev:Akey(x).

(******* Process specification *******)
let processA =

(* Message 1 *)
out(c, encrypt((sesk, hostA), pkB));
in(c, m);
let (=sesk, NX2, =hostB) = decrypt(m, skA) in
(* OK *)
event Akey(sesk);
out(c, encrypt(NX2, pkB));
out(c, Na).

let processB =
(* Message 1 *)
in(c, m);
let (NY, =hostA) = decrypt(m, skB) in
(* Message 2 *)
new Nb;
out(c, encrypt((NY, Nb, hostB), pkA));
(* Message 3 *)
in(c, m3);
if Nb = decrypt(m3, skB) then
(* OK *)
event Bkey(NY);
out(c, Na).

process new skA; let pkA = pk(skA) in
new skB; let pkB = pk(skB) in
let hostA = host(skA) in
let hostB = host(skB) in
new Na;
new Naa;
(processA | processB)

Fig. 10. A ProVerif specification to verify NSLv1.
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(***** Header *******)
free c.

(* Public key cryptography *)
fun pk/1.
fun encrypt/2.
reduc decrypt(encrypt(x,pk(y)),y) = x.

(* Host *)
fun host/1.
private reduc getkey(host(x)) = x.

(* Secrecy assumptions *)
not skA.
not skB.

(* Session key *)
private free sesk.

(* Prove real-or-random and agreement *)
noninterf sesk among (Nb, Nbb).
query ev:Bkey(x) ==> ev:Akey(x).

(******* Process specification *******)
let processA =

(* Message 1 *)
new Na;
out(c, encrypt((Na, hostA), pkB));
in(c, m);
let (=Na, NX2, =hostB) = decrypt(m, skA) in
(* OK *)
event Akey(NX2);
out(c, encrypt(NX2, pkB));
out(c, Nb).

let processB =
(* Message 1 *)
in(c, m);
let (NY, =hostA) = decrypt(m, skB) in
(* Message 2 *)
out(c, encrypt((NY, sesk, hostB), pkA));
(* Message 3 *)
in(c, m3);
if sesk = decrypt(m3, skB) then
(* OK *)
event Bkey(sesk);
out(c, Nb).

process new skA; let pkA = pk(skA) in
new skB; let pkB = pk(skB) in
let hostA = host(skA) in
let hostB = host(skB) in
new Nb;
new Nbb;
(processA | processB)

Fig. 11. A ProVerif specification to verify NSLv2.
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fies key-agreement as well.) By way of contrast, we present the analogous specification
for Needham–Schroeder–Lowe version 2 (NSLv2) in Fig. 11. This protocol does not
enforce real-or-random security for the session key, and so the verification of this spec-
ification fails as expected.

Each specification has two parts: a header and a process specification. Each header
specifies a channel (c) and a session key (sesk) as free variables; a definition of asym-
metric encryption; a function (host) from keys to names; and a number of goals:

• Secrecy of the private keys,
• Real-or-random secrecy of the session key, and
• Key agreement.

The form of the last two goals requires some explanation, but first we describe the
process specification. The process will consist of two communicating sub-processes:
one for the initiator and one for the responder. These sub-processes exactly execute the
Needham–Schroeder–Lowe protocol with two additions. First, the sub-processes will
signal their successful completion and value for session key via the keyA and keyB.
Second, they will output a fixed constant (either Na or Nb) which may or may not be
the session key. (The actual process specification initiates these two sub-processes and
runs them in parallel.)

Having described the process specification, we can describe how the security goals
are actually phrased. The real-or-random secrecy goal is phrased as a noninterference
property: that the behavior of no context (adversarial strategy) depends on the value of
the secret key. In particular, the behavior of no adversary strategy will change when the
value of the session key is changed from the constant output at the end of the protocol
to a different constant (either Naa or Nbb).

