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Abstract In September 2015 Thomson Reuters published its Ranking of Innovative

Universities (RIU). Covering 100 large research-intensive universities worldwide, Stanford

University came in first, MIT was second and Harvard in third position. But how mean-

ingful is this outcome? In this paper we will take a critical view from a methodological

perspective. We focus our attention on the various types of metrics available, whether or

not data redundancies are addressed, and if metrics should be assembled into a single

composite overall score or not. We address these issues in some detail by emphasizing one

metric in particular: university–industry co-authored publications (UICs). We compare the

RIU with three variants of our own University–Industry R&D Linkage Index, which we

derived from the bibliometric analysis of 750 research universities worldwide. Our findings

highlight conceptual and methodological problems with UIC-based data, as well as

computational weaknesses such university ranking systems. Avoiding choices between

size-dependent or independent metrics, and between single-metrics and multi-metrics

systems, we recommend an alternative ‘scoreboard’ approach: (1) without weighing sys-

tems of metrics and composite scores; (2) computational procedures and information

sources are made more transparent; (3) size-dependent metrics are kept separate from size-

independent metrics; (4) UIC metrics are selected according to the type of proximity

relationship between universities and industry.
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Introduction

This paper takes a closer look at variousmeasurements to describe and analyzeR&D linkages

between universities and industry. Our international perspective is that of world university

rankings, which have become increasingly popular in recent years as a platform for institu-

tional performance analysis and international benchmarking. There are some 17,000 higher

education institutions in the world (Rauhvargers 2011), including thousands of research-

intensive universities each addressing a variety of local societal needs and often engaged in

global activities. On top of research and teaching, they are also expected to engagemore with

society and reach out to the business sector and industry. Today many research universities

worldwide are also held accountable for their ‘third mission’ activities and achievements.

Given current government policies that strongly promote synergies between high-quality

science and business sector innovation, there is a great need for effective analytics and valid

metrics to monitor and assess connections between public science and private R&D.

Any systematic attempt to identify, classify or measure the performance of universities in

terms of their institutional linkages with the business sector is analytically relevant. Ever-

more universities are engaged in commercialization of research and transfer of research

outputs and technologies to the business sector. Interestingly, links between academic sci-

ence and technological innovation in general, and university–industry research connections

in particular, are not well understood—let alone adequately represented in world university

ranking systems. These rankings fill an information gap within an academic culture of

increasingly fierce global competition and status seeking among research-intensive uni-

versities. Rising in prominence as an information tool they have affected institutional mis-

sions and functions of many universities and colleges worldwide (Marginson 2007).

However, rankings are reductionist information tools as they present only parts of complex

phenomena; they disproportionately value those features that are measurable with currently

available international or institutional sources. Moreover, several high-profile ranking sys-

tems apply aweighted composite of individual indicators andmetrics to create a single ‘index

score’ of university performance and present league tables that emphasize these final scores.

The selection criteria for choosing the constituent metrics, how those measurements are

normalized or weighted, and how they are finally added into an overall score are usually not

explicit or well-documented. Nor are there any authoritative guidelines or ‘best practices’ on

howmetrics should beweighted and integrated into a ‘league table’ ranking system. This lack

of transparency is generally seen as one of the major methodological shortcomings of such

league tables and ‘black box’ ranking systems. Another weakness of many world ranking

systems is their neglect of an institution’s size as an ordering principle—either in terms of

inputs, activities or outputs—which not only hampers ‘like by like’ comparisons of similar-

size universities but also rules out the possibility to incorporate and assess possible size-

effects (such as ‘critical mass’ or ‘economies of scale’ benefits).

Recently, the information provider Thomson Reuters (TR) has entered in the rankings

arena with of a Ranking of Innovative Universities—RIU (Thomson Reuters 2016a). In

order to create this ranking, TR first pre-selected the 500 universities worldwide with the

largest number of research articles in scholarly journals over the 2008–2015 period, and

kept the institutions which filed 70 or more US patents during the same time-span. Those

institutions that remained were ranked by 8 metrics.1 A composite score ranks the

1 The eight selected metrics are: total number of research articles in Thomson Reuters Web of Science
database (‘Publication Volume’); total number of patents filed at the World International Patent Organi-
sation—WIPO (‘Patent Volume’); the ratio of those patent applications to WIPO granted patents (‘Patent
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universities by summing the ranks for each metric, where the contributing metrics are

weighted equally.2 From here on we will refer to these as RIU scores.3

StanfordUniversity emerges as the world’s number 1 in the RIU;Massachusetts Institute of

Technology is number two university, while Harvard University is third. These are indeed

generally seen as leading ‘entrepreneurial’ universities whose institutional mission include

extensive engagement with the business sector and creating economic activity (e.g. Guerrero

and Urbano 2012). TR’s website provides no ranking information for separate metrics. Given

the arbitrariness of their weighting system and the lack of an explicit rationale for imple-

menting this particular selection ofmetrics, several methodological issues are left unanswered.

One of which is the possible detrimental effect of overlaps or redundancies between various

measures. Such data deficiencies are clearly a potential weakness in any multiple-metrics

ranking system, one that needs to be addressed to ensure fair comparisons across universities.

How should one assess the practical relevance and information quality of such a ranking

systems? Although some academic studies examined the statistical validity of indicators

and relationships between metrics (Goldstein and Spiegelhalter 1996; Stella and Wood-

house 2006; Tofallis 2012), there is still no theory-based rationale for the choice of

performance indicators nor authoritative guidelines on how within ranking systems show

deal with highly related metrics.

