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Abstract 

Passwords in the UNIX operating system are encrypted with the cry@ algorithm and 

kept in the publicly-readable file /etc/passwd. This paper examines the vulnerability 

of UNIX to attacks on its password system. Over the past 10 years, improvements 

in hardware and software have increased the crypts/second/dollar ratio by five orders 

of magnitude. We recxamin e the UNIX password system in light of these advamxs 

and point out possible solutions to the problem of easily fonnd passwords. The paper 

discnsses how the authors built some high-speed tools for password cracking and what 

elements were necessary for their success. These elements are examined to determine if 

any of them can be removed from the hands of a possible system infiltrator, and thus 

incree the secnrity of the system. We conclude that the single most important step 

that can be taken to improve password security is to increase password entropy. 

Introduction 

years ago, Robert Morris and Ken Thompson wrote the standard paper on UNIX 

password security [9]. It described a new one-way function to encrypt UNIX passwords for 

storage in the publicly-readable file /etc/passwd. This crypt function, based on the NBS 

Data Encryption Standard (DES) algorithm, remains the standard in almost every version 

of UN-IX. 

Crypt usea the resistance of DES to known plain text attack to make it computationally 

infeasible to determine the original password that produced a given encrypted password by 

exhaustive search. The only publicly-known technique that may reveal certain passwords is 

password guessing: passing large word lists through the crypt function to see if any match 

the encrypted password entries in an /etc/passwd file. Our experience is that this type of 

attack is successful unless explicit steps have been taken to thwart it. Generally we find 

over 30% of the passwords on previously unsecured systems. 

Recent well-publicized intrusions into UNIX systems prompted another look at the se- 

curity of the UNIX password algorithm. In certain cases, intruders are using password- 

guessing attacks much like those described by Morris and Thompson. One such attack was 

contained in the ARPA Internet Worm of November 1988[12]. 

Experiments by the authors demonstrate that the rapid improvements in computer 

price/performance ratios over the past decade call into question the adequacy of the present 

UNIX password algorithm. By careful optimization and the liberal use of space/time trade- 

offs, one of us (Fe&r&r) has developed a version of the present standard UNIX crypt 

*The title refers to the paper by Morris and Thompson printed in Communications of the ACM in 1979[9] 
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function that executes in 0.92 ms on the latest generation of RISC workstations. The old 

Version 6 UNIX crypt function (based on the M-209 rotor cipher) executed in 1.25 ms on 

the PDP-l1/70s that were current in the late 1970s when the crypt algorithm was changed. 

It is interesting to note that the main reason given by Moms and Thompson for abandoning 

the Version 6 algorithm was that it executed too quickly. 

This paper discusses how passwords in the UNIX operating system can be found using 

high-speed versions of the UNIX crypt algorithm and pre-encrypting large dictionaries. 

Given that such tools are available to crack passwords, the elements necessary to allow such 

cracking are examined to  determine how some of these necessary elements can be eliminated 

to improve security. 

2 Fast Crypt Implementations 

The crypt implementation that is included with UNIX distributions (such as BSD 4.2) is 

not optimized for speed because it already allows logins in a reasonable amount of time. 

Several techniques can be used to speed up an implementation. One technique is to alter the 

crypt algorithm so that it is easier to compute but still produces the same results. Another 

technique is to take advantage of the architectural features of the computer that runs the 

algorithm. Space-time tradeoffs are used to minimize the number of table lookups at  the 

expense of table size and carefully designed data structures minimize the manipulation of 

individual bits. 

The result of applying these methods to increase the performance of the crypt imple- 

mentation leads to a 102.9 times speedup over the crypt implementation in 4.2 Berkeley 

UMX on a Sun 3/50 and a top speed of 1092.8 crypts per second on a Sun SPARCStation. 

A more complete description of these techniques may be found in the appendix. 

Using the speeds of several fast crypt implementations1 and the prices of several com- 

puters (adjusted for inflation to 1989 dollars) produces the graph in figure 1 that shows the 

increase in crypts/second/doUar over the last 15 years. The graph shows both increases in 

hardware speed (D) and the best combinations of hardware and software speeds ( x). At 

the left side of the graph is the speed of the Version 6 crypt ( 0 ) .  Crypts/second/dollar is 

the correct metric because password cracking is an easily segmented problem. The speedup 

is nearly h e a r  with the number of machines, so the best perfonnance overall is obtained 

by using machines with the best price/performance ratio. The computers shown are the 

DEC PDP 11/70 (1975), the DEC VAX 11/780 (1978), the Sun 3/50 (1986), the Sun 4/280 

(1987), the DEC 3100 (1989) and the Sun SPARCStation (1989). 

Table 1 shows how much CPU time on the DEC 3100 is required for exhaustive search 

of various password spaces. Note that these numbers are for a single DEC 3100, but 

exhaustive searches are easy to parallelize and many workstations could be used at night 

and on weekends when they are otherwise idle. Given 20 machines and the numbers above, 

it is probably reasonable to do an exhaustive search of passwords of length 7-8 lower-case 

letters, 7 lower-case letters and numbers, 6 alpha-numeric characters, 5-6 printable character 

or 5 ASCII Characters. The moral is keep your passwords 8 characters long or use lots of 

unusual characters, but in no circumstance use less than 6 characters. Of course, if the 

crypt/second/dollar ratio increases by another five orders of magnitude in the next decade, 

only eight-character passwords that utilize the entire ASCII character set will be immune 

from brute-force cracking! 

'See table 6 in the appendix. 
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Exhaustive search in hardware is possible[5]. One of the aims of including the salt in 

the crypt algorithm was to remove the threat of using DES hardware to find passwords. 

However, it would not be too expensive to build VLSI chips that compute the crypt function 

and run 1000 times faster than these software implementations, not to mention the possible 

gain due to  parallelism and pipelining. 

The ultimate size of the key space allowed by the UNIX crypt program is very large: 266 

or about 7.2 x lo'* possible keys. Even with only 95 printable characters on a keyboard, 

there are still 95' or about 6.6 x possible keys. This is large enough to resist brute- 

force attacks in software, yet most of the passwords selected by users are in a very s m a l l  

part of this total space. It is impossible to use exhaustive search over the large space, but 

it is possible over the smaller space. What is needed is a list of words that have a high 
probability of being chosen as a password. Such a list can be derived from dictionaries, 

telephone directories, etc. 

