
1

Ten

UNIX Password Security - Ten Years Later*

David C. Feldmeier and Philip R. Karn

Bellcore

445 South Street

Morristown, NJ 07960

Abstract

Passwords in the UNIX operating system are encrypted with the cry@ algorithm and

kept in the publicly-readable file /etc/passwd. This paper examines the vulnerability

of UNIX to attacks on its password system. Over the past 10 years, improvements

in hardware and software have increased the crypts/second/dollar ratio by five orders

of magnitude. We recxamin e the UNIX password system in light of these advamxs

and point out possible solutions to the problem of easily fonnd passwords. The paper

discnsses how the authors built some high-speed tools for password cracking and what

elements were necessary for their success. These elements are examined to determine if

any of them can be removed from the hands of a possible system infiltrator, and thus

incree the secnrity of the system. We conclude that the single most important step

that can be taken to improve password security is to increase password entropy.

Introduction

years ago, Robert Morris and Ken Thompson wrote the standard paper on UNIX

password security [9]. It described a new one-way function to encrypt UNIX passwords for

storage in the publicly-readable file /etc/passwd. This crypt function, based on the NBS

Data Encryption Standard (DES) algorithm, remains the standard in almost every version

of UN-IX.

Crypt usea the resistance of DES to known plain text attack to make it computationally

infeasible to determine the original password that produced a given encrypted password by

exhaustive search. The only publicly-known technique that may reveal certain passwords is

password guessing: passing large word lists through the crypt function to see if any match

the encrypted password entries in an /etc/passwd file. Our experience is that this type of

attack is successful unless explicit steps have been taken to thwart it. Generally we find

over 30% of the passwords on previously unsecured systems.

Recent well-publicized intrusions into UNIX systems prompted another look at the se-

curity of the UNIX password algorithm. In certain cases, intruders are using password-

guessing attacks much like those described by Morris and Thompson. One such attack was

contained in the ARPA Internet Worm of November 1988[12].

Experiments by the authors demonstrate that the rapid improvements in computer

price/performance ratios over the past decade call into question the adequacy of the present

UNIX password algorithm. By careful optimization and the liberal use of space/time trade-

offs, one of us (Fe&r&r) has developed a version of the present standard UNIX crypt

*The title refers to the paper by Morris and Thompson printed in Communications of the ACM in 1979[9]

G. Brassard (Ed.): Advances in Cryptology - CRYPT0 ‘89, LNCS 435, pp. 44-63, 1990.

0 Springer-Verlag Berlin Heidelberg 1990

45

function that executes in 0.92 ms on the latest generation of RISC workstations. The old

Version 6 UNIX crypt function (based on the M-209 rotor cipher) executed in 1.25 ms on

the PDP-l1/70s that were current in the late 1970s when the crypt algorithm was changed.

It is interesting to note that the main reason given by Moms and Thompson for abandoning

the Version 6 algorithm was that it executed too quickly.

This paper discusses how passwords in the UNIX operating system can be found using

high-speed versions of the UNIX crypt algorithm and pre-encrypting large dictionaries.

Given that such tools are available to crack passwords, the elements necessary to allow such

cracking are examined to determine how some of these necessary elements can be eliminated

to improve security.

2 Fast Crypt Implementations

The crypt implementation that is included with UNIX distributions (such as BSD 4.2) is

not optimized for speed because it already allows logins in a reasonable amount of time.

Several techniques can be used to speed up an implementation. One technique is to alter the

crypt algorithm so that it is easier to compute but still produces the same results. Another

technique is to take advantage of the architectural features of the computer that runs the

algorithm. Space-time tradeoffs are used to minimize the number of table lookups at the

expense of table size and carefully designed data structures minimize the manipulation of

individual bits.

The result of applying these methods to increase the performance of the crypt imple-

mentation leads to a 102.9 times speedup over the crypt implementation in 4.2 Berkeley

UMX on a Sun 3/50 and a top speed of 1092.8 crypts per second on a Sun SPARCStation.

A more complete description of these techniques may be found in the appendix.

Using the speeds of several fast crypt implementations1 and the prices of several com-

puters (adjusted for inflation to 1989 dollars) produces the graph in figure 1 that shows the

increase in crypts/second/doUar over the last 15 years. The graph shows both increases in

hardware speed (D) and the best combinations of hardware and software speeds (x). At

the left side of the graph is the speed of the Version 6 crypt (0) . Crypts/second/dollar is

the correct metric because password cracking is an easily segmented problem. The speedup

is nearly h e a r with the number of machines, so the best perfonnance overall is obtained

by using machines with the best price/performance ratio. The computers shown are the

DEC PDP 11/70 (1975), the DEC VAX 11/780 (1978), the Sun 3/50 (1986), the Sun 4/280

(1987), the DEC 3100 (1989) and the Sun SPARCStation (1989).

Table 1 shows how much CPU time on the DEC 3100 is required for exhaustive search

of various password spaces. Note that these numbers are for a single DEC 3100, but

exhaustive searches are easy to parallelize and many workstations could be used at night

and on weekends when they are otherwise idle. Given 20 machines and the numbers above,

it is probably reasonable to do an exhaustive search of passwords of length 7-8 lower-case

letters, 7 lower-case letters and numbers, 6 alpha-numeric characters, 5-6 printable character

or 5 ASCII Characters. The moral is keep your passwords 8 characters long or use lots of

unusual characters, but in no circumstance use less than 6 characters. Of course, if the

crypt/second/dollar ratio increases by another five orders of magnitude in the next decade,

only eight-character passwords that utilize the entire ASCII character set will be immune

from brute-force cracking!

'See table 6 in the appendix.

46

26 36 62

n lower-case lower-case alpha-numeric

letters letters & digits characters

.PDP llnO -

95 128

printable ASCII

characters characters

M-209

SPARCStation - Feldmeier
3 100 - Feldmeier X

.4/280 - Bishop
x4n80 - Mit~hdl 3/50 - Mitchell

SPARCStation - Unix CI

3100 - UnixO

11/780 - Mitchell

11/10 - Unix 1 ln80- Unix

Year

Figure 1: Crypts/Second/Dollar vmus Time

47

Exhaustive search in hardware is possible[5]. One of the aims of including the salt in

the crypt algorithm was to remove the threat of using DES hardware to find passwords.

However, it would not be too expensive to build VLSI chips that compute the crypt function

and run 1000 times faster than these software implementations, not to mention the possible

gain due to parallelism and pipelining.