The key-agreement specification, on the other hand, is phrased as an implication: if
the responder outputs a key, then the initiator has already output the same key. Because
each participant can output a key exactly once, this is actually a stronger form of our
key-agreement property.
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Appendix A. The UC Framework

We summarize of the UC security framework [18]. For brevity and simplicity, we de-
scribe a somewhat restricted variant; Still, the summary is intended to provide sufficient
detail for verifying the treatment in this work. The description below is rather terse,
building on the high-level sketch of Sect. 2.1. Further elaboration and justification of
definitional choices appears in [18].
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A.1. The Basic Model

We first present the underlying model of computation, which provides the basic me-
chanics on top of which the notion of protocol security is defined.

Interactive Turing Machines (ITMs) The basic computing element is an Interactive
Turing Machine (ITM), which represents a program written for a distributed system. The
UC framework uses a formalism of an ITM that augments the original formalism of [30,
37] with some additional structure, for the purpose of capturing protocols in multiparty,
multi-instance systems. Specifically, an ITM is a Turing machine with the following
additional constructs. It has three special tapes that represent three different types of
information coming from external sources: The input tape represents information com-
ing from the “calling protocol”; the communication tape represents information coming
from other parties over communication links; the subroutine output tape represents in-
formation coming from “subroutine protocols” in a trusted way. In addition, an ITM
has a special identity tape which cannot be written on by the ITM transition function, or
program. The contents of the identity tape is interpreted as three values: The program of
the ITM, represented in some canonical form, A session-identifier (SID), representing a
specific protocol session, and a party identifier (PID), representing an identity of a party
within that session. (The party identifier typically corresponds to a “party” or a physical
computer and is used in multiple sessions.) Finally, to the standard ITM syntax we add
the ability to perform an external write instruction. The semantics of this instruction are
defined below.

Systems of ITMs Running programs in a distributed system is captured as follows. An
ITM instance (ITI) μ = (M, ID) is an ITM M (namely, a program) along with a string
ID = (SID,PID), called the identity of μ. An ITI represents a running instance of the
program M where the identity ID is written on its identity tape. A system of ITMs is
a pair (M,C), where M is an ITM and C : {0,1}∗ → {0,1}∗ is a control function that
determines the effect of the external write commands.

An execution of a system (M,C) of ITMs, on input x, consists of a sequence of
activations of ITIs. Initially, the system consists of a single ITI with program M , some
fixed identity (say, ID = (0,0)), and x written on the input tape. This ITI, called the
initial ITI, is then activated.

In each activation of an ITI, the active ITI runs its program. The execution ends when
the initial ITI halts. The output of an execution is the output of the initial ITI.

It remains to specify the effect of the external-write operation. This operation spec-
ifies a target ITI (namely, program and identity), a tape out of {input, communication,
subroutine output}, and data to be written. When an external-write operation is carried
out, the control function C is applied to the sequence of external write requests in the
execution so far. Then:11

11 A more formal description in terms of sequences of configurations can be extracted from this descrip-
tion. See [18]. Also, in [18] the semantics of an external write operation are somewhat more complex, for the
purpose of obtaining additional expressive power. The restricted semantics presented here are sufficient for
our purposes. (The main difference is that in [18] the adversary is allowed to create new ITIs by delivering
messages to them. This allows capturing those natural situations where new parties are “prompted to join”
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1. If C returns 1, then:
(a) If an ITI with the same identity as the target ITI does not exist in the system,

then a new ITI with the specified program and identity is added to the system.
(b) The specified data is written to the specified tape of the (unique) ITI whose

identity agrees with the identity in the external write command, along with the
identity of the writing ITI.

In either case, the active ITI becomes inactive, and the target ITI is activated.
2. If C returns 0, or the active ITI halts, then the initial ITI is activated.
3. If C returns another value, then this value is interpreted as a description of an ITM

M . The effect is as in Case 1, except that the program of the target ITI is taken to
be M rather than the value specified in the external write command.