3 Precomputed Encrypted Dictionaries 

A fast way of cracking large batches of passwords on a routine basis is to first encrypt a list 

of likely passwords and then compare each new batch of encrypted passwords against this 

pre-encrypted list. 

Salting was specifically designed to hinder this approach. Because the specific salt values 

are not known in advance, the pre-encrypted dictionary must encrypt each trial password 

with all possible salts, increasing storage requirements considerably. However, bulk storage 

is now far cheaper than it was ten years ago. Ln 1979, the densest form of bulk storage on 

the market was 6250 bpi magnetic tape and the corresponding tape drives were expensive. 

The consumer video cassette recorder boom of the 1980s has produced a spinoff in the form 

of herpensive digital cassette drives that can store about 2 gigabytes on a standard 8m7n 

video cassette. These cassettes are about the same size as audio cassettes, yet they can 

hold the equivalent of fifteen 2400' reels of 6250 bpi tape. 

Using a collection of Sun-3 and Sun-4 processors, the authors built a pre-encrypted 

dictionary from a list of about 107,000 trial passwords. Encrypting each trial password 

4,096 times (once for each possible salt value) took several CPU-weeks on these machines; 

the results fit onto two 8mm cassettes. (Recomputing the dictionary would now take leas 

time, since the fast crypt algorithm was still being tuned while we were generating the 

dictionary. ) 
Each encrypted password is stored as an 8-byte value; the plain text is not stored on 

the tape. Not only does this reduce the amount of tape necessary, but the tapes alone 

are enough to determine whether an encrypted password is in the password List without 

revealing the plain text password. This is ideal for improving system security without the 

possibility of the tapes being used to infiltrate other systems. 

The cassettes can be replayed repeatedly and checked against lines from the /etc/passwd 

file. At a tape transfer rate of 250 kilobytes/second, the CPU can keep up easily with the 

comparisons; thus the system checks about 30,000 trial passwords/second, faster than the 

fast crypt code runs in real time. The tapes also can be supplemented with tapes produced 

from new passwords and with the fast crypt program to check words of local interest, such 

as names of employees or projects. 

The precomputed dictionary approach is therefore 28.6 times faster than real time en- 

cryption on a DEC 3100. Twelve tapes containing the encrypted versions of about 732,000 



trial passwords would take a day to read on one drive; the crypt implementation running 

on a single DEC 3100 would take a month, assuming that the password file contains at 

least one entry for each possible salt. Even so, as long as users change their password less 

often than once a month, many passwords still can be found. The precomputed dictionary 

is helpful but not essential for password cracking. 

4 Improving Password Security 

Since this paper discusses the security of password systems, other possible human-to- 

machine authentication systems (such as retinal s c a m  or fingerprints) are not considered 

here. The purpose of this section is to examine the necessary elements for successful pass- 

word cracking and to  suggest which elements might be changed to increase the difiicdty of 

cracking passwords. The elements required to crack passwords as discussed in this paper 

are: 

0 High perfonnance/price ratio computers 

0 Large on-line word lists (dictionaries, etc.) 

0 A known password encryption algorithm 

0 A constraint on the acceptable running times for the login program 

0 A publicly-readable password file 

0 Passwords with a significant probability of being in the word list 

The existence of high perfarmance/price ratio computers and on-line word lists cannot 

be controlled, so if the di€Eculty of cracking passwords is to be increased, then one of the 

remaining four conditions must be changed. 

4.1 Known Encryption Algorithm 

We consider it a given, as did Morris and Thompson, that the encryption algorithm used for 

the one-way password crypt function must be published and subjected to public scrutiny. 

As in cryptography, it is neither practical nor necessary to base the security of a password 

algorithm on its secrecy. The storm of protest in response to the NSA’s recent attempt to 

replace DES with a secret cipher of its own design indicates the importance of this principle. 

Furthermore, the enormous success of the UNIX operating system is based largely on the 

openness of its design and the availability of its algorithms and source code. Assuming that 

the basic algorithm has not been compromised, there is no real reason to change it. 

4.2 Acceptable Running Times 

Software de-facto standards, such as the UNIX password algorithm, tend to outIive their 

original underlying hardware. UNIX now runs on a wide range of processors, from LBM 
PC/XTs to Cray ITS. A crypt function that is slow enough to thwart password attacks on 

a Cray 11 would be intolerably slow to a user logging into an IBM PC, and of course what 

is slow but tolerable on today’s machines wil l  become unacceptably fast on tomorrow’s. It 

is ironic that current fast crypt implementations on 1989 hardware run faster than the old 

(and “unacceptably fast”) Version 6 crypt ran on 1979 hardware. 
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Also, a crypt routine written specifically for password cracking runs orders of magnitude 

faster than a version built into a login command. Many of the performance enhancements 

(e.g., precomputation and the factoring of permutations) are meaningful only for a large 

scale password cracker that is trying many more keys than encrypted passwords. Also, 
the amount of memory required for the large tables in fast crypt implementations is not 

acceptable for a utility program that is to  be a standard part of the system. The adversary 

can  d o r d  to  dedicate an entire system to password cracking; the ‘good guy” is unlikely to 
be willing to dedicate his entire system to the login program. 

Morris and Thompson purposely slowed the execution speed of the UMX crypt im- 

plementation in an attempt to  hinder password cracking. Adjusting crypt’s speed so that 

the slowest processor running UNlX still has an acceptable login delay thwarts attack only 

slightly; the fundamental problems with current passwords are not addressed. Other ap- 

proaches are more likely to be successful. We believe the solution to the password cracking 

problem lies not in penalizing both the good guy and the adversary by deliberately slow- 

ing the algorithm. A better approach lies instead in ‘driving a wedge” between them by 

increasing the entropy of user passwords. This forces the adversary to search such a large 

key space as to  be impracticable even with a fast algorithm running on the fastest a d a b l e  

computer for the foreseeable future. 