The ultimate size of the key space allowed by the UNIX crypt program is very large: 266

or about 7.2 x lo'* possible keys. Even with only 95 printable characters on a keyboard,

there are still 95' or about 6.6 x possible keys. This is large enough to resist brute-

force attacks in software, yet most of the passwords selected by users are in a very s m a l l

part of this total space. It is impossible to use exhaustive search over the large space, but

it is possible over the smaller space. What is needed is a list of words that have a high
probability of being chosen as a password. Such a list can be derived from dictionaries,

telephone directories, etc.

3 Precomputed Encrypted Dictionaries

A fast way of cracking large batches of passwords on a routine basis is to first encrypt a list

of likely passwords and then compare each new batch of encrypted passwords against this

pre-encrypted list.

Salting was specifically designed to hinder this approach. Because the specific salt values

are not known in advance, the pre-encrypted dictionary must encrypt each trial password

with all possible salts, increasing storage requirements considerably. However, bulk storage

is now far cheaper than it was ten years ago. Ln 1979, the densest form of bulk storage on

the market was 6250 bpi magnetic tape and the corresponding tape drives were expensive.

The consumer video cassette recorder boom of the 1980s has produced a spinoff in the form

of herpensive digital cassette drives that can store about 2 gigabytes on a standard 8m7n

video cassette. These cassettes are about the same size as audio cassettes, yet they can

hold the equivalent of fifteen 2400' reels of 6250 bpi tape.

Using a collection of Sun-3 and Sun-4 processors, the authors built a pre-encrypted

dictionary from a list of about 107,000 trial passwords. Encrypting each trial password

4,096 times (once for each possible salt value) took several CPU-weeks on these machines;

the results fit onto two 8mm cassettes. (Recomputing the dictionary would now take leas

time, since the fast crypt algorithm was still being tuned while we were generating the

dictionary.)
Each encrypted password is stored as an 8-byte value; the plain text is not stored on

the tape. Not only does this reduce the amount of tape necessary, but the tapes alone

are enough to determine whether an encrypted password is in the password List without

revealing the plain text password. This is ideal for improving system security without the

possibility of the tapes being used to infiltrate other systems.

The cassettes can be replayed repeatedly and checked against lines from the /etc/passwd

file. At a tape transfer rate of 250 kilobytes/second, the CPU can keep up easily with the

comparisons; thus the system checks about 30,000 trial passwords/second, faster than the

fast crypt code runs in real time. The tapes also can be supplemented with tapes produced

from new passwords and with the fast crypt program to check words of local interest, such

as names of employees or projects.

The precomputed dictionary approach is therefore 28.6 times faster than real time en-

cryption on a DEC 3100. Twelve tapes containing the encrypted versions of about 732,000

trial passwords would take a day to read on one drive; the crypt implementation running

on a single DEC 3100 would take a month, assuming that the password file contains at

least one entry for each possible salt. Even so, as long as users change their password less

often than once a month, many passwords still can be found. The precomputed dictionary

is helpful but not essential for password cracking.

4 Improving Password Security

Since this paper discusses the security of password systems, other possible human-to-

machine authentication systems (such as retinal s c a m or fingerprints) are not considered

here. The purpose of this section is to examine the necessary elements for successful pass-

word cracking and to suggest which elements might be changed to increase the difiicdty of

cracking passwords. The elements required to crack passwords as discussed in this paper

are:

0 High perfonnance/price ratio computers

0 Large on-line word lists (dictionaries, etc.)

0 A known password encryption algorithm

0 A constraint on the acceptable running times for the login program

0 A publicly-readable password file

0 Passwords with a significant probability of being in the word list

The existence of high perfarmance/price ratio computers and on-line word lists cannot

be controlled, so if the di€Eculty of cracking passwords is to be increased, then one of the

remaining four conditions must be changed.

4.1 Known Encryption Algorithm

We consider it a given, as did Morris and Thompson, that the encryption algorithm used for

the one-way password crypt function must be published and subjected to public scrutiny.

As in cryptography, it is neither practical nor necessary to base the security of a password

algorithm on its secrecy. The storm of protest in response to the NSA’s recent attempt to

replace DES with a secret cipher of its own design indicates the importance of this principle.

Furthermore, the enormous success of the UNIX operating system is based largely on the

openness of its design and the availability of its algorithms and source code. Assuming that

the basic algorithm has not been compromised, there is no real reason to change it.

4.2 Acceptable Running Times

Software de-facto standards, such as the UNIX password algorithm, tend to outIive their

original underlying hardware. UNIX now runs on a wide range of processors, from LBM
PC/XTs to Cray ITS. A crypt function that is slow enough to thwart password attacks on

a Cray 11 would be intolerably slow to a user logging into an IBM PC, and of course what

is slow but tolerable on today’s machines wil l become unacceptably fast on tomorrow’s. It

is ironic that current fast crypt implementations on 1989 hardware run faster than the old

(and “unacceptably fast”) Version 6 crypt ran on 1979 hardware.

49

Also, a crypt routine written specifically for password cracking runs orders of magnitude

faster than a version built into a login command. Many of the performance enhancements

(e.g., precomputation and the factoring of permutations) are meaningful only for a large

scale password cracker that is trying many more keys than encrypted passwords. Also,
the amount of memory required for the large tables in fast crypt implementations is not

acceptable for a utility program that is to be a standard part of the system. The adversary

can d o r d to dedicate an entire system to password cracking; the ‘good guy” is unlikely to
be willing to dedicate his entire system to the login program.

Morris and Thompson purposely slowed the execution speed of the UMX crypt im-

plementation in an attempt to hinder password cracking. Adjusting crypt’s speed so that

the slowest processor running UNlX still has an acceptable login delay thwarts attack only

slightly; the fundamental problems with current passwords are not addressed. Other ap-

proaches are more likely to be successful. We believe the solution to the password cracking

problem lies not in penalizing both the good guy and the adversary by deliberately slow-

ing the algorithm. A better approach lies instead in ‘driving a wedge” between them by

increasing the entropy of user passwords. This forces the adversary to search such a large

key space as to be impracticable even with a fast algorithm running on the fastest a d a b l e

computer for the foreseeable future.

