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ABSTRACT.  We study, over an arbitrary ring R, a class of right modules
intermediate between the projective and the flat content modules.  Over the
ring of rational integers these modules are the locally free abelian groups.  Over
any commutative ring they are the modules which remain torsionless under all
scalar extensions.  They each possess a certain separability property exactly
when R is left semihereditary.

We define M to be universally torsionless if the natural map M ® A -»
Hom(Ai*, A) is monic for all left modules A.  We give various equivalent con-
ditions for M to be universally torsionless, one of which is that M is a trace
module, i.e. that x e M-M*(x) for all x e M. We show the countably gen-
erated such modules are projective.

Chase showed that rings over which products of projective or flat modules
are also, respectively, projective or flat have other interesting properties and
that they are characterized by certain left ideal theoretical conditions.  We
show similar results hold when the trace or content properties are preserved
by products.

1. Introduction. We call a right module M universally torsionless (UTL)
if the natural transformation M ® A —*■ Hoxn(M*, A) is monic for all left mod-
ules A. In §2 we justify the notation by showing that over a commutative
ring, M is UTL exactly if it remains torsionless under aU (or all commutative)
extensions of the base ring.

Properties equivalent to UTL are enumerated in our basic Theorem 3.2.
We show that UTL modules coincide with the trace modules of Ohm and Rush
[11] and the flat, strict Mittag-Leffler modules of Raynaud and Gruson [8].
A projective-like characterization of a UTL module is that every homomorphism
into M with pure image is "finitely split." Thus every projective module is
UTL. The converse holds for countably generated modules. The UTL property
is preserved by arbitrary scalar extensions.
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120 G. S. GARFINKEL

§4 is devoted to studying two generalizations of locaUy tree abeUan groups
- the locally projective (LP) and the projectively separable (PS) modules. We
show PS ■* UTL => LP in general and PS = UTL (= LP) over a left semiheredi-
tary (and commutative) ring. Neither the LP nor the PS property is preserved
by scalar extensions.

Given a module property X, we call a ring right U-X if each product of
right modules with property X also has property X. Chase [6] characterized
the right ri-projective and the right II-flat rings. In §5 we study the right
Li-trace rings. Characterizations of trace modules over such rings generalize
well-known characterizations of locally free abelian groups. The left Noefherian
condition is sufficient but not necessary for a ring to be right IT-trace. A neces-
sary but probably not sufficent condition is that the ring be left coherent and
satisfy the infinite intersection property on finitely generated left ideals. The
latter condition is related to the content property studied by Ohm and Rush
in [11].

§6 deals with the relation between a collection of rings and their cartesian
product. In particular we are interested in when such rings are II-projective,
II-flat, n-trace or II-content.

Our notational conventions are as follows. AU rings have an identity. The
symbol R always denotes a ring and unless otherwise specified, all modules Af
are right unitary R-modules. Horn = Hom^- ® = ®R> M* = Hom(AÍ, R) and
map means /{-homomorphism. We call S a ring extension of R if there is (an
identity preserving) ring homomorphism from R to S.  S is then considered a
two sided R-module in the obvious manner. "Finitely generated" wiU be abbre-
viated to "f.g." Other notations and definitions wiU be introduced as needed.

I wish to take this opportunity to thank R. Keown, M. Orzech and F.
Sandomierski for stimulating conversations about topics in this paper.

2. Torsionless modules. We start by formaUy stating two nonstandard
conventions we wiU employ.

If A is a two-sided /{-module, we define R(A) to be the ring whose under-
lying abeUan group is R x A and whose multiplication is given by

(rx, axXr2, af) = (r^, r^ + a^),     rf G R, a. G A.

R(A) is caUed the trivial ring extension of R by A.
For any right /î-module Ai and left R-module A let

T = rR(M, A):M®A-+ Hom(Af, A)

be the unique map such that T(m ® a)(«) = u(m) -a for m G M, a G A and
u G M*. Bass calls Af torsionless if T(M, R) is monic and reflexive if T(M, R)
is an isomorphism.
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UNIVERSALLY TORSIONLESS AND TRACE MODULES 121

Proposition 2.1. Let M be a right R-module.  Then M ® Sis S-torsion-
less for all ring extensions S iff T(M, .4) is monomorphism for all two-sided
R-modules A.

Proof.  For each ring extension 5 of F consider the commutative diagram
(2.1.1) where 0 is induced by the natural isomorphism

r„(M ®S,S)
M® S —-► Homs(Homs(M®S,S),S)

(2.1.1) \r(M,S) t Iff
Hom(xW*, 5) <-—-Hom^fHom^M, 5), 5)

HomÄ (M, S) = Homs(M ® S, S) and the inclusion Homs Ç HomÄ and a:
Hom(M, F) -+ Hom(M, 5) is induced by F —► 5.

Suppose r(Af, A) is monic for all two-sided F-modules A. Then if 5 is any
ring extension of F, VS(M ® 5, 5) is monic since it factors the monomorphism
r(M, 5). Thus M ® 5 is 5-torsionless.

For any two-sided F-module A let 5 = FC4>. The decomposition S = R x
A yields

Hom(M, 5)'= Hom(M, F) x Hom(M, A).

Thus £ = 8TS(M ® 5, 5) is defined by linearity and

g[m ® (r, a)](u, w) = (u(m), w(m))(r, a) = (u(m)r, w(m)r + u(m)a)

for m E M, r E R, a E A, uEM*,wE Hoxn(M, A). Thus foxx EM® A,

g(xXu,w) = (0,r(xXu)).

Note 0 is always a monomorphism. Thus when M ® S is 5-torsionless, £ is monic
on M ® S and hence T(M, A) is monic on M ® A.

We shall call M universally torsionless (UTL) if r(M, A) is monic for all
left F-modules A and universally ring torsionless (URTL) if M ® S is 5-torsion-
less for all ring extensions 5 of F.  In this notation, we have just shown UTL =*
URTL.

Theorem 2.2. For a module M over a commutative ring R, the following
are equivalent.

(1) M is UTL.
(2) M is URTL.
(3) M® S is S-torsionless for all commutative ring extensions S ofR.

Proof.  For any module A, RÍA) is commutative. Thus by the proof of
Proposition 2.1 we have (3) ■* (1). Clearly (1) ■* (2) by Proposition 2.1 and (2)
■* (3) is trivial.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



122 G. S. GARFINKEL

Corollary 1.  Let S be a commutative ring extension of the commuta-
tive ring R. If M is UTL as an R-module, then Af ® S is UTL as an S-module.

Proof.    If T is a commutative ring extension of S, then (M ® S) ®s T
s Ai ® T is 7-torsionless.

Let A be the class of rings for which URTL = UTL.   We have really
proved Corollary 1 for rings in A.   We shaU show A is a very large class, but
we do not know if it includes all rings.   (In §3 we wUl prove CoroUary 1 for
arbitrary rings by a different method.)

We call a submodule P of Af pure if P ® A —* M ® A is monic for aU
left modules A and ideal pure if P fi MI = PI for all left ideals I QR.   Vari-
ous properties of purity are discussed in [4] and [12].  Those properties we
wiU be concerned with are summarized below.

Lemma 2.3.  // P is a submodule of M, then (i) => (ii) ■» (iii).
(i)  M¡P is flat.
(ii)   P is a pure submodule of M.

(iii)  P is an ideal pure submodule of M.
If M is flat, then (üi) ■* (i) and P is flat.   If each f.g. left R-module is a direct
sum of cyclics, then (iii) =* (ü).

Proof.   For each left module A consider the exact sequence

(*) Torj(M, A) -*■ Tor¿M/P, A)-+ P ® A-+ M ® A.