Subroutines An ITI μ is a subroutine of ITI μ′ in an execution if μ wrote to the input
tape of μ or μ′ wrote to the subroutine output tape of μ′.

Protocols and Protocol Instances A protocol is formalized as a single ITM that rep-
resents the programs to be run by all the intended participants. (When the protocol
specifies several different roles, the ITM describes the programs for all the roles. The
role is then given as part of the input.) An instance (or session) of a protocol p with
session identifier SID, within a system of ITMs, is the set of ITIs that run the program
p and whose session identifier is SID.

Polynomial-Time ITMs We consider ITMs that run in probabilistic polynomial time
(PPT), where PPT is defined as follows: An ITM M is PPT if there exists a constant
c > 0 such that, for any ITI μ with program M , at any point during its run, and for any
contents of the random tape, the overall number of steps taken is at most nc , where n

is the overall number of bits written to the input tape of μ minus the overall number
of bits written by μ to input tapes of other ITIs. (The purpose of this definition is to
have syntactically verifiable conditions which guarantee that running a system of ITMs
does not consume “super-polynomial resources.” In particular, it can be seen that an
execution of a system of ITMs, where the initial ITM is PPT, and the control function
is polytime computable, can be simulated on a standard PPT Turing machine.)

A.2. Defining Security of Protocols

Recall that protocols that securely carry out a given task are defined via comparison
with an ideal process for carrying out the task. Formalizing this notion is done in several
steps, as follows. First, we define the process of executing a protocol in the presence of
an adversarial environment. We then define what it means for one protocol to “emulate”
another protocol. Next, we define the “ideal process” for carrying out the task in terms
of a special idealized protocol. A protocol is said to securely carry out the task if it
emulates the idealized protocol for that task.

from within the protocol instance, rather than being invoked by other protocols. However, it also allows a
situation where ITIs receive inputs and subroutine outputs from ITIs whose code is unknown and untrusted;
this requires special model provisions such as letting the target ITI know the code of the writing ITI in some
cases.)
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The Model for Protocol Execution The model for executing a protocol p is parame-
terized by a security parameter k ∈ N and three ITMs: the ITM p, an ITM A called the
adversary, which represents the adversarial activity against a single instance of p, and an
ITM Z, called the environment, which represents the rest of the system. Specifically, to
run protocol p on input x, execute the system of ITMs (Z,CA,p). It remains to describe
the control function CA,p, namely the external write capabilities of each ITI.

In essence, the definition of C captures a model where a single instance of p interacts
with Z and A. Z controls the inputs to parties and reads the outputs. All communica-
tion (via the communication tapes) must pass through A. In addition, the parties of p
can create subroutine ITIs, can write to the input tapes of the subroutines, and receive
outputs from the subroutine on the subroutine output tapes of the calling parties. More
precisely:

External writes by the environment: The environment can write only to the input tapes
of other ITIs. The program of the first ITI invoked by the environment is set (by
the control function) to be the program of the adversary A. The programs of all the
other ITIs that the environment writes to are set to be the protocol p.12 In addition,
the session IDs of all the ITIs invoked by the environment (other than the adversary)
must be the same. That is, let s denote the SID of the first ITI to be invoked with
program p. Then all the remaining ITIs invoked by the environment must have SID
s. Consequently, all the ITIs invoked by the environment, except for the adversary,
belong to the same instance of p.

External writes by the adversary: The adversary can write only to the communication
tapes of ITIs. In addition, it is not allowed to create new ITIs; namely, if the adversary
performs an external write request with nonexisting target ITI, the control function
returns 0. (As mentioned above, this restriction is not imposed in [18], resulting in a
more expressive but somewhat more complex model.)

External writes by other ITIs: An ITI μ other than the environment and the adversary
can write only to the subroutine output tapes of ITIs that have previously written to
the input tape of μ, to the input tapes of ITIs that μ has invoked, and to the input tapes
of ITIs with the same session ID as μ. In addition, it can write to the communication
tape of the adversary. (Writing to input tapes of ITIs is the same session ID will
become useful when defining ideal protocols.)