4.3 Encrypted Password Availability 

A resource available to the adversary that is removable is the existence of a publicly-readable 

encrypted password file (/etc/passwd). For the purposes of this paper, it is assumed that 

physical access to the machine alone is enough to subvert it and it is assumed that the 

machine itself is physically secured according to the desired level ofsecurity. Many machines 

can be rebooted into privileged mode with physical access, so that physical access implies 

that a password-based attack is really unnecessary for system access. 

One method of restricting availability of the encrypted passwords is the shadow password 

file. A shadow password file is a file that contains the encrypted passwords and is not 

publicly accessible. This prevents the average user from accessing the password file. One 

problem with this approach is that a system administrator has access to the file. This is not 

a problem while the person remains an administrator, since presumably he has access to 

everything anyway. The problem is when a system administrator leaves. He may have copied 

encrypted passwords while he was an administrator and can now use these passwords t o  

infiltrate the system. Also, if an error in access permission is made, the encrypted password 

file may become available to all users of a system. Shadow password files cannot hurt, but 

it seems unwise to  count on them alone for system security. 

A more promising, if more complex, method is to provide each user with a s m a r t  curd 

that is used to authenticate the user to the system. A smart card in this case is a s m a l l  

computer with a keypad and a general purpose processor. The smart card should be able to  

communicate directly with the login system (e.g., by electrical or infrared link) rather than 

require manual I /O.  The smart card is more than a physical key; the human authenticates 

himself to the smart card using a password, so the card alone is worthless. Note that the 

encrypted password resides in the card and cannot be obtained without possession of the 

card. Once the human authenticates himself to the card, the card authenticates itself to 

the computer by some other method not discussed here. Some possibilities include zer* 

knowledge proofs and public key systems. The main problem would seem to be the rather 

limited processing capacity of a smart card. However, there are ways of utilizing computing 
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power in untrusted machines to execute complicated secret computations efficiently[7]. 

4.4 Decreasing Password Guessability 

The main weakness in any password system is that users often choose easily guessable 

passwords: English words, names, trivial extensions to Engtsh words, etc., because they 

are easy to remember. It is important that passwords be difficult to g u e s s .  One way to 

decrease password guessability is to eliminate common passwords from letcjpasswd. At 

Bellcore, we are using our high-speed pzsword cracking system and a large dictionary to  

find easily-guessed passwords on systems. Since we have a faster crypt and more CPU cycles 

than potential intruders, this allows us to use a larger dictionary; thus any passwords that 

survive our scrutiny are unlikely to be found by an intruder. 

Another possibility is to restrict the passwords accepted fiom the user with a system 

that filters out easily guessed passwords. DXerent schemes of filtering are possible and one 

such method was described by Morris and Thompson[S]. This system acts as a password 

advisor that indicates insecure passwords, but it does not force the user to accept its recom- 

mendation. In some Applied Research laboratories in BeIlcore, passwords must have certain 

characteristics before they are accepted by the system when the user changes his password. 

In addition, all existing passwords are periodically checked against a large dictionary and 

anyone whose password is found is forced to change it. 

The most drastic solution is to have the system assign an arbitrary password. The 

problem is that such a password is hard to remember, so the temptation to write it down is 

strong. A written password is like a physical key, and can be used by anyone who obtains 

it. A slightly friendlier version of this system a s s i p  a password, but allows the user to  

rearrange it to make it easier to remember. Then the new password is checked; if it is still 

acceptable, it becomes the user’s new password. 

A fundamental problem is that passwords typed by the user are truncated to 8 characters 

in length. Easily remembered passwords that are this short almost inevitably have much 

less than the 56 bits of entropy allowed by the crypt algorithm, making them easier to find 

by exhaustive search. All of the techniques just described attempt to increase entropy in the 

users’ passwords, but they do it in a way that ignores human factors considerations. Almost 

anyone can remember 56 bits of arbitrary information, but he must be allowed to do it in 

a way that is suited to human, not computer, memory. The way to do this is by extending 

the present algorithm to allow pass phrases[lO]. A pass phrase is simply a longer version 

of a password that includes several words. According to Shannon [Ill, English text has a 

lower bound of 1-2 bits of entropy per character. Therefore an ordinary English phrase of 

5-10 words (assuming 5-6 characters/word and no unusual punctuation or capitalization) 

has sufficient entropy as a pass phrase. 

To accommodate this in the UNIX crypt algorithm, a hash function is needed to fold 

the typed pass phrase into 56 bits, with each input character affecting the result. This 

function should be backward compatible with the existing UNM password algorithm for 

pass phrases of 8 characters or less. One possibility is to treat the first 8 characters as 

before, exclusive-ORing into it each successive 8-character block from the pass phrase (if 

the phrase is not a multiple of 8 characters, it is null-padded on the right). 

Users might stiU object to pass phrases if they were required to type them too frequently 

(e.g., when they must repeatedly log into a several Merent systems, each for short inter- 

vals). A solution to  this problem lies in the use of an distributed authentication system 
such as Kerberos, in which the user need type his password only once to obtain a set of 
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“tickets” that can be used to access other systems repeatedly without having to retype the 

pass phrase each time[l3]. 

Not only is the entropy of the password important, but also the amount of time available 

to  the cracker to find it. The more infrequently that a user changes his password, the more 

vulnerable i t  is to  a cracker. Thus it is important that the user occasionally change his 
password. On System V UNIX, this is accomplished by including an aging field for each 

line of the /etc/passwd file. When a password is sdiciently old, then the user is prompted 

for a new one. Of course, the system should check that the new password is different from 

previous ones. 

4.5 Other Approaches 

Two suggested solutions to  the problem of easily cracked passwords are to increase the size 

of the salt or t o  change the constant that is encrypted by crypt. Neither of these seems to  

be particularly helpful. 

Increasing the size of the salt does not help prevent attack on an individual password, but 

i t  does help defeat checking multiple passwords simultaneously and pre-encrypted wordlist 

attacks by increasing the time and space required, respectively. The current salt is large 

enough that few of the lines in a typical /etc/passwd iile share the same salt. The only 

remainbg reason to  increase the size of the salt is to reduce the number of pre-encrypted 

passwords that can fit onto a 5xed amount of tape. But as shown above, pre-encryption 

decreases the cracking time b y  a factor of 30, so this is the maximurn penalty that could be 

exacted by even a large increase in the salt size. 