If M/P is flat, then TorX(M/P, A) = 0 and so P ® A —* M ® A is monic.
Thus (i) =* (ii).   Clearly (ii) ■* (iii) since (üi) is equivalent to

(m)'  P ® R/I —*■ M ® R/I is monic for aU left ideals /.
If Af is flat, then (*) shows (ü) ■* (i) and since Af and AÍ/P are flat the exact
sequence Tor2(M/P, A) —*■ Torx(P, A) -* Torx(M, A) shows P is flat.   Thus
we need to show (iii) => (ü) when Af is flat.   But in this case, each exact se-
quence 0 —■* A' —► A —> A" —► 0 of left modules induces a commutative
exact diagram

P®A'—>P®A->P®A"-*0

1,1       I   .
0-+M®A-+M®A-+M®A-*0

Hence if P is ideal pure, one can easily show that P ® A —*■ M ® A is monic
for each f.g. left module A.   But clearly the latter is equivalent to (Ii).  When
(üi)' holds, P ® A —>-Af®.4is monic for direct sums of cycUc left modules
A, thus (üi) ■» (i) if each f.g. left module is such a direct sum.

Corollary 2.   If R contains a central subring K as a K-pure sub-
module, then URTL = UTL.
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universally torsionless and trace modules 123

Proof.   For each MR and RA, M ® A —* M ® A ®K R is monic.
Hence T(xW, A) is monic if T(M, A ®K R) is monic.   Since A ®K R is a two-
sided F-module, we see by Proposition 2.1 that M is URTL iff M is UTL.

Corollary 3. If(R, +) is either torsion free or torsion, then URTL =
UTL over R.

Proof.  If (F, +) is torsion free, let

K = Z+ = {r E R: nr = ml for some n ¥= 0, m E Z}.

Since F is torsion-free, F is a central subring of F which is a localization of Z
(the rational integers). Note K is a PID and is an ideal pure F-submodule of F.
Thus by Lemma 2.3 and Corollary 2, URTL = UTL over F.

If (F, +) is torsion, let K as Z/(«) be the base ring of F. By Lemma 2.3
and Corollary 2, we need only show K n mR = mK for all m E Z. Suppose
mrEK.  Let d = gcd(m, n) with m = mxd and n = nxd. Then nxmr = nmxr =
0. Hence mr = da for some aEK.  Since gcd(mj, «) = 1, there is b EK with
a = mxb. Thus mr = mbE mK. (Actually F/ is thus even a F-direct summand
of R by [7, p. 11].)

Proposition 2.4. For AfÄ r«e following are equivalent:
(1) M is UTL.
(2) M is URTL and flat.

Proof. (1) "» (2). Suppose a: RA —* RB is monic. Consider the com-
mutative diagram

M ®aM®A-*M® B

(*) T(M, A) T(M, B)

Hom(xV*, A)-^-* HomfAf, B)

Since a* and T(M, A) axe monic, so is M ® a. Thus M is flat.  By Proposition
2.1,Mis URTL.

(2) => (1). For any RA let B = A ®z R and define a: RA —*■ RB by a(a) =
a ® I. The map ß: B —+A defined by ß(a ® r) = ra (and linearity) is an abelian
group splitting of a. Hence a and (since M is flat) M ® a axe monic. F is a
two-sided F-module, so by Proposition 2.1 r(xW, B) is monic. Thus the commuta-
tivity of (*) shows that r(xW, A) is monic. Thus M is UTL.

3.  Basic properties. We now investigate how UTL modules interact with
other left and right modules.

For ß: GR —+ MR and « a natural number let S(«) be S(«): Vxj,. . . , xn
EG,   3y:MR-+ GR with pW(x¡) = ß(xt) for i < «.
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124 G. S. garfinkel

Lemma 3.1.   For each n,  S(l) «• <5(n).

Proof.  By induction we need only show S(«) =*■ S(« + 1). Suppose
6(h) is true andXj.xn + 1 G G. Since Q(n) => 6(1), there is *px: M—*- G
with ßfxß(xn+f) = ß(xn + x). Let y i = x, - <p^(x¡). By 6(n) there is <p2: M —»•
G with ßip2ß(y^) = jSCv(.) for i < «.  An easy calculation shows <p = <Pi + ^2 ~
¥>2/fy, satisfies S(« + 1).

We caU a map 0: GR —*■ MR split if there is <p: MR —*■ GÄ with j3$? = 0,
finitely split if it satisfies 6(1) and (ideal) pure if its image is (ideal) pure. Note
finitely spUt = spUt if the image of ß is finitely generated.

Theorem 3.2.  77ie following conditions are equivalent for any right R-mod-
ule M.

(i) Af ¡s UTL.
(ii) Af is a (ideal) pure submodule of a right UTL module P.
(iii)  T(Af, A) is monic for each cyclic left R-module A.
(iv) Each mGM is a member ofM'• M*(m) where M*(m) = {u(m): m G Af*}.
(v) For each mGM, there are mx, . . . , mn G M and ux, . . . , un G M*

with m = Zm¡u¡(m).
(vi) Each ideal pure map ß: G —*■ M finitely splits.
(vii) Each epimorphism ß: G —>• Af finitely splits.

(viii) For each f.g. submodule N of M there is a f.g. free right module F
and maps a: F —> M and 0 : M —*■ F with a0 the identity on N.

(ix) For each f.g. submodule N of M there are mx, . . . , mn G M and
ux,. . . ,unGM* with x = ~Lm¡u¡(x) for x G N.

(x) For each epimorphism ß: G —► M the induced map Hom(C, j3) is
epic whenever C is f.g. and for each mGM there is an a G End(M) with a(m) =
m and the image of a is contained in a f.g. submodule of M.

Proof. We show the first nine conditions imply each other cyclicly and
then show (ix) ■> (x) =*• (vii). We omit the trivial verifications (i) =* (ii), (iv) =*
(v) and (vi) =* (vii).

(ii) ■* (iii). For each cyclic left module A consider the commutative dia-
gram

M®A->P® A

1 1
Hom(Af*, A) —> Hom(P*, A)

The upper map is monic since Af is pure in P and the right-hand map is monic
since P is UTL. Thus the left map T(Ai, A) is monic.

(iü) ■» (iv).  For m G M let / = M*(m) and let / be the composition of the
natural isomorphism M/MI —> Af ® R/I with T(Af, R/I). Clearly for x G Af and
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UNIVERSALLY TORSIONLESS AND TRACE MODULES 125

uEM*,f(x+ MI)(u) = u(x) + / and thus f(m +MI) = 0. However if (iii) holds
then / is monic and so m G MI.

(y) => (vi).  Let ß: G —► M be ideal pure and x EG. By (v) there are
mx, . . . , mn E M and uv . . . , un E M* with j3(x) = Zm¡u¡(fix). Since the
image of ß is ideal pure in M, there axe xx, . . . , xn EG with ß(x) =
^(xt)ufi(x). Define <¿>: M —*■ G by <piy) = Sx,-«,«». Clearly ßyß(x) = ß(x) and
so (vi) holds.

(vii) => (viii). Suppose ß: G —* M an epimorphism with G free.  For each
f .g. submodule N of M, there is a f .g. submodule H of G with ß(H) = N.  Thus
there is a map y: M —► G with ßyß = ß on H. Let F be any f.g. free direct sum-
mand of G containing ̂ p(N). Let a: F —*■ M be the restriction of ß to F and let
0 : M —*■ F be the composition of ¡p with the projection onto F.   It is then trivial
to verify that ad is the identity on xV.

(viii) =* (ix). If A is a f.g. submodule of M let F, a and 0 be as in (viii).
Let yx, . . . , yn be a basis of F. Then y = Zy^QO for each y EF where the
u¡$ axe the coordinate functions. Hence forx EN,

x = ad(x) = a.i^yx).6(x) = ¿Lm.u.(x)

where m¡ = a(y¡) and u¡ = v¡0.
(ix) => (i).  Let A he a left module and x = 2x;- ® a¡ where xx, . . . ,xrE

M and ax, . . . , ar E A. Let xV = SxF and choose mx, . . . , mn EM and
ux, . . . , un EM* with>> = 2m,•«,•(» for^EJV.  Letting T = T(M, /I) we see

x = Y,m.u.(x.) ®a. = IZm. ® RxYtx.)

and hence x = 0 if T(x) = 0. Thus r(Af, A) is monic for each A and so M is
UTL.