We also use the convention that creation of a new ITI must be done by writing to the
input tape of that ITI; the data written in this activation must start with 1k , where k is
the security parameter.

Let EXECp,A,Z(k, z) denote the output distribution of environment Z when interacting
with parties running protocol p on security parameter k and input z. Let EXECp,A,Z

denote the ensemble {EXECp,A,Z(k, z)}k∈N ,z∈{0,1}∗ .

Protocol Emulation Informally, we say that a protocol p UC-emulates protocol p′ if
for any adversary A, there exists an adversary A′ such that no environment Z, on any

12 The reason for having the control function (rather than the environment) determine the program p is to
allow a situation where the program p is changed into another program p′ without having the environment
being necessarily aware of the change. This detail is necessary for the definition of protocol emulation to
make sense.
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input, can tell with nonnegligible probability whether it is interacting with S and parties
running p, or it is interacting with A′ and parties running p′. This means that, from the
point of view of the environment, running protocol p is “just as good” as interacting
with p′. This notion is formalized as follows. A distribution ensemble is called binary if
it consists of distributions over {0,1}. We have:

Definition 22. Two binary distribution ensembles {X(k, a)}k∈N ,a∈{0,1}∗ and
{Y(k, a)}k∈N ,a∈{0,1}∗ are called indistinguishable (written X ≈ Y ) if for any c, d ∈ N ,

there exists k0 ∈ N such that for all k > k0 and for all a ∈ {0,1}kd
, we have

∣

∣Pr
(

X(k, a) = 1
) − Pr

(

Y(k, a) = 1
)∣

∣ < k−c.

Definition 23 (Protocol Emulation). Let p and p′ be protocols. We say that p UC-
emulates p′ if for any adversary A, there exists an adversary A′ such that for any envi-
ronment Z that outputs a value in {0,1}, we have

EXECp′,A′,Z ≈ EXECp,A,Z.

This work makes use of the following simplified formulation of UC-emulation. Let
the dummy adversary D be the adversary that merely reports to the environment all the
messages sent by the parties and follows the instructions of the environment regarding
which messages to deliver to parties. Then, it is enough to prove security with respect
to the dummy adversary. That is:

Definition 24 (Protocol Emulation with the Dummy Adversary). Let p and p′ be pro-
tocols. We say that p UC-emulates p′ with the dummy adversary if there exists an adver-
sary A′ such that for any environment Z that outputs a value in {0,1}, we have

EXECp′,A′,Z ≈ EXECp,D,Z.

Claim 25 [18]. Protocol p UC-emulates protocol p′ iff p UC-emulates p′ with respect
to the dummy adversary.

Ideal Functionalities and Ideal Protocols A key ingredient in the ideal process for a
given task is the ideal functionality that captures the desired behavior, or in other words,
the specification of that task. The ideal functionality is modeled as an ITM (representing
a “trusted party”) that interacts with the parties and the adversary.

For convenience, the process for realizing an ideal functionality is represented as a
special type of protocol, called an ideal protocol. In the ideal protocol IF for ideal func-
tionality F all parties simply hand their inputs to an ITI with program F, session ID that
is equal to the local session ID, and party ID set to some fixed value, say ⊥. Whenever a
party in IF receives a value from F on its subroutine output tape, it immediately copies
this value to the subroutine output tape of the ITI that invoked it. We call the parties of
the ideal protocol dummy parties. The adversary interacting with the ideal protocols is
called the simulator and denoted S.