In this paper we will take a critical and pragmatic view of this type of ranking from a

broader methodological perspective. We focus our attention on the various types of metrics

available, whether or not data redundancies are addressed, and if metrics should be

assembled into a composite measure or kept separate. We address these issues in some

detail by emphasizing one metric in particular: the share of university–industry co-au-

thored publications (UICs for short) within a university’s total publication output. This is

one the eight metrics in RIU but it also features in two other ranking systems: Leiden

Ranking (www.leidenranking.com)4 and U-Multirank (www.umultirank.org).5

Our main research question is: are UIC-based metrics suitable for university rankings?

Unpacking this question our cross-validation study addresses the following sequence of

sub-questions:

Q1 What do UIC-based metrics represent, and how do they relate to other metrics of

university ‘innovation’ and?

Q2 Should one apply size-dependent or size-independent UIC-based metrics?

Q3 What are the (dis)advantages when several metrics are combined or integrated into a

single composite score?

Q4 Can one develop a ‘good practice’ to develop more informative university rankings?

Footnote 1 continued
Success’); patent to patent citation impact (‘Patents Citations’); Relative citation impact (‘Patent Citation
Impact’); citation from patents to research publications (‘Patent to Article Citation Impact’); citation impact
from industry-produced publications (‘Industry Article Citation Impact’); percentage of university-industry
co-authored publications (‘Percent of Industry Collaborative Articles’).
2 With the exception of ‘Patent Citation Impact’ and ‘Patents Citations’, where both metrics account for a
50 % fraction of their total weight.
3 The top 100 list of RIU universities is available at the following website: http://www.reuters.com/article/
idUSL1N11K16Q20150915.
4 The UIC indicator was removed from the 2016 edition of the Leiden Ranking but will reappear in an
associated information tool that will be launched by CWTS in 2017.
5 For more background information about these sources and their range of metrics, we refer to the following
webpages with relevant technical details: http://www.leidenranking.com/information/; http://www.
umultirank.org/#!/about/methodology/approach-to-ranking.
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Studies of university–industry R&D linkages

A multitude of case studies provides insights into this complex of relationships between

universities and the business sector; many focus their attention of variety and workings of

knowledge transfer channels that may exist or occur, thereby highlighting some of the

possible driving forces and determinants of R&D interactions (e.g. Arza 2010; Dutrénit

et al. 2010; De Fuentes and Dutrient 2012; Ramos-Vielba and Fernández-Esquinas 2012;

Perkmann et al. 2013). One of the main structural drivers and factors that shape university–

industry R&D connections is ‘proximity’, which comes in many shapes and forms

(Laursen et al. 2011; De Fuentes and Dutrénit 2014). Various empirical studies have shown

that successful transfer of knowledge from universities to industry is shaped by geography;

small distances tend to have positive effects on a firm’s innovation performance (e.g.

Audretsch and Feldman 1996). Geographical proximity is an important factor in univer-

sity–industry R&D linkages (e.g. Ponds et al. 2007; Bjerregaard 2010), where distance

from the university decreases the likelihood that a firm collaborates with the university

(e.g. Laursen et al. 2011; Hong and Su 2013).

Proximity offers a rich conceptual framework and a sophisticated analytical framework

for assessments of university performance profiles. Imposing a classification system to its

variety of manifestations, Boschma (2005) defined five main categories of proximity:

geographical, cognitive, organizational, social, and institutional. Where ‘geographical

proximity’ refers to the spatial or physical distance between partners, the notion of

‘cognitive proximity’, captures the degree to which people sharing the same knowledge

base and expertise (often with complementarity sets of skills and competencies). While

‘social proximity’ is defined in terms of socially embedded relationships (friendship,

shared past experience, behavioral codes, common culture, mutual trust), ‘institutional

proximity’ is associated with similarities in terms of institutional frameworks and shared

organizational arrangements. The latter comprises differences in terms of ‘organizational

proximity’ regarding the degree of autonomy of partners.

Summarizing, proximities may cover both ‘stocks’ and ‘flows’. The former relates to

financial capital, knowledge creation capacity, human capital and R&D infrastructures,

while the latter refers to dynamic features such as institutional mobility, research collab-

oration, knowledge dissemination and utilization. Measurements of proximity related to

either (dis)similarities in ‘stock profiles’ of connected R&D partners, or ‘flow profiles’ of

the nature and magnitude of those connections. Both types of metrics may comprise a size-

dependent and size independent variant. TR’s ranking system is not only a mix of stock-

based metrics and flow-based metrics, but comprises both size-dependent and size-inde-

pendent measures.

None of the above-mentioned case studies systematically analyze university–industry

relationships according across the different types of proximities. However, three streams of

literature can be identified, each analyzing a specific aspect of collaborative knowledge

production in relation to proximity characteristics:

• The role of proximity in the choice of collaboration partners and research network

formation (e.g. Autant-Bernard et al. 2007; Balland 2012);

• relationships between proximity to R&D partners and the innovative performance of

the collaborating organisations (Nooteboom et al. 2007; Broekel and Boschma 2012);

• how proximity explains processes of knowledge production and knowledge sharing

(Weterings and Ponds 2009).
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In this paper we focus our attention on the last of these streams, thereby restricting our

scope to ‘flows’-based proximity metrics. Ours is a descriptive study; we do not imply any

causality in terms of unidirectional or bidirectional knowledge flows (i.e. from universities

to industry or from science to technology, or vice versa).