(ix) => (x).  Suppose ß: G —* M is epic and fE Hom(C, M) with C f.g.
Then f(C) is f.g. and hence there are mx, . . . , mn EM and ux, . . . , un EM*
with /(c) = 2m,xx(./(c) for cEC. Let g: C —> G be defined by #(c) = ^¿«./(c)
where (30^) = m,-. It is easy to see that ßg =f and thus Hom(C, G) —*■ Hom(C, M)
is onto.  For m EM, vie can choose mx, . . . , mnEM, ux.unEM* with
m = ErnjM^m). Let a: M —» M be defined by a(x) = "Em¡u¡ix). Clearly a has
the desired properties and hence (x) is true.

(x) "» (vii).  Suppose |3: G —► M is epic and m EM.   By (x), we can choose
a E End(M) with a(m) = m and a(M) ç A f.g. Again by (x) we can find
g: N —► G such that ßg: N —► M is the inclusion map.  Let i/j = got. Then

m = a(m) = ßg(a(m)) = ßf(m)

and the proof of the theorem is completed.
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126 G. S. GARFINKEL

The first consequence we derive from the theorem is the promised strength-
ening of Corollary 1 to Theorem 2.2.

Corollary 1.  For any UTL right R-module M and any ring extension
SofR the right S-module M ® S is UTL.

Proof. We show condition (v) is satisfied for each x = Sx, ® s, in M ®
S.  By condition (ix) there are m¡ G M and u¡ G M* with each xy. = Hm¡u¡(Xj).
Then each

u.®SG Homs(M ® S, S)   and

x =T,m. ® u.(xf)s. =Z(/m. ® l)-(u{ ® 5)(x).
The next two coroUaries are immediate consequences of (i) ■»■ (vü).

Corollary 2.  Every projective module is UTL.

Corollary 3.   Every f.g. UTL module is projective.

Corollary 4.  Every f.g. pure submodule of a UTL module is a projective
direct summand.

Proof.  Use the previous corollary, part (vi) of the theorem and the re-
mark about finitely split maps.

Corollary 5.  Every countably generated submodule of a UTL module
M is contained in a countably generated pure projective submodule.

Proof.  Given a sequence {yn) in the module M, by condition (ix) and
induction we can find for each n finitely many xn ¡ G M, un ¡ G M* such that
if fn(x) ~ ^Xn,/Mn,/(X) then ^n is tne identity on yn and on xn_x¡. Clearly
£x„ ¡R contains eachj>n, is ideal-pure and thus pure and has {xnj; u„j(l ~ Vn-i)}
as a projective basis [5, p. 132].

If R is a commutative ring, a module Af satisfying condition (iv) of The-
orem 3.2 is called a trace module by Ohm and Rush in [11] and is called a flat
strict Mittag-Leffler module by Gruson and Raynaud. (See for example Proposi-
tion 2.3.4 on p. 76 of [8].) Ohm and Rush also used commutative ring tech-
niques to prove CoroUaries 2 and 3 above.

We favor the Ohm and Rush notation and shall hereafter use the term
"trace module" in place of "UTL module." However, since "trace" is not a
true adjective, we shall continue our previous usage in phrases such as "Af is
UTL."

Corollary 4 indicates that when R = Z (the ring of rational integers) trace
modules may be related to the locally free abelian groups. Indeed in the next
section we shall show that when R = Z the two concepts coincide.
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UNIVERSALLY TORSIONLESS AND TRACE MODULES 127

Corollary 5 is reminiscent of Kaplansky's result [9] that every projective
module is the direct sum of countably generated modules. The natural question
is:  Does Kaplansky's result remain true when "trace module" is substituted for
"projective module"?  The answer is NO-the result is already false when F = Z.
By Corollary 5 the direct sums of countably generated trace Z-modules are the
free abelian groups but by our previous remark the trace Z-modules form the
class of locally free abelian groups. Zz for example was shown by Reinhold
Baer [2] to be locally free but not free abelian. (In §§5 and 6 we will follow
the example of Chase in [6] and explore the consequences of RR being a trace
module overF.)

4. Locally free abelian groups. In this section we study two generalizations
of locally free abelian groups. One property is stronger and one is weaker than
the trace property. All three coincide when the ring is commutative and semi-
hereditary.

We start by defining our first generalization of locally free abelian groups
as follows. For any right module M over an arbitrary ring F let pR (M) be the
minimal number of elements needed to generate M and let the rank of M (de-
noted xankR(M)) be the minimum pR(N) where A' is a submodule of M and
N ® S —*M ® S is epic for some ring 5 containing F.  Finally we call M locally
projective (LP) if each pure submodule of finite rank is a f.g. projective direct
summand.

Remarks,   (i) If R is a domain with quotient field k then xankR(M) =
dimk(M ® k).

Proof. Clearly xank(M) < dim(M ® k). Suppose rank M = p(N) and
N®S—*M®Sis epic with F C 5.   If M ® k = (N ® k) ®P then M ® k ®
S = N®k®S=>P®S = 0. But F is F-flat and thus PQP®S. Hence
dim(M ® k) = dim(xV ® k) < p(N) = xank(M).

(ii) Over the ring of integers our definition of LP modules coincides with
the standard definition of locally free abelian groups.

Proposition 4.1. Every trace module M is LP.

Proof.  Let F be a pure submodule of M with rank F = p(N) < °° where
N® S-+P® S is epic and RQS.  By Theorem 3.2(vi) there is a map </>: M
—■*• P which is the identity on N. By parts (ii) and (ix) of Theorem 3.2 there
are ux,.... un E P* and xx, . . . ,xnEP such that 0 is the identity on N
where 0: F —*■ F is defined by 0(x) = 2x¡u¡(x). We need only show that the
restriction / of 0<¿> to F is the identity. Since / is the identity on xV and N ® S
—* P ® 5 is epic we have / ® S is the identity on F ® S. However, F is flat and
thus PCP® 5.  Hence / is the identity on P.

By Theorem 3.2 it is easily seen that a module is UTL if each element is
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contained in a projective (or even UTL) direct summand. Thus an LP module
is UTL if each element is contained in a pure submodule of finite rank. We wül
show this occurs when R is commutative and semihereditary.

Suppose R is a commutative ring. A nonzero divisor in R is called regular.
The total quotient ring of R is its localization at the set of regular elements. If
N is a submodule of M, we define the purification of N as

N* = (x G M: x X G N, some regular X G R).
(If R is semihereditary TV* is the smallest pure submodule containing N. In gen-
eral N* is not pure in M.)

Proposition 4.2. If R is a commutative semihereditary ring, then each
LP module M is a trace module.

Proof. We show TV* is a pure submodule of finite rank when N is f.g.
It is well known (and easily seen) that the total quotient ring k is absolutely flat.
Thus (Af ® k)/(N ® k) is ¿-flat and hence /{-flat. Since R is semihereditary, sub-
modules of flat modules are flat. See [6, p. 468]. Thus AfpV* is flat since A7* =
Af n (N ® k). Hence N+ is pure. Clearly rank Nt = rank M

We next give a counterexample which shows that UTL + LP and the LP
property is not preserved by a change of scalars. Since the argument is compU-
cated we break it up into a lemma and a proposition.  Recall a Prüfer domain
is a semihereditary integral domain.

Lemma 4.3. Suppose R is a domain and for each n>0we are given a
free right R-module Fn of rank n, an R-map 0„: Fn —* Fn+X and an ideal In
satisfying

(i) 6n is monic.