4.3 Encrypted Password Availability

A resource available to the adversary that is removable is the existence of a publicly-readable

encrypted password file (/etc/passwd). For the purposes of this paper, it is assumed that

physical access to the machine alone is enough to subvert it and it is assumed that the

machine itself is physically secured according to the desired level ofsecurity. Many machines

can be rebooted into privileged mode with physical access, so that physical access implies

that a password-based attack is really unnecessary for system access.

One method of restricting availability of the encrypted passwords is the shadow password

file. A shadow password file is a file that contains the encrypted passwords and is not

publicly accessible. This prevents the average user from accessing the password file. One

problem with this approach is that a system administrator has access to the file. This is not

a problem while the person remains an administrator, since presumably he has access to

everything anyway. The problem is when a system administrator leaves. He may have copied

encrypted passwords while he was an administrator and can now use these passwords t o

infiltrate the system. Also, if an error in access permission is made, the encrypted password

file may become available to all users of a system. Shadow password files cannot hurt, but

it seems unwise to count on them alone for system security.

A more promising, if more complex, method is to provide each user with a s m a r t curd

that is used to authenticate the user to the system. A smart card in this case is a s m a l l

computer with a keypad and a general purpose processor. The smart card should be able to

communicate directly with the login system (e.g., by electrical or infrared link) rather than

require manual I /O. The smart card is more than a physical key; the human authenticates

himself to the smart card using a password, so the card alone is worthless. Note that the

encrypted password resides in the card and cannot be obtained without possession of the

card. Once the human authenticates himself to the card, the card authenticates itself to

the computer by some other method not discussed here. Some possibilities include zer*

knowledge proofs and public key systems. The main problem would seem to be the rather

limited processing capacity of a smart card. However, there are ways of utilizing computing

50

power in untrusted machines to execute complicated secret computations efficiently[7].

4.4 Decreasing Password Guessability

The main weakness in any password system is that users often choose easily guessable

passwords: English words, names, trivial extensions to Engtsh words, etc., because they

are easy to remember. It is important that passwords be difficult to g u e s s . One way to

decrease password guessability is to eliminate common passwords from letcjpasswd. At

Bellcore, we are using our high-speed pzsword cracking system and a large dictionary to

find easily-guessed passwords on systems. Since we have a faster crypt and more CPU cycles

than potential intruders, this allows us to use a larger dictionary; thus any passwords that

survive our scrutiny are unlikely to be found by an intruder.

Another possibility is to restrict the passwords accepted fiom the user with a system

that filters out easily guessed passwords. DXerent schemes of filtering are possible and one

such method was described by Morris and Thompson[S]. This system acts as a password

advisor that indicates insecure passwords, but it does not force the user to accept its recom-

mendation. In some Applied Research laboratories in BeIlcore, passwords must have certain

characteristics before they are accepted by the system when the user changes his password.

In addition, all existing passwords are periodically checked against a large dictionary and

anyone whose password is found is forced to change it.

The most drastic solution is to have the system assign an arbitrary password. The

problem is that such a password is hard to remember, so the temptation to write it down is

strong. A written password is like a physical key, and can be used by anyone who obtains

it. A slightly friendlier version of this system a s s i p a password, but allows the user to

rearrange it to make it easier to remember. Then the new password is checked; if it is still

acceptable, it becomes the user’s new password.

A fundamental problem is that passwords typed by the user are truncated to 8 characters

in length. Easily remembered passwords that are this short almost inevitably have much

less than the 56 bits of entropy allowed by the crypt algorithm, making them easier to find

by exhaustive search. All of the techniques just described attempt to increase entropy in the

users’ passwords, but they do it in a way that ignores human factors considerations. Almost

anyone can remember 56 bits of arbitrary information, but he must be allowed to do it in

a way that is suited to human, not computer, memory. The way to do this is by extending

the present algorithm to allow pass phrases[lO]. A pass phrase is simply a longer version

of a password that includes several words. According to Shannon [Ill, English text has a

lower bound of 1-2 bits of entropy per character. Therefore an ordinary English phrase of

5-10 words (assuming 5-6 characters/word and no unusual punctuation or capitalization)

has sufficient entropy as a pass phrase.

To accommodate this in the UNIX crypt algorithm, a hash function is needed to fold

the typed pass phrase into 56 bits, with each input character affecting the result. This

function should be backward compatible with the existing UNM password algorithm for

pass phrases of 8 characters or less. One possibility is to treat the first 8 characters as

before, exclusive-ORing into it each successive 8-character block from the pass phrase (if

the phrase is not a multiple of 8 characters, it is null-padded on the right).

Users might stiU object to pass phrases if they were required to type them too frequently

(e.g., when they must repeatedly log into a several Merent systems, each for short inter-

vals). A solution to this problem lies in the use of an distributed authentication system
such as Kerberos, in which the user need type his password only once to obtain a set of

51

“tickets” that can be used to access other systems repeatedly without having to retype the

pass phrase each time[l3].

Not only is the entropy of the password important, but also the amount of time available

to the cracker to find it. The more infrequently that a user changes his password, the more

vulnerable i t is to a cracker. Thus it is important that the user occasionally change his
password. On System V UNIX, this is accomplished by including an aging field for each

line of the /etc/passwd file. When a password is sdiciently old, then the user is prompted

for a new one. Of course, the system should check that the new password is different from

previous ones.

4.5 Other Approaches

Two suggested solutions to the problem of easily cracked passwords are to increase the size

of the salt or t o change the constant that is encrypted by crypt. Neither of these seems to

be particularly helpful.

Increasing the size of the salt does not help prevent attack on an individual password, but

i t does help defeat checking multiple passwords simultaneously and pre-encrypted wordlist

attacks by increasing the time and space required, respectively. The current salt is large

enough that few of the lines in a typical /etc/passwd iile share the same salt. The only

remainbg reason to increase the size of the salt is to reduce the number of pre-encrypted

passwords that can fit onto a 5xed amount of tape. But as shown above, pre-encryption

decreases the cracking time b y a factor of 30, so this is the maximurn penalty that could be

exacted by even a large increase in the salt size.