Making the starting constant used by crypt a system configuration variable instead of 

all zeros was mentioned by Morris and Thompson[S]. This has the advantage of making it 
harder t o  use the pre-encrypted wordlist, but unless the constant is kept secret it is s t i l l  

possible to attack individual passwords with a fast crypt. Depending on the implementa- 

tion, a user might be able to  learn the constant by decompiling the login program If a 

password/encrypted password pair is known, then the starting constant can be determined 

simply by reversing the internal crypt operations. The encrypted passwords are known if 

the /etc/passwd file is publicly readable; a plain text password that matches an encrypted 

password is available to  any user (his own password) and some passwords (such as for 

WCP) may be widely known. An adversary with access to the /etc/passwd file alone but 

no knowledge of the constant could take advantage of the fact that many passwords are in 

the dictionary. As before, crypt can be run backwards for a dictionary of words on several 

passwords and the corresponding input constants checked for a match. Once a matching 

pair of constants is found (there are 264 or about 1.8 x lo1’ possibilities for the constant, 

so a match is unlikely unless both are the hidden constant), the number can be verified 

simply by using one of the plain text keys that produced the match to attempt to  log in. 

If the attempt is successful, the hidden constant is known and cracking continues as usual. 
The only cost above the usual cracking technique is the maintenance of the list of constants 

until a match is found. Table 2 shows the probability of finding the unknown constant after 

checking n encrypted passwords, for lo%, 20%, and 30% probabilities of finding a password 

in the dictionary. 

Once chosen, the constant could not be changed easily (e.g., in event of compromise) 

without having every user reenter his or her password. Another disadvantage of the system- 

configurable constant is that /etc/password files would no longer be portable across systems 

with different encryption constants, although it might be argued that such portability de- 
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Number Success 

of Probability 

success success 

Probability Probability 

Passwords 

5 

(10%) (20%) (30%) 

8% 26% 47% 

Table 2: Probability of Cracking Two or More Passwords 

c 
10 26% 62% 85% 

15 45% 83% 96% 

20 61% 93% 99% 

creases system security by allowing arbitrary (and perhaps easily guessed) passwords to be 

put in the /etc/password file. 

To.keep the constant secret, it is necessary to couple the secret constant technique 

with shadow password files. Since this technique must be implemented in conjunction with 

shadow password files, has no advantages over that of shadow passwords alone, and has 

several disadvantages, it is better to implement password file shadowing only. 

5 Conclusion 

The current UNlX password system is not always sufficient to prevent unauthorized entry 

because it is fairly easy to  crack passwords. An important point is that although the crypt 

algorithm is a good one, the password system as a whole is weak. Six factors contribute to 

the ease of cracking passwords: high performance/price ratio computers, large on-line word 

lists, a known password encryption algorithm, a maximum acceptable running time for the 

login program, a publicly readable password file, and easily guessable passwords. 

Nothing can be done about large on-line dictionaries or high perfonnance/price ratio 

computers. In fact, the password system should take the exponential speed increase of 

computers into account. It is argued that the password encryption algorithm must be 

known to be trusted and that there is a range of acceptable running times for the algorithm 

which sets an upper limit on the amount of computation that the password encryption 

algorithm may use. Unfortunately, the computation limit is s m a l l  enough to allow faster 

machines to use a dictionary-based attack. It is also argued that Morris and Thompson’s 

assertion that slowing down the implementation of the crypt function improves security 

does not address the large range of processors that run UNIX. 

Two of the main problems with the current system are that users choose easily guessable 

passwords and that the encrypted password file is publicly readable. A dual approach is 

suggested. One part is to  make passwords less predictable by allowing pass phrases and 

restricting passwords accepted by the system. This effectively increases the entropy of 

a password, making wordlist attacks less successful. The other approach is to make the 

encrypted password file less accessible. How exactly this is done depends on the desired 

level of security and includes shadow password files and smart cards. 
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A A High-speed Crypt Implementation 

This append3  describes a high-speed software implementation of the UNIX crypt algo- 

rithm. This new crypt is 102.9 times faster than the crypt in 4.2 Berkeley UNLX on a Sun 

3/50. Many of the results are also applicable to software Data Encryption Standard (DES) 

and other product cipher implementations. 

Several techniques are used to increase the program speed. One technique is to alter the 

crypt algorithm so that it is easier to compute but still produces the same results. Another 

technique is to take advantage of the architectural features of the computer that will run 

'This appendix was originally a paper entitled A Eigh-Speed Crypt Implcmcntotion by David C. Feidmeier. 
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the algorithm. It also is important for high performance to minimize the manipulation of 

individual bits. A data representation is described that allows the E expansion of DES 

to be accomplished by a simple register copy and yet allows a fast implementation of the 

S function of DES without bit manipulation. This appendix assumes that the reader is 

familiar with the DES [6]. 

A.l Overview of Crypt 

Crypt is a program used by the UNIX operating system to encrypt user passwords and is 

based on the DES encryption algorithm. Crypt is designed to be a one-way function; given 

an input, it is easy to  compute the output, but given an output, it is impossible to determine 

the corresponding input except by guessing. DES can be used to realize a one-way function, 

so it is a good choice to  use for crypt. In particular DES is resistant to a known plain text 

attack, which meam given the plain text and the cipher text, the key can be found only by 

exhaustive search. The crypt algorithm uses 25 successive DES encryptions of a constant 

(64 zeros) to produce the encrypted password. The key for all of the DES encryptions is 

derived from the user's password. The first eight characters of the password are used as a 

56-bit key (7 bits for each ASCII character, 8 characters). If the password is less than 8 

characters, the password is padded with zeros to the f d  56-bit length. 

Actually, crypt does not use pure DES. To prevent use of off-the-shelfhigh-speed DES 

hardware to crack passwords, crypt modifies the DES algorithm slightly. A randomly 

generated salt is included with each entry in the /etc/passwd file. The 12-bit salt ranges 

from zero to 4095. Think of the salt as a permutation that immediately follows the expansion 

function E in DES. If bit 1 of the salt is a 1, then the salt permutation swaps bits 1 and 25 

of the &-bit block generated by E. If bit 2 is a 1, then bit 2 and 26 are swapped and SO 

on. Since there are 12 possible swaps and any combination of these swaps may occur, this 

produces 4096 possible variations of DES (a salt of zero corresponds to pure DES). More 

details on the UNIX password mechanism are found in a paper by Morris and Thompson[S]. 