University–industry co-publications and performance measurement

The number of university–industry co-authored publications (UICs) produced by a uni-

versity is one of several tangible outputs of productive university–business interactions, but

the meaning of this statistic and its analytical significance, let alone the cause/effect

relationship with other performance metrics such as industry income, is neither clear nor

straightforward. Although the theoretical foundation for metrics-based ‘quantitative indi-

cators’ to evaluate university–industry relationships was laid down in the 1990s (Bonac-

corsi and Piccaluga 1994), most empirical case studies of UIC activity are of more recent

date: Anderson and Dalpé (1992), Hicks et al. (1993), Hicks (2000), Calvert and Patel

(2003), Butcher and Jeffrey (2005), Lundberg et al. (2006), Tijssen (2006), Glänzel and

Schlemmer (2007), Ponds et al. (2007), Sun et al. (2007), Perkmann and Kathryn (2009),

Klitkou et al. (2009), Tijssen et al. (2009), Levy et al. (2009), Abramo et al.

(2009, 2010, 2011), Tijssen (2012), Wong and Singh (2013), Muscio et al. (2014), Fan

et al. (2015).

In spite of the fact that UIC-based metrics are now used publicly to measure the relative

strengths of university–industry research collaboration, the validity and added value of

such measurements, and their scope for broader analytical applications, are still not well

understood (Perkman et al. 2011; Tijssen 2012; Aldats and Fiegenbaum 2015). Clearly

there are many other ways to study and measure university–industry linkages, cooperation

and impacts (Healy et al. 2014), but UICs are currently the only available information

source for large-scale and systematic quantitative analysis. The reliance on a single UIC-

based metric within a university ranking system will inevitably introduce a limited view,

thus posing a risk of biases and misuse. In view of the increasing relevance of university

rankings for promotional and analytical applications, these usage issues have come to the

fore in several critical reviews that were published in recent years (e.g. Rauhvargers 2011;

Marope et al. 2013). Collectively these two sources capture most of the key issues and are

an excellent entry point for further reading.

Unlike prior validation studies by Lundberg et al. (2006), Levy et al. (2009), Wong and

Singh (2013), and Yegros–Yegros et al. (2016), each dealing with UIC quantities produced

by a single university, our goal is to identify general patterns across universities worldwide

within the context of world university rankings. We subject UIC-based metrics to an

empirical cross-validation study that incorporates several measurements associated with

university–industry R&D linkages. Ideally, one would like to incorporate as much relevant

information as possible, such as shared R&D facilities, joint R&D programming, research

income from industry, university spin-off companies. Given the lack of such internation-

ally comparative information, this study by necessity restricts its scope to those tangible

outputs of knowledge production and absorption processes shown in Fig. 1.

Where UICs represent an output of knowledge creation processes, the knowledge

absorption side is incorporated by patents and citations from patent back to research

articles. These science-related non-patent literature references (NPLRs) in patents are

generally seen as a proxy for science-technology linkages (Narin et al. 1997). This source
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provides interesting information, albeit partial conclusive results as regards to direct,

causal links (Tijssen et al. 2000; Cassiman et al. 2008). Although the majority of citing

patents are company-owned, some NPLRs will originate from university-owned patents.

Critics correctly point out that these references may miss highly relevant knowledge flows

that are more private and contract-based in nature, as well as inputs used in in-house basic

research within the company (Roach and Cohen 2013). Another source of measurements

are jointly-applied patents with a co-assignee from the business sector (e.g. Perkmann and

Kathryn 2009; Briggs 2015). Hagedoorn (2003) shows that joint patenting occurs most in

industries with strong intellectual property rights protection, such as the chemicals and

pharmaceuticals sector. Similarly to NPLRs, these patents remain indirect indicators of

linkages between scientific research and novel technologies; they and do not necessarily

reflect links at the level of individuals who are often essential for effective transfer of

highly-advanced technological knowledge. Of course, patent outputs may also be signifi-

cantly affected by domestic framework conditions (e.g. with regards to intellectual prop-

erty ownership), or other externalities beyond the control of universities.

Data sources and methodology

Our selected sample of universities is derived from the 2014 edition of the Leiden Ranking

(Waltman et al. 2012), which consists of the world’s 750 largest research-intensive uni-

versities according to their total research publication output in the CWTS-licensed offline

version of Thomson Reuters’ Web of Science database. Table 1 presents the selected

metrics, and their corresponding data source indicated between parentheses. Some of these

metrics were extracted from existing web-based open-access sources,6 others were pro-

duced within the CWTS in-house information system especially for this study.

Clearly a university’s UIC intensity (‘ %UIC’), i.e. the share of such co-authored

research publications within the organization’s total publication output, is the end result of

a many inputs and processes, the determinants and contributing factors of which are based

on dynamic mix of proximity-based relationships with industry and the business sector.

%UIC is also one of five ‘flow’ metrics in the RIU.

The metric ‘%MA UIC’ refers to UICs where at least one of the authors has both a

university affiliations and an industry affiliation, which enables us to capture parts of both

Research publica�ons

Patents

Research publica�ons

Research publica�ons

Patents

Patents

Joint produc�on

Joint produc�on

Cita�ons

Universi�es Industry

Fig. 1 Bibliometrics-based analytical model of university-industry R&D linkages

6 U-Multirank, Leiden Ranking and UIRC Scoreboard 2014 (www.cwts.nl/UIRC2014).
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the social proximity and cognitive proximity dimension of university–industry relation-

ships. These ‘boundary spanning’ individuals are likely represent shared organizational

interests or backgrounds between universities and industry of the kind that creates mutual

trust and aid in effective flows of knowledge or personnel. Note than %MA UIC quantities

are likely to be affected by researcher mobility patterns, institutional policies on academic

appointments, as well as national laws and regulations that endorse or prohibit multiple

appointments (Yegros–Yegros and Tijssen 2014).