Making the starting constant used by crypt a system configuration variable instead of

all zeros was mentioned by Morris and Thompson[S]. This has the advantage of making it
harder t o use the pre-encrypted wordlist, but unless the constant is kept secret it is s t i l l

possible to attack individual passwords with a fast crypt. Depending on the implementa-

tion, a user might be able to learn the constant by decompiling the login program If a

password/encrypted password pair is known, then the starting constant can be determined

simply by reversing the internal crypt operations. The encrypted passwords are known if

the /etc/passwd file is publicly readable; a plain text password that matches an encrypted

password is available to any user (his own password) and some passwords (such as for

WCP) may be widely known. An adversary with access to the /etc/passwd file alone but

no knowledge of the constant could take advantage of the fact that many passwords are in

the dictionary. As before, crypt can be run backwards for a dictionary of words on several

passwords and the corresponding input constants checked for a match. Once a matching

pair of constants is found (there are 264 or about 1.8 x lo1’ possibilities for the constant,

so a match is unlikely unless both are the hidden constant), the number can be verified

simply by using one of the plain text keys that produced the match to attempt to log in.

If the attempt is successful, the hidden constant is known and cracking continues as usual.
The only cost above the usual cracking technique is the maintenance of the list of constants

until a match is found. Table 2 shows the probability of finding the unknown constant after

checking n encrypted passwords, for lo%, 20%, and 30% probabilities of finding a password

in the dictionary.

Once chosen, the constant could not be changed easily (e.g., in event of compromise)

without having every user reenter his or her password. Another disadvantage of the system-

configurable constant is that /etc/password files would no longer be portable across systems

with different encryption constants, although it might be argued that such portability de-

52

Number Success

of Probability

success success

Probability Probability

Passwords

5

(10%) (20%) (30%)

8% 26% 47%

Table 2: Probability of Cracking Two or More Passwords

c
10 26% 62% 85%

15 45% 83% 96%

20 61% 93% 99%

creases system security by allowing arbitrary (and perhaps easily guessed) passwords to be

put in the /etc/password file.

To.keep the constant secret, it is necessary to couple the secret constant technique

with shadow password files. Since this technique must be implemented in conjunction with

shadow password files, has no advantages over that of shadow passwords alone, and has

several disadvantages, it is better to implement password file shadowing only.

5 Conclusion

The current UNlX password system is not always sufficient to prevent unauthorized entry

because it is fairly easy to crack passwords. An important point is that although the crypt

algorithm is a good one, the password system as a whole is weak. Six factors contribute to

the ease of cracking passwords: high performance/price ratio computers, large on-line word

lists, a known password encryption algorithm, a maximum acceptable running time for the

login program, a publicly readable password file, and easily guessable passwords.

Nothing can be done about large on-line dictionaries or high perfonnance/price ratio

computers. In fact, the password system should take the exponential speed increase of

computers into account. It is argued that the password encryption algorithm must be

known to be trusted and that there is a range of acceptable running times for the algorithm

which sets an upper limit on the amount of computation that the password encryption

algorithm may use. Unfortunately, the computation limit is s m a l l enough to allow faster

machines to use a dictionary-based attack. It is also argued that Morris and Thompson’s

assertion that slowing down the implementation of the crypt function improves security

does not address the large range of processors that run UNIX.

Two of the main problems with the current system are that users choose easily guessable

passwords and that the encrypted password file is publicly readable. A dual approach is

suggested. One part is to make passwords less predictable by allowing pass phrases and

restricting passwords accepted by the system. This effectively increases the entropy of

a password, making wordlist attacks less successful. The other approach is to make the

encrypted password file less accessible. How exactly this is done depends on the desired

level of security and includes shadow password files and smart cards.

53

References

[l] Robert W. Baldwin. MIT fdes 5 (crypt) source code.

[2] Matt Bishop. An application of a fast data encryption standard implementation. Com-
puting Systems, 1(3):221-254, S u m m e r 1988.

[3] Marc Davio, Yvo Desmedt, Marc Fosseprez, Rene Gomerts, Jan Hulsbosch, Pa-
trik Neutjens, Philippe Piret, Jean-Jacques Quisquater, Joos Vandewalle, and Pascal

Wouters. Analytical characteristics of the DES. In Proceedings of Crypto '83, pages

171-202, August 1983.

[4] Marc Davio, Yvo Desmedt, Jo Goubert, Frank Hoornaert, and Jean-Jacques

Quisquater. Efficient hardware and software implementations for the DES. In Pro-

ceedings of Crypto '84, pages 144-146, August 1984.

[5] W. DifEe and M. E. Hellman. Exhaustive cryptanalysis of the NBS data encryption

standard. Computer, 10(6):74-84, June 1977.

[6] Alan G. Konheim. Cryptography: A Primer. John Wiley & Sons, 1981.

[7] T. Matsumoto, K. Kato, and H. Imai. Speeding up secret computations with insecure

auxiliary devices. In Proceedings of Crypto '88, August 1988.

[8] Donald Mitehell. AT&T Questor (crypt) source code.

191 Robert Morris and Ken Thompson. Password security: A case history. Communicatwm

of the ACM, 22(11):594-597, November 1979.

[lo] Charles P. Pfleeger. Security in Computing. Prentice HaIl, 1989.

[I11 Claude Shannon. Prediction and entropy of printed english. Bell System Technical

Journal, 30(1):50-64, January 1951.

[12] Eugene H. Spdord. The internet worm program: An analysis. Computer Communi-

cation Review, 19(1):17-57, January 1989.

[13] J.G. Steiner, C. Neuman, and J.I. Schiller. Kerberos: A n authentication service for

open network systems. In USENXX Conference Procedings, pages 191-202, D b ,
Texas, February 1988.

A A High-speed Crypt Implementation

This append3 describes a high-speed software implementation of the UNIX crypt algo-

rithm. This new crypt is 102.9 times faster than the crypt in 4.2 Berkeley UNLX on a Sun

3/50. Many of the results are also applicable to software Data Encryption Standard (DES)

and other product cipher implementations.

Several techniques are used to increase the program speed. One technique is to alter the

crypt algorithm so that it is easier to compute but still produces the same results. Another

technique is to take advantage of the architectural features of the computer that will run

'This appendix was originally a paper entitled A Eigh-Speed Crypt Implcmcntotion by David C. Feidmeier.

54

the algorithm. It also is important for high performance to minimize the manipulation of

individual bits. A data representation is described that allows the E expansion of DES

to be accomplished by a simple register copy and yet allows a fast implementation of the

S function of DES without bit manipulation. This appendix assumes that the reader is

familiar with the DES [6].