Definition 26 (Realizing Functionalities). Let p be a protocol, and let F be an ideal
functionality. We say that p UC-realizes F if p UC-emulates IF, the ideal protocol for F.
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A.3. Composition Theorems

Universal Composition Let r be a protocol that uses one or more instances of some
protocol f as a subroutine, and let p be a protocol that UC-emulates f. The composed
protocol rp/f is constructed by modifying the program of r so that calls to f are replaced
by calls to p. Similarly, subroutine outputs coming from p are treated as subroutine out-
puts coming from f. The universal composition theorem says that protocol rp/f behaves
essentially the same as the original protocol r. That is:

Theorem 27 (Universal Composition [18]). Let p, f, r be protocols such that p UC-
emulates f. Then the protocol rp/f UC-emulates r. In particular, if r UC-realizes an ideal
functionality F, then so does rp/f.

Universal Composition with Joint State We start with a motivational discussion. Infor-
mally speaking, the UC theorem implies that if a protocol p UC-realizes some function-
ality F, then multiple concurrent instances of p UC-realize multiple concurrent instances
of F. Consequently, instead of directly analyzing the security of the multi-instance sys-
tem, it suffices to analyze the security of a single instance and deduce the security of the
multi-instance system from the UC theorem.

However this type of analysis is valid only when the instances of p have mutually
disjoint local states and local randomness. That is, all the parties of an instance of r, and
their subroutines, must be disjoint from the parties and sub-parties of other instances.
In contrast, in many cases we have a system where multiple concurrent instances of
some protocol r use the same instance of an underlying subroutine, p. In the case of this
paper, the relevant example is that of multiple instances of a pairwise key-exchange or
mutual-authentication protocols, where all instances use the same instance of a long-
term authentication mechanism (say, digital signatures, public-key encryption, or a pre-
shared key). In these cases it is impossible to “decompose” the system into protocol
instances with disjoint local states; thus the UC theorem cannot be directly applied to
deduce the security of the system from the security of a single instance.

The Universal Composition with Joint State (JUC) theorem [22] provides a means to
deduce the security of the multi-instance case from the security of a single instance, even
when multiple instances use some joint state or a joint subroutine. Informally, using this
theorem, we can deduce the following. Let r be a protocol that uses multiple instances of
some protocol p as subroutine, s be a protocol that UC-realizes, within a single instance,
multiple instances of p. Then the variant of r that replaces all the multiple instances of
p with a single instance of s UC-emulates r.

For a more rigorous treatment, we restrict ourselves to the case of realizing function-
alities, rather than general emulation. Given an ideal functionality F, let ̂F, the multi-
session extension of F, be the ideal functionality that represents multiple independent
instances of F within a single instance. That is, ̂F expects to receive inputs of the form
(sid, ssid, v), where sid is the SID of ̂F, and ssid (for “sub-session identifier”) is an ar-
bitrary string. Upon receiving such an input, ̂F internally invokes a instance of F whose
SID is ssid and forwards the input (ssid, v) to that instance. (If such an instance already
exists, then ̂F simply forwards (ssid, v) to it.) When an internal instance of F generates
output (ssid, v) to some party, ̂F generates output (sid, ssid, v) to the same party.
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Now, the universal composition with joint state operation, JUC, is defined as follows.
We start with a protocol R that uses as subroutines multiple instances of the ideal pro-
tocol IF, and a protocol p that UC-realizes ̂F. (Using the above terminology, protocol R
represents the multi-instance version of protocol r.) Then the composed protocol R[p/F]
is identical to R with the exception that, at the onset of the computation, R[p/F] instructs
each party to invoke a instance of p with some arbitrary sid, say a fixed value. Then,
each call (ssid, v) to the instance ssid of F is replaced with an input (sid, ssid, v) to the
instance sid of r, and each output (sid, ssid, v) of the instance sid of r is treated as a
value v received from instance ssid of F. Then, the JUC theorem states that protocol
R[p/F] UC-emulates protocol R. That is:

Theorem 28 [22]. Let F be an ideal functionality, let R be a protocol, and let p be
a protocol that UC-realizes ̂F. Then the composed protocol R[p/F] UC-emulates proto-
col p.