%LOCAL UIC and %DOMESTIC UIC represent the ‘geographical proximity’

dimension, where ‘local’ is measured in terms of physical distance (research partners

within a 50 km radius), while ‘domestic’ refers to partners located within the same

country. For universities located at national borders, ‘local’ is not necessarily a subset of

‘domestic’. %LOCAL UIC closely relates to %MA UIC because people with simultaneous

affiliations tend to have these at relatively close distance (for practical reasons of com-

muting). Broadening our analytical scope from ‘research’ to ‘technology’, the metric

‘%CO-PATENT’ captures ‘institutional proximity’, i.e. close relationships in terms of

shared intellectual property right protection arrangements. Applying for joint patents

highlights a large measure of connectedness in terms of the novel technology’s underlying

R&D but also the alignment of strategic objectives to exploit the IP.

By focusing on how the scientific knowledge contributes to technological development,

‘%NPLR’ adds to ‘cognitive proximity’ dimension of our analysis. Here we assume that

Table 1 Summary description of selected size-independent metrics

Metric Description

%UIC Share of university-industry co-publications (as a % of research publication output)

Data source: Leiden Ranking 2014 (publication years 2009–2012)

%MA UIC Share of multiple-affiliation university-industry co-publications with at least one author
listing a university address and a company address (as a % the total UIC output)

Data source: CWTS (publication years 2009–2012; Web of Science)

%LOCAL UIC Share of university-industry co-publications with at least one partner company within a
50 km range of the city in which the university is located (as a % the total UIC output)

Data source: U-Multirank 2014 (publication years 2009–2012; Web of Science)

%DOMESTIC
UIC

Share of university-industry co-publications with at least one partner company located in
the same country as the university (as a % the total UIC output); Web of Science

Data source: UIRC Scoreboard 2014 (publication years 2009–2012)

%CO-PATENT Share of granted international patents with a co-assignee from the business sector (as %
of all granted international patents)

Data source: U-Multirank 2014 (PATSTAT INCENTIM, Univ. Leuven; patent years
2002–2011)

%NPLR Share of non-patent literature references, i.e. publications cited in the reference list of
international patents (as a % total research publication output)

Data source: U-Multirank 2014 (Web of Science;PATSTAT Univ. Leiden; patent and
publication years 2002-2011; citing years 2002–2014)

%NPLR–HICI Share of non-patent literature references within the world’s top 10 % most highly cited
international patents across all technology areas

Data source: Web of Science; PATSTAT Univ. Leiden (patent and publication years
2002–2011; citing years 2002–2014)
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when the list of ‘non patent literature references’ in a patent contains a ‘citation’ to a

university research publication, the technology represented by the ‘citing’ patent is now

related (directly or indirectly) to the ‘cited’ research publication. Since the vast majority of

patents are granted to business enterprises in manufacturing sectors, if university research

publications are cited by many patents, the research is likely to have been of major

relevance to technological development in the private sector. Similarly, if a university has

many publications cited by patents, we may assume that it’s research portfolio was of

relevance to industrial R&D and technological development. Patents are cited by subse-

quent patents, if the cited technology contributes to further technological development.

%NPLR is the second of five ‘flow’ metrics in the TR Innovation Ranking.

Highly-cited patents are often international breakthrough technologies. %NPLR–HICI

counts the number of times university research publications are cited by these ‘elite’

patents are generally seen as ‘industrially important’ technologies (Carpenter et al. 1981;

OECD 2013). A high score of this metric indicates that universities are likely to have

contributed knowledge of relevance to major technological developments. The NPLR data

in this study were extracted from Worldwide Patent Statistical Database (PATSTAT)

produced by the European Patent Office (EPO). PATSTAT contains patent applications

that were filed at patent offices of major industrialized countries (notably USA, Japan,

South Korea, Germany, China and Brazil), and major international offices such as WIPO

(worldwide) and EPO itself (Europe). PATSTAT offers a broader coverage of the patent

literature than the Derwent/WIPO database used by Thomson Reuters for their Ranking of

Innovative Universities.

Patent applications that often are filed on two or three patent legislations are referred to

as ‘triadic patents’ (i.e. those filed in Japan and at EPO, and also granted in the USA).

Equivalent patent publications were grouped in ‘patent families’. The %CO-PATENT data

were extracted by from the PATSTAT database at INCENTIM (Catholic University Leu-

ven, Belgium), while %NPLR data were produced at CWTS. The NPLR-HICI relates to

the 10 % most highly cited patent patents across all patent families in the PATSTAT

database. Each NPLR refers either to single patents, or a single representative of patent

families to remove double counting. Note that USPTO patent applications tend to contain

relatively many patents from USA-based companies, each with relatively large numbers of

NPLRs.

Despite the inherent limitations associated with our sample of only 750 universities, the

inevitable biases of the data sources and the (still) small number of available linkage

metrics, we assume that this information source provides a sufficiently robust dataset to

analyze statistical relationships between UIC-based metrics and patent-based linkage

metrics.