A.l Overview of Crypt

Crypt is a program used by the UNIX operating system to encrypt user passwords and is

based on the DES encryption algorithm. Crypt is designed to be a one-way function; given

an input, it is easy to compute the output, but given an output, it is impossible to determine

the corresponding input except by guessing. DES can be used to realize a one-way function,

so it is a good choice to use for crypt. In particular DES is resistant to a known plain text

attack, which meam given the plain text and the cipher text, the key can be found only by

exhaustive search. The crypt algorithm uses 25 successive DES encryptions of a constant

(64 zeros) to produce the encrypted password. The key for all of the DES encryptions is

derived from the user's password. The first eight characters of the password are used as a

56-bit key (7 bits for each ASCII character, 8 characters). If the password is less than 8

characters, the password is padded with zeros to the f d 56-bit length.

Actually, crypt does not use pure DES. To prevent use of off-the-shelfhigh-speed DES

hardware to crack passwords, crypt modifies the DES algorithm slightly. A randomly

generated salt is included with each entry in the /etc/passwd file. The 12-bit salt ranges

from zero to 4095. Think of the salt as a permutation that immediately follows the expansion

function E in DES. If bit 1 of the salt is a 1, then the salt permutation swaps bits 1 and 25

of the &-bit block generated by E. If bit 2 is a 1, then bit 2 and 26 are swapped and SO

on. Since there are 12 possible swaps and any combination of these swaps may occur, this

produces 4096 possible variations of DES (a salt of zero corresponds to pure DES). More

details on the UNIX password mechanism are found in a paper by Morris and Thompson[S].

A.2 The Speed-Crypt Implementation

This section describes some of the ideas behind the implementation of the crypt algorithm

written by the author (speed-crypt) and why it is fast. The implementation is designed for

32-bit machines; it is possible to run it on other size machines with minor modifications.

The DES algorithm has 48-bit, 56-bit and 64-bit wide paths. Since even 48 bits is wider

than the expected data path, each operation requires two word manipulations; thus the

DES data path is broken into high and low pieces of 32 bits each.

A.2.1 Algorithm Modifkations

The basic crypt algorithm can be modified in a number of ways that do not change the

function computed by the algorithm. Each DES encryption begins with the initial permu-

tation (IP) and ends with the inverse initial pemrutafion (I P - I) . These two permutations

are inverses of each other, so when two DES encryptions are concatenated, the IP of the

second encryption immediately follows the IP-' of the f i s t encryption. There is no reason

to do either of these permutations, since the net result is no permutation at all. Therefore,

any IP-'-IP pairs can be factored out of the algorithm and only the f i s t IP and the last

IP-' ever need be done. In fact, because of how crypt works, these remaining permutations

can be factored out as well.

55

Inside of DES, the 64-bit input block is broken into two pieces of 32 bits each called Left

(L) and Right (R). Within each DES encryption there are 16 product-transformation/block-

transformation pairs. The block transformation is simply the swapping of the R 32 bits with

the L 32 bits. To avoid the block transformation at the end of each product-transformation,

speed-crypt uses two different product transformations: one works the usual way and the

other operates on L as if it were R and vice-versa. Using these two product transformations

alternately eliminates the need for a block transformation between product transformations.

The only problem with this scheme is that after the last product-transformation, the L and

R blocks are swapped. This reversal is incorporated into the final IP-' because a swap and

a permutation is just a permutation. Let e represent the E expansion, u represent the S

function and r represent the P permutation. Let K; be the qh subkey, R; be the t*h value

of Right and L; be the value of Left. By definition:

Ri = Li-1 @ f ; R i - 1

f i h - 1 XU(Ki @ €&-I)

where f ; is the product transformation that uses subkey K;. After two rounds:

&+I = Ri-1 @ f i+l(Li-l@ fia-1)

Since there are 16 rounds in DES, 8 double-rounds of the following form can be used

instead:

L;+1 L;-i @ f;R;-1

&+l = Ri-1 @ fi+lLi+l

Notice that no intermediate values of R, and L; need be retained. After one double-round:

Lit1 = k - 1 @ fiRi-1

&+I = Ri-1 @ f;+l(L;-1@ fiR-1)

which is the same as before. In effect, the swap has been built into the iteration.

Because the crypt program begins by encrypting all zeros, the first I P permutation and

the first E expansion can be factored out because any permutation or expansion of zero is

still zero. The first salting operation can be factored out for the same reason.

Another method of increasing speed depends upon the assumption that there are fewer

encrypted passwords to be checked than words to be tried. Under these circumstances, it

makes sense to do as many operations as possible on the encrypted passwords if operations

can be avoided on the words. The encrypted passwords should be operated on to allow

their comparison with the results of the crypt program as early as possible, since a single

backward step on the password saves as many forward steps as there are words. The final
IP-I can be skipped if yon are checking to see whether a password is in a wordlist. Instead

of doing the IP-' permutation for each word that is being tested as the password, a better

way to do this is to take the encrypted password from the passwd file and permute it

with IP. The comparison is now done between the output of the last DES round and the

permuted encrypted password.

56

A.2.2 Subkey Generation

Subkey generation means taking a 64-bit password key K and generating 16 &-bit DES
subkeys Ki. The generation of subkeys involves taking a 64-bit plain text password and

applying the reduction/permutation Pennuted Choice 1. Permuted Choice 1 reduces the

password from 64 bits to 56 bits by eliminating the parity bits and then permutes the result.

The 56-bit result is then divided into low and high 28-bit halves and each half is left-circular

shifted by an amount that depends on the particular subkey being generated. The two 28-bit

halves are joined and the permutation/reduction Permuted Choice 2 is applied. Permuted

Choice 2 permutes the 56-bit result of the rotation and then selects 48 of these bits for the

subkey. The combination of the permutations and reductions for each subkey is combined

into a single permutation/reduction, for a total of 16 subkey generation functions. Let a

represent Permuted Choice 1, /3 represent Permuted Choice 2, and p; represent the rotations

for the ith subkey. Let Ki be the 2h subkey and K be the key that the subkey is generated

from. Then:

K; n;K

n; = Ppia

where 6; is the permutation/reduction that generates the gh subkey from the originerl pass-

word. To limit the table size, subkey lookups take seven key bits at a time (each ASCII

password character is represented by 7 bits). The lookup could take any number of bits a t

a time because all are independent, but doing lookups a character at a time is convenient

and two characters a t a time makes the tables too large.