Appendix B. From Simple Protocols to Fully Specified Ones

We provide further details regarding how to instantiate the public-key encryption mod-
ule used by simple protocols. (See sketch in Sect. 2.2.) Section B.1 describes how to
realize multiple instance of FCPKE (having the same decryptor) using a single instance
of FCPKE. Section B.2 describes how to realize FCPKE given ideal certification and a
public-key encryption scheme that is secure against adaptive chosen ciphertext attacks.

B.1. Realizing Multiple Instances of FCPKE Using a Single Instance

We present a simple protocol that realizes multiple instances of FCPKE that have the
same receiver, using only a single instance of FCPKE. This protocol, combined with the
JUC theorem and the results of Sect. B.2, provide a straightforward and efficient way
for substantiating the use of FCPKE in simple protocols.

The Multi-session Extension of FCPKE The multi-session extension of FCPKE, denoted
̂FCPKE, is obtained from FCPKE via the transformation described in Appendix A. For
clarity, we present an explicit description of ̂FCPKE in Fig. 12. (For simplicity, we assume
that all the sub-sessions have the same domain M , formal encryption function E, and
formal decryption function D.)

Realizing ̂FCPKE We show how to realize functionality ̂FCPKE using a single instance
of FCPKE. Specifically, we describe a simple protocol that allows each party to maintain
a single copy of the decryption algorithm for all the decryption requests made to ̂FCPKE.
The protocol, denoted ESI (for Encrypt the Session Identifier), is presented in Fig. 13.
The idea is to have the parties encrypt the sub-session identifier SSID together with
the message. The decryptor then verifies that the decrypted text contains the correct
sub-session identifier.

Claim 29. Protocol ESI UC-realizes ̂FCPKE.
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Functionality ̂FCPKE

̂FCPKE proceeds as follows, when parameterized by message domain M , a func-
tion E with domain M and range {0,1}∗, and function D of domain {0,1}∗ and
range M ∪ error. The session identifier SID is assumed to consist of a pair
SID = (PIDowner,SSID,SID′), where PIDowner is the identity of a special party, called
the owner of this instance, and SSID is a sub-session identifier.

Encryption: Upon receiving a value (Encrypt,SID,m) from a party P, where SID =
(PIDowner,SSID,SID′), proceed as follows:

1. If this is the first encryption request made by P, then notify the adversary
that P made an encryption request.

2. If m /∈ M , then return an error message to P.
3. If m ∈ M , then:

• If PIDowner is corrupted, then let ciphertext ← Ek(SSID,m).
• Otherwise, let ciphertext ← Ek(SSID,1|m|).

Record the tuple (m, c,SSID) and return c.

Decryption: Upon receiving from PIDowner a value (Decrypt,SID, c) with SID =
(PIDowner,SSID,SID′), proceed as follows. (If the input is received from another
party, then return an error message.)

1. If this is the first decryption request, then notify the adversary that P made
an encryption request.

2. If there is a recorded tuple (c,m,SSID), then hand m to PIDowner. (If there is
more than one value m that corresponds to c and SSID, then output an error
message to PIDowner.)

3. Otherwise, compute m = D(c,SSID) and hand m to PIDowner.

Fig. 12. The multisession extension of FCPKE.

Protocol ESI

Encryption: When activated with input (Encrypt,SID,m), where SID =
(PIDowner,SSID,SID′), call FCPKE with input (Encrypt,SID′′ = (PIDowner,SID′),
m′ = (SSID,m)), and output the returned ciphertext c.

Decryption: When activated within party PIDowner with input (Decrypt,SID, c),
with SID = (PIDowner,SSID,SID′), call FCPKE with input (decrypt,SID′′ =
(PIDowner,SID′), c). If the returned plaintext is of the form (SSID,m), then out-
put m. Else output an error message ⊥.