A.2 The Speed-Crypt Implementation 

This section describes some of the ideas behind the implementation of the crypt algorithm 

written by the author (speed-crypt) and why it is fast. The implementation is designed for 

32-bit machines; it is possible to run it on other size machines with minor modifications. 

The DES algorithm has 48-bit, 56-bit and 64-bit wide paths. Since even 48 bits is wider 

than the expected data path, each operation requires two word manipulations; thus the 

DES data path is broken into high and low pieces of 32 bits each. 

A.2.1 Algorithm Modifkations 

The basic crypt algorithm can be modified in a number of ways that do not change the 

function computed by the algorithm. Each DES encryption begins with the initial permu- 

tation (IP) and ends with the inverse initial pemrutafion ( I P - I ) .  These two permutations 

are inverses of each other, so when two DES encryptions are concatenated, the IP of the 

second encryption immediately follows the IP-' of the f i s t  encryption. There is no reason 

to do either of these permutations, since the net result is no permutation at all. Therefore, 

any IP-'-IP pairs can be factored out of the algorithm and only the f i s t  IP and the last 

IP-' ever need be done. In fact, because of how crypt works, these remaining permutations 

can be factored out as well. 
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Inside of DES, the 64-bit input block is broken into two pieces of 32 bits each called Left 

( L )  and Right (R).  Within each DES encryption there are 16 product-transformation/block- 

transformation pairs. The block transformation is simply the swapping of the R 32 bits with 

the L 32 bits. To avoid the block transformation at the end of each product-transformation, 

speed-crypt uses two different product transformations: one works the usual way and the 

other operates on L as if it were R and vice-versa. Using these two product transformations 

alternately eliminates the need for a block transformation between product transformations. 

The only problem with this scheme is that after the last product-transformation, the L and 

R blocks are swapped. This reversal is incorporated into the final IP-' because a swap and 

a permutation is just a permutation. Let e represent the E expansion, u represent the S 

function and r represent the P permutation. Let K; be the qh subkey, R; be the t*h value 

of Right and L; be the value of Left. By definition: 

Ri = Li-1 @ f ; R i - 1  

f i h - 1  XU(  Ki @ €&-I )  

where f ;  is the product transformation that uses subkey K;. After two rounds: 

&+I = Ri-1 @ f i+l(Li-l@ fia-1) 

Since there are 16 rounds in DES, 8 double-rounds of the following form can be used 

instead: 

L;+1 L;-i @ f;R;-1 

&+l = Ri-1 @ fi+lLi+l 

Notice that no intermediate values of R, and L; need be retained. After one double-round: 

Lit1 = k - 1  @ fiRi-1 

&+I = Ri-1 @ f;+l(L;-1@ fiR-1) 

which is the same as before. In effect, the swap has been built into the iteration. 

Because the crypt program begins by encrypting all zeros, the first I P  permutation and 

the first E expansion can be factored out because any permutation or expansion of zero is 

still zero. The first salting operation can be factored out for the same reason. 

Another method of increasing speed depends upon the assumption that there are fewer 

encrypted passwords to be checked than words to be tried. Under these circumstances, it 

makes sense to do as many operations as possible on the encrypted passwords if operations 

can be avoided on the words. The encrypted passwords should be operated on to  allow 

their comparison with the results of the crypt program as early as possible, since a single 

backward step on the password saves as many forward steps as there are words. The final 
IP-I can be skipped if yon are checking to see whether a password is in a wordlist. Instead 

of doing the IP-' permutation for each word that is being tested as the password, a better 

way to do this is to take the encrypted password from the passwd file and permute it 

with IP. The comparison is now done between the output of the last DES round and the 

permuted encrypted password. 
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A.2.2 Subkey Generation 

Subkey generation means taking a 64-bit password key K and generating 16 &-bit DES 
subkeys Ki. The generation of subkeys involves taking a 64-bit plain text password and 

applying the reduction/permutation Pennuted Choice 1. Permuted Choice 1 reduces the 

password from 64 bits to 56 bits by eliminating the parity bits and then permutes the result. 

The 56-bit result is then divided into low and high 28-bit halves and each half is left-circular 

shifted by an amount that depends on the particular subkey being generated. The two 28-bit 

halves are joined and the permutation/reduction Permuted Choice 2 is applied. Permuted 

Choice 2 permutes the 56-bit result of the rotation and then selects 48 of these bits for the 

subkey. The combination of the permutations and reductions for each subkey is combined 

into a single permutation/reduction, for a total of 16 subkey generation functions. Let a 

represent Permuted Choice 1, /3 represent Permuted Choice 2, and p;  represent the rotations 

for the ith subkey. Let Ki be the 2h subkey and K be the key that the subkey is generated 

from. Then: 

K; n;K 

n; = Ppia 

where 6; is the permutation/reduction that generates the gh subkey from the originerl pass- 

word. To limit the table size, subkey lookups take seven key bits at a time (each ASCII 

password character is represented by 7 bits). The lookup could take any number of bits a t  

a time because all are independent, but doing lookups a character at a time is convenient 

and two characters a t  a time makes the tables too large. 

For each character in the password, the partial subkey is found and logical-ORed with 

the partial subkeys for the other characters in the password. After 16 passes (each requiring 

two lookups) for each character in the password (a maximum of 128 passes), all 16 subkeys 

have been generated. At most 256 table lookups are needed to generate all subkeys. A nice 

side-effect is that the time required for this method of subkey generation is proportional to 

the password length. Since passwords of less than eight characters are padded with zeros 

and permutations of zero are also zero, the subkeys will not be changed by these additional 

zeros, so there is no need to bother with them The total table size is Z3 character positions 

in each password, 2' possible characters in each position, 2' subkeys per password and 23 

bytes to hold each subkey for a total table size of 217 or 131,072 bytes. 

A.2.3 Table Lookup 

The program gets a lot of its speed from a space-for-time tradeoff - almost everything in the 

program is done by table lookup. Ideally, a table lookup would take the entire input (up 

to 64 bits) and return the entire output (up to 64 bits). Of course, the maxixnum size of 

the input and output of a table are limited by the virtual memory size and the bus width. 