Table 2 provides summary statistics of each metric for this set of universities.7 Note that

these comprises exclusively of size-independent metrics, thus enabling a size-corrected

comparison across a diversity of universities. Some of the UIC-based metrics are close

related: %LOCAL UIC is a subset of %DOMESTIC UIC (with the exception of extremely

small countries such as Singapore). %MA UIC is also closely related to %DOMESTIC

UIC because people tend to have simultaneous institutional affiliations at both universities

7 With the exception of %MA UIC, all metrics show the normal distribution of score across the selected set
of universities. The values for asymmetry and kurtosis between -2 and ?2 are considered acceptable in
order to prove normal univariate distribution (George and Mallery 2010). The corresponding values for
%MA-UICs are 3.6 and 23.
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and companies if locations are within an easy travelling range—usually within the same

country.

By applying similar weights for each metric, RIU offers the user the benefit of trans-

parency. The end-result, a ‘league table’, is nonetheless highly arbitrary because there is

neither a theoretical justification nor a statistical rational for those weights. Data reduction

techniques can help reduce or remove redundancies between metrics, where lower weights

are assigned to those metrics that add little additional information. Such redundancies can

be detected by applying statistical analysis to pairwise correlation coefficients between the

selected metrics. Table 3 presents those coefficients, where the Pearson correlation coef-

ficients exhibit the same pattern as the (rank-ordered) Spearman coefficients. UIC-intensity

(%UIC) is correlated very significantly with %MA_UIC and %NPLR. In other words, a

university’s UIC performance appears to be closely linked to researchers with a university

affiliation and a corporate address and related to the impact of its research on technological

development. Most of the other correlation coefficients among the metrics are also posi-

tive, albeit less significant. Collectively, they all reflect a broader underlying phenomenon

best described as a ‘university–industry R&D linkage’.

Principal component analysis (PCA), which draws its data from all these Pearson

correlation coefficients, highlights underlying dimensions of these interrelationships.8 The

PCA results in Table 4 shows a first component explaining 36 % of all statistical variance.

The second component, accounting for an additional 17 %, mainly highlights the weak

positive correlation between both NPLR-based metrics. We therefore decided to select the

first component only. This component comprises university–industry R&D linkages of

various kinds, reflecting in decreasing order by weight: joint knowledge creation collab-

oration (%UIC), social connectedness and cognitive proximity (%MA UIC), knowledge

diffusion and cognitive proximity (%NPLR), and geographical proximity between partners

(%DOMESTIC UIC). Of lesser relevance are ‘local’ partners, as compared to ‘domestic’, a

result partly explained by the overlap with %MA UIC that may also capture geographic

proximity. Similarly, %NPLR HICI is largely incorporated by %NPLR. The low weight

assigned to %CO-PATENT is less easily explained and probably an outcome of its overlap

with several of the other metrics.

Each university’s score on this component is identical to its loading on the first com-

ponent as mentioned in Table 4 (these loadings were calculated according to the regression

method). In our further analysis, we will refer to this component as the University–Industry

Table 2 Summary statistics of
metrics (750 universities)

Average Standard deviation

%UIC 5.2 2.5

%MA UIC .6 .6

%LOCAL UIC 18.7 13.8

%DOMESTIC UIC 60.0 21.8

%CO-PATENT 7.2 26.8

%NPLR 1.6 .8

%NPLR-HICI 4.8 2.5

8 PCA transforms a number of correlated variables into a smaller number of uncorrelated variables called
principal components. These components are linear combinations of the original variables weighted by their
contribution to explaining the variance in a particular orthogonal dimension. The first component accounts
for as much of the variance in the data as possible, where each succeeding component accounts for as much
of the remaining variance as possible.
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R&D Linkage Index (truncated to: U-I R&D Index). ‘‘Appendix’’ contains the top 100 lists

according to this ranking.

Comparing the rankings

Any index will, unavoidably, meet a challenging measurement problem: capturing the

multi-dimensionality of a concept and attempting to translate it into a single metric. By its

very nature, the rankings produced by a composite score rely critically on the weighting

systems and can be very sensitive to variations in those weights. Table 5 presents the top

20 universities according to PCA-weighted U-I R&D Index, alongside their rankings based

on an equal-weights methodology (similar to the one adopted in the RIU ranking). The

third column contains a third variant where the weights are split equally within the two

subgroups of highly related metrics: .33 each for %MA UIC, %LOCAL UIC and

%DOMESTIC UIC; .5 for %NPLR and %NPLR-HICI. Clearly, different weighting

systems create different ranking positions.9 Removing size-dependent metrics from the

ranking system, and introducing PCA-based data-driven weights, has a negative effect on

MIT’s ranking, and even more so for Stanford and Harvard that have now dropped out of

the top 20 (Table 8 shows their rank positions). Smaller universities move up in the

ranking, especially those with relatively large numbers of UICs.

Table 3 Correlations between
linkage metrics (750 universi-
ties): Pearson correlation coeffi-
cients in lower-diagonal section;
Spearman rank correlation coef-
ficients in upper-diagonal section

In bold: statistically significant at
.01 (two-sided)

1 2 3 4 5 6 7

1. %UIC .72 .10 .42 .35 .74 .16

2. %MA UIC .70 .27 .37 .25 .49 .07

3. %LOCAL UIC .15 .32 .14 .08 .04 -.06

4. %DOMESTIC UIC .41 .28 .21 .25 .33 -.06

5. %CO-PATENT .16 .10 .06 .09 .23 .05

6. %NPLR .66 .34 .02 .33 .19 .23

7. %NPLR-HICI .12 .03 2.10 -.07 .03 .18

Table 4 Principal component analysis and component weights (750 universities)

Component 1 (36 % variance;
Eigenvalue = 2.52)