Fig. 13. The protocol for realizing ̂FCPKE using a single instance of FCPKE.
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Proof. Let A be an adversary that interacts with protocol ESI. We construct an adver-
sary S so that no environment can tell whether it is interacting with S and the ideal
protocol for ̂FCPKE or with A and ESI. In fact, notice that we can safely set S to be iden-
tical to A. In particular, the only interaction between A and ESI is when FCPKE notifies A
at the first encryption/decryption request by each party. Similarly, the only interaction
between S and ̂FCPKE is when ̂FCPKE notifies S at the first encryption/decryption request
by each party.

It remains to define the formal encryption and decryption algorithms E′ and D′ in
̂FCPKE. These are determined as follows. Given input (SSID,1n), E′ runs E(1n+|SSID|)
and outputs the result. (If the input is of the form (SSID,m) for m /∈ 1∗, then E is given
input (SSID,m).) Given input (SSID, c), D′ runs D(c). If the obtained plaintext is of the
form (SSID,m), then D′ outputs m. Else, D′ outputs ⊥.

Let Z be an environment (not necessarily polynomial time). It can be verified that the
view of Z from an interaction with an adversary A and the ideal protocol for ̂FCPKE (with
E′ and D′) is identical to its view from an interaction with A and ESI (which uses FCPKE

with E and D). �

B.2. Realizing FCPKE Using Concrete Encryption

We show how to realize FCPKE given the plain, unauthenticated public-key functional-
ity FPKE, and a registration functionality FREG. The functionality is given in Fig. 14.
(Our formulation of FPKE is the same as functionality FPKE from [18], except that here
the formal encryption function E is required to be well-spread, namely to have super-
logarithmic min-entropy. See more discussion in Sect. 4.1.) The treatment here closely
mimics the treatment in [20] of realizing certification given signature schemes and a
registration service.

The primary difference between FPKE and FCPKE is that in FCPKE there are no encryp-
tion keys; instead, messages are encrypted directly to the identity of the recipient. (In
other words, FCPKE provides ideal binding between a public key and its “owner.”) In
contrast, FPKE does not provide any binding between the public key and the identity of
the intended decryptor. In particular, there is no security guarantee regarding messages
that were encrypted with public keys other that the key given to the legitimate decryptor.

Recall that previous formulations of FPKE could be realized in a simple way (with
respect to nonadaptive party corruptions) given any CCA-secure encryption scheme [18,
23]. This remains true for this formulation. Let S = (G,E,D) be a public-key encryption
scheme. Then the protocol πS (given in [23]) is defined as follows:

• When activated within some Pi and with input (KeyGen, id), run the algorithm G,
output the encryption key e, and record the decryption key d.

• When activated within some party Pj and with input (Encrypt, id,e′,m), return
E(e′,m, r) for a randomly chosen r .

• When activated within some party Pj and with input (Decrypt, id, c), return
D(d ′, c).

Theorem 30. Let S = (G,E,D) be a public-key encryption scheme. Let E′(r) =
E(e,0, r) and D′(c) = D(d, c), where the pair (e, d) is drawn randomly from
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Functionality FPKE

FPKE proceeds as follows, when parameterized by message domain ensemble M =
{Mk}k∈N , a family of formal encryption algorithms {Ee}e, and a family of formal
decryption algorithms {Dd}d for unregistered ciphertexts.

Key Generation: Upon receiving a value (KeyGen,SID) from some party P , verify
that SID = (P,SID′) for some SID′. If not, then ignore the input. Else:

1. Hand (KeyGen,SID) to the adversary.
2. Receive a value e from the adversary.
3. Record e and output e to P .

Encryption: Upon receiving a value (Encrypt,SID,e′,m) from a party P, where
SID = (PIDowner,SID′), proceed as follows:

1. If m /∈ M , then return an error message to P.
2. If m ∈ M , then:

• If PIDowner is corrupted, or e′ �= e, then let ciphertext ← Ek(m).
• Otherwise, let ciphertext ← Ek(1|m|).

Record the pair (m, c) and return c.

Decryption: Upon receiving a value (Decrypt,SID, c), with SID = (PIDowner,SID′),
from PIDowner, proceed as follows. (If the input is received from another party, then
ignore.)