(ü) en(Fn)QFn+xin+x.
(iii) flp/„ + 1 . . .In+p = Ofor n = 0, 1, 2,. . . .
0V)   (Fn + 1 •*) n K(Fn) = en(Fn **) f°r X E R-

Then M = lim Fn is a nonzero LP module with M* = 0. Suppose S is a Prüfer
domain containing R such that C\p(In + x . . . In+pS) = 0. Then M ® S is not
LP as an S-module.

Proof. Let Af„ be the image of Fn in Af. By (i) Af„ =s Fn and hence Af
is nonzero. Let/„ + 1 . . .In+p = /„p. By (ii) MnGC\MInp. Thus for m G
Af*, u(Mn) Ç C\I     = 0.  Since Af = lim Af„ we thus see M* = 0.

We demonstrate that Af is an LP module by showing that the only pure sub-
module P of finite rank is the zero module. Clearly any such P must be the puri-
fication of a f.g. submodule N which in turn must be contained in some Afn.  By
(iv) we see that Mn is its own purification and thus contains P.  Hence, for each
p>l,P = PnMnCPn MInp = PInp. Thus P is a submodule of CipMnInp
which is zero since Mn is free.
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Note that the first three conditions on M forced M* = 0, M ^ 0 and thus
M non UTL. Hence we need to show M® S satisfies the corresponding three
conditions when we replace Fn, 9n and /„ by corresponding objects over 5.

Since tensor products commute with direct limits we see M ® S =
lim(Fn ® 5). Suppose Bn is the matrix representing 0„. Since 9n is monic, the
rank of Bn is « over the quotient field of F and thus over the quotient field of
5. Hence dn ® S is monic. Condition (ii) is obvious and condition (hi) is the
intersection hypothesis on 5.

Proposition 4.4. Let k be a field and R = k[xx,. . . , xn,...] —the
polynomial ring in a countable number of variables. Let In be the ideal generated
by xx,. . . ,xn;let Fn be the standard module of row vectors and let 0„: Fn —►
Fn+1 be multiplication by the matrix

B =
0 0'        x 0n

XX,n  n+ 1.

Finally letT = k(..., x,lxJt . . .) and S = T[xx]. Then R, /„, Fn, 0„ and S
satisfy the hypotheses and thus conclusions of Lemma 4.3.

Proof.  Conditions (i), (ii) and (iii) are obvious. Condition (iv) states
that, for Cj,... ,cn + x,dx, .. . ,dn, x ER, (cx,. . . , cn + x)x - (dx,... ,dn)Bn
implies x \d¡ for i < «. Since F is a UFD it clearly suffices to prove condition (iv)
when x is a prime element. If x does not divide each d¡, let m be the minimal integer
such that xldm. Letcfo = 0. Then x\d¡ for/ <m and cmx = (dm_x +dm)xm.
Since x is prime, x \xm. Thus for i > m, x/x{. (since x¡ and xm axe relatively
prime) and therefore x \dn and x\(d(_x + d¡) for m < i < «. But dm =
(dm + dm + i) -(dm + i + dm + 2) + . . . ± dn and hencex\dm also.

As for 5, it is clearly a PID and thus Prüfer. The intersection property
holds since In'S = Sxx for each «.

We now study the second generalization of locally free abelian groups.
Suppose M is a left or a right module. If A is a submodule of M we let

N1 = {uEM*: u(N) = 0}. Letting T: M—* M** be the canonical map we set
Ñ = T -x (N"). We call Ñ the closure of N and call N closed ifN = Ñ. We say
M is projectively separable (PS) if the closure of each f.g. submodule is a f.g.
projective direct summand of M.

We omit the proof of the following facts.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



130 G. S. GARFINKEL

Lemma 4.5.  Let N and P be submodules of M.
(i) N1 =Ñ'.

(ii) N is closed.
(iii) IfNCP.thenÑQP.
(iv) If M is torsionless then any direct summand is closed.

The statement of the following proposition is derived from [3].

Proposition 4.6. Suppose N = xxR + . . . + xnR is a submodule of the
right R-module M. Define <p: M* —*■ R" by u ]-*■ (u(xx), . . . , u(xn)). Let 0
be the corestriction of y onto its image SGRn and let T: M —*■ M** be the
canonical map.

(i) N' = Ker 0 and S is isomorphic to the image of the restriction map
M*-+Ñ*.

(ii) 0*(S*) = N" and there is a commutative diagram

Ñ->M
ril       0*    Jr

S*—*—*M**

(üi) If M is reflexive or UTL, Tx is an isomorphism.
(iv) // rx is an isomorphism and 0: Af* —► S splits, then N is a direct

summand of M.
(v) If N is a direct summand of M, then 8: M* —+ S splits and S =í Ñ*.

Proof, (i). Trivial.
(ii). The exact sequence 0—*■ N' -^-* M* —> S —► 0 induces the exact

sequence 0 -* S* -*** Af** -£* N'*. Hence 0*(S*) = Ker i* = N". Also
T- x 0 *(S) = N and so there is a map rx rendering the diagram commutative.

(iii). Tj is monic since T is. By (ii) we need only show that N" Q T(M).
This is certainly true if Af is reflexive. Assume M is UTL and a G N". We wish
to find x G Af with a(u) = «(x) for all « G Af*. Since Af is UTL, we can find
« j.urGM* and mx,. . . , mr G M with y = 2m¡u¡(y) for y GN.  Thus
for any u G M*, u - 'Eu(m¡)u¡ restricts to the zero map on N and is thus in N*.
Hence it is in Ker a and so a(u) = ~Lu(mf)a(uf) = u(Em¡a(u¡)).

(iv). Suppose g: S —* Ai* is a spütting for 0 and Tx is an isomorphism.
It is then easy to check that Tx xg*Y is a projection of M onto N.

(v). 0 splits since its kernel N' = N' is a direct summand of Af*. Clearly
the restriction map M* —* N* is epic and so S = N*.

Corollary. If R is left Noetherian and left hereditary, then each re-
flexive right R-module is PS.

Proof.  Suppose N is a f.g. submodule of the reflexive module M.  As-
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suming the notation of Proposition 4.6 we note that 5 is a f.g. projective left
module since it lies in a f.g. free left module. Since Tx: N —► 5* is an iso-
morphism, A is a f.g. projective right module. By part (iv) of Proposition 4.6,
A is a direct summand.

Lemma 4.7.   For a left ideal I of an arbitrary ring R, the following are
equivalent:

(i) / = M*(x) where x is in the f.g. free right module M.
(ii) / = M*(x) where x is in the right trace module M.
(in) I is f.g.

Proof, (i) ■* (ii). Trivial.
(ii) => (iii). By Theorem 3.2, x = Sm^x) for m¡ E M, u¡ E M*. It is

easily verified that the u¡(x) generate /.
(iii) ■* (i). If / = Rax +... + Fa„ let x = (ax,... , a„). It is easily

checked that I=(R")*(x).

Proposition 4.8. A right module M is PS iff M is UTL and M*(x) is pro-
jective for each x in M.

Proof.  (=*). Suppose M is PS. Each f.g. submodule NofM satisfies
condition (ix) of Theorem 3.2 since A does. Thus M is UTL. Foranyx=Xj
in M, let N = xR and 5 = M*(x). Since Ñ is a direct summand, 5 = Ä7* by (v)
of Proposition 4.6.  Since A is a f.g. projective module so is M*(x) = S.

(•«=). Suppose M is UTL with M*(x) projective for each x EM. We need
to show A is a f.g. projective direct summand whenever A is a f.g. submodule.
We shall induct on p(N) = the minimal number of generators for N.

In case p(N) = 1, let N = xR and 5 = M*(x). Since M is UTL, part (iii)
of Proposition 4.6 shows that Fx : N —► 5* is an isomorphism. Thus since 5
is projective by our hypothesis and f.g. by the last lemma, N is f.g. and projec-
tive. Also since 5 is projective, 0: M* —► 5 splits and so by (iv) of Proposi-
tion 4.6, A is a direct summand.