Component 2 (17 % variance;
Eigenvalue = 1.22)

%UIC .90 .15

%MA UIC .77 -.15

%LOCAL UIC .35 -.65

%DOMESTIC UIC .60 -.22

%CO-PATENT .29 -.12

%NPLR .74 .39

%NPLR-HICI .13 .73

9 This study’s aim was to illustrate the range of various weighting options, and their consequences for
ranking positions. Hence, we refrained from conducting a sophisticated sensitivity analysis, with repeated
random sampling of weights, to assess the statistical robustness of these three rankings.
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Such differences across rankings are inevitable, but how significant are these dispari-

ties? And how does this affect the top of the ranking distribution? Returning to our ‘target

metric’, the university–industry co-publications, Table 6 summarizes the main technical

differences between the various ordering metrics (either a ranking score, index score or

individual scores). The overview emphasizes the disparities between the ‘broad scope’

mixed-metrics approach adopted by our U-I R&D Index, which offers the benefit of PCA-

generated ‘weight optimization’ and a fully size-independent perspective.

Table 7 compares the ranking positions for the 91 large research-intensive universities

that feature in each of the four measure. The correlation coefficients between the rankings

are all positive, and mostly very significant. Clearly all rankings capture parts of the same

underlying phenomenon (loosely described here as ‘R&D linkages’, or ‘innovation’ in the

case of Thomson Reuters). The RIU is more highly correlated with UIC frequency. In other

words, both are oriented towards capturing volume and size. The other two metrics (U-I

R&D Index and %UIC) are size-independent. Not only do these findings emphasize the

major impact of including or excluding size-dependent measures in a composite index,

they also question the added value of designing a composite measure in the first place. If

the ‘ %UIC’ metric has such a strong relationship with U-I R&D Index, it seems more

appropriate to list this metric separately rather than incorporating it in an index with a

fuzzy computational origin or ambiguous meaning.

Table 5 Top 20 universities in the U-I R&D Index: comparing various weighting systems

PCA-generated
weights

Pre-defined equal
weights

Pre-defined split
weights

Eindhoven Univ. Tech. 1 29 30

Sogang Univ. 2 16 51

Delft Univ. Tech. 3 65 61

Tokyo Univ. Agr. & Tech. 4 1 1

Chalmers Univ. Tech. 5 67 64

Semmelweis Univ. 6 4 4

Technical Univ. Denmark 7 11 3

Tokyo Inst. Tech. 8 8 8

Osaka Prefecture Univ. 9 20 19

Tokyo Univ. Science 10 42 95

Massachusetts Inst. Tech. 11 44 76

Korea Adv. Inst. Sci. Tech. 12 14 11

Osaka Univ. 13 6 6

Univ Dublin Trinity Coll. 14 283 186

Keio Univ. 15 13 17

KTH Royal Inst. Tech. 16 155 193

Adv Inst. Sci. & Tech. 17 17 14

Univ. Tokyo 18 7 10

Tufts Univ. 19 15 13

Univ. Texas—Dallas 20 2 2
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Table 8 compares the RIU’s top 10 universities with their ranking position on the other

three measures. The ranking similarity among the first three (size-dependent) measures is

confined to the top 5 universities, mainly as a result of their large scientific publication

output. MIT’s relatively low ranking on UIC output is remarkable in that respect, although

this institution is among the world’s best when ranked according to the U-I R&D Index.

The leading positions of Harvard, Stanford and MIT, regardless of the ranking method-

ology, is a testimony of their academic prowess in terms of their knowledge creation

abilities and outputs relevant to research commercialization and industrial R&D.

Discussion and general conclusions

Our key question driving this validation study was: are UIC-based data suitable for

assessment and comparison of universities within the context of university–industry R&D

linkages? To address this question our cross-validation study examined the information

value of various UIC-based measures—either as stand-alone metrics or integrated into

composite indexes. We adopted Thomson Reuters’ Ranking of Innovative Universities

(RIU) as an external frame of reference to assess their analytical relevance and statistical

robustness.

When used in a stand-alone mode, UIC-based metrics should ideally comply with the

newly-minted concept of ‘responsible metrics’, featuring in the recent ‘Metric Tide’ report

(Wilsdon et al. 2015), and it associated list of quality criteria in which ‘robustness’,

‘transparency’ and ‘diversity’ are highlighted as key attributes. This report’s recommen-

dations state that ‘‘indicators and metrics are based on the best possible data in terms of

Table 6 University Ranking indices and metrics: technical specifications

Ordering
metric

Stock or flow
metrics

Size-independent
metrics

Metrics
weighing

Metrics redundancy
reduction

RIU Mixed Some Pre-defined No

U-I R&D
Index

Flow All Data-driven Yes

UIC
frequency

Flow No – –

%UIC Flow Yes – –

Table 7 Correlations between University Ranking metrics (91 universities): Pearson correlation coeffi-
cients in lower-diagonal section; Spearman rank correlation coefficients in upper-diagonal section

1 2 3 4

1. RIU .43 .61 .30

2. U-I R&D Index .38 .34 .84

3. UIC frequency .65 .31 .24

4. %UIC .26 .87 .18

In bold: statistically significant at .01 (two-sided)
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accuracy and scope’’, ‘‘data collection and analytical processes are as open and transparent

as possible, so users can test and verify results’’, and ‘‘indicators and metrics to reflect and

support the diversity and plurality of university performance features’’.