Thus, on a 32-bit bus, a table with a 64-bit output requires that two lookups be done, one 

for the low 32 bits and one for the high 32 bits. As for the input to the table, even a 32-bit 

input would be completely impractical because it is desirable to keep all of the tables in 

main memory for fast access time and to prevent paging. 

To replicate the dec t  of a single large lookup table with several small lookup tables 

presents a problem. The problem is that groups of input bits may exist such that all the 

bits must be read sknultaneously to produce a result. An example of this is the S boxes in 

DES. Each S box takes a 6-bit input and produces a 4-bit output. Because all 6 bits are 
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simultaneously necessary (because the S box is n o n - f i e ) ,  all S box lookups must be done 

in multiples of 6 bits. 

However, if groups are independent, then the table lookup can be broken into man- 

ageable pieces (ideally of equal size to  minimize the total table size), each of which can 

be manipulated independently. The results can then be logical-0Red together to  produce 

the appropriate output. Because the physical memory available to an application in most 

workstations is only a few megabytes, this limits the size of the tables. 

Changing one lookup to  two produces a substantial change in total table size. The ratio 

is 2("/*)+'/2" or 2'-("i2), where TI is the number of bits used for the table index. The fewer 

the table lookups, the higher the speed, but also the more memory that is used. The crypt 

implementations should use as few table lookups as possible given the memory constraints. 

The IP-' table takes the 64-bit input a byte at a time and produces two 32-bit outputs 

that are ORed together in the usual way. The I P  table is used only for permuting encrypted 

passwords that are being searched for to avoid computing the IP-' for each word in the 

dictionary (remember that I P  and IP-I are inverse permutations). Since I P  is used on 

password entries, the pacisword entries must be converted from ASCII form to a 64-bit form. 

Speed-crypt uses a special version of I P  that converts directly from the 11 ASCII character 

format of the Ietclpasswd file to the 64-bit format after the IP  permutation. I P  does 

lookups a character a t  a time and produces two 32-bit outputs that are ORed together. 

The S boxes and the P permutation are combined into a single lookup table. The 
expansion function E is done with a simple register copy. The details of the E expansion 

will be explained later. Table 3 shows the table sizes for speed-crypt. 

1 Table I Bytes 1 

I I 

I total 1212,992 1 

Table 3: Table Size in Speed-Crypt 

A.2.4 Data  Representation 

A representation is devised that does not require a table lookup for the expansion function 

E, allows the SIP function to be implemented as 4 table lookups without the manipulation 

of individual bits, and allows fast salting. Such a representation is possible, but requires a 

strange bit order. 

Consider the mapping fiom R (32 bits) to E R  (48 bits) as shown in table 4. The first 

thing to notice is that the table is presented in groups of 6. The reason for this is that 

the eight S boxes each use six bits for their lookup. Because the S boxes are non-af ie ,  

the groups of six cannot be broken up. Therefore, they define the granularity of the table 

lookups (multiples of six bits along the boundaries shown). 

An important aspect of the E expansion is that no input bit of R ever becomes more 

than two output bits in cR. This suggests that simply copying R into a second register will 

give all 48 bits necessary for the expansion E in two 32-bit words. Designate the two copies 

o i R a s  A a n d B .  



eR (48 bit) 

R (32 bit) 

eR (48 bit) 

R (32 bit) 

, 1 

7 8 9 10 11 12 

4 5 6 7 8 9 

13 14 15 16 17 18 

8 9 10 11 112 13 ' 

I 11 I I I I I I 

eR (48 bit) 

R (32 bit) 

eR (48 bit1 

1 R (32 bit) 11 16 I17  I 18 I 19 I20 I 2 1  1 
I eR (48 bit) 11 31 I32 I 33 1 34 I 35 I 36 I 

19 20 21 22 23 24 

12 13 14 15 16 17 

25 26 27 28 29 30 

R (32 bi t j  

eR (48 bit) 

t R (32 bit; ii 28 i 29 i 30 i 31 i 32 i 1 1 

20 21 j 22 j 23 24 i 25 

37 38 I 39 1 40 41 I42  ' 

Table 4: Expansion Function E (mapping from R to ER) 

Since as little manipulation as possible of the 32-bit quantities before the SP lookup 

is desired, the bit order of the 32-bit R (and symmetrically L) is critical. The aim is to 

do four lookups, two S boxes at  a time. Notice that there is a circular structure to  the E 
expansion and that bits from R that occur on line n also occur on lines (n+ 1) and (n - 1) 

mod 8. This means that the lookup of all odd lines must occur in one copy of R (say A )  and 

the lookup of even Lines must occur in the other ( B )  so that overlapping bits of R may be 

salted differently. Salting constrains the data representation in yet another way. Because 

salt exchanges bits between lines 1 & 5, and lines 2 & 6, lines 1 & 5 must be read in a single 

lookup, as must lines 2 & 6. This also implies that lines 3 & 7 must be a single lookup, as 

must lines 4 & 8. 

To minimire table sue, Lines 1 & 5 , 2  & 6 , 3  & 7, and 4 & 8 must be organized as blocks 

of 12 bits with no intervening bits. In addition, the circular structure of the E expansion 

requires that the bits for Lines 8 and 2 be adjacent to those for line 1, lines 1 and 3 be 

adjacent to those for line 2, etc. One way to achieve this is to interleave the bits of the 

pairs of lines. Thus Lines 1 & 5 are interleaved, lines 2 & 6 are interleaved, etc. Of course, 

interleaved hes 1 & 5 are adjacent to interleaved Lines 4 & 8 and 2 & 6. Interleaving not 

only allows the correct adjacencies but also makes salting easy, since aligning the bits for 

comparison takes only a single shift. 