For each character in the password, the partial subkey is found and logical-ORed with

the partial subkeys for the other characters in the password. After 16 passes (each requiring

two lookups) for each character in the password (a maximum of 128 passes), all 16 subkeys

have been generated. At most 256 table lookups are needed to generate all subkeys. A nice

side-effect is that the time required for this method of subkey generation is proportional to

the password length. Since passwords of less than eight characters are padded with zeros

and permutations of zero are also zero, the subkeys will not be changed by these additional

zeros, so there is no need to bother with them The total table size is Z3 character positions

in each password, 2' possible characters in each position, 2' subkeys per password and 23

bytes to hold each subkey for a total table size of 217 or 131,072 bytes.

A.2.3 Table Lookup

The program gets a lot of its speed from a space-for-time tradeoff - almost everything in the

program is done by table lookup. Ideally, a table lookup would take the entire input (up

to 64 bits) and return the entire output (up to 64 bits). Of course, the maxixnum size of

the input and output of a table are limited by the virtual memory size and the bus width.

Thus, on a 32-bit bus, a table with a 64-bit output requires that two lookups be done, one

for the low 32 bits and one for the high 32 bits. As for the input to the table, even a 32-bit

input would be completely impractical because it is desirable to keep all of the tables in

main memory for fast access time and to prevent paging.

To replicate the dec t of a single large lookup table with several small lookup tables

presents a problem. The problem is that groups of input bits may exist such that all the

bits must be read sknultaneously to produce a result. An example of this is the S boxes in

DES. Each S box takes a 6-bit input and produces a 4-bit output. Because all 6 bits are

57

simultaneously necessary (because the S box is n o n - f i e) , all S box lookups must be done

in multiples of 6 bits.

However, if groups are independent, then the table lookup can be broken into man-

ageable pieces (ideally of equal size to minimize the total table size), each of which can

be manipulated independently. The results can then be logical-0Red together to produce

the appropriate output. Because the physical memory available to an application in most

workstations is only a few megabytes, this limits the size of the tables.

Changing one lookup to two produces a substantial change in total table size. The ratio

is 2("/*)+'/2" or 2'-("i2), where TI is the number of bits used for the table index. The fewer

the table lookups, the higher the speed, but also the more memory that is used. The crypt

implementations should use as few table lookups as possible given the memory constraints.

The IP-' table takes the 64-bit input a byte at a time and produces two 32-bit outputs

that are ORed together in the usual way. The I P table is used only for permuting encrypted

passwords that are being searched for to avoid computing the IP-' for each word in the

dictionary (remember that I P and IP-I are inverse permutations). Since I P is used on

password entries, the pacisword entries must be converted from ASCII form to a 64-bit form.

Speed-crypt uses a special version of I P that converts directly from the 11 ASCII character

format of the Ietclpasswd file to the 64-bit format after the IP permutation. I P does

lookups a character a t a time and produces two 32-bit outputs that are ORed together.

The S boxes and the P permutation are combined into a single lookup table. The
expansion function E is done with a simple register copy. The details of the E expansion

will be explained later. Table 3 shows the table sizes for speed-crypt.

1 Table I Bytes 1

I I

I total 1212,992 1

Table 3: Table Size in Speed-Crypt

A.2.4 Data Representation

A representation is devised that does not require a table lookup for the expansion function

E, allows the SIP function to be implemented as 4 table lookups without the manipulation

of individual bits, and allows fast salting. Such a representation is possible, but requires a

strange bit order.

Consider the mapping fiom R (32 bits) to E R (48 bits) as shown in table 4. The first

thing to notice is that the table is presented in groups of 6. The reason for this is that

the eight S boxes each use six bits for their lookup. Because the S boxes are non-af ie ,

the groups of six cannot be broken up. Therefore, they define the granularity of the table

lookups (multiples of six bits along the boundaries shown).

An important aspect of the E expansion is that no input bit of R ever becomes more

than two output bits in cR. This suggests that simply copying R into a second register will

give all 48 bits necessary for the expansion E in two 32-bit words. Designate the two copies

o i R a s A a n d B .

eR (48 bit)

R (32 bit)

eR (48 bit)

R (32 bit)

, 1

7 8 9 10 11 12

4 5 6 7 8 9

13 14 15 16 17 18

8 9 10 11 112 13 '

I 11 I I I I I I

eR (48 bit)

R (32 bit)

eR (48 bit1

1 R (32 bit) 11 16 I17 I 18 I 19 I20 I 2 1 1
I eR (48 bit) 11 31 I32 I 33 1 34 I 35 I 36 I

19 20 21 22 23 24

12 13 14 15 16 17

25 26 27 28 29 30

R (32 bi t j

eR (48 bit)

t R (32 bit; ii 28 i 29 i 30 i 31 i 32 i 1 1

20 21 j 22 j 23 24 i 25

37 38 I 39 1 40 41 I42 '

Table 4: Expansion Function E (mapping from R to ER)

Since as little manipulation as possible of the 32-bit quantities before the SP lookup

is desired, the bit order of the 32-bit R (and symmetrically L) is critical. The aim is to

do four lookups, two S boxes at a time. Notice that there is a circular structure to the E
expansion and that bits from R that occur on line n also occur on lines (n+ 1) and (n - 1)

mod 8. This means that the lookup of all odd lines must occur in one copy of R (say A) and

the lookup of even Lines must occur in the other (B) so that overlapping bits of R may be

salted differently. Salting constrains the data representation in yet another way. Because

salt exchanges bits between lines 1 & 5, and lines 2 & 6, lines 1 & 5 must be read in a single

lookup, as must lines 2 & 6. This also implies that lines 3 & 7 must be a single lookup, as

must lines 4 & 8.

To minimire table sue, Lines 1 & 5 , 2 & 6 , 3 & 7, and 4 & 8 must be organized as blocks

of 12 bits with no intervening bits. In addition, the circular structure of the E expansion

requires that the bits for Lines 8 and 2 be adjacent to those for line 1, lines 1 and 3 be

adjacent to those for line 2, etc. One way to achieve this is to interleave the bits of the

pairs of lines. Thus Lines 1 & 5 are interleaved, lines 2 & 6 are interleaved, etc. Of course,

interleaved hes 1 & 5 are adjacent to interleaved Lines 4 & 8 and 2 & 6. Interleaving not

only allows the correct adjacencies but also makes salting easy, since aligning the bits for

comparison takes only a single shift.