What do UIC-based metrics represent, and how do they relate to other metrics of

university ‘innovation’? Our study has demonstrated that UIC metrics are able to capture

‘diversity’ among universities: UICs represent different types of R&D-related proximity

relationships, which are not easily disentangled, as well as other ‘knowledge flow’ related

phenomena. UIC counts also capture size effects, and possibly even scale effects, among

universities—where a few large US universities are consistently ranked among the highest

worldwide.

Should one apply size-dependent or size-independent UIC-based metrics? Including

size-dependent measures has major implications for positions of universities in the

Thomson Reuters’ ranking. Many less prolific universities, i.e. with smaller quantities of

research publications and/or patents, are significantly disadvantaged. Our findings show

that this is particularly detrimental for the high-performing Japanese universities as well as

some Western European universities, which are all ranked in the top 25 according to the U-

I R&D Linkage Index (see Table 9). Clearly, whether or not to incorporate a university’s

size is one of the key determinants of its ranking position. The same applies to single UIC

metrics: applying the absolute number of UICs produces a completely different picture

compared to the share of UICs in university’s publication output. While offering the

advantage of computational transparency, their reliance on a single source of information

reduces their analytical scope. UICs alone are clearly an insufficient measure of university–

industry R&D linkages. These co-authored publications are just one of many measurable

linkages between universities and the business sector.

Does that make data-heavy, multiple-metrics indexes superior analytical tools? What

are the (dis)advantages when several metrics are combined or integrated into a composite

measure? Composites clearly offer ways of incorporating a wide range of sources and

metrics, thereby reducing negative effects of source-specific and country-specific differ-

ences between universities, and thus providing a more balanced and robust measure suited

for comparative purposes. Composite measures, partially based on UIC-metrics, are

therefore a superior proxy, provided both absolute and relative size needs are factored in.

Although this might enable us to identify top ranked ‘powerhouse’ universities, no index

Table 8 Rank positions of universities by various metrics

RIU U-I R&D Index UIC frequency %UIC

Stanford Univ. 1 25 2 34

Massachusetts Inst. Tech. 2 11 20 71

Harvard Univ. 3 39 1 203

Univ. Washington 4 121 5 129

Univ. Michigan 5 202 12 282

Northwestern Univ. 6 115 40 204

Univ. Pennsylvania 7 74 17 155

Korea Adv. Inst. Sci. Tech. 8 12 89 20

Imperial College London 9 146 9 89

Pohang Univ. Sci. Tech. 10 46 150 12
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alone can provide a fully adequate assessment of an institution’s performance. Any index-

based university ranking will still depend significantly on the selected metrics, the com-

putational method that was applied to assembled in a composite measure.

This tradeoff between single-metrics and multiple-metrics needs careful navigation in

search of an optimized approach. Inevitably, differences are to be expected and significant

discrepancies between ranking positions may easily arise. Usually as a result of an

interplay between the choice of metrics, the computational methods applied, and because

of differences between information sources.

Our sensitivity tests indicate that the various UIC-based metrics and indexes are not

consistent proxy measures: in most cases a university’s spread of ranking positions across

the between the various rankings is simply too large. Although both index-based rankings

in this study are, in a sense, useful representatives of U-I R&D linkages, there is no

formalized rationale or intuitive heuristic to opt for either as ‘the best’ representation. Nor

is there a ‘one-size-fits-all’ measurement model. Our findings also highlight both con-

ceptual and computational weaknesses in the RIU. Such top-down producer-driven rank-

ings, with a single composite score based on questionable weighting systems, are

suboptimal data reduction tools. Clearly, the trade-off between data reduction and gen-

erating meaningful outcomes is problematic and in effect disqualifies these league

table rankings as representing ‘best practice’.

Can one develop a ‘good practice’ to develop more robust and meaningful university

ranking systems? Based on this study’s outcomes, we recommend a bottom-up ‘score-

board’ approach without those problematic data reduction constraints. This user-driven

approach has already been adopted in the Leiden Ranking and U-Multirank, both ‘open

access’ information tool where: (1) no composite measures and weighting systems of

metrics are implemented, (2) computational procedures and information sources are more

transparent, (3) size-dependent metrics are kept separate from size-independent metrics,

(4) performance metrics are selected according to proximity relationships between uni-

versities and industry. Users should be able to (de)select metrics of their choice according

to their own selection criteria and analyze the scoreboard data anyway they like to satisfy

their information requirements.

Irrespective of the measurement model, choice of metrics, and the type of ranking

system, the availability of such information has opened up a new comparative framework

with implications for various major stakeholders.10 First, the ranking producers them-

selves: here we expect to see follow-up publications of ranking data. On June 14th, 2016

Thomson Reuters has published the list of ‘Europe’s top 100 innovative universities’.11

More university rankings dealing with aspects related to ‘innovation’ (or related topics

such as ‘entrepreneurship’ or ‘industry orientation’) will surely appear in the years to

come. Secondly, the universities where one may expect to find the same institutional

response as in the case of other rankings: high scores are likely to be publicly acknowl-

edged on university websites or in press releases; low scores will be either ignored or

perhaps used in management decision-making on the strategic development of a university.

The popular press is a third stakeholder: any newsworthy information introduced by

university rankings is of interest. More rankings creates more opportunities for news

articles and blog posts.