For the inductive step we may assume N = P + xR where F © L=M.
Let x = y + z where y EL and zEP and let Q = F + yR. It is easy to check
that N' = Q' and hence N = Q. Thus we may assume N= Q, i.e. that x EL.
Thus N = P ®A where A is the closure of xR in L.  Thus we need only show
A is a f.g. projective direct summand of L. But L has the same properties as
M, i.e. L is UTL and L*(x) is projective for x EL. Thus we are reduced to the
case N = xR which is the case ju(A) = 1.

A consequence of the method of proof of Proposition 4.8 is the following.

Corollary 1.  A right module M is PS if the closure of each cyclic module
is a f.g. projective direct summand.
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Corollary 2.  A domain R is PS as a module over itself.

Proof. R is the closure of each of its nonzero submodules.
The following theorem is a generalization of results of Kaplansky [9],

Albrecht [1] and Bass [3].

Theorem 4.9.   The following statements are equivalent for any ring R.
(i) R is left semihereditary.
(ii) Every right trace R-module is PS.
(iii) Every f.g. free right R-module is PS.

Proof, (ii) =* (iii) is trivial, (iii) =» (i) =* (ii) by Proposition 4.8 and
Lemma 4.7.

Corollary 1.   The PS property is not preserved by a change ofscalars.

Proof.  Let R by any non left semihereditary ring. By Theorem 4.9, R
possesses a free right module F of finite rank which is not PS. Let G be the
free abelian group of rank that of F. Then G is free over Z and thus PS over Z,
but F s G ®z R is not PS over R.

Corollary 2.   The PS property is not preserved by finite direct sums.

Proof. Let R be a non-Prüfer integral domain. By Corollary 2 to Propo-
sition 4.8, R is PS as a right /{-module. By Theorem 4.9 some finite number of
copies of R is a non PS module.

Corollary 3.   Over Z the LP, PS and trace modules all coincide with the
locally free abelian groups.

5.  Direct products of modules.  In this section we study the preservation
of the universally torsionless property by direct sums and products. Since the
projective and flat properties are preserved by direct sums the foUowing result
is the expected one.

Proposition 5.1. A right module M=(&M¡ is UTL iff each M¡ is UTL.

Proof. (=*). T(M, A): M ® A —> \\om(M*, A) is additive in Af. Thus if
r(Af, A) is always monic, each T(M¡, A) is always monic.

(<=).  Express each x G M as a finite sum x = Sx,- where x¡ G M¡. If M¡ is
UTL then by Theorem 3.2, x¡ G M¡ •Mf(x¡). Clearly Mf(x¡) G M*(x). Thus
x G Ai • Af*(x) and hence by Theorem 3.2, Ai is UTL.

The situation with respect to the UTL property being preserved by direct
products is much more complicated. We start our study of direct products by
making the notational convention of writing x = rixa if x G HAi^ and xa is the
a-component of x.
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Lemma 5.2. A left ideal I of R is f.g. iff (TlMa) • I = TÏ(Ma ■ I) for each
collection {Ma) of right R-modules.

Proof. (=>). Suppose / is generated by ax,. . . , an and x E T\(Ma •/)
with x = rixa. Then each xa = 2ma ¡a¡ for some ma ¡ E M.   Let m¡ = Tlma ¡.
Clearly x = l.miai is in (TlMa) •/.   Thus U(Ma -1) Q (TIMJ-I. The opposite
inclusion is trivial.

(<=). Let x = Uxa where each xa = a for a E I.  Then x E (R -if and
hence x ER1 •/.  Let x = xxax + . . . + xnan withx¡ ER1 and a¡ EI.   If x¡ =
Tixia then a = xa = ^xiaa¡ and so [ax, . . .,an} generates/.

For each right F-module M, we denote by A = A(M): M —*• RM   the
canonical map defined by A(m)(tx) = u(m) for m E M, u E M*. Note A(M)
factors thru T: M —► M** and M is torsionless iff A is monic. Recall /: A —*■ B
is pure if the image of / is pure in F.

Proposition 53. If Mis UTL, then A: M'—+ RM   is a pure monomorphism.

Proof.  For any left module A, the mapping A® A is monic since it
factors the monomorphism M ® A —»■ Hom(W*, A) —► AM .

Theorem 5.4. For any ring R, the following are equivalent.
(i) A right module M = T\Ma is UTL if each Ma is UTL.
(ii) For any set A, the right module R   is UTL.
(iii) If A is a set and x EM = RA, then M*(x) is f.g.

Proof,  (i) ■* (ii). Obvious.
(ii) ■* (iii).  By Lemma 4.7.
(iii) ■* (ii). It suffices to show x E M-M*(x) whenever x E M = RA.  If

ua- RA —*■ R is the a-component map, then x = flixa(x). Hence x E
fI(F -M*(x)) = (Ï1R) -M*(x) =M-M*(x) where the first equality follows from
Lemma 5.2.

(ii) => (i). By Proposition 5.3 each Ma is pure in F   <*. If A is the disjoint
union of the M*'s we see that M is ideal pure in RA, which by (ii) is UTL.
Hence by Theorem 3.2, M is UTL.

We will call a ring F right U-T if it satisfies the conditions of Theorem 5.4.

Corollary. F is right U-T if it is left Noetherian.

We next show that the right Il-F rings are exactly those for which the
converse of Proposition 5.3 is valid.

Proposition 5.5. For any ring R, the following are equivalent.
(i) F is right TÍ-T.

(ii) A right R-module M is UTL iff it is isomorphic to a pure submodule
of RA for some set A.
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(iii) A right R-module M is UTL iff A: M—*■ RM   is a pure monomorphism.

Proof,  (i) ■* (ii).  By Proposition 5.3 and Theorems 5.4 and 3.2.
(ü) ■* (iii).  By Proposition 5.3.
(iii) ■* (i). Since A is always a split monomorphism when M = RA.

Lemma 5.6. IfN is a left module over the left semihereditary ring R, then
N* is ideal pure in RN.

Proof.  Suppose / is a left ideal and u GN* C\ RNI has the form u =
I,ffí¡ where f¡ G RN, a¡ G I. Then J = I,Ra¡ is f.g. and thus projective and UTL.
Hence there are <Pj G J*, b¡ G J with a = 2<p¡(a)b¡ for aGJ.   For x GN, u(x) =
Xf¡(x)a¡ G J. Hence u(x) = 2^.u(x) • b¡. Thus u = S^h -b¡GN*-I.

Corollary. Suppose R is right W-T and left semihereditary. Then N*
is right UTL for each left module N and a right module M is UTL iff it is tor-
sionless and M**/M is flat.

Proof. N* is UTL since it is a pure submodule of RN. By Proposition
5.3, Ai is UTL iff A: Ai—* RM is a pure monomorphism. Since M** is pure
in RM , A is a pure monomorphism iff T: Af —> Ai** is. M** is UTL and thus
flat. Hence T is a pure monomorphism iff M is torsionless and M**/M is flat.

Remark. Over the ring of rational integers Proposition 5.4 and the above
corollary yield well-known characterizations of locally free abelian groups.

Note that the coroUaries to Propositions 4.6 and 5.5 each give sufficient
conditions for a right module over a left semihereditary ring R to be UTL. How-
ever the weaker result needs the hypothesis that R is left Noetherian while the
stronger result needs the nominaUy weaker hypothesis that R is right II-T. At
this point the only rings we know to be right U-T are the left Noetherian ones.
In the next section we wiU give examples of commutative Tl-T rings which are
non-Noetherian. In the rest of this section we wiU give some ideal theoretical
properties of right U-T rings which show that many well-known rings are not
right Ï1-T.

Recall we write x = Hx,. if x G FIAf,- with x,. the ith coordinate of x. For
x - Ux¡ G RA we let V(x) be the left ideal generated by the xfs. Note RA = F*
where F is a free left R module and P(x) = x(F).