Assume that the bits of a word are numbered such that 0 is the least significant bit and

31 is the most significant bit. The data representation for R starts with the first bit of line

1 in bit 2, the first bit of line 5 in bit 3 and so on, thus interleaving lines 1 and 5. This

continues with Lines 2 and 6. Notice that bit 10 represents not only the fifth bit of line 1

but also the first bit of line 2, and bit 11 represents the fifth bit of line 5 as well as the first

bit of line 6. This pattern continues for lines 3 & 7 and 4 & 8. Notice that lines 4 & 8 wrap

around the end of the word, and thus the fourth bit of line 4 is represented by bit 0. This

59

is the 32-bit representation of R:

To get the 32-bit representation of L (which is not expanded), add 32 to each of the

above numbers. Notice that Lines 1 & 5 do not start immediately at the least significant bit;

there are two extra bits in the least significant byte. This is because when doing pointer

arithmetic, normally the value to be found in a table on a machine with a 32-bit (4 byte)

word size would have to be multiplied by 4 before addition. In effect, the data representation

above "premultiplies" by 4, thus saving an operation in a critical section of the code.

Now apply the mapping from R to ER for 1 & 5 and 3 & 7 (which have no overlapping

bits in R) to obtain the representation of the 24 of the 48 bits in A (x denotes an unused

position) :

I

4 2 ~ 1 8 ~ 4 1 ~ 1 7 ~ 4 0 ~ 1 6 ~ 3 9 ~ 1 5 ~ 3 8 ~ 1 4 ~ 3 7 ~ 1 & ~ ~ ~ ~ ~ 30~06~29~05~28~04~27~03~26~02~25 101

Now apply the mapping from R to ER for 2 & 6 and 4 & 8 (which have no overlapping

bits in R) to obtain the representation of the 24 of the 48 bits in B :

A.2.5 Salting

Unlike other functions in crypt, such as E , S and P , the salt permutation is determined

at runtime. Salting takes place in the 48-bit data path after the expansion function E and

before the subkey is exclusive-ORed with the expanded R. The salt acts as an additional

permutation after the E expansion, which can be either done separately or combined with

other permutations. Because of the nature of the E expansion, complete salting cannot be

done before E (although partial salting can). Let T represent the salt permutation; then:

If salting is done separately, then after the E expansion the appropriate bits are swapped

according to the salt. For many keys to be encrypted with the same salt, presalting may

be faster. Presalting involves combining the salt permutation with one or more of the table

lookups at runtime before any encryption is done and then using these modified tables for

encryption. Since in-line encryption uses one salt operation for each DES round, 400 salt

operations are performed on each word. With enough encryptions, it is cheaper to use the

salt to adjust each entry of the lookup tables appropriately.

The salting function is relatively fast. Because the salting operation is so regular, it

is faster to compute it than to do a table lookup. Speed-crypt has a data representation

such that the relative of€iets of bits 1-12 is the same as that of bits 25-36, i.e. the distance

between 1 and 2 is the same as the distance between 25 and 26, etc. This means that bits

1-12 can be aligned with bits 25-36 in a single operation.

The only bits that need be swapped are those that differ and this delta bitmap is com-

puted by exclusive-0R.ing bits 1-12 with 25-36. Then the delta bitmap is logical-ANDed

with the salt mask. The salt mask has a 1 in the positions where bits are to be salted and

0s elsewhere. This leaves a bitmap of those bits that differ and are supposed to be switched

60

in the delta bitmap. This delta bitmap is then exclusive-OM with bits 1-12 and 25-36,

thus completing the s a l t i n g operation.

Presalting is used exclusively for speed-crypt, since the crossover point for presalting

versus in-line salting is only 10 words. Presalting involves altering lookup tables to eliminate

the need to exchange bits after the E expansion. The only table lookup in speed-crypt is

the SP table, which produces a 32-bit result. Sometimes bits that both can be salted after

E appear as a single element in the 32-bit representation of R. This is a problem as the

32-bit element can salt the single bit one way, and perhaps have bits be swapped incorrectly

for one of the two lookups. The solution is to reorder the entries of the SP table according

to salt. By definition:

R, L;-1 $ KU(s;K $ ~eRi-1)

Using the fact that w-l is the identity permutation:

& = Li-1 XQTT-'(K;K $ T E R ; - ~)

Now distribute 7-l across $:

The table entries have to be permuted or reordered, depending on whether the incorpo-

rated permutation is before or after the table.

*a; t X U y (;)

Thus all of the key table entries are salted with the usual s a l t function. SP table entries

must be exchanged and this can be done quickly. If two bits to be salted are the same (when

i = ~(i)), then no exchange is necessary. Since T = T-', table entry xu; can be swapped

with entry XU.(;) and no temporary storage is needed.

A.2.8 System Issues

Crypt runs DES 25 times and the basic round within DES is run 16 times for a total of 400

rounds. Anything that can be done to speed up this basic round will be multiplied by 400,

so it is important that the rounds run efficiently.

In general it is best to keep the number of variables used by the crypt program s m a l l

so that most of them can be kept in registers. On a fast processor, particularly those with

caches, memory fetches slow down the system.

It is best to avoid instructions whenever possible. For example, with the SP table

lookup, rather than logical-ORing the table entries together and then exclusive-ORing the

result into the L register, it is faster to exclusive-OR the intermediate results into the I;

register directly, saving one instruction per round (400 instructions total).

61

For processors with a cache, the main DES rounds should be executed within a loop

that is s m a l l enough to fit into a processor cache. The execution speedup achieved by the

cache more than compensates for the running time of the extra loop instructions. Without

a cache, the loop should be unwound so that the loop overhead is avoided. Speed-crypt has

a compile-time option to structure the program appropriately depending on whether there

is a cache.

Another important point is to take advantage of the processor instruction set, specif-

i c d y whether the machine is a Reduced Instruction Set Computer (RISC) or a Complez

Iwiruction Set Computer (CISC). Examples of RISC machines are the Sun 4 (SPARC pro-

cessor) and the DEC 3100 (MIPS R2000 processor). Examples of CISC machines are the

Sun 3 (68020 processor) and the VAX.

A useful feature of CISC processors is auteincrement mode. If possible, it is best to

step through tables one element at a time so that auto-increment mode can be used. This

is particularly useful for accessing.the subkeys. The high and low words of th’e subkeys

alternate and they are extracted one at a time with auto-increment mode. On a RfsC
machine, a separate addition must be done for each increment, so it does not matter what

the step size is. Sometimes a Merent step size can lead to more dc i en t operation. An-
other feature of CISC processors are instructions specifically designed for efficient loops.