10 This type of comparative information on universities might also be of some relevance for small, specific
groups of prospective (industrial) PhD students or R&D companies cooperating with universities, but we
consider these to be ‘minor stakeholders’ compared to the other three stakeholder groups.
11 http://www.reuters.com/article/us-innovative-stories-europe-idUSKCN0Z00CT.
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These new ranking systems on ‘innovation’ may also create applications in government

policy making domains. Although we are unaware of such policy impacts to this date, we

may speculatively assume that such rankings will indirectly affect policy making at the

national or regional level. Those impacts could emerge in terms of offering a new source of

evidence for policy debate or raising the awareness of such performance measures for

policy recommendations. It seems much less likely that rankings, given their still ques-

tionable robustness, will be used to support resource-allocation decisions—either to

address perceived shortcomings in university–industry R&D linkage relationships or to

boost the performance of individual ‘innovation-oriented’ universities.

Acknowledgments This paper is the outcome of research presented at two Eurasian workshops on
University–Industry Cooperation, held in 2013 (Singapore) and 2014 (Leiden), that were co-organised and
attended by two of this paper’s authors (RT and AY). We thank our CWTS co-workers Andrea Reyes-
Elizondo and Erik van Wijk (CWTS) for their assistance in data pre-processing, and colleagues at
INCENTIM (Catholic University Leuven, Belgium) for supplying university patent output data from their
PATSTAT database. We are grateful for funding support by the Netherlands Ministry of Education, Culture
and Science (CWTS-CHERPA II research program), and by the European Commission (DG EAC,
U-Multirank project).

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Inter-
national License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.

Appendix

See Table 9.

Table 9 Top 100 universities according to University-Industry R&D Linkage Index (with ranking positions
in Thomson Reuters RIU added between parentheses)b

1 Eindhoven University of Technology Netherlands

2 Sogang University South Korea

3 (73) Delft University of Technology Netherlands

4 Tokyo University of Agriculture and Technology Japan

5 Chalmers University of Technology Sweden

6 Semmelweis University of Budapest Hungary

7 (43) Technical University of Denmark Denmark

8 (51) Tokyo Institute of Technology Japan

9 Osaka Prefecture University Japan

10 Tokyo University of Science Japan

11 (2) Massachusetts Institute of Technology United States

12 Korea Advanced Institute of Science and Technology South Korea

13 (18) Osaka University Japan

14 Trinity College, Dublin Ireland

15 (58) Keio University Japan

16 KTH Royal Institute of Technology Sweden
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Table 9 continued

17 Advanced Institute of Science and Technology Japan

18 (24) University of Tokyo Japan

19 (34) Tufts University United States

20 University of Texas, Dallas United States

21 (39) Tohoku University Japan

22 Grenoble INP France

23 Tokyo Medical and Dental University Japan

24 Osaka City University Japan

25 (1) Stanford University United States

26 University of Medicine and Dentistry of New Jersey United States

27 University of Copenhagen Denmark

28 (23) Georgia Institute of Technology United States

29 Rensselaer Polytechnic Institute United States

30 Chiba University Japan

31 Drexel University United States

32 Juntendo University Japan

33 Aalto University Finland

34 Aalborg University Denmark

35 Rockefeller University United States

36 Kanazawa University Japan

37 Shinshu University Japan

38 University of Tokushima Japan

39 (3) Harvard University United States

40 (62) Hanyang University South Korea

41 Thomas Jefferson University United States

42 University of Twente Netherlands

43 Technical University of Graz Austria

44 Budapest University of Technology and Economics Hungary

45 Wageningen University and Research Centre Netherlands

46 (12) Pohang University of Science and Technology South Korea

47 (31) Seoul National University South Korea

48 University of Gothenburg Sweden

49 (13a) University of California, San Diego United States

50 (13a) University of California, San Francisco United States

51 Kobe University Japan

52 Karolinska Institute Sweden

53 University of Maryland, Baltimore United States

54 Uppsala University Sweden

55 (81) Kyushu University Japan

56 (22) Kyoto University Japan

57 Yamaguchi University Japan

58 University of Texas Health Science Center, Houston United States

59 Kitasato University Japan

60 Yokohama City University Japan

61 Waseda University Japan
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Table 9 continued

62 (84) Korea University South Korea

63 University of Massachusetts Medical School United States

64 (36) Yonsei University South Korea

65 (98) Hokkaido University Japan

66 Linköping University Sweden

67 (52) Friedrich-Alexander-Universität Erlangen-Nürnberg Germany

68 St Louis University United States

69 Lund University Sweden

70 Georgetown University United States

71 Saarland University Germany

72 Ajou University South Korea

73 Gunma University Japan

74 (19) Johns Hopkins University United States

75 (9) University of Pennsylvania United States

76 (66) Sungkyunkwan University South Korea

77 University of Eastern Finland Finland

78 Hiroshima University Japan

79 Kinki University Japan

80 (41) University of Utah United States

81 Yeshiva University United States

82 (17) Duke University United States

83 University of Southern Denmark Denmark

84 (82) Case Western Reserve University United States

85 University of Basel Switzerland

86 National Chiao Tung University Taiwan

87 Humboldt University of Berlin Germany

88 (59) Boston University United States

89 Gifu University Japan

90 (47) Baylor College of Medicine United States

91 Heinrich Heine Univ Düsseldorf Germany

92 (89) Nagoya University Japan

93 University of Colorado, Denver United States

94 (37) Swiss Federal Institute of Technology Zurich Switzerland

95 (96) Freie Universität Berlin Germany

96 Cranfield University United Kingdom

97 (14) University of Southern California United States

98 Kumamoto University Japan

99 (13a) University of California, Los Angeles United States

100 (56) Carnegie Mellon University United States

a Ranking position refers to the University of California system
b Source: https://www.timeshighereducation.com/worlds-most-innovative-universities-2015-results (ac-
cessed on June 24, 2016)
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