Lemma 5.7.   Suppose xGM = RA.
(1) V(x)QM*(x).
(2) // V(x) Ç N*(y) where y is in the right module N, then M*(x) G N*(y).
(3) IfyGN = RB and Viy) = V(x), then N*(y) = M*(x).

Proof.  (1) For a G A, let ua: RA —* R be the a-coordinate map. Then
x = nua(x) and V(x) = ZRua(x) GM*(x).
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(2) Suppose ua(x) =fa(y) with fa EN* for each a E A. Define/: N—*■
RA by f(z) = Tlfjz) for zEN. Then f(y) = x and hence for u E M*, u(x) =
uf(y)EN*(y).

(3) Follows from (1) and (2).
Lemma 5.7 shows that for x E M = RA, M*(x) does not depend on x or

on A but only on the ideal V(x). Thus for any left ideal / of F we can define
the left ideal / to be M*(x) where x E RA is any point with V(x) = I.

Lemma 5.8.   Suppose I and J are left ideals of R with I CJ.   Then I C
Jcj.

Proof.  Suppose / = V(x) and / = V(y) with x E M = RA and y EN =
RB. Then / Ç / and J Ç J by (i) of Lemma 5.7. Since I CJ, part (ii) of Lem-
ma 5.7 shows I CJ.

Proposition 5.9. Let I be a left ideal of R.   Then I = 7 if any of the fol-
lowing conditions hold:

(0 I is fg.
(ii) / = 0: 5 = {X E R: Xs = 0 V s E 5} where S is any subset of R.
(iii) / = \\J¡ where each J¡ is a left ideal.
(iv) / = n/(. where each J¡ is a f.g. left ideal.

Proof,  (i). Use Lemma 4.7.
(ü). Let / = 0: 5 and x E M = RA with V(x) = I.  If x = nxa then each

xa-5 = 0. Hence for s E5, xs = 0. Thus for « EM*, 0 = u(xs) = ix(x>.  There-
fore / = M*(x) C 0: 5 = / ç I.

(iii). Use Lemma 5.8.
(iv). Use (i) and (iii).
We shall call a ring F, right Tl-F (or right fl-F) if M = TlMa is a flat (re-

spectively projective) right F-module iff each Ma is.
Chase has given the following characterizations of these rings.

Theorem 5.10 (Theorems 2.1 and 2.2 in [6] ). For any ring R the fol-
lowing are equivalent:

(i) F is right Tl-F.
(ii) RA is a flat right R-module for each set A.
(iii) F is left coherent, i.e. each f.g. left ideal of R is finitely presented.
(iv) 0: {s} is f.g. for each s ER and I C\J is f.g. if I and J are each f.g.

left ideals ofR.

Theorem 5.11    (Theorem 3.3 of [6] ). For any ring R the following are
equivalent:

(i) R is right Tl-P.
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(ii) RA is a projective right R-module for each set A.
(iii) R is left coherent and R satisfies the descending chain condition on

principal left ideals.

If in the hypothesis of Chase's Theorem 3.1 in [6], we replace his concept
of "pure" with our "ideal pure", then a close scrutiny of his proof shows we
can replace "principal ideal" by "f.g. ideals" in his conclusion. This observation
leads to the foUowing modification of Theorem 5.11.

Theorem 5.12.  A ring is right U-P iff it is left coherent and it satisfies
the descending chain condition on f.g. left ideals.

Example 5.1.  A commutative ring which satisfies d.c.c. on f.g. ideals but
which is not coherent.  Let k be a field and V an infinite dimensional vector
space over k and let R = k( V), the trivial ring extension of k by V. R satisfies
d.c.c. on f.g. ideals since V satisfies d.cc. on f.g. subspaces. If 0 ¥= v G V then
0: {u} = V is a non f.g. ideal and thus by Theorem 5.10, R is not coherent.

Corollary. A left Noetherian ring is left Artinian iff it is right ÏI-P.

We wiU say that R satisfies the (finite) intersection property on f.g. left
ideals if the intersection of any (finite) collection of f.g. left ideals is f.g. Note
that R satisfies the (finite) intersection property on f.g. left ideals if it is (re-
spectively right U-F) right IT-P.

Theorem 5.13.  If R is right U-T, then R is left coherent and satisfies
the intersection property on f.g. left ideals.

Proof. R is left coherent since it is right U-F. If / = (¡J¡ where each J¡
is a f.g. left ideal, then / = / by Proposition 5.5. Thus / is f.g. by Lemma 4.7.

Theorem 5.13 shows that various well-known coherent rings are not U-T.
Example 5.2.  If A: is a Noetherian commutative ring, then R =

k[Xx, X2,... ] is U-F but not U-T.
Proof.  To show R is coherent we note first that if an ideal is generated

by /i, . . . , fm, there is an n > 0 with each f¡ G k[Xx,.... Xn] = S. Letting
/' = "ZSf¡, we note that /' has a finite 5-presentation since S is Noetherian. Since
R is free and thus flat over S, the finite 5-presentation for /' can be lifted to a
finite /{-presentation for R ®s /'.  But again the flatness of R over S yields
I^R®S /'.

To show R is not U-T we display a decreasing sequence of f.g. ideals whose
intersection is not f.g.

I2 = (Xt, X^f),
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7n = (XV X\X1' • • ■ ' X\X1 • • • Xn-V XlX2 ' ' ' Xn-lXn)'

Clearly / = 0/n is generated by all monomials of the form XXX2 . . . Xn_xX2
and cannot be generated by any set of polynomials involving only a finite num-
ber of the indeterminates.

It is easy to see that every left semihereditary ring is left coherent and thus
right n-F.  But even these rings need not be ri-F.

Example 5.3.  Let F be a valuation ring with value group G. Since every
f.g. ideal is free (on one generator) F is coherent. However, it is easy to see that
F satisfies the intersection property on f.g. (principal) ideals iff G is complete as
a lattice.

The statement of Theorem 5.13 gives rise to two questions. (1) Is the
intersection property on f.g. left ideals equivalent to some module property being
preserved by direct products, i.e. is it Tl-X for some property XI (2) Is the con-
verse of Theorem 5.13 true?

The answer to (1) is Yes and the property that is preserved is that of being
a "content module." We do not know the answer to question (2). There is some
strong evidence pointing to a negative answer and some weak evidence pointing
to an affirmative answer. The negative evidence is that Theorem 5.13 is a con-
sequence of "trace ■* flat + content" whose converse is false. The positive evi-
dence is the similarities in Theorems 6.7 and 6.8.

If x is a member of the right module M, we define

C(x) = C(x, M) = f){I: x E MI, I a left ideal).
C(x) is called the content or the content ideal of x. M is called a content module
if x G MC(x) for all x E M. Content modules and ideals are studied by Ohm and
Rush in [10] and [11].  Some of their properties are summarized below.

Proposition 5.14. Suppose M is a right module and x EM.   Then
(1) M*(x) C C(x).
(2) C(x) = f) {/: x E MI, I a f.g. left ideal}.
(3) x E MC(x) * C(x) is f.g.
(4) M is a trace module => M is a content module.
(5) An ideal pure submodule of a content module is a content module.
(6) M is a content module iff M (fll¡) = 0(MI¡) for each collection of

left ideals {/,}.

Proof.  Seep. 51 of [11].

Theorem 5.15.   For any ring R, the following are equivalent.
(1) A right module M = TlMa is a content module iff each Ma is a content

module.
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(2) For any set A, RA is a right content module.
(3) For any set A, C(x) is f.g. for each x in the right module RA.
(4) I = Dl¡ is f.g. if each I¡ is a f.g. left ideal of R.