1. If there is a recorded pair (c,m), then hand m to PIDowner. (If there is more
than one value m that corresponds to c, then unique decryption is not possi-
ble. In this case, output an error message to PIDowner.)

2. Otherwise, compute m = D(c) and hand m to PIDowner.

Fig. 14. The public-key encryption functionality, FPKE .

KeyGen(1k). Let FE′,D′
PKE be FPKE parameterized by encryption algorithm E′ and de-

cryption algorithm D′. Then the protocol πS UC-realizes FE′,D
PKE iff S is CCA-secure.

Furthermore, if S is CCA-secure, then E′ is well spread.

Here we show how to realize FCPKE given FPKE, so long as one has access to an
additional, simple “service” that ties public values to principals. Such a “registration”
functionality, FREG, is given in Fig. 15. Our protocol, PRENC, for realizing FCPKE given
ideal access to both FPKE and FREG, is given in Fig. 16. We show:

Claim 31. Protocol PRENC UC-realizes FCPKE, when given ideal access to FPKE and
FREG.

Proof. The proof proceeds along the lines of the proof in [20] for the case of con-
structing a certification service from signature schemes and a registration service. Let
A be an adversary that interacts with parties running PRENC. We construct a simulator S
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Functionality FREG

FREG proceeds as follows:

• Upon receiving the first message (Register,SID, v) from party P , send
(Registering,SID, v) to the adversary. Upon receiving (ok) from the adversary,
and if this is the first message from P , then record the pair (P, v).

• Upon receiving the message (Retrieve,PID) from a party P ′, send message
(Retrieve,PID) to the adversary and wait for the adversary to return a message
ok. Then, if there is a recorded pair (PID, v), output (Retrieve,PID, v) to P ′.
Otherwise, if there is no recorded pair, return (Retrieve,PID,⊥).

Fig. 15. The registration functionality, FREG.

Protocol PRENC

Given as parameters the families {Ee}e and {Dd}d of the functionality it is to realize,
protocol PRENC acts as follows:

Initialization: At the first activation an instance of FPKE is instanti-
ated with the families {Ee}e and {Dd}d. Party PIDowner sends message
(KeyGen, (PIDowner,SIDowner)) to FPKE, gets message e. Next, PIDowner sends
(Register, (PIDowner,SIDowner),e) to FREG.

Encryption: When activated with message (Encrypt, (SID,PID),m), party P does:

• First, P checks whether it has a recorded public key e. If not, then P sends
(Retrieve,SID) to FREG and waits. It receives a message (Retrieve,SID, e)

and checks that e �= ⊥. If it is, return ⊥. Else, record the public key e.
• If e �= ⊥, then send (Encrypt, (SID,PID), e,m) to FPKE. Receive value c from

FPKE and output it. Also, record the pair (m, c).

Decryption: Upon being activated with message (Decrypt,SID, c) where SID =
(P, s), party P sends (Decrypt,SID, c) to FPKE. It waits for and outputs the re-
sponse.

Fig. 16. The registered encryption protocol, PRENC.

such that, for any environment Z, the view of an interaction with the simulator S and
FCPKE, is distributed identically to the view of an interaction with the adversary A and
protocol PRENC. As usual, the simulator contains within it a copy of A, the parties, and
for each party, it simulates a copy of FPKE and FREG. All messages from Z to A and back
are forwarded. In addition, S simulates for A the interaction with A and PRENC. Here
the only such interaction happens at the initialization stage. (Recall that encryption and
decryption are done without involving the adversary.) The initialization interaction is
simulated as follows. When notified by FCPKE that some party P made the first encryp-
tion request, S simulates for A the process where P retrieves the public encryption key
from FREG. In addition, at the first notification by FCPKE (either an encryption or decryp-
tion), S simulates for A the process of registration by PIDowner. It is straightforward to
verify that the view of Z identical in the two cases. �
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