Assume that the bits of a word are numbered such that 0 is the least significant bit and 

31 is the most significant bit. The data representation for R starts with the first bit of line 

1 in bit 2, the first bit of line 5 in bit 3 and so on, thus interleaving lines 1 and 5. This 

continues with Lines 2 and 6. Notice that bit 10 represents not only the fifth bit of line 1 

but also the first bit of line 2, and bit 11 represents the fifth bit of line 5 as well as the first 

bit of line 6. This pattern continues for lines 3 & 7 and 4 & 8. Notice that lines 4 & 8 wrap 

around the end of the word, and thus the fourth bit of line 4 is represented by bit 0. This 
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is the 32-bit representation of R: 

To get the 32-bit representation of L (which is not expanded), add 32 to each of the 

above numbers. Notice that Lines 1 & 5 do not start immediately at the least significant bit; 

there are two extra bits in the least significant byte. This is because when doing pointer 

arithmetic, normally the value to be found in a table on a machine with a 32-bit (4 byte) 

word size would have to  be multiplied by 4 before addition. In effect, the data representation 

above "premultiplies" by 4, thus saving an operation in a critical section of the code. 

Now apply the mapping from R to ER for 1 & 5 and 3 & 7 (which have no overlapping 

bits in R )  to obtain the representation of the 24 of the 48 bits in A (x denotes an unused 

position) : 

I 

4 2 ~ 1 8 ~ 4 1 ~ 1 7 ~ 4 0 ~ 1 6 ~ 3 9 ~ 1 5 ~ 3 8 ~ 1 4 ~ 3 7 ~ 1 & ~ ~ ~ ~ ~  30~06~29~05~28~04~27~03~26~02~25  101 

Now apply the mapping from R to ER for 2 & 6 and 4 & 8 (which have no overlapping 

bits in R) to obtain the representation of the 24 of the 48 bits in B :  

A.2.5 Salting 

Unlike other functions in crypt, such as E ,  S and P ,  the salt permutation is determined 

at runtime. Salting takes place in the 48-bit data path after the expansion function E and 

before the subkey is exclusive-ORed with the expanded R. The salt acts as an additional 

permutation after the E expansion, which can be either done separately or combined with 

other permutations. Because of the nature of the E expansion, complete salting cannot be 

done before E (although partial salting can). Let T represent the salt permutation; then: 

If salting is done separately, then after the E expansion the appropriate bits are swapped 

according to the salt. For many keys to be encrypted with the same salt, presalting may 

be faster. Presalting involves combining the salt permutation with one or more of the table 

lookups at runtime before any encryption is done and then using these modified tables for 

encryption. Since in-line encryption uses one salt operation for each DES round, 400 salt 

operations are performed on each word. With enough encryptions, it is cheaper to use the 

salt to adjust each entry of the lookup tables appropriately. 

The salting function is relatively fast. Because the salting operation is so regular, it 

is faster to compute it than to do a table lookup. Speed-crypt has a data representation 

such that the relative of€iets of bits 1-12 is the same as that of bits 25-36, i.e. the distance 

between 1 and 2 is the same as the distance between 25 and 26, etc. This means that bits 

1-12 can be aligned with bits 25-36 in a single operation. 

The only bits that need be swapped are those that differ and this delta bitmap is com- 

puted by exclusive-0R.ing bits 1-12 with 25-36. Then the delta bitmap is logical-ANDed 

with the salt mask. The salt mask has a 1 in the positions where bits are to be salted and 

0s elsewhere. This leaves a bitmap of those bits that differ and are supposed to be switched 
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in the delta bitmap. This delta bitmap is then exclusive-OM with bits 1-12 and 25-36, 

thus completing the s a l t i n g  operation. 

Presalting is used exclusively for speed-crypt, since the crossover point for presalting 

versus in-line salting is only 10 words. Presalting involves altering lookup tables to eliminate 

the need to  exchange bits after the E expansion. The only table lookup in speed-crypt is 

the SP table, which produces a 32-bit result. Sometimes bits that both can be salted after 

E appear as a single element in the 32-bit representation of R. This is a problem as the 

32-bit element can salt the single bit one way, and perhaps have bits be swapped incorrectly 

for one of the two lookups. The solution is to reorder the entries of the SP table according 

to salt. By definition: 

R, L;-1 $ KU( s;K $ ~eRi-1) 

Using the fact that w-l is the identity permutation: 

& = Li-1 XQTT-'( K;K $ T E R ; - ~ )  

Now distribute 7-l across $: 

The table entries have to be permuted or reordered, depending on whether the incorpo- 

rated permutation is before or after the table. 

*a; t X U y ( ; )  

Thus all of the key table entries are salted with the usual s a l t  function. SP table entries 

must be exchanged and this can be done quickly. If two bits to be salted are the same (when 

i = ~(i)), then no exchange is necessary. Since T = T-', table entry xu; can be swapped 

with entry XU.(;) and no temporary storage is needed. 

A.2.8 System Issues 

Crypt runs DES 25 times and the basic round within DES is run 16 times for a total of 400 

rounds. Anything that can be done to speed up this basic round will be multiplied by 400, 

so it is important that the rounds run efficiently. 

In general it is best to  keep the number of variables used by the crypt program s m a l l  

so that most of them can be kept in registers. On a fast processor, particularly those with 

caches, memory fetches slow down the system. 

It is best to avoid instructions whenever possible. For example, with the SP table 

lookup, rather than logical-ORing the table entries together and then exclusive-ORing the 

result into the L register, it is faster to exclusive-OR the intermediate results into the I; 

register directly, saving one instruction per round (400 instructions total). 



61 

For processors with a cache, the main DES rounds should be executed within a loop 

that is s m a l l  enough to fit into a processor cache. The execution speedup achieved by the 

cache more than compensates for the running time of the extra loop instructions. Without 

a cache, the loop should be unwound so that the loop overhead is avoided. Speed-crypt has 

a compile-time option to structure the program appropriately depending on whether there 

is a cache. 

Another important point is to take advantage of the processor instruction set, specif- 

i c d y  whether the machine is a Reduced Instruction Set Computer (RISC) or a Complez 

Iwiruction Set Computer (CISC). Examples of RISC machines are the Sun 4 (SPARC pro- 

cessor) and the DEC 3100 (MIPS R2000 processor). Examples of CISC machines are the 

Sun 3 (68020 processor) and the VAX. 

A useful feature of CISC processors is auteincrement mode. If possible, it is best to 

step through tables one element at a time so that auto-increment mode can be used. This 

is particularly useful for accessing.the subkeys. The high and low words of th’e subkeys 

alternate and they are extracted one at a time with auto-increment mode. On a RfsC 
machine, a separate addition must be done for each increment, so it does not matter what 

the step size is. Sometimes a Merent  step size can lead to more dc i en t  operation. An- 
other feature of CISC processors are instructions specifically designed for efficient loops. 