Proof.  (1) ■* (2). Trivial.
(2) ■> (3). A simple consequence of (3) in Proposition 5.14.
(3) => (4).  Let {xa: a G A) generate / and let x = ilxa in M = RA. By (3)

we need only show / = C(x).  Since each xa is in the f.g. ideal /,. we see from
Lemma 5.2 that x GM-I¡. Hence C(x) gC\I. = /. Now suppose / is any left
ideal of Ai with xGM-J.  Then each xaGJ and so IQJ since the xa's gen-
erate /. But C(x) is the intersection of all such J's. Thus / C C(x).

(4) •» (1). If Af = nAia is a content module then each Ma is a content
module by Proposition 5.14. Suppose M = UM^ where each Ma is a content
module and x = Hxa is in Ai. We need to show x G Ai • C(x). By (4) and part
(2) of Proposition 5.14, C(x) is f.g. Thus x G Af- C(x) iff each xa G Ma • C(x).
Since each Ma is a content module, the latter is equivalent to each C(xa) Q
C(x). If J is any left ideal with xGM-J then clearly each xa G Ma -J and so
C(xa) C /. Since C(x) is the intersection of aU these / we thus have C(xa) Q
C(x) as we needed.

We wiU call a module M an FC module if it is flat and is a content module.
R is right U-FC if each RA is a right FC module. R is right U-C if it satisfies
the conditions of Theorem 5.15.

By Propositions 2.4 and 5.14, UTL ■» FC and hence right U-T => right U-FC.
However Theorems 5.10 and 5.15 show that the latter impUcation is equivalent
to Theorem 5.13. Of course the converse of Theorem 5.13 would be true if
FC ■* UTL. However Example 5.4 in [11] attributed by Ohm and Rush to
Heinzer is of a f.g. FC module Af which is not projective and hence not UTL.
Since the module M is a pure submodule of RA one may ask if the properties
of Ai are inherited from RA, in other words is their ring R a U-FC ring and not
a U-T ring? The answer is NO.

Proposition 5.16. Let k be any ring.  The ring R of eventually constant
k-sequences is not right U-C.

Proof. We consider a sequence a function on the set N of natural num-
bers. For n G N we let fn : N —*k be the function that is zero on n and one
elsewhere. Let I = C\Rf2n. Noteg- G/iff g(2n) = 0 for each n. Thus each such
g must be eventually zero. Hence / = S/?(l -f2n + f) and cannot be f.g.

Although we do not know whether (U-C + U-F) =» II-r is true, it is easy
to see that U-C and U-F are independent of each other. Example 5.1 shows
U-C * U-F and Example 5.2 shows U-F 4-U-C.
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6.  Direct products of rings.  In this section we wish to determine when a
direct product of rings is right II-A!" where X is the flat, content, flat content, or pro-
jective property.

It is well known that the flatness of RA is related to certain left ideals be-
ing finitely generated and finitely related. So we start by studying these con-
cepts.

We will call a left module M finitely related (f.x.) if there is an exact se-
quence 0 —*-K —■*■ P —* M —> 0 with F projective and K f.g. (Note we do not
demand F be f.g.) If both F and F are f.g. we say M is finitely presented (f.p.)
and call the exact sequence a finite presentation for M.

Suppose M is any left F-module. Recall p(M) < « if M is generated by «
elements. We also define

p*(M) = sup{/x(A): A is a f .g. submodule of M}.
The following is a modification of Schanuel's lemma.

Lemma 6.1.   Suppose (*) is an exact diagram of left R-modules and P is pro-
jective.

0->F-^»P->-C->0
W II

0-^-A—>-F-*C—»-0
Then

(i) There is an exact sequence 0 —>K —*A © F —* B —► 0.
(ii) IfB is f.g. and Cf.r., then A is f.g.
(iii) // C is f.g. and fir., then it if f.p.
(iv) IfB is f.p. and A fg., then C is f.p.

Proof,  (i). Since F is projective there are maps h: P—> B and /: K —♦ A
rendering (*) commutative. It is simple to verify that the maps

k^(j(k),-f(k))    fotkEK,

(a, p) h+ j(a) + h(p)       for a E A, p E P,

yield the desired exact sequence.
(ii). Since C is f.r. we can choose F and K with K f.g. Then p(A) <

p(A © F) < p(K) + p(B) < °°.
(iii). Since C is f.g. we can choose B to be f.g. projective. Then C is f.p.

since by (ii) A is f.g.
(iv). We may assume there is an epimorphism^: F —* B rendering (*) com-

mutative with F and L = Ker g both f.g. Since A is f.g. there is a f.g. sub-
module Q of F with g(Q) = A. Then K = L + Q is f.g. and so C is f.p.

Proposition 6.2. For any ring R and any integer n the following condi-

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



140 G. S. GARFINKEL

tions are equivalent:
(i) R is left coherent and p*(R) < n.

(ii) R is left coherent and p*(M) < np(M) for each left module M.
(iii) For each f.g. left ideal of R there is an exact sequence R"2 —*■ Rn —*■

/->0.

Proof,  (i) =» (ii). We claim it suffices to consider Ai f.g. free and by in-
duction we can assume M = Rr ®R and p*(Rr) < nr. For each f.g. submodule
A of M, the decomposition oîM induces an exact sequence 0 —► Rr n A —* A
—■*•1 —> 0 where / is an ideal of/?. Since A is f.g. so is / and hence p(I) < «.
Since R is left coherent, / is f.p. and so Rr n A is f.g. by Schanuel's lemma.
Thus p(Rr C\A)<nr and so p(A) <nr + n.

(ii) ■*■ (iii). Since p*(R) < n for each f.g. left ideal I oí R there is an exact
sequence 0—*■ K —>/?"—>/—►O. Since R is left coherent, K is f.g. and thus
p(K) < n -p(R") < « •«.  Thus we can modify the above exact sequence to ob-
tain the desired one.

(iii) =* (i). Trivial.
We will call R left n-coherent if it satisfies the conditions of Proposition 6.2.
Example 6.1.  A valuation ring is always 1-coherent, but need not be

Noetherian or even U-T.
Example 6.2.  If A: is a field, and n a positive integer then the subring

Rn = {a 4- x"/(x): a G k, f(x) Gk[[x]])

is a commutative, local, Noetherian «-coherent domain which is not (n — Inco-
herent.

Example 6.3.  Let R be the trivial ring extension of the integers by the
abelian group of rational numbers. Then p*(R) < 1, but R is not coherent.

Proposition 6.3. The ring R = UR¡ is left n-coherent iff each R¡ is left
n-coherent.

Proof. It is easily checked that condition (iii) of Proposition 6.2 is valid
for R iff it is valid for each R¡.

If R is a ring and « a positive integer, let

tfn, R) = sup{p(Ker u): u G (/?")*}.

Soublin [13] calls R left uniformly coherent if i¿>(«, R) < °° for each n.

Theorem 6.4. The ring R = UR¡ is left coherent iff each R¡ is left co-
herent and there is a sequence 0 < an < °° with each Bn = {/: y(n, Rf) > an)
finite.

Proof.  (=>). It is easy to see that each R¡ is left coherent. If there is no
such sequence, then there is an integer n and a sequence /,, i2, . . . of distinct
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indices such that for each p > 0 there is ix,-   E (R"p)* with p(Ker uip) > p. For
i Ö {ip} let u¡ = 0 in (Rn)*. Let u = fty E Tl(Rn)* = (Rn)*. Then Ker ix is in-
finitely generated and hence the image of u is a f.g. left ideal which is not f.r.
By Theorem 5.10, F would not be left coherent.

(<=). Let / be a left ideal of R with p(T) = n<°°. Let uE (R")* with
image /.  Clearly u can be written

u=Uu.eU(R^)*.
Ker ix,- is f.g. since R¡ is left coherent. Let

r = max{p(Ker u.): i E Bn).
Clearly ju(Ker ix) < max(an, r) and so / is f.p.

Corollary (see [13]). The arbitrary product ofR with itself is left
coherent iff R is left uniformly coherent.

Remark.   Soublin [13] shows that the polynomial ring in two variables
over a field is uniformly coherent.  Clearly, this ring is not «-coherent for any «.
In general the product of infinitely many uniformly coherent rings is not even
coherent.