In particular, it is faster to count down to zero with a single instruction that does the

compare-decrement-branch function.

RISC machines generally contain a large number of registers and performance is en-

hanced if often-used constants are kept in registers. Large constants take two instructions

to load into the processor rather than one (this is because the fixed-length RISC instructions

can include only s m a l l constants).

Speed-crypt is written in C and should be portable with little trouble, although for some

machines there are special cases inserted into the code. In particular, sometimes a compiler

cannot be convinced to generate efficient assembly code for some portion of C code. An

example of poorly generated code is the loop instructions. Compilers sometimes generate

non-optimal loops, particularly for CISC processors, which often have good instructions for

loops. One case where the compiler is not at fault i s the lack of a bit rotation operator

in C. Many processors have a bit rotation instruction, but the equivalent in C produces 3

assembly language instructions. In both of these cases there are compile time options to

replace some portions of the C code directly with assemble language instructions for specific

processors. Another possibility is to edit the assembly language that the compiler produces.

Because the VAX compiler is reluctant to use all of the processor registers, speed-crypt on

the VAX uses a SED (UNIX Stream EDitor) script that replaces certain memory references

with register references in the assembly code.

A.3 Implementation Alternatives

Fast crypt implementations by Baldwin[l], Bishop[2] and Mitchell[8] each utilize most of the

suggestions above. Fast DES implementations also use similar techniques[4]. Speed-crypt

has a technique for the E expansion that can double the speed of an implementation on

32-bit RISC machines.

The questor code was written by Donald Mitchell at Bell Labs and is probably the most

straight-forward of the fast crypt implementations[8]. Subkey generation uses two table

lookups (Permuted Choice 1 and Permuted Choice 2) and two rotations per subkey. The

E expansion is done as eight 64-bit table lookups (4 bits of R at a time). The S function

62

User
Machine Time

and the P permutation are combined and eight 32-bit lookups are done (6 bits a t a time).

The swap of L and R occurs between DES rounds. The IP-I lookup is also done 4 bits at

a time. The version timed below has presalting, but the original version did in-line salting

only. However, the code is well written and it runs quickly.

The implementations by both Baldwin and Bishop use a transformation of DES de-

scribed by Davio[3]. The recurrence equation is rewritten so that the E expansion is com-

bined with the S function and the P permutation; thus, only a single lookup table is needed

for the DES rounds. An function is needed at the end of the 25 DES encryptions, but

this can be combined with the IP-I table. The problem with this transformation is that the

entire data path of the crypt function is 48-bits wide. This is not a problem on a machine

that is 48-bits wide or wider, but it is on a machine with a smaller bus. This doubles the

number of memory accesses for the S P E table because each 48-bit word requires two 32-bit

fetches. The basic S P E table lookup requires 4 basic lookups, each of which has an 8 byte

output, which means that each lookup requires two memory fetches on a 32-bit machine.

Because memory fetches slow down the crypt program, speed-crypt executes faster because

fewer (4) memory references are needed. The E expansion technique used for speed-crypt

has little advantage over a combined S P E table for machines that are 64-bits wide or wider.

For machines with smaller bus widths, the speed-crypt implementation should run about

twice 85 fast.

Bob Baldwin wrote the fdes code at MIT[l]. The subkeys are computed in the standard

way and he avoids the swap between DES rounds. His SPE lookups are done 6 bits a t

a time. Baldwin has other optimizations that are specific to his design and cannot be

implemented in speed-crypt. The fdes program is designed to run well on a VAX. It rams

very well on the VAX, but not as well on other machines.

Matt Bishop wrote his deszip code at Dartmouth College and the Research Institute

for Advanced Computer Science[2]. The code has a variety of options to allow various

speedlsize tradeoe. Keys can be computed either the standard way or with a permutation

per subkey as speed-crypt does. The S P E lookups can be done 6 or 1 2 bits at a time. It is

also sophisticated about taking advantage of the machine architecture to improve its speed.

System Total Crypts Milliseconds

Time Time per Per

A.4 Speed Measurements

I 11 (Seconds) I (Seconds) I (Seconds) I Second I

Table 5: Speed-Crypt Speeds on Various Machines

63

I Person I Version I Year 11 DEC 3100 I Sun 3/50 I Sun 4/280 I VAX 11/780 1

Table 6: Crypt Times of Various Implementations

The timings of the speed-crypt implementation are shown in table 5; the length of the

test dictionary is 106,661 words. Table 6 shows the speed of the various crypt implementa-

tions on a variety of machines. The reason that implementations by others do not speed up

as well when they are moved to a FUSC machine is that they do many table lookups. The

speed-crypt program is larger, but the number of table lookups is smaller, thus allowing it

to run faster on a RISC machine. Also, Baldwin's fdes program is optimized for the VAX,

not the Sun, so it may not have ported well. Notice that fdes runs 3.2 times faster on the

Sun 4 than on the VAX 11/780, while speed-crypt runs 17.7 times faster.

A.5 Conclusion

This appendix describes the implementation of a high-speed crypt program written in C.

It discusses how the crypt algorithm works and how it can be modified for higher speed.

Implementation decisions and programming tricks for high speed are also discussed. It

is worth pointing out that no real breakthroughs were required for the results obtained.

What was required is a good understanding of the algorithm and of the computer systems

on which it is implemented. The most unique part of the implementation is the unique bit

order used in the 48-bit wide product transformation that allows fast E expansion, fast SP
table lookup and salting without manipulation of individual bits. Of course, many of the

ideas presented in this paper are applicable to software implementations of DES and other

product ciphers.

The fastest crypt implementation is 102.9 times faster than the crypt in 4.2 Berkeley

UN'IX on a Sun 3/50. In absolute speed, the fastest crypt does 1089.5 crypt per second on

a DEC 3100.

	UNIX Password Security - Ten Years Later*
	Introduction
	Fast Crypt Implementations
	Precomputed Encrypted Dictionaries
	Improving Password Security
	Known Encryption Algorithm
	Acceptable Running Times
	Encrypted Password Availability
	Decreasing Password Guessability
	Other Approaches

	Conclusion
	References
	A High-speed Crypt Implementation
	Overview of Crypt
	The Speed-Crypt Implementation
	Algorithm Modifkations
	Subkey Generation
	Table Lookup
	Data Representation
	Salting
	System Issues

	Implementation Alternatives
	Speed Measurements
	Conclusion