In particular, it is faster to count down to zero with a single instruction that does the 

compare-decrement-branch function. 

RISC machines generally contain a large number of registers and performance is en- 

hanced if often-used constants are kept in registers. Large constants take two instructions 

to load into the processor rather than one (this is because the fixed-length RISC instructions 

can include only s m a l l  constants). 

Speed-crypt is written in C and should be portable with little trouble, although for some 

machines there are special cases inserted into the code. In particular, sometimes a compiler 

cannot be convinced to generate efficient assembly code for some portion of C code. An 

example of poorly generated code is the loop instructions. Compilers sometimes generate 

non-optimal loops, particularly for CISC processors, which often have good instructions for 

loops. One case where the compiler is not at fault i s  the lack of a bit rotation operator 

in C. Many processors have a bit rotation instruction, but the equivalent in C produces 3 

assembly language instructions. In both of these cases there are compile time options to 

replace some portions of the C code directly with assemble language instructions for specific 

processors. Another possibility is to edit the assembly language that the compiler produces. 

Because the VAX compiler is reluctant to use all of the processor registers, speed-crypt on 

the VAX uses a SED (UNIX Stream EDitor) script that replaces certain memory references 

with register references in the assembly code. 

A.3 Implementation Alternatives 

Fast crypt implementations by Baldwin[l], Bishop[2] and Mitchell[8] each utilize most of the 

suggestions above. Fast DES implementations also use similar techniques[4]. Speed-crypt 

has a technique for the E expansion that can double the speed of an implementation on 

32-bit RISC machines. 

The questor code was written by Donald Mitchell at Bell Labs and is probably the most 

straight-forward of the fast crypt implementations[8]. Subkey generation uses two table 

lookups (Permuted Choice 1 and Permuted Choice 2) and two rotations per subkey. The 

E expansion is done as eight 64-bit table lookups (4 bits of R at a time). The S function 



62 

User 
Machine Time 

and the P permutation are combined and eight 32-bit lookups are done (6 bits a t  a time). 

The swap of L and R occurs between DES rounds. The IP-I lookup is also done 4 bits at 

a time. The version timed below has presalting, but the original version did in-line salting 

only. However, the code is well written and it runs quickly. 

The implementations by both Baldwin and Bishop use a transformation of DES de- 

scribed by Davio[3]. The recurrence equation is rewritten so that the E expansion is com- 

bined with the S function and the P permutation; thus, only a single lookup table is needed 

for the DES rounds. An function is needed at the end of the 25 DES encryptions, but 

this can be combined with the IP-I table. The problem with this transformation is that the 

entire data path of the crypt function is 48-bits wide. This is not a problem on a machine 

that is 48-bits wide or wider, but it is on a machine with a smaller bus. This doubles the 

number of memory accesses for the S P E  table because each 48-bit word requires two 32-bit 

fetches. The basic S P E  table lookup requires 4 basic lookups, each of which has an 8 byte 

output, which means that each lookup requires two memory fetches on a 32-bit machine. 

Because memory fetches slow down the crypt program, speed-crypt executes faster because 

fewer (4) memory references are needed. The E expansion technique used for speed-crypt 

has little advantage over a combined S P E  table for machines that are 64-bits wide or wider. 

For machines with smaller bus widths, the speed-crypt implementation should run about 

twice 85 fast. 

Bob Baldwin wrote the fdes code at MIT[l]. The subkeys are computed in the standard 

way and he avoids the swap between DES rounds. His SPE lookups are done 6 bits a t  

a time. Baldwin has other optimizations that are specific to his design and cannot be 

implemented in speed-crypt. The fdes program is designed to run well on a VAX. It rams 

very well on the VAX, but not as well on other machines. 

Matt Bishop wrote his deszip code at Dartmouth College and the Research Institute 

for Advanced Computer Science[2]. The code has a variety of options to allow various 

speedlsize tradeoe. Keys can be computed either the standard way or with a permutation 

per subkey as speed-crypt does. The S P E  lookups can be done 6 or 1 2  bits at a time. It is 

also sophisticated about taking advantage of the machine architecture to improve its speed. 

System Total Crypts Milliseconds 

Time Time per Per 

A.4 Speed Measurements 

I 11 (Seconds) I (Seconds) I (Seconds) I Second I 

Table 5: Speed-Crypt Speeds on Various Machines 
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I Person I Version I Year 11 DEC 3100 I Sun 3/50 I Sun 4/280 I VAX 11/780 1 

Table 6: Crypt Times of Various Implementations 

The timings of the speed-crypt implementation are shown in table 5; the length of the 

test dictionary is 106,661 words. Table 6 shows the speed of the various crypt implementa- 

tions on a variety of machines. The reason that implementations by others do not speed up 

as well when they are moved to a FUSC machine is that they do many table lookups. The 

speed-crypt program is larger, but the number of table lookups is smaller, thus allowing it 

to run faster on a RISC machine. Also, Baldwin's fdes program is optimized for the VAX, 

not the Sun,  so it may not have ported well. Notice that fdes runs 3.2 times faster on the 

Sun 4 than on the VAX 11/780, while speed-crypt runs 17.7 times faster. 

A.5 Conclusion 

This appendix describes the implementation of a high-speed crypt program written in C. 

It discusses how the crypt algorithm works and how it can be modified for higher speed. 

Implementation decisions and programming tricks for high speed are also discussed. It 

is worth pointing out that no real breakthroughs were required for the results obtained. 

What was required is a good understanding of the algorithm and of the computer systems 

on which it is implemented. The most unique part of the implementation is the unique bit 

order used in the 48-bit wide product transformation that allows fast E expansion, fast SP 
table lookup and salting without manipulation of individual bits. Of course, many of the 

ideas presented in this paper are applicable to software implementations of DES and other 

product ciphers. 

The fastest crypt implementation is 102.9 times faster than the crypt in 4.2 Berkeley 

UN'IX on a Sun 3/50. In absolute speed, the fastest crypt does 1089.5 crypt per second on 

a DEC 3100. 
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