We now record the following fact needed in the next few theorems. We
omit its very simple proof.

Lemma 65.   For any collection {R¡¡ of rings, (i) is equivalent to (ii).
(i) If for each i, J¡ is a f.g. left ideal then TU¡ is f.g. in IIF,-.
(ii) For some n<°°,An= {i: p*(R¡) > «} is finite.

Theorem 6.6.   The ring R = TlRi is right Tl-C iff each R¡ is right Tl-C and
for some « the set An = {/: p*(R¡) > «} is finite.

Proof.  (=>). It is easy to see that each R¡ is right Il-C if F is. Suppose
{/,.} is a collection of f.g. left Ff-ideals. Then each /,. =J¡x II/>t/Fy- is a f.g.

F-ideal and hence / = C\l¡ is f.g. But / = TUi and hence some An is finite by the
last lemma.

(•<=). By Theorem 5.15, we need only show f)ja is f.g. if each Ja is a f.g.
left ideal of F. But since Ja is f.g. it has the from H¡Ja¡ where Ja ¡ is f.g. in
R¡. Thus D/a = TU¡ where each /,. = Oa/a ,- is f.g. since R¡ is right Il-C. Hence
by Lemma 6.5, il Ja is f.g.

Theorem 6.7.  The ring R = TiRi is right Tl-FC iff each R¡ is right Tl-FC
and for some n, An = {/: p*(R¡) > «} is finite.

Proof. (=»). A direct consequence of Theorems 6.4 and 6.6.
(<=). F is right Il-C by Theorem 6.6. Since each R¡ is coherent then by

Proposition 6.2, {/: tfn> R¡) > "2> Q¿„- Hence since each R. is right fl-F, by
Theorem 6.4 so is F.
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Theorem 6.8.   The ring R = UR¡ is right U-T iff each R¡ is right U-T and
for some n the set An = {i: p*(R¡) > n) is finite.

Proof.  (=»). For each set A, Rf is UTL as a right R-module since it is
a direct summand of RA. Hence it is UTL over R¡ and so R¡ is right U-T. An is
finite by Theorem 6.6.

(*=). Let x be in the right R module M = RA. It is easy to see Af = UM¡
with M¡ = Rf and if x = Hx,- then M*(x) = UMf(x¡). Each Mf(x¡) is a f.g. left
ideal of R¡ since R¡ is right n-7\ Hence Af*(x) is f.g. since An is finite.

Example 6.4. If k is a Dedekind domain and A an infinite set, then R =
rt'1 is a commutative II-T ring which is not Noetherian.

The following is a generalization of Corollary 5.2 of [11].

Corollary. If R = UR¡ where each R¡ is afield, then each content module
M over R is a trace module.

Proof.  For each nonzero x in Af by Corollary 4.4 of [11] there is an
idempotent e¡ with xe¡ ¥= 0, and R¡ = Re¡ being a field. Clearly, there is a map
u¡: Me¡ —* R¡ with u¡(xe¡) ¥= 0. Thus Af*(x) ¥= 0 and so Af is torsionless. Since
R is absolutely flat each /{-module is flat and hence every submodule is pure.
Hence Af is a pure submodule of RM*. By Theorem 6.8 R is U-T and so RM*
is UTL. Thus Af is UTL.

Remark.   The above CoroUary uses the fact that R is absolutely flat, is
ri-r and each ideal contains a minimal ideal.

We close this section with
Theorem 6.9. The ring R = UR¡ is right U-P iff each R¡ is right U-P and

the set {/: R¡ * 0) is finite.
Proof.  By Theorem 5.12, R is right II-P iff it satisfies the descending

chain condition on f.g. left ideals and is left coherent. Clearly, R satisfies the
chain condition iff each R¡ does and there are only finitely many nonzero Rfs. It
is easüy seen that in this situation/? is left coherent iff each R¡ is.

Appendix. When is T always monic or epic?
Recall that if T(Ai, A): M® A—+ Hom(M*, A) is the canonical map, then

Ai is called UTL if T(M, A) is monic for all A. In this appendix we show that
(at least over the integers) no other new class of modules is characterized by
fixing one of the variables and requiring V to be always monic or always epic.

Proposition A.1. T(M, A) is epic for all A iff M = P®K with P f.g.
projective and K* = 0.

Proof. (=*). The natural map Ai** ® Ai* —*• Hom(M*. M*) is epic since
r(M, M*) is epic. Therefore M* has a finite projective basis [5, p. 132] and
hence is f.g. projective. Thus Ai** is also f.g. projective and since r(Af, /?) is
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epic, M s M** ©F where K is the kernel of T(M, F). It is easy to see K* = 0.
(<=). This second implication is essentially equivalent to the following well

known result.

Corollary. r(M, A) is an isomorphism for all A iff M is f.g. projective.

If F is a field, then each r(Af, A) is monic since M is projective and hence
UTL. The converse is essentially true.

Proposition A2. For any ring R the following are equivalent.
(i) R is semisimple with minimal conditions.
(ii) Each right module M is UTL.

(iii) F(M, A) is monic for all cyclic M and A.

Proof,   (i) =*• (ii) and (ii) => (iii) are obvious. If (iii) holds then for each
right ideal / of F, the module M = R/I is UTL by (hi) ■* (i) of Theorem 3.2.
Hence M is projective and so / is a direct summand of F.

The opposite type of situation holds when F is the ring Z of rational in-
tegers which we assume it to be from here on.

For the rest of this section F is the direct product of a countable number
of copies of Z and 5 is the subgroup consisting of the corresponding direct sum
of copies of Z.

Proposition A3. If M = nP + 5 where « is a nonzero integer, there is an
exact sequence

r
0 —► P/M -* M ® Z/«Z —»• Hom(Af\ Z/«Z) —»• P/M —► 0.

Proof. We start by showing the restriction P* —* M* is an isomorphism.
Since «F CM it is easy to see nM* CP* CM*. It is known that 5 is reflexive
[7, p. 106] and since F = 5* it is easy to see that {«,-; ef*} is a projective basis
for F* where u¡ E P* is the ith projection map and ef* is the evaluation at the
ith standard basis of 5. Since (F*)# = M* and each ef* E M** (since 5 CM),
it is easily seen that {u¡, ef*} is a projective basis for M* also. Hence M* = P*.

Since M* =* 5 is projective we have an exact commutative diagram

0 0

1       1
0 —* M -* HomíM*, Z)-► M**/M -> 0

0 -* M -* Hom(xW*, Z)-► M**/M -* 0

1 r          1                       1
M/nM —► Hom(xV*, Z/nZ)->C-► 0

J        1 J0 0 0
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where fn, gn, hn are aU multiplication by n and the other maps are natural.
Using the identifications Ai** =P**=P we see M**/M = P/M and hn = 0.
Hence C = P/M and Ker T = Ker hn = P/M.

Corollary 1.  An abelian group A =0 if T(M, A) is monic for all M.

Proof.  Since Q* = 0 we see Q ® A = 0 and thus A is a torsion group.
If A ¥= 0 then there is n + 0 and a monomorphism Z/«Z —► A. Let M = nP
+ S. Since Ai is torsion free, Af ® Z/nZ —+ M ®A is monic. Hence if TfAf, .4)
is monic, also T(M, Z/nZ) is monic. By Proposition A.3 this is false.

Corollary 2.  An abelian group A = 0 if F(M, A) is epic for all M.

Proof.  Since F(P, A) is epic, each /: P* —> A has finitely generated
image. Since P* as S is countable free abelian, A is finitely generated. Hence if
A j= 0, there is an epic A —► Z/nZ for some n =£ 0. Let Af = nP + S. Since
Y(M, A) and Hom(M*, A) -> Hom(M*, Z/nZ) are epic, so is T(M, Z/nZ). By
Proposition A.3 this is false